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Abstract
This work addresses a new technique of motion planning and navigation for differential-drive robots in dynamic environ-
ments. Static and dynamic objects are represented directly on the control space of the robot, where decisions on the best
motion are made. A new model representing the dynamism and the prediction of the future behavior of the environment is
defined, the dynamic object velocity space (DOVS). A formal definition of this model is provided, establishing the proper-
ties for its characterization. An analysis of its complexity, compared with other methods, is performed. The model contains
information about the future behavior of obstacles, mapped on the robot control space. It allows planning of near-time-
optimal safe motions within the visibility space horizon, not only for the current sampling period. Navigation strategies
are developed based on the identification of situations in the model. The planned strategy is applied and updated for each
sampling time, adapting to changes occurring in the scenario. The technique is evaluated in randomly generated simulated
scenarios, based on metrics defined using safety and time-to-goal criteria. An evaluation in real-world experiments is also
presented.
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1. Introduction

Applications of autonomous robotic systems are a recog-
nized research priority (e.g. in contexts relating rescue,
surveillance, households, guidance, museums, and facto-
ries). Robots in these contexts have to coexist or cooper-
ate with humans or other moving vehicles in constantly
changing scenarios. Planners for static scenarios and purely
reactive avoidance techniques are no longer valid. Motion
planning in dynamic scenarios requires being able to pre-
dict the future evolution of obstacles, to plan and execute
the safest and quickest feasible movements for the robot.
Furthermore, kinodynamic constraints must be taken into
account to obtain feasible trajectories. In this work we
develop a robocentric planning and navigation technique for
such environments, which considers safety, manoeuvrabil-
ity, and constraints on the robot and the environment. The
paper offers two main contributions: a new dynamic envi-
ronment model for non-holonomic robots, which maps the
environment on the velocity space of the robot; and a set of
planning and navigation strategies, based on the model and
on safety and time-to-goal criteria.

In Section 2 the state of the art is presented. In Section 3
the contributions are highlighted and explained. Section 4
establishes the problem to be solved. Section 5 formally
defines the dynamic environment model, the dynamic

object velocity space (DOVS), and its properties. In Section
6, the decision making, planning and navigation strategies
are developed. Section 7 evaluates the method, based on
metrics by means of simulations and in real-world exper-
iments. In Section 8 some conclusions and future work are
presented.

2. Related work

Motion planning and reactive navigation in static and
dynamic environments have been addressed extensively in
the literature. Reactive approaches combined with global
planning techniques lead to so-called iterative motion plan-
ners (e.g. Brock and Khatib, 2000; Fraichard, 1998; Frazzoli
et al., 2001; Hsu et al., 2002; Minguez and Montano, 2005;
Stachniss and Burgard, 2002). These techniques calculate
several steps ahead depending on the time available. The
planner evaluates different branches in a tree within a hori-
zon and works out a partial trajectory. This process may be
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interrupted at any time or is time-bounded to maintain the
robot’s reactivity.

Modeling the dynamic environment is a major problem to
solve that requires representing the dynamics of the robotic
system and the motion evolution of the moving obstacles.
Two of the most commonly used and referenced models
are the velocity obstacle (VO) (Fiorini and Shiller, 1998),
expanded in Shiller et al. (2001), and the inevitable collision
states (ICS) introduced by Fraichard and Asama (2003). In
VO the set of velocities from the current state that would
provoke a collision between a holonomic robot and an
obstacle at a time in the future is computed. ICS is directly
related to safety.

The non-linear velocity obstacle (NLVO), which is the
VO concept applied to obstacles moving along arbitrary
trajectories, is used in Large et al. (2002) to compute a
risk function from the time to collision to select the best
velocity for the robot. An evolved technique that employs
the 3D information obtained by the NLVO is presented
in Large et al. (2005). The authors developed an itera-
tive approach based on the A* algorithm to incrementally
build a solution towards the goal, where real-time issues
are also considered. Recently, Kim and Oh (2016) pre-
sented a new VO-based approach (OVVO), which improves
the velocity selection compared with the VO approach. The
method defines a cost function which weighs the similar-
ity to a desired velocity and the level of obstacle avoidance
(to move around obstacles to a greater or lesser extent) to
decide on the best velocity for the robot in crowded or less-
dense scenarios. However, the results are very dependent on
weight heuristic parameters.

Regarding safety, LaValle and Kuffner (2001) introduced
the concept of region of inevitable collision to identify the
states in which there is no control input the robot can apply
to avoid a collision. Frazzoli et al. (2001) formulated the
concept of τ -safety as a guarantee of no collision during τ

seconds for each node of a tree created with a sampling-
based algorithm. However, the ICS model focuses on safety
by computing the robot states that lead to inevitable col-
lision in a time horizon, for a set of evasive manoeuvres,
including the braking manoeuvre.

Fraichard (2007) introduced three safety criteria that
a robotic system should consider to compute its future
motion, and ICS is presented as a suitable framework to
deal with motion safety for motion planning and navi-
gation. Petti and Fraichard (2005), Kalisiak and van de
Panne (2007), Chan et al. (2008), and Bekris and Kavraki
(2007) exploited an approximation of ICS in different
ways. They perform a tree-based search and check for
inevitable collision states to provide safety for a time hori-
zon. Martinez-Gomez and Fraichard (2009) presented ICS-
Avoid, a reactive navigation approach that selects controls
for the robot to move through ICS-free states. Probabilis-
tic versions of ICS were defined in Althoff et al. (2010)
and Bautin et al. (2010) to capture the uncertainty about the
future behavior of moving objects in real-world situations.

Althoff et al. (2012) considered interactions among objects
in terms of collision avoidance, reasoning beyond the plan-
ning horizon. Bouraine et al. (2012) defined Braking-ICS,
a version of ICS that guarantees that if a collision takes
place, the robot will be at rest. It was later applied to the
development of a partial motion planner by Bouraine et al.
(2014).

Shiller et al. (2010) addressed the motion safety issue in
the VO framework using the ICS concept for holonomic
robots. Calculating the proper time horizon as the mini-
mum time for the robot velocity to exit the velocity obsta-
cle yields a representation of the environment that ensures
robot safety as long as the robot velocity does not lie in
the velocity obstacle. Seder and Petrovic (2007) adapted
the DWA approach (Fox et al., 1997) to consider mov-
ing obstacles, which are represented as moving cells in a
grid map. Safety is thus considered by computing inter-
section points between simulated obstacle and robot tra-
jectories in the short term. The cells resulting in collision
are marked as forbidden, and a command optimizing a
weighted navigation criterion is selected for every sampling
time.

Pallottino et al. (2007), Van den Berg and Overmars
(2008), Bekris et al. (2009), and Bareiss and Van den
Berg (2013), addressed multi-robot systems in which all
the agents are capable of making avoidance decisions.
They developed coordination schemes to distribute the
avoidance actions among the robots. Bareiss and Van den
Berg (2015) extended this work, generalizing the recipro-
cal collision avoidance for robots with different kinematic
constraints.

The computation of time-optimal trajectories formulated
as a problem of computing time-optimal motions has been
explored by several works. Reister and Pin (1994) addressed
this problem for a non-holonomic robot with bounded
acceleration, in an obstacle-free environment. The authors
demonstrated that time-optimal motions are obtained from
bang–bang controls (maximum acceleration or decelera-
tion), and parametrize the set of time-optimal trajectories
using the switching times. Renaud and Fourquet (1997)
computed sequences of extremal controls for acceleration-
driven robots to reach time-optimal trajectories in free-
space. Balkcom and Mason (2002) focused on differential
drive and car-like robots with bounded linear and angu-
lar velocities but without acceleration limitations. Shiller
et al. (2013) presented an on-line motion planner, where
robot dynamics and actuator constraints were considered.
A near-time-optimal trajectory that avoids stationary obsta-
cles one at a time is incrementally computed, obtaining
comparable results with respect to the global optimal solu-
tion. Park et al. (2009) dealt with one moving obstacle,
and solved an optimization problem with inequality con-
straints for a holonomic robot with infinite acceleration.
Mercy et al. (2016) formulated the optimization problem
in a scenario with moving and static obstacles for a holo-
nomic robot with fixed orientation. Real-time optimization
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was achieved by a B-spline parametrization of the trajectory
and exploiting B-splines properties to limit the set of con-
straints. A different approach to obtain near-time-optimal
trajectories was developed in Gal et al. (2009) and Shiller
et al. (2010), which adapt time-optimal solutions based on
extremal controls for static or free space environments.

In this paper we develop and evaluate a robot motion
planner based on a model which represents the dynamism
of the environment. This work extends and formalizes the
model of a preliminary work (Owen and Montano, 2005).
That work presented the dynamic object velocity (DOV ) to
model the moving obstacles in the environment, reasoning
on it for robot navigation. The DOVS space herein devel-
oped explicitly takes into account the future evolution of
the obstacles and the dynamics of the robot to compute a
set of velocities leading to collision in the future. DOVS is
defined upon the concepts of estimated arriving time of the
obstacles, used to compute the times to potential collision
or escape, and on the maximum and minimum velocities for
the robot not to collide. As a consequence, a set of safe and
feasible robot velocities is obtained for further planning.

