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Abstract

Underwater localization using acoustic signals is one of the main components in a navigation system for an autonomous

underwater vehicle (AUV) as a more accurate alternative to dead-reckoning techniques. Although different methods based

on the idea of multiple beacons have been studied, other approaches use only one beacon, which reduces the system’s

costs and deployment complexity. The inverse approach for single-beacon navigation is to use this method for target loca-

lization by an underwater or surface vehicle. In this paper, a method of range-only target localization using a Wave

Glider is presented, for which simulations and sea tests have been conducted to determine optimal parameters to minimize

acoustic energy use and search time, and to maximize location accuracy and precision. Finally, a field mission is pre-

sented, where a Benthic Rover (an autonomous seafloor vehicle) is localized and tracked using minimal human interven-

tion. This mission shows, as an example, the power of using autonomous vehicles in collaboration for oceanographic

research.
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1. Introduction

Oceanographic research is an important factor to under-

stand today’s most important phenomena, such as climate

change. Different technologies have been developed over

recent years to study our oceans, these technologies go

from space to the deepest oceans, where the focus has been

centered on multi-vehicle cooperation. In this field, range-

only and single-beacon underwater target localization using

acoustic modems is a key factor.

One of the main challenges in oceanographic research

lies in underwater positioning. Owing to the large attenua-

tion of radio waves in water, it is well known that GPS sig-

nals are not suitable underwater. Therefore, different

methods and architectures have been developed using

acoustic signals, which have better a underwater perfor-

mance, such as long baseline (LBL), ultra short baseline

(USBL), and GPS intelligent buoys (GIBs). Usually, the

range between two transponders is computed with knowl-

edge of the time of flight (TOF) of a transmitted signal

(and the sound speed in water), then these ranges are used

to calculate the position of the sound source. Each of these

systems has its own application as a function of the proj-

ect’s necessities and constraints. For example, the LBL

system offers the best precision and accuracy, but with high

deployment and maintenance costs. These costs can be

somewhat reduced by GIB systems, which use surface

buoys instead of sea-floor nodes. If the main goal is to

reduce the set up time, the best option is a USBL system,

but with less accuracy than the other methods.

On other hand, some studies have focused on single-

beacon localization methods to reduce the deployment

costs (e.g. Alcocer, 2010; Olson et al., 2006; Quenzer and

Morgansen, 2014; Vallicrosa et al., 2014). The main idea

behind this architecture is to use an autonomous vehicle as

a mobile landmark to compute the position of an
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underwater target, which, while moving in the area, takes

some ranges between the target and itself to triangulate the

target’s position. The interest in this methodology has

increased over recent years, as a consequence of the neces-

sity to reduce localization costs, and find new techniques

to localize and track multiple nodes in underwater acoustic

networks (UWANs), Han et al. (2013), or in fleets of

autonomous underwater vehicles (AUVs), where all the

nodes have their own acoustic communication modem,

which can be used to determine the ranges from other

nodes on the grid. For example, this methodology is used

in the MORPH EC FP7 project (Kalwa et al., 2016) as

explained in Furfaro and Alves (2014). The authors pre-

sented a system called distributed long baseline (DLBL),

where highly synchronized modems from EvoLogics in a

four-node network composed of AUVs were used.

In contrast, this technique has also been used in single-

node architectures. For example, it is used in applications

such as simultaneous localization and mapping (SLAM)

and aiding in AUV navigation (Bayat and Aguiar, 2013;

Newman and Leonard, 2003; Tan et al., 2014), and AUV

homing as well (Vaganay et al., 2000; Vallicrosa et al.,

2014). Finally, single-beacon localization using autono-

mous vehicles as a moving landmark can also be used for

target positioning and tracking in large areas without the

fixed beacons’ constraints. As an example, in Clark et al.

(2013) a method was presented for tracking and following

a tagged Leopard shark.

However, the range-only single-beacon approach has its

particular challenges, such as path characterization (path

shape, number of points, and maximum range) or perfor-

mance evaluation (accuracy and reliability). All of these

parameters must be evaluated under different circumstances

and setup characteristics.

In the literature, different papers about observability

(which introduces some restrictions in paths and maneu-

vers) can be found; for example, Hinson et al. (2013)

derived that the best trajectory is to do turning motions

around the beacon, and Quenzer and Morgansen (2014)

used a similar approach with a surface vehicle following

three AUVs. On other hand, Moreno-Salinas et al. (2016)

presented a complete study to determine the optimal sensor

placement for acoustic underwater target positioning with

range-only measurements. Other works have focused on

algorithms and their improvement under specific circum-

stances, such as Ramezani et al. (2013), who improved a

recursive algorithm for target localization in an isogradient

sound speed profile. However, all these works are mathe-

matical developments and only show some simulations.

Fallon et al. (2010) have studied cooperative AUV navi-

gation using surface vehicles, which use acoustic ranges as

navigation aids. They studied three filtering and smoothing

techniques, the extended Kalman filter (EKF), the particle

filter (PF), and the nonlinear least squares (NLS), where the

NLS yielded better accuracy. Experiments and field tests

had been conducted in a shallow water environment.