The DOVS model exhibits several differences with
respect to the discussed previous works. ICS calculates the
states of inevitable collision for a set of escaping manoeu-
vres, but it does not explicitly compute motion controls for
planning motions among the obstacles towards the goals. In
addition, the computational cost for several manoeuvres and
several objects is high. The VO technique computes states
for the next sampling period, including velocity, for which
there are collisions with the obstacles; but the planning of
collision-free trajectories using this model requires look-
ing ahead, simulating several steps forward. Instead, DOVS
explicitly computes safe linear and angular robot veloci-
ties (control variables for the robot) which can be applied
without collision in a given but not temporally limited hori-
zon, for instance the field of view of the navigation sensors,
without requiring several steps of lookahead simulation. In
such a way, building DOVS entails an implicit computation
of safe velocities (trajectories) without collision within the
space horizon established. Moreover, as discussed in Sec-
tion 5.6, DOVS is not affected by some complexity issues
that do apply to those previous techniques.

3. Contributions

The DOVS model implicitly computes a set of collision-free
commands for long-term planning within the sensor’s field
of view, providing information about collision-free trajecto-
ries. A precomputed set of trajectories in the configuration
space is represented as sequences of velocity commands in
the control space of the robot, which will contain free and
forbidden velocities leading to collision, within the space
horizon available. Having this greater visibility horizon at
the current instant allows the decision process to select the
best next motion command from an improved informed
search, without needing to simulate the motion several steps

ahead. However, only one of these velocity commands is
applied for the next sampling period, and a new plan is com-
puted to adapt to new situations in case hypotheses are no
longer satisfied.

The contributions are related to two main issues.

• Environment modeling mapped on the robot velocity
space. The DOVS model is formally defined for differ-
ent kinds of obstacle trajectories and static obstacles,
and its properties regarding safety are established. A
complexity analysis of the model and a comparison
with respect to other well-known techniques in this
field is carried out.

• Planning navigation strategies. Using the DOVS model,
a strategies-based approach to compute safe motion
commands (velocities) for the robot is developed. Nav-
igation decisions are made based on identifying a sit-
uation among a discrete set, evaluating the decision
variables computed from the model of the environment.

The method is assessed by means of simulations and
experiments in real-world scenarios. Randomly selected
scenarios and dynamic conditions are used for evalua-
tion. The properties of the model are verified, and metrics
for performance evaluation of the navigation strategies are
provided.

4. Problem statement

The DOVS model for dynamic environments exploits the
concept of estimated arriving time of an object by com-
puting the times of future potential collisions. Then the set
of collision-free and collision-causing commands are rep-
resented explicitly in the control space of the robot. In such
a way, any motion planner based on this model that selects
collision-free commands will generate trajectories without
collision. To compute the free control space, circular robot
trajectories for non-holonomic robots have been selected
for the long-term planning. Recomputing the plan every
sampling time yields clothoid and anti-clothoid trajectories
as the robot moves towards the goal, providing continuous
curvature trajectories.

The motion planner applies different strategies of move-
ment depending on the situation of the robot with respect
to its environment. The situations are identified from the
DOVS model. The decision variables are defined and val-
ued so that a situation is identified and thus a navigation
command is computed for that situation.

Robot and obstacle states

We consider a non-holonomic robot R moving in a dynamic
environment, where it has to safely reach its goal avoiding
collisions with the static and moving objects Oi around it.
They all share workspace WS = R2. Let O(t) be the set of
points in WS occupied by all the obstacles Oi at instant t,
i.e. O( t) = ∪Oi( t).
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The state of the robot is defined by its location and veloc-
ity at instant t, Rt =( x y θ ω v). Let R( v, t) denote the
state reached by the system R under the action of control
v =( ω, v) applied at time t. In our case, the controls are the
angular (ω) and linear (v) velocity for a differential-drive
robot. The motion model for the robot can be expressed by
the well-known equations:

ẋ = v ∗ cos( θ ) ; ẏ = v ∗ sin( θ ) ; θ̇ = ω (1)

From these states and the motion model we describe the
DOVS environment model in the next section.

5. Modeling the environment

The model is constructed by mapping the information from
the workspace to the control space of the robot, denomi-
nated velocity space (V), which is the set of velocities ( ω, v)
reachable by the robot limited by the maximum and min-
imum velocity constraints. This space also contains sets
of velocities leading to future collision if the robot exe-
cutes them. In some way these collision velocities represent
obstacles mapped into V , so we name them DOV. The space
is then used to compute commands without collision for the
robot.

The basic concept to build the model is the time of colli-
sion between robot and obstacle trajectories. The intersec-
tion points are computed from a robocentric representation,
resulting in associated information in V of time and veloc-
ity that indicate the instants at which an obstacle reaches
them, and the velocities for the robot to pass before col-
liding or after the object passes, avoiding collision. These
time–velocity data are then transferred to the control space
of the robot to represent the DOV obstacles in the envi-
ronment, conforming the velocity–time space (VT ) of the
robot. In this work, for the sake of clarity, the method is
presented for linear and circular obstacle motion, but other
kinds of obstacle trajectories could be used, without loss of
generality.

One of the advantages of this technique is that the model
maps the safe robot velocities for a space horizon only
limited by the field of view of the onboard sensors. This
allows motions to be planned at every instant for the whole
time horizon corresponding to the space horizon and not
only for the next sampling period in a purely reactive way.
Hence, this approach does not need to simulate future tra-
jectories (states) to obtain a long-term plan, as most of the
techniques previously referenced do. In addition, owing to
computational burden or to practical navigation issues, this
space horizon could be artificially limited, enabling reason-
ing about the behavior of only the closest obstacles, which
are those that will impose the immediate manoeuvring
decisions.

5.1. The DOVS

In this section the DOVS is defined and its proper-
ties described. Appendix B contains the equations for

computing the model for linear and circular obstacle tra-
jectories together with a more detailed explanation of the
computation process. Next, a brief description is provided.

The model results from computing the times of colli-
sion between different feasible robot trajectories and obsta-
cle trajectories in a robocentric reference. Figure 1(a)–(c)
demonstrate this idea. In Figure 1a the workspace at a spe-
cific instant is depicted. The information in the workspace
is mapped to a robocentric representation (Figure 1(b)) to
V (Figure 2(b)). The robot is reduced to a point and the
obstacles are enlarged with the radius of the robot. They are
modeled as wrapping squares. It is also assumed that the
future trajectory of each obstacle Oi is known or estimated.

In Figure 1(b) the CBi (collision band) swept by an
enlarged obstacle Oi moving in a straight line is depicted. A
circular trajectory γj for the robot is also shown. Let � be a
discretized set of feasible circular trajectories covering the
whole range in WS (see Figure 1(c)). Then γj ∈ �.

Let P1j and P2j be the intersection points between γj

and the outline of CBi. These points represent the collision
points in WS between R and Oi, and will determine the
opportunities for the robot to pass before (P2j) or behind the
obstacle (P1j) by following trajectory γj. Then, the times at
which the obstacle reaches those points, O1

i and O2
i , respec-

tively, are computed. These times are the estimated arriving
times of the object, which indicate times of collision. Thus,
the minimum and maximum velocities that allow the robot
to pass before or after the obstacle, respectively, are

ωkj = θkj

tkj
= atan2 ( 2 xkj ykj, x2

kj − y2
kj)

tkj

vkj = rj ωkj, k = 1, 2

(2)

where θkj is the angular displacement on γj for the robot to
reach Pkj =( xkj, ykj), k = 1..2. See Appendix B for details.

These calculations are extended to the whole set � (Fig-
ure 1(c)). The computed velocities and times to collision for
� are mapped in the velocity–time space. Figure 2(a) shows
the VT space of the robot including the resultant velocities
and times of collision. These sets correspond to the limits of
dynamic object velocity–time (DOVT), and the correspond-
ing DOV in V (Figure 2(b)), which will be defined formally
later. The velocities in between are forbidden because they
lead to a collision with the obstacle at some time, so any
velocity outside DOVT can be chosen as a safe command.
In Figure 3, the robocentric representation of an obstacle
following a circular trajectory and its corresponding DOV
are plotted.

As a first approach, to simplify the model management,
we propose to use the projection of the 3D space VT into
V , represented in Figures 2(b) and 3(b). Note that the circu-
lar paths are transformed in this plane into straight lines,
with slope γj = vmj/wmj , γj ∈ �, as shown in Figure
2(b). In this figure, the extreme velocities correspond to
v1j =( ω1j, v1j), maximum robot velocity leading to colli-
sion, and v2j =( ω2j, v2j), minimum velocity to escape from
collision, for the path γj.
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Fig. 1. (a) Workspace; (b) collision band swept by object Oi, object Oi in positions O1
i and O2

i , path γj, and collision points P1j and
P2j in the robocentric (R) configuration space; (c) multiple paths � through the collision band.