Posterior studies conducted by Webster et al. (2012) showed

the performance of the centralized extended Kalman filter

(CEKF) to improve the dead-reckoning navigation systems,

using acoustic ranges from a surface vehicle as a navigation

aid. Moreover, they showed different experiments in a deep

water area. In both studies, they used the Woods Hole

Oceanographic Institution (WHOI) micro-modems (Freitag

et al., 2005). However, whereas their studies are extended

and completed in the use of acoustic range as navigation

aids, more studies are needed to characterize range-only

and single-beacon target localization method, e.g. to find

the best range distances or path shapes.

Finally, in other works such as those of Olson et al.

(2006) and McPhail and Pebody (2009), the authors pre-

sented some field test results to localize an underwater tar-

get using range-only methods, but in their case, they do not

present a general study to find the best parameters for tar-

get localization.

The work presented in this paper shows how to deter-

mine the optimal parameters of the range-only and single-

beacon target localization method. In addition, results of

simulations and sea tests to demonstrate the good perfor-

mance of a Wave Glider used as a single-beacon LBL sys-

tem for target localization are presented. This method can

be used in a wide range of applications using the long-dura-

tion, autonomous navigation, and computational character-

istics of Wave Glider applications.

(i) Target localization in a benthic zone:

– instruments on seabed, which may be stationary

or moving (e.g. slowly sliding down a submarine can-

yon, or on a Benthic Rover);

– low motion tagged benthic marine species.

(ii) Target localization in a pelagic zone:

– drifter buoys;

– AUVs;

– low motion tagged pelagic marine species.

Preliminary studies were presented in Masmitja et al.

(2016a), where both simulations and field test results were

shown under different circumstances such as circular radius

and offsets. However, the field results in the case of differ-

ent offsets did not coincide with the simulations with the

same accuracy as in the radius case. In this paper, a more

accurate random error model, which was described in

Masmitja et al. (2016b), and a systematic error are studied

to increase the simulations’ accuracy. Finally, more cases

such as path shape, time, and power consumption are pre-

sented to have a complete study.

This work is structured as follows. In Section 2 the opti-

mal path shape is developed analytically. In Section 3 the

range-only target localization algorithms are presented.

Section 4 describes the simulations conducted to study the

best parameters for underwater target localization. In

Section 5 different field tests and their comparison with

simulations are presented. To conclude, a real mission,

where a Wave Glider was used to find a Benthic Rover, is

2 The International Journal of Robotics Research 00(0)



explained in Section 6. Finally, the discussion and conclu-

sions are addressed in Sections 7 and 8, respectively.

2. Optimal path shape

The relationship between the sensor location and the accu-

racy that can be achieved in measurement estimation has

been widely studied, see Ucinski (2004) and the references

therein. The potential areas that are faced with the sensor-

location problem include environmental monitoring, sur-

veillance, and meteorology.

In general, the computation of the optimal sensor con-

figuration can be carried out by examining the correspond-

ing Cramer–Rao bound (CRB) or its Fisher information

matrix (FIM) as is well known (Trees et al., 2013). In an

estimation problem, where a set of noisy observations are

used to estimate a certain parameter of interest, the CRB

sets the lowest bound on the covariance matrix that is

asymptotically achievable by any unbiased estimation

algorithm.

Therefore, because the CRB is calculated from the

inverse of the FIM of the likelihood function, one can use

both to find the optimal sensor configuration. At this point,

the determinant of the FIM is used as a performance indica-

tor, where maximizing this quantity yields the most appro-

priate sensor formation geometry. For example, Moreno-

Salinas et al. (2016) used this method to find the optimal

sensors’ locations of an underwater sensor network to find

a target using their ranges, and Kaune et al. (2011) derived

the target’s localization accuracy using time difference of

arrivals (TDOAs) measurements on different sensor geome-

try scenarios. In this paper, similar approaches are used,

where the optimal path shape can be derived taking into

consideration that each sensor’s position is where the Wave

Glider will obtain a new range measurement from the tar-

get. This method can be called range-only and single-

beacon target localization.

Therefore, following standard procedures, the FIM cor-

responding to the problem of range-based target positioning

can be computed from the likelihood function

p(zjpT )=
1

(2p)m=2jRj1=2
exp � 1

2
(z� r(pT ))R

�1(z� r(pT ))

� �
ð1Þ

where m is the number of measurements, pT is the target’s

position, z= ½z1, . . . , zm�T are the measured ranges, r(pT )
are the true ranges between each position of the Wave

Glider and target, and R are the covariance matrix. In the

particular case that R= s2Im (where Im is the identity

matrix), taking the logarithm of (1), computing its deriva-

tive with respect to pT , and taking its expected value, the

FIM can be expressed as

FIM=
1

s2
rr(pT )

Trr(pT ) ð2Þ

For notational simplicity, and without loss of generality,

hereinafter the target is considered to be placed at the ori-

gin of the inertial coordinate frame. Consequently, (2) can

be rewritten as

FIM=
1

s2
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FIM=
1

s2

Xm

i = 1

1

r2
i

p2
ix pixpiy pixpiz

piypix p2
iy piypiz

pizpix pizpiy p2
iz

2
4

3
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where pi = ½pix, piy, piz�T for i 2 f1, . . . ,mg is the position

of the ith ranging Wave Glider’s position, and ri the actual

distance between target pT and the ith Wave Glider’s

position.