Fig. 2. (a) Velocity–time space DOVTS and velocity–time obstacle DOVT ; (b) projection of DOVTS on the plane ( w, v), DOVS, and
DOV (projection of DOVT).

Fig. 3. (a) Robocentric representation of an obstacle circular tra-
jectory (blue) and a set of circular trajectories for the robot (green).
(b) The corresponding model in DOVS.

We now formally define the space for the robot and its
characteristic variables.

Definition 1 (Dynamic object velocity–time). The
dynamic object velocity–time (DOVT) for a particular mov-
ing object Oi with respect to the set of feasible trajectories
of the robot � is defined as the set of velocities that produce

a collision with Oi at time t,

DOVT( Oi, �) = {( ω, v, t) ∈ V × R | ∃γj ∈ �,

v

ω
= γj, vj =( ω, v) , R( vj, t) ∩Oi( t) �= ∅} (3)

Definition 2 (Dynamic object velocity). The dynamic
object velocity (DOV) for a particular moving object Oi

with respect to the set of feasible trajectories � is defined
as the projection of its DOVT, i.e. the set of velocities that
produce a collision with Oi at any time,

DOV ( Oi, �) = {( ω, v) ∈ V | ∃γj ∈ �,
v

ω
= γj,

∃t ∈ R, vj =( ω, v) , R( vj, t) ∩Oi( t) �= ∅} (4)

Accordingly, we define DOVT(O, �) and DOV (O, �)
(henceforth DOVT , DOV ) with respect to all the obstacles
in the environment,

DOVT(O, �) = ∪OiDOVT(Oi, �) (5)

DOV (O, �) = ∪OiDOV (Oi, �) (6)
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Definition 3 (Free velocity). The free velocity (FV) is the
set of velocities outside DOV,

FV = {( ω, v) ∈ V | vj =( ω, v) /∈ DOV , ∀t ∈ R,

R( vj, t) ∩O( t) = ∅} (7)

Velocities belonging to DOV are unsafe, leading to col-
lision at some future time. Any velocity inside FV will
be safe in the long term, given that the initial conditions
remain.

Definition 4 (Dynamic object velocity space). The
dynamic object velocity space (DOVS) is defined as the con-
trol space of the robot which contains controls belonging to
DOV and FV,

DOVS = {DOV ∪ FV} (8)

Given that the navigation method presented in this paper
focuses on projection DOVS, the definitions which follow
are provided only with respect to DOVS. However, they are
straightforwardly applicable to DOVTS. Now, we introduce
characteristic sets from DOVS.

Definition 5. Let Vlow and Vhigh respectively be the set of
maximum and minimum velocities computed for all paths in
� (Figure 2b),

Vlow( Oi, �) = {( ω, v) ∈ DOV ( Oi, �) | vj =( ω, v) = v1j,

t = t1j, R( vj, t) ∩Oi( t) �= ∅} (9)

Vhigh( Oi, �) = {( ω, v) ∈ DOV ( Oi, �) | vj =( ω, v) = v2j,

t = t2j, R( vj, t) ∩Oi( t) �= ∅} (10)

Note that Vlow and Vhigh represent the contour of the
DOV for a particular object, i.e.

( ω, v) ∈ Vlow(Oi, �) ≤( ω, v) ∈ DOV ( Oi, �)

≤( ω, v) ∈ Vhigh(Oi, �)
(11)

Definition 6. Let Vdown, Vup and Vside be the sets of veloc-
ities in FV eligible for the robot to move safely. In Fig-
ure 2(b), they represent the velocity commands under Vlow,
above Vhigh, and below the bounds of DOV, respectively.
Let γl and γr be the left most and right most radius shaping
DOV in DOVS:

Vdown = {( ω, v) ∈ FV | ∀γj ∈ �,
v

ω
= γj,

vj =( ω, v) < v1j, ∀t ∈ R, R( vj, t) ∩O( t) = ∅} (12)

Vup = {( ω, v) ∈ FV | ∀γj ∈ �,
v

ω
= γj,

vj =( ω, v) > v2j, ∀t ∈ R,R( vj, t) ∩O( t) = ∅} (13)

Vside = {( ω, v) ∈ FV | ∀γj ∈ �,
v

ω
= γj /∈ [γl, γr],

vj =( ω, v) , ∀t ∈ R, R( vj, t) ∩O( t) = ∅} (14)

From these definitions we can obtain some important
properties that must be used by any planner based on this
model to select safe robot commands ensuring collision
avoidance in a dynamic environment.

Property 1. Selecting velocity commands in Vdown yields
no collision trajectories. Formally,

∀vj ∈ Vdown ⇒ R( vj, t) ∩O( t) = ∅, ∀t ∈ R

Proof. By the definition of Vdown, if vj ∈ Vdown, then vj <

v1j, where γj = vj
wj

= v1j
w1j

. Then, ∃t ∈ R such that R( vj, t) =
P1j, the intersection point with the collision band. Given
that vj < v1j, then t > t1j. At time t the object has passed
P1j, and a collision cannot be produced on γj.

Property 2. Selecting velocity commands in Vup yields no
collision trajectories. Formally,

∀vj ∈ Vup ⇒ R( vj, t) ∩O( t) = ∅, ∀t ∈ R

Proof. By the definition of Vup, if vj ∈ Vup, then vj > v2j,
where γj = vj

wj
= v2j

w2j
. Then, ∃t ∈ R such that R( vj, t) =

P2j, the intersection point with the collision band. Given
that vj > v2j, then t < t2j. At any time before t2j the object
has not yet arrived at P2j, and a collision cannot be produced
on γj.

Property 3. Selecting velocity commands in Vside yields no
collision trajectories. Formally,

∀vj ∈ Vside ⇒ R( vj, t) ∩O( t) = ∅, ∀t ∈R

Proof. If vj ∈ Vside, then
vj
wj

= γj /∈ [γl, γr], by the defi-

nition of Vside. Thus, no collision could be produced as the
resultant trajectory γj does not intersect the bounds of the
CBi at any time.

Property 4. Selecting velocity commands in DOV yields
collision trajectories. Formally,

∀vj ∈ DOV ⇒ ∃t ∈ R, R( vj, t) ∩O( t) �= ∅

Proof. If vj ∈ DOV , then vj > v1j and vj < v2j, by the
definition of DOV . Then, ∃t1, t2 ∈ R such that R( vj, t1) =
P1j and R( vj, t2) = P2j. Given that vj > v1j, then t1 < t1j,
which means that at time t1 the object is still at P1j and a
collision is produced. Likewise, given that vj < v2j, then
t2 > t2j, which means that at time t2 the object has already
reached P2j and a collision is produced. Then, a collision
could be produced sometime within the interval t ∈ [

t2j, t1j

]
.

Summarizing the properties, when a velocity command
is chosen out of DOV , collision avoidance is guaranteed as
long as the command is maintained and the object motion
hypotheses are met. Thus, commands can be safely changed
every sampling control period, as long as they remain out-
side DOV . In the event that a sudden unforeseen change
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Fig. 4. (a) A situation with two moving objects near to each other
in WS . (b) The situation represented in DOVTS. (c) Projection of
both moving objects in DOVS. (d) The merged DOV object.

of an object motion results in the current velocity being
inside a DOV , it still could be possible, time permitting, to
escape collision by correctly choosing subsequent velocity
commands. This is illustrated in examples in Section 6.

5.2. Dealing with multiple objects in DOVS

Figure 4 shows a situation with two objects in WS , DOVTS
and DOVS. In the DOVTS space, moving objects are repre-
sented as their corresponding DOVT surfaces. Clearly, the
highest surface in Figure 4(b) corresponds to the farthest or
the slowest object with respect to the robot, and the low-
est surface to the nearest or the quickest obstacle. Working
directly in DOVTS would allow to utilize the velocity–time
room between both surfaces for manoeuvring among the
objects. Figure 4(c) shows the projection of both surfaces in
DOVS. When this space is used to plan trajectories, the DOV
objects can be geometrically merged to obtain one com-
pound DOV object (Figure 4(d)). Reasoning in this space
to compute the motion commands in the free velocity space
(FV ) is now made using the merged object, directly exploit-
ing the same properties introduced above. This leads to
more conservative navigation decisions than if the whole
DOVTS was used, which is one of the objectives for future
work.

5.3. Static objects in DOVS

Static obstacles can also be represented in DOVS. Let Dsafe

be the displacement the robot requires on a path to reach
zero speed from its current velocity. If the distance to a
static object is greater than Dsafe, then the circular path in

Fig. 5. (a) Mapping a corridor into DOVS. The red points cor-
respond to scan laser points for example and the green points
are the points after extending the walls with the robot radius. (b)
The corridor mapped into DOVS showing the maximum velocity
reachable for the robot on each circular path considered.

DOVS is mapped as free of collision. Otherwise, the max-
imum velocity that the robot should have to stop before
a collision, vstop, is calculated and mapped into DOVS.
Any higher velocity is mapped as a collision one. Figure 5
depicts the result of mapping a static corridor-like object
into DOVS.

5.4. The kinodynamic constraints in the model

The maximum linear and angular velocity constraints are
explicitly represented in DOVS by the external square
(omnidirectional robot) or the external rhombus (differen-
tial drive robot) in Figure 6. So far, it has been assumed that
any vo could be reachable in one sampling step from the
current velocity, which depends on the robot’s maximum
acceleration. The dynamic constraints of the robot define
the velocity window (VW ) centered in its current velocity
vc and bounded by the acceleration constraints (am, αm).
That is, ( vc ± am�t, wc ± αm�t), the inner rectangle and
rhombus in Figure 6(a) and (b), respectively. The shape
of this window also represents the kinematic constraints
corresponding to the type of the robot model.

Figure 6(a) shows that vo can only be reached in one step
from the velocities inside VW , due to the dynamic con-
straints. In Figure 6(b) it can be seen that vo cannot be
reached in one step from v1. To deal with this problem,
we compute first the number of sampling periods needed
to reach the limits Vlow and Vhigh from the current veloc-
ity in DOV, adding them to tlow and thigh to obtain t′low and
t′high, respectively. These times are used to recompute the
new velocity limits ( V′

low, V′
high) using Equations (2).

5.5. Trajectories in DOVS

Different kinds of trajectories can be selected to execute the
motion plan and manoeuvre the robot. In this work we con-
sider bounded velocity and acceleration for real robots, and
apply extremal actions (maximum acceleration or decel-
eration) motivated by results presented in Reister and Pin
(1994), introduced in Section 2. As described in previous
work by Owen and Montano (2005), this type of control
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Fig. 6. Kinodynamic constraints in DOVS: (a) holonomic robot,
vo is reachable only inside VW , a square window; (b) non-
holonomic robot, vo is not reachable within VW , a rhombus win-
dow. Circular, clothoid, and anti-clothoid trajectories in DOVS are
shown in red. Here Rnew_goal represents a new radius, computed
in the free zone, to be followed until the true Rgoal becomes free.

action yields rectilinear, clothoid (only angular acceler-
ation), and anti-clothoid (only linear acceleration) paths,
allowing a curvature continuity. Moreover, as shown in Sec-
tion 5.1, circular and linear trajectories are also used for
motion planning and execution.

These mentioned trajectories are directly mapped on
DOVS (see Figure 6b). Linear trajectories in the workspace
appear as a straight line in the v axis (ω = 0). Circular paths
are mapped as straight lines with a slope, which represent
different radii (γ = v/ω) (v3–v4 red line). Clothoids are
depicted as straight horizontal lines (v = constant) (v2–v3

red line), and anti-clothoids as vertical lines (ω = constant)
(v1–v2 red line).

5.6. Complexity of modeling and planning
algorithms

A comparison is performed to analyze the complexity of
the algorithms presented for modeling the dynamic environ-
ment and its use for planning in other techniques proposed
in the literature, specifically those based on VO and ICS,
with respect to our proposal.

Computing the set of ICS of a robot for different con-
trol trajectories and several obstacles involves a complexity
of O( mntmaxo), where m is the number of obstacles, n the
number of evasive manoeuvres, tmax a lookahead for prac-
tical use of the approach and o the sum of vertices of the
robot and the most complex object, which are involved in
the Minkowski difference operation required between each
robot–obstacle pair. Parameter tmax is the number of sam-
pling periods, with a duration of �t each, considered for
computing the ICS set, and thus the total time of such states
being ICS. It is assumed that the workspace is bounded, and
the robot and obstacles will exit it at tmax. By using graph-
ics processing unit (GPU) the complexity can be reduced to
O( mntmax) (see Martinez-Gomez, 2010).

The VO approach concerns mainly three operations: com-
puting each individual VOj for j = 1..m obstacles, the

multiple velocity obstacle MVO, and the set of safe veloci-
ties. The most complex operation is the second one, because
it requires updating the points of each VOi, i = j + 1..m,
with the intersection points between VOj and each VOi, and
ordering them clockwise, which leads to a complexity of
O( m2). This can be reduced to O( m log m) by storing the
points within a more efficient structure (see Fiorini, 1995).
However, this approach provides information only for com-
puting the next control command as constrained to the
acceleration window. If a further plan has to be obtained, a
tree search would be performed expanding the nodes for the
lookahead considered tmax, which has the same meaning as
in ICS. Then, the complexity would be O( qtmax/�tm log m),
where q is the fixed number of velocities that can be reached
within the next sampling period, and tmax/�t represents the
number of levels achieved during tree expansion.

In our technique, the complexity of modeling each mov-
ing object in its DOVj, j = 1..m, is O( mn), where m is the
number of obstacles and n the maximum number of the tra-
jectories considered (�). The set of trajectories selected for
computing a DOVj depends on the position of the obstacle
and its motion with respect to the robot, and on the desired
discretization. The calculation for collision times and for-
bidden velocities is therefore focused on the area where the
obstacle will be moving. Thus, several robot trajectories are
considered for each obstacle. Furthermore, the complexity
for mapping objects moving in linear and non-linear tra-
jectories (in particular, circular paths have been developed
in this work) is the same, because only intersection points
with the collision band are needed, not altering the compu-
tation burden. The approach presented in this paper deals
with multiple objects by merging all DOVj. This operation
requires for an object to compute the collision times and
velocities for the robot trajectories considered for the other
objects, and to repeat this for each object. The complexity is
then O( nm2). This approach provides enough information
for computing plans in the defined workspace horizon, so
the complexity is not affected by the parameter tmax of the
other methods, since a lookahead simulation is not needed
for planning safe motions. In Section 6.2 the criteria to
select near time-optimal actions are explained.

6. Decision making for planning and
navigation

This section explains the decision-making process for a
robot when dealing with moving obstacles. The problem is
similar to a situation in which a pedestrian intends to cross
a road while cars are passing. The pedestrian must decide
how to do this safely. In such a situation, the main decision
the robot must take is whether to pass before or after the
obstacle.

Most of the proposed techniques for navigation in
dynamic environments limit the number of possible robot
trajectories or manoeuvres, or simply slow down or stop the
robot to avoid a collision by allowing the moving obstacle to
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Fig. 7. Trajectory in green when the robot passes before the mov-
ing obstacle and in red when the robot passes after the moving
obstacle.

pass first. The method presented in this work enables lighter
computation of long-term safe command sequences in the
free-velocity space, and thus the corresponding trajectories
to the goal. These planned trajectories are not time-optimal,
but are used as a first seed to guide the robot towards the
goal in the free space. In the following steps, the recom-
puted extremal control commands will lead the robot to
move in near time-optimal trajectories to the goal.

The design is based on the paradigm of situated activity
(Arkin, 1998). The robot decides the motion plan within a
set of finite but general situations identified from the per-
ception system. Each situation has an associated motion
strategy, which exploits the information provided by the
model of the environment. Two main criteria are considered
to define the strategy: (i) the trajectories generated have to
be safe; (ii) near-time-optimal trajectories to the goal have
to be generated. The first is ensured by selecting velocity
commands inside the free velocity FV of the control space,
as explained in the previous section. The second criterion is
accomplished by the strategies defined for each situation,
computing velocity commands complying with the robot
kinodynamic constraints. Each motion leads to a stretch
of trajectory, which combined during navigation drive the
robot to the goal maintaining the highest velocities possible.

Figure 7 reflects this idea. Essentially, there are two main
planning decisions: passing before the object (RobotFront)
and passing after the object (RobotBehind). In turn, each
is decomposed into different sub-decisions depending on
whether the robot is before, inside or after the collision
band. The execution of each motion strategy depends, in
turn, on several decision variables, which drive the hier-
archical decision process implemented in a decision tree.
These variables are formally defined in the next subsection.

6.1. Decision variables

Table 1 summarizes the decision variables, some in the
workspace WS and others in DOVS, including a brief
explanation about their meaning and their use in the differ-
ent situations. An important decision variable is GD (goal
direction), which maps a circular trajectory from the current

robot location towards the goal. If this trajectory is followed,
reaching the goal is ensured. Commands always have to be
selected in FV (free velocity) space. Then, when GD lies
inside a DOV, it has to be moved to FV (GDnew in Figure
8(a)). To that end, a nearby velocity sub-goal that avoids
the obstacles, not only in the next sampling period but also
within the visibility horizon, is chosen. Figure 8(b) shows
a situation in which there are not UpperFree velocities, so
only Vdown and Vside velocities can be selected.

6.2. Optimization based on decision variables

The decision-making process described above is imple-
mented by means of navigation strategies, which use the
defined decision variables. The objective of the strategies
is to navigate towards the goals in dynamic scenarios, exe-
cuting near-time-optimal trajectories whilst ensuring safety
(no collisions). Unlike in static environments, in dynamic
environments where obstacle motion is uncertain or it
might unexpectedly change, computing global time-optimal
trajectories is not feasible.

To apply the decision-making strategies based on DOVS
model, the direction to the goal is projected in DOVS as
the decision variable GD, representing a steering direction
that drives directly to the goal, planning initially a circu-
lar trajectory γGD from the current robot location. This
trajectory is not time-optimal, so it will only serve as an
initial reference to move towards the goal. Two kinds of
extremal controls are chosen to be applied every sampling
time to reach GD, either maximum angular acceleration to
optimally align first the robot to goal position, or maxi-
mum linear acceleration for optimally approaching the goal.
This kind of trajectories were derived in Reister and Pin
(1994) as time-optimal ones for differential-drive robots
with acceleration constraints in free space. We have adapted
that technique for dynamic environments, obtaining near-
time-optimal trajectories. They lead to clothoid and anti-
clothoid trajectories, respectively (see Figure 9(a) and (b)).
Moreover, we have to take into account the kinodynamic
constraints of the vehicle, which limit the acceleration and
the velocity to be applied during every control sampling
time.

The time-to-goal for a clothoid, tGw ( vc, θm, dG), and
for an anti-clothoid, tGv ( vc, θm, dG), depends on several
decision variables. Since these trajectories are computed
from Fresnel functions, which analytic solution cannot be
obtained for all the decision variables, we have analyzed
by simulation both time functions (tGw , tGv ) for different
ω0 initial conditions. In Appendix C, these functions are
described. Figure 9 represents them. The conclusion of this
study is that for an ample range of ω0 and for near and far
goals the clothoids result in lower times, mainly for low val-
ues of ω0. Thus, it can be deduced that it is always better
initially to increase the angular velocity up to the maximum
if possible, rather than keeping the initial angular velocity,
until an angular deceleration is needed for aligning. When
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Table 1. Decision variables in WS and DOVS.

Variable Meaning Situation

WS

RelPos relative position before, in, or after the collision band all
AngDis (θm) angular distance robot–goal all

DOVS

FV - DOV free (FV ) and non-free (DOV ) velocities all
Vhigh minimum velocities to pass before object PassingBefore, SlowingDown
Vlow maximum velocities to give way to object PassingBefore, SlowingDown
Vup - Vdown high (v > Vhigh) - low (v < Vlow) free velocities all
Vside free velocities v = {( ω, v) | v

w = γj /∈ [γl, γr]} all
vvalley ( ω, v)valley = min( Vhigh) PassingBefore
UpperFree free angular velocities with maximum linear velocity PassingBefore, PassingAligned
SafeVel safe low velocities to avoid or escape from collision SlowingDown
BoundRight–BoundLeft γr–γl mapped in velocity space, boundaries for Vside AvoidingObject
vm, ωm, am, αm maximum linear and angular velocities and accelerations all
VW (velocity window) velocities that can be reached within next time interval all
GoalDirection ( GD) ( ω, v)GD mapped direction in velocity space all
SteeringDir ( SD) ωSD mapped angular deviation to goal in velocity space all

Fig. 8. Decision variables in DOVS. (a) Situation in which there are UpperFree velocities (magenta, blue, and pink); given that GD lies
inside the DOV, the closest UpperFree to GD will be chosen, computing GDnew. (b) Situation in which UpperFree is occupied with
velocities leading to collision (gray), only low velocities in Vdown and Vside can be selected.

Fig. 9. (a) Clothoid and (b) anti-clothoid trajectories for different initial values of ω0. The higher ω0, the quicker the aligning to the
goal. (c) Times to goal tG for trajectories in (a) and (b). (d) Time to goal difference tG(clothoid) −tG(anticlothoid) for different goal
distances (d) and angular deviations (ang) with high and low maximum linear velocities.
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Algorithm 1 Align the robot to the goal
Require:

1: vc, the current velocity of the robot
2: ( ω, v)GD, maximum velocity to goal direction in DOVS
3: θm, angular deviation to goal from current robot posi-

tion
4: dG, distance to goal from current robot position
5: function ALIGNING(vc, ( ω, v)GD, θm, dG)
6: if |ωc| �= |ωGD| then
7: 
 robot not aligned (clothoid)
8: ωi = argmin

v∈VW
( tGw ( vc, θm, dG) ) =

9: = argmin
v∈VW

( wm − ωGD)
10: vi = vc

11: else 
 robot is aligning (anti-clothoid)
12: ωi = ωc

13: vi = argmin
v∈VW

( tGv ( vc, θm, dG) ) =
14: = argmin

v∈VW
( vc − vGD)

15: end if
16: return ( ωi, vi)
17: end function

the robot is nearly aligned to the goal, a linear accelera-
tion is applied to speed up to maximum velocity. Algorithm
1 implements this method, and is used in the strategies to
avoid moving obstacles.

6.3. Situation-based navigation

The planner reasons in the DOVS space described in Sec-
tion 5, which maps the environment dynamism of obsta-
cles. In a scenario with obstacles, the trajectories introduced
before do not lead to time-optimal trajectories because
they may result in collisions. However, it is possible to
find near-time-optimal and safe trajectories computed in
the free velocity space FV , easily identifiable in DOVS.
Thus, the methodology presented in Section 6.2 is applica-
ble in this space, avoiding obstacles whilst preserving low
time-to-goal motions and safety.

The strategies are associated to situations detected. Fig-
ure 10 shows the situation tree, where the leaves correspond
to all the situations that can be identified. Each of the sit-
uations has an associated action; the sequence of actions
applied to reach the goal constitutes a strategy, which imple-
ments the general decision making process described in
Section 6. The robocentric planner executes cyclically, per-
forming the strategies and so adapting to the changing envi-
ronment in real-time. The planner establishes a long-term
plan within the horizon defined by the field of view of
the sensors and not only for the next sampling period. In
this sense, this local planner is not purely reactive. It com-
putes a safe trajectory for that space horizon. The plan is
re-computed for each sampling period, so only the immedi-
ate action of the strategy required by the current situation is
applied at each sampling time.

Algorithm 2 Basic FreeMotion for the robot
Require:

1: vc, the current velocity of the robot
2: ( ω, v)GD, maximum velocity to goal direction in DOVS
3: θm, angular deviation to goal from current robot posi-

tion
4: dG, distance to goal from current robot position
5: function FREEMOTION(vc, ( ω, v)GD, θm, dG)
6: v1 = vc

7: v2 = Aligning( vc, ( ω, v)GD , θm, dG)
8: v3 =( ωi = 0, vi = vi−1 + am �t)
9: 
 am, maximum linear acceleration

10: v4 =( ωi = 0, vi = vm) 
 vm, maximum linear
velocity

11: return ( v1 − v2 − v3 − v4)
12: end function

Table 2 shows the actions associated with each situa-
tion. Roughly speaking, the method consists in applying a
sequence of maximum angular and linear accelerations to
reach the maximum linear velocity in the free velocity space
(FV ), following the command computation developed in
Section 6.2. Before doing it, if the goal direction mapped in
the velocity space, GD, is inside a dynamic obstacle DOV,
a close new goal GDnew is mapped in FV in each situa-
tion. This way the near-time-optimal command sequence
is applied to reach that goal, avoiding the moving obstacle
until GD is in FV again.

Algorithm 2 represents the basic motion to be applied
in all situations, as shown in Table 2. The only differ-
ence between situations is the election of a new GDnew

in the free-velocity space FV . Figures 11–15 describe
situations ObstacleFree, PassingBefore, PassingAligned,
AvoidingObject, and SlowingDown, its associated actions
and the strategies derived from them. The AvoidingColli-
sion situation is a consequence of the robot having entered
the collision band of an obstacle and then having to exe-
cute a velocity in free space to avoid collision. The Cer-
tainCollision situation appears when the robot falls into an
unavoidable collision situation, due either to an unexpected
obstacle appearing on the scene, or because no free velocity
is available (a blocking situation, e.g. objects surrounding
the robot).

7. Experimental evaluation and metrics

7.1. Simulation results

In this section we evaluate the proposed technique qualita-
tively and quantitatively. Simulations where the robot tra-
verses the scenario to reach different goals are shown in
Extension 1.1

In these scenarios only moving objects appear around
the robot. We have considered obstacle occupancies of 4%
and 7% (Figure 16), given that the 4% value is a com-
monly found scenario in the literature (Bareiss and Van
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Fig. 10. Situation tree. Leaves represent all the situations that can be identified, each of which has an associated navigation strategy.

Table 2. Actions for the situations. Here Vsol represents the sequence of velocities to be applied in a situation, vc =( ω, v)c is the current
velocity of the robot, ( ω, v)valley = vvalley, vGD =( ω, v)GD is the maximum velocity in DOVS for the goal direction (GD), ωGD is the
angular component of GD bounded by maximum angular velocity mapped into DOVS, vSafeVel ( v1) is the nearest linear free velocity with
respect to v1, and VW = v ∈ FV ∩ {vl, vu, vr, vd}, where vl =( ωc − αm�t, vc), vr =( ωc + αm�t, vc), vu =( ωc, vc + am�t), and
vd =( ωc, vc − am�t). Here GDnew is the new goal direction in free velocity (FV ) closest to the true GD.

Situation Actions (velocities)

ObstacleFree (Figure 11) Vsol = FreeMotion( vc, GD, θm, dG)

RobotFront Strategy

PassingBefore (Figure 12) Vsol = FreeMotion( vc, GDnew, θm, dG) | vGDnew =( ωvalley, vm)

PassingAligned (Figure 13) Vsol = FreeMotion( vc, GDnew, θm, dG) | vGDnew =( ωGDnew , vm) ∈ FV ,
ωGDnew = min

v∈UpperFree
( |ω|)

RobotBehind Strategy
AvoidingObject (Figure 14) Vsol = FreeMotion( vc, GDnew, θm, dG) | vGDnew =( ωGDnew , vm) ∈ FV ,

ωGDnew = min
v∈UpperFree

( |ω − ωGD|)

If ( ω, v)c ∈ DOV then
v1 = vc, v2 =( ω2 = ω1, v2 = argminω=ω2

( vc − vSafeVel ( v1) ) )
SlowingDown (Figure 15) Else

Vsol = FreeMotion( vc, GDnew, θm, dG) | vGDnew =( ω, v)GDnew ∈ SafeVel
EndIf

den Berg, 2015; Martinez-Gomez and Fraichard, 2009).
Although these occupancies are seemingly not very dense
when compared to static benchmark scenarios, the large
impact of moving obstacles in the effective space for safe

planning (see Figure 16) makes them suitably challenging.
This effective space has been computed as the mean of the
forbidden velocity areas in DOVS, a way to quantify the
limited robot manoeuvrability. See Table 3.
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Fig. 11. Evolution of the ObstacleFree situation. Algorithm 2 implements the motion for this situation. (a) Part of the trajectory followed
by the robot. (b)–(d) Velocity space of the robot and the applied actions in three representative locations of the trajectory. The vertical
red line represents the steering direction SD and the black line the goal direction GD, to be reached for alignment to the goal. In Loc1
a maximum angular acceleration (v1–v2) is applied to reach SD every sampling period (the angular deviation of the robot is high). In
Loc2 a maximum angular deceleration (v2–v3) is applied to reach GD (the angular deviation has decreased). In Loc3 the robot applies
commands at maximum linear acceleration (v3–v4), while in Loc4 and Loc5, a straight line at maximum linear velocity v4 is achieved.

Fig. 12. Evolution of the PassingBefore situation. (a) Trajectory of the robot. (b)–(e) DOVS at four relevant instants during the trajec-
tory. In this situation the robot can cross the collision band to pass before the object. There is a set of free velocities in the UpperFree
zone which can be reached inside the bounds of the DOV (Vup), identified as a valley. The depth of the valley (vvalley in Table 1)
provides certain knowledge about the level of safety for the robot to perform the strategy. The deeper the valley, the greater its width,
and the safer it is to traverse the DOV to reach the free velocities in Vup. A new GDnew is computed close to the initial GD in Vup,
such that it contains velocity vvalley. A sequence of clothoid (v1–v2) at maximum angular deceleration (b), anti-clothoid (v2–v3) at
maximum linear acceleration (c), (d), and straight line at maximum linear velocity is applied (e).

We have tested navigation for three different types of sce-
nario during simulation: linear, non-linear, both for moving
obstacles, and complete, having static and moving obsta-
cles. A total of 40 different scenarios are simulated in linear
and non-linear sets. In each scenario the robot has to reach
four different goals. In total, we have run 1440 simulations,
160 for each % of obstacle occupancy (4% and 7% for
linear, 4% for non-linear), for the three sets of velocities
V1, V2, V3 described in Table 3, and for a maximum linear
robot velocity of 1.5 m s−1.

We have evaluated the technique in scenarios where the
density of obstacles remains the same, so static bounds were
established to define the workspace and simulate the move-
ment of the obstacles cyclically, once the random movement
has been generated. Table 4 reflects the collisions produced
during simulation, as explained later. Column Bounded (V1)
indicates the percentage of collisions in scenarios with

static bounds. A first observation is that the number of col-
lisions is greater than in open scenarios, represented in the
other three columns, due to the robot being trapped when
it is close to them. Therefore, to focus on the evaluation
of the robot navigating among moving obstacles, we have
discarded the static bounds to evaluate the performance
based on metrics. Another reason for collisions is because
new obstacles appear from outside the limits of the sce-
nario, so the robot might not have the reaction capability
from kinodynamic constraints to avoid collision. In addi-
tion, we have evaluated the method when conditions about
obstacle motion is uncertain, scenario NL-Approx. Thus,
we have performed simulations in scenarios with obsta-
cles moving with non-linear trajectories and approximating
the DOVS model with the linear approach. The collisions
greatly increase, as can be seen in Table 4. Therefore, the
method benefits from the greater lookahead if there is a
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Fig. 13. Evolution in the PassingAligned situation. (a) Trajectory performed by the robot. (b)–(d) DOVS for different motions of the
robot. The set of velocities in UpperFree leads the robot to move in the same direction as the object. In this case, the robot lies inside the
DOV and GD is not free. Here GDnew is defined to escape from dangerous velocities, applying an angular acceleration motion (clothoid
v1–v2). Then, maximum linear acceleration (v2–v3) is applied to move in the same direction as the obstacle (Loc3). If the robot moves
faster than the object, a valley appears inside DOV , which allows the robot to change the strategy to a PassingBefore situation. Finally,
AvoidingCollision (Loc4) and ObstacleFree (Loc5) situations are identified when the robot lies inside the collision band and when it
exits it, respectively.

Fig. 14. Evolution of the AvoidingObject situation. (a) Partial trajectory of the robot. (b)–(d) DOVS representation at different instants.
In this situation, the DOV of a moving object occupies the middle zone of DOVS, leaving two zones of velocities in UpperFree that
belong to Vside (b). A new GDnew close to the current GD is selected in Vside, to then apply the sequence of motions computed by
Algorithm 2. The robot manoeuvres to pass behind the object.

Fig. 15. Evolution in the SlowingDown situation. (a) Trajectory of the robot. (b)–(e) DOVS information at different locations of the
robot. There are no UpperFree velocities in DOVS (see Figure 15(a) and (b)). In this case, the velocity of the robot is inside the DOV
of the object, and the robot has to slow down to avoid a collision. A sequence of anti-clothoid trajectories (deceleration) is applied to
escape from the dangerous velocities (v1–v2). Then, a sequence of clothoid trajectories (v2–v3–v4) is computed to maintain the robot
at a low safe velocity in the SafeVel zone until the object passes (c), following a new GDnew computed in SafeVel. The set SafeVel
defines the velocities which will be freed first, given the motion of the object. Finally an ObstacleFree situation appears (e), and the
corresponding strategy is applied.
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Fig. 16. Scenarios with different densities of occupancy: (a) 7%
of static density corresponds to 46% of occupancy in terms of safe
velocity space available to be chosen in the linear scenario; (b)
4% of static occupancy represents about 35% of forbidden veloc-
ities in the non-linear scenario with obstacles moving in circular
trajectories.

Table 3. Mean of forbidden velocity area in DOVS during sim-
ulations for different obstacle velocity ranges. The values of 4%
and 7% for obstacle occupancy were measured as the area of the
workspace occupied by the obstacles at a given instant (as if the
obstacles were static). However, if we measure the occupancy in
terms of forbidden velocities in DOVS as the area of each DOV,
these values increase considerably.

V1 V2 V3
v = 0.2 v = 0.5 v = 0.6..0.9

Linear ω = 0

4% occupancy 34.85% 40.12% 42.67%

7% occupancy 46.08% 53.98% 58.19%

Non-linear ω = ω = ω =
−0.15..0.15 −0.38..0.38 −0.45..0.45

4% occupancy 34.97% 39.17% 40.06%

proper estimation of the obstacle motion. Whenever the
motion changes, the calculations should be recomputed and,
in this case, our method behaves like a reactive one.

Figure 17 illustrates several iterations of a simulation
of the linear scenarios. The robot manoeuvres around the
obstacles while maintaining safety, selecting high velocities
in the free velocity sub-space FV .

Figures 18 and 19 show several metrics evaluated during
navigation for the overall simulations in linear scenarios,
for each of the occupancy densities considered and for each
set of velocities. As expected, in a scenario where fewer
obstacles appear, the robot can move at higher velocities
(Figures 18(a) and 19(a)). Safety is evaluated from the dis-
tance measured between the robot and each of the obstacles
(Figures 18(b) and 19(b)). Figures 18(c) and 19(c) illustrate
the time-to-goal with respect to the optimal value for each

Table 4. Percentage of collisions during simulations. Note that
in the highest-occupancy situations and with the scenario bounds
acting as static obstacles, many trapping situations can appear so
some inevitable collisions occur.

Bounded V1 V2 V3
(V1)

Linear

4% occupancy 5% 0% 2.5% 3.75%
7% occupancy 32.5% 5% 10% 16.875%

Non-linear

4% occupancy 10.6% 3.75% 15% 11.875%

NL-Approx

4% occupancy 10.62% 34.37% 46.25%

Fig. 17. Simulation in a linear scenario for 4% obstacle occu-
pancy and velocities in V1. In fact, this percentage increases in
a dynamic scenario, as a result of the reduction on the available
workspace and velocity space. The workspace (left) and DOVS
(right) are represented at different instants. The planner searches
for free velocity sub-spaces so that the robot (red) can maintain
high linear velocities (rhomboid window) during navigation.

goal, computed for free space. Longer trajectories are pro-
duced when there are more obstacles in the environment.
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Fig. 18. Metrics for 4% occupancy scenarios with obstacles mov-
ing linearly. Percentile, mean, and median for: (a) linear velocity,
(b) distance to obstacles, (c) time with respect to optimal for free
space, and (d) histogram of the situations.

Fig. 19. Metrics for 7% occupancy scenarios, with obstacles
moving linearly.

Figures 18(d) and 19(d) describe the strategies selected
during navigation. AvoidingObject and AvoidingCollision
are the most frequently applied strategies. PassingBefore
strategy occurs more frequently than SlowingDown, which
means that the robot tries to search for free spaces to pass
before objects at high velocity, rather than slowing down to
give way to objects. It can be seen that for 7% occupancy
ObstacleFree and PassingBefore appear less frequently than
for 4% occupancy, as was predictable.

Regarding simulations for non-linear scenarios, Figure
20 plots the same metrics as for the linear scenarios. Similar
results are obtained, so the technique adapts well to different
kinds of obstacle trajectories.

Fig. 20. Metrics for simulations for 4% occupancy of non-linear
obstacles.

Fig. 21. Complete scenario with static (black), linear, and non-
linear obstacles describing their trajectory (blue), and the tra-
jectory performed by the robot (red) to achieve the different
goals.

Moreover, the technique developed is conservative in the
sense that any velocity in free velocity space FV is safe, but
the velocities inside a DOV do not always or instantly lead
to an unavoidable collision; they can be selected but only
during a certain time without collision. This improvement
is the subject of future work.

Finally, in the complete scenario shown in Figure 21 there
are static and moving obstacles (following linear and non-
linear trajectories) to illustrate a general situation in which
a robot has to move from one room to another, navigating
among several objects and four subgoals (waypoints). Fig-
ure 22 represents the metrics. In this scenario, where many
static objects are present and appear in DOVS, the Obsta-
cleFree situation is not encountered, so there are not many
velocities free to manoeuver.
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Fig. 22. Metrics for simulation of the complete scenario. Most
of the time the robot moves at maximum velocity, slowing down
when it becomes considerably disorientated from the goal (bigger
changes observed for angular velocity). Strategy PassingBefore is
applied many times, that is the robot moves many times at high
velocities to pass before the obstacles, and no CertainCollision
situation appears.

Fig. 23. Comparison of the mean of the time-to-goal for our
lookahead planner and the one-step local method, for the velocity
range considered.

7.2. Comparison with a one-step approach

We show here through simulation how our lookahead plan-
ner obtains a better behavior and lower time-to-goal than a
method that considers only the next-period candidate veloc-
ities. This local planning approach is denominated one-
step approach, and it is the decision process used in Gal
et al. (2009) and Shiller et al. (2010) to develop a near-
time-optimal motion planner. The basic idea is that the
planner chooses collision-free velocities from the velocity
window (VW ) that generate a time-optimal trajectory to the
goal, evaluated in absence of obstacles. In our case, for a
non-holonomic robot, the near-time-optimal motions used
are those introduced in Section 6.2. The planner proposed
in this work computes collision-free commands from the

Fig. 24. Trajectories followed by the robot reasoning within
DOVS visibility (a) and one-step visibility (b). Profiles of linear
(c) and angular (d) velocities during navigation. Looking further
ahead at a single instant (DOVS) provides shorter and lower time-
to-goal trajectories than using the theoretical time-optimal control
to the goal at every sampling time (one-step approach).

velocity window based on the future evolution of the obsta-
cles, lookahead information previously considered to plan
a safe trajectory to the goal, by choosing a Goal Direction
(GD) outside DOV.

The evaluation carried out is performed in randomly gen-
erated scenarios, where the robot has to reach four different
goals, during a set of 10 simulations. The range of velocities
considered for the obstacles are: 0.2, 0.5, 0.8, and 1.2. Fig-
ure 23 shows the mean values of the time-to-goal for each of
the methods. It can be seen that for low obstacle velocities,
our approach gets better results, whereas similar values are
obtained with higher velocities. This is because the obsta-
cles spend more time occupying the workspace: the one-
step approach remains in the time-optimal trajectory for the
current VW , whereas our approach favors the selection of
commands towards bigger areas of free space. Therefore,
both approaches obtain near-time-optimal trajectories, but
ours can achieve lower times to the goal.

Figure 24(a) and (b) plot a scenario for one of the simu-
lations designed, where the robot behavior using both meth-
ods to move around the obstacles is also shown. As can
be seen, our method makes the robot to pass between both
obstacles, whereas the one-step approach computes a longer
trajectory due to the implicit reactivity of the local planning.
As a consequence, the time-to-goal and the trajectory length
are reduced (Figure 24(c) and (d)).

Figure 25 describes several steps of the simulation for
both methods. DOVS lookahead plans long-term manoeu-
vres in the velocity free space, which permits to find
safe commands when re-planning every sampling time to
move between both obstacles, unlike one-step planner that
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Fig. 25. (a)–(e) One-step local planner: the velocity which would drive the robot to the goal applying time-optimal commands from the
current position–velocity in free space (mapped GD) is selected. In (d) the velocity obstacle prevents the robot from choosing a velocity
to manoeuvre towards the goal, until the moving object passes and GD becomes free to be followed (e). (f)–(j) DOVS lookahead planner:
it plans safe velocities out of the velocity obstacle for the sensor visibility horizon, driving the robot to the new mapped goal GDnew

(f)–(h) instead of GD, leading the robot to slow down and manoeuvre to finally cross between both obstacles through the velocity valley
(i), (j).

only re-plans locally to follow a theoretical time-optimal
trajectory towards the goal in the free space.

7.3. Real-world experiments

The first scenario corresponds to the kind of scenarios
shown in the simulations with obstacles moving randomly
in all directions. The second is a more structured scenario,
an overtaking manoeuvre. Extension 2 contains a video of
the experiments.

7.3.1. Experimental setup. The navigation strategies have
been tested on three Pioneer robots. These are differential-
drive robots equipped with a 2D laser rangefinder Sick
LMS-200 and on-board Intel Centrino duo at 1.6 GHz. The
computation time of the navigation strategies was around
200 ms, the time for which a new laser measuring is avail-
able. The field of view of the laser rangefinder sensor was
180◦, 0.5◦ of angular resolution and a maximum range of 8
m. The maximum translational velocity was set to 0.3 m s−1

and the rotational velocity to 0.4 rad s−1, fitting the veloc-
ity window used. The method developed by Montesano
et al. (2008) is used for mapping static and moving obsta-
cles from rangefinder sensors, and an extended Kalman fil-
ter (EKF)-based technique is applied to track the moving
objects, in which the state vector included the location and
the velocities of the tracked objects.

The work presented in Prassler et al. (2001) developed
a navigation system on a wheelchair equipped with sen-
sors. The authors represent the space occupied at instant
t with a time stamp map, and compare the corresponding
information in the previous step to determine moving and
static obstacles by using a nearest-neighbor criterion. The
VO approach is used to compute safe velocities, selecting

the highest feasible velocity in the direction of the goal or
a manoeuvre-avoidance velocity with a specific heading.
As a result, wall-following and obstacle-avoidance behav-
iors are observed in simulation and real-world crowded
environments.

7.3.2. Experiment 1. Figure 26(a) depicts the hall-like sce-
nario, with robot and object trajectories, not previously
known. Figure 26(b)–(d) shows the velocity profiles and the
strategies. ObstacleFree, AvoidingObject, and PassingBe-
fore are the most frequent situations, allowing to maintain
the maximum linear velocity. Figure 27 illustrates several
steps of the experiment.

7.3.3. Experiment 2. Figures 28(a) and 29 show an over-
taking manoeuvre in a narrow corridor. Before overtaking
obstacle 1, the robot slows down until obstacle 2 passes.
When the manoeuvre is initiated, the maximum velocity
is maintained until the end (Figure 28(b)). ObstacleFree,
AvoidingObject, and SlowingDown are the situations that
occur the most. The latter makes the robot reduce the
velocity before starting the overtaking manoeuvre.

8. Conclusions

A robocentric technique for planning and navigation in
dynamic environments has been developed. The DOVS
model defined for mapping the dynamics of the environ-
ment allows the planning of safe motions within a space
horizon, for instance the range of visibility of the onboard
sensors. Several situations depending on the decision vari-
ables are identified applying specific actions associated to
them, which implement the RobotFront or the RobotBehind
strategies. The complexity of the method does not increase
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Fig. 26. Hall scenario: (a) trajectory of the robot (green) and environment perceived in experiment 1, with static and moving objects;
(b) linear velocity profile; (c) angular velocity profile; (d) situations.

Fig. 27. Experiment 1 in the hall (random) scenario. The robot can pass between Obj1 and Obj2 (a), (b) at maximum velocity (c), and
avoids Obj3 (d), (e) towards the side closest to the goal (f).

Fig. 28. Overtaking scenario: (a) trajectory of the robot (green) and environment perceived in experiment 2, (b) linear velocity profile,
(c) angular velocity profile, and (d) situations.

either by trajectories that are more complex than linear
obstacle trajectories, or as a result of the space–time hori-
zon for planning, unlike other techniques described in the
literature. It has been shown that the long-term strategies
selected every sampling time within the space horizon vis-
ibility improve the time to goal with respect to other tech-
niques that are purely reactive. The method has been eval-
uated in simulation and in real-world experiments. In a
dynamic scenario, the navigation difficulty can be measured
from the velocity space area occupied by the obstacles,
which somehow reflects the actual capability of the robot to

manoeuvre. Sometimes collisions are unavoidable, mainly
in cases where the robot is trapped near static obstacles
or when obstacles appear in the scenario, due to robot’s
kinodynamic constraints.

From the lessons learned, some improvements are being
considered for future work. Using directly the DOV obsta-
cles without merging them would make the processing more
complex but enlarge the set of free and safe velocities to
be selected to manoeuvre. Blocking situations appearing
in closed scenarios or with many static obstacles could
be reduced achieving a different treatment for those static
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Fig. 29. Experiment 2 in the Overtaking scenario. The robot has
to slow down before overtaking obstacle Obj1. Red velocity obsta-
cles (c) are the walls on both sides of the corridor and obstacle
Obj1, which is detected as static given that both the robot and Obj1
are navigating with a similar velocity.

obstacles, by prioritizing free and safe velocities that move
the robot away from them. In the context of a multi-agent
scenario in which several mobile robots can make deci-
sions, a future work will be focused on the extension of
the model and development of planning techniques to share
the decision-making process among several robots to obtain
mutually optimized plans.
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Notes

1. An extended video for simulations in random-generated
scenarios can be downloaded from http://robots.unizar.
es/data/videos/simulations_random_scenarios.mp4
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Appendix A: Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http://www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video Simulations to show the naviga-
tion performance of the robot in
several scenarios and conditions.

2 Video Real experiments in two scenar-
ios: a hall-like scenario, and an
overtaking-like manoeuvre.

Appendix B: Computation of the robot
collision velocities

B.1: Obstacle linear trajectories

Figure 1(b) in Section 5 illustrates a moving object describ-
ing a linear trajectory, positioned at locations (O1

i and O2
i ).

The positions are related to the instants at which the robot
reaches points P1j and P2j, following a circular trajectory
γj. Here P1j is computed as the position at which the robot
should arrive after the object has just passed it, at time t1j

(Oi( t1j) = O2
i ) and P2j is the position at which the robot

should arrive just before the object reaches it, at time t2j

(Oi( t2j) = O1
i ).

From object location Oi( t0) =( xo, yo, φo) in the robot
local reference and its velocity vo, the points of collision
P1j( x1j, y1j) and P2j( x2j, y2j), and the corresponding times
t1j and t2j are calculated by solving the following equations
characterized by the curvature radius rj of path γj and the
center ( 0, yj) in the robot reference frame R. For a path γj,
tij (i = 1, 2) is computed from Equations (15), obtaining
two solutions for each collision point Pij (Equation (16)).

xij = x0 + v0 cos( φ0) tij
yij = y0 + v0 sin( φ0) tij (15)

rj
2 = x2

ij+( yij − yj)
2

tij =( −B ±
√

B2 − 4AC) /2A (16)
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A = v2
0

B = 2v0( x0 cos( φ) +y0 sin( φ) ) −2v0 sin( φ) yj

C = x2
0 + y2

0 + y2
j − 2y0yj − r2

j

From xy-coordinates of points P1j and P2j, and times tij,
the velocities vij are computed, as in Section 5.1. Two cases
can occur. When the robot is out of the collision band, we
select tij as the solution corresponding to the first inter-
section point (the lower value of tij) for both P1j and P2j.
When the robot is in the collision band, the strategy is to
escape from the band to avoid a collision. In this case, only
the escape point P2j and velocity v2j are calculated, using
the previous equations. A lower velocity would result in
collision.

B.2: Obstacle circular trajectories

In a similar way, the intersection points P1j( x1j, y1j) and
P2j( x2j, y2j) between a circular robot trajectory and a cir-
cular collision band swept by the obstacle (delimited by
Cin and Cout), and the corresponding times t1j and t2j, are
computed. These points are computed from intersections
between circles Cin and Cout and the robot circular path γj,
following Equations (17) (see Figure 30).

Here O1
i and O2

i are the object positions for comput-
ing the collision times t2j and t1j, respectively. Applying
tangency conditions between robot trajectory γj and the cir-
cles corresponding to the object in both positions (Equation
(18)), the times to collision are calculated from the angular
displacement θcij and the angular velocity of the object ωobj

(Equations (19)). Then, the velocities vij are computed as in
Section 5.1:

( x − xc)
2 +( y − yc)

2 = r2
Cout

=( rc − rrob)2

( x − xc)
2 +( y − yc)

2 = r2
Cin

=( rc + rrob)2 (17)

( x − xrob)2 +( y − yrob)2 = r2
rob

( x − xobj)
2 +( y − yobj)

2 = r2
obj (18)

θcij = atan2( 2 xobji yobji , x
2
obji

− y2
obji

) (19)

tij = θcij/wobj, i = 1, 2

Appendix C: Computation of time to goal from
the current robot location

Trajectories are composed of combinations of straight lines,
circular, clothoid, and anti-clothoid curves. The time-to-
goal functions (tG) are computed as the sum of several
terms, the switching times: time for angular acceleration
(tα), time for linear acceleration at constant angular non-
zero velocity (taw), time at constant angular velocity (tw),
time for angular deceleration until alignment with the goal
(t−α), time for linear acceleration once the robot is aligned

Fig. 30. Collision band, path γj with curvature radius rrob, and
collision points P1j and P2j with a circular object that moves along
a circular trajectory in the robocentric (R) configuration space.

(ta), and time at maximum linear velocity towards the goal
(tv). The total time to goal in both cases is

tGw = tα + tw + t−α + ta + tv (clothoid)

tGv = taw + t−α + ta + tv (anti-clothoid)

The switching time for starting angular deceleration is
computed when θa = ω2

c/2 ∗ αm is reached, being ω = 0
when the robot is aligned to the goal (xG, yG). The switching
times are computed as follows.

(a) Time for angular acceleration (tα)/deceleration (t−α)

tα =( wα − wc) /αm

ωα = min( ωtopw , ωm) ; ωtopw = wc + αm ∗ ttopw

t−α � wc/αm; ωt−α = wc − αm ∗ t−α � 0

Velocity ωα will be the angular velocity reached (ωtopw )
when the value θa = ω2

c/2 ∗ αm with respect to the goal
direction is measured or ωm is reached, whilst vc is kept.
Then an angular deceleration starts until aligning the goal.
The coordinates at the end this stage are (β = {α, −α})

xβ = vc ∗
∫ tβ

t0

cos( θ ( t) ) dt

yβ = vc ∗
∫ tβ

t0

sin( θ ( t) ) dt

θβ = wc ∗ tβ+( αm ∗ t2β) /2

These are non integrable equations, so they are solved
numerically.

(b) Time at constant angular velocity (tw). Time until the
orientation reaches θa from the initial θc:

tw =( θc − θa) /ωc
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Both the angular and linear velocities ( vc, ωc) are kept. The
coordinates at the end of this stage are

xω =( vc/ωc) ∗ sin( θc − θa)

yω =( vc/ωc) ∗( 1 − cos( θc − θa) )

θω = θc − θa

(c) Time at maximum linear acceleration and constant
angular velocity (taw):

taw =( vaw − vc) /am; vaw = min( vtopv , vm)

vtopv = vc + am ∗ ttopv

This stage finishes when the angular position with respect to
the goal direction (θa) is reached. The coordinates reached
at the end of this stage are

xaw =
∫ taw

t0

v( t) ∗ cos( θ ( t) ) dt

yaw =
∫ taw

t0

v( t) ∗ sin( θ ( t) ) dt

θaw = wc ∗ taw

(d) Time at maximum linear acceleration (ta):

ta =( vm − vc) /am; va = vc + am ∗ ta

The stage starts when the robot is aligned (ω = 0, θa =
0), and accelerates up to the maximum linear velocity. The
coordinates reached are

xa =( vc+( am ∗ ta) /2) ∗ cos( θg) ∗ ta
ya =( vc+( am ∗ ta) /2) ∗ sin( θg) ∗ ta

(e) Time at maximum linear velocity (tv). At the start of this
stage, the current location of the robot is given by

xc =
∑

i

xi, yc =
∑

i

yi, i = α, w, aw, −α, a

With dG begin the distance to the goal from ( xc, yc), the time
to goal and velocities are

tv = dG/vv, vv = vm, wv = 0