The log jFIMj function is used to define the optimal

FIM, which provides the maximum FIM determinant for

simplicity reasons. Then, its derivatives with respect to the

norms of the vectors and with respect to the angles have to

be computed and set equal to zero to find its maximum

and, consequently, the optimal path configuration. This pro-

cess was derived in Moreno-Salinas et al. (2016), and there-

fore, here only the final result is presented, that is

FIMopt =
1

s2

m
3

0 0

0 m
3

0

0 0 m
3

2
4

3
5 ð5Þ

Finally, the general conditions that must be satisfied by

the Wave Glider path to be optimal can be derived by com-

paring the optimal FIM in (5) with the generic one in (4) as

follows

Xm

i = 1

p2
ix

r2
i

=
Xm

i = 1

p2
iy

r2
i

=
Xm

i = 1

p2
iz

r2
i

=
m

3
ð6Þ

Xm

i = 1

pixpiy

r2
i

=
Xm

i = 1

pixpiz

r2
i

=
Xm

i = 1

pizpiy

r2
i

= 0 ð7Þ

The above equations can be rewritten in terms of the

angles that each range vector makes with the unit vector of

the inertial reference frame as cos (aij)= pij=ri for

i 2 f1, . . . ,mg and j 2 fx, y, zg, obtaining

Xm

i = 1

cos2 (aix)=
Xm

i = 1

cos2 (aiy)=
Xm

i = 1

cos2 (aiz)=
m

3
ð8Þ

Xm

i = 1

cos (aix) cos (aiy)=
Xm

i = 1

cos (aix) cos (aiz)

=
Xm

i = 1

cos (aiz) cos (aiy)= 0

ð9Þ
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With this formulation, the optimal sensor configuration

is described in terms of the angles between the range vec-

tors and the inertial frame. Consequently, the ranges them-

selves are not an important factor in this 3D scenario, and it

can be concluded that the optimal sensor configuration lies

on a sphere centered on the target.

Finding a generic formulation for a 3D scenario that

solves these equations to obtain the optimal geometry is

not trivial, however, the scenario presented in this paper is

a surface vehicle trying to localize an underwater target,

which in other words means that all the sensors are placed

on a plane. This situation is derived in the following

subsection.

2.1. Surface vehicle and underwater target

scenario

Considering that all the measurements are taken from a

plane, which in this case is the sea surface, the optimal

geometry is the intersection between a sphere centered on

the target and this plane (see Figure 1). The circumference

obtained (which with radius rc) presents a relation between

the target’s depth zT and the ranges ri between the target pT

and the Wave Glider pi, which will define the optimal path

that the vehicle must follow to obtain the best accuracy on

the target’s localization prediction problem.

Therefore, using piz = zT , assuming that all ranges are

equal, and substituting that in (6) the following relation is

derived

Xm

i = 1

p2
iz

r2
i

=
mz2

T

r2
=

m

3
! zT

r
=

1ffiffiffi
3
p ð10Þ

Using simply a trigonometric formulation (r2
c + z2

T = r2)

the optimal path can be found, which is a circumference

centered over the target with a radius equal to

rc =
ffiffiffi
2
p

zT ð11Þ

In contrast, the difference between the optimal solution

and a solution by using different values of rc can be derived

using (10) as

e1 =
1

3
� z2

T

r2
c + z2

T

ð12Þ

which can be used as an indicator of how the circumference

radius affects the optimal solution, which is found when

e1 = 0. Figure 2 shows a specific case for a target depth

equal to 1,800 m, the optimal circumference radius is equal

to 2,546 m can be observed.

Now, after the circumference geometry has been

derived, it is necessary to find the optimal distribution of

all measurements over this path. Consequently, rewriting

(6) and (7) in polar coordinates, considering a unit sphere

(zT = 1=
ffiffiffi
3
p

and rc =
ffiffiffi
2
p

=
ffiffiffi
3
p

), and pix = rc cos (ai),
piy = rc sin (ai) (where ai is the projected angle of the ith

range vector on the fx, yg plane), and piz = zT, the follow-

ing notation is obtained

Xm

i = 1

cos2 (ai)=
Xm

i = 1

sin2 (ai)=
m

2
ð13Þ

Xm

i = 1

cos (ai) sin (ai)=
Xm

i = 1

cos (ai)=
Xm

i = 1

sin (ai)= 0

ð14Þ

A simple and elegant solution for ai is obtained by noti-

cing the orthogonality relationship for sines and cosines

from Fourier’s analysis, which yields with the solution

ai =
2p

m
i, i 2 f0, . . . ,m� 1g ð15Þ

This means that all the measurements have to be taken

uniformly distributed over the entire circumference to com-

pute the target’s most accurate position.

Fig. 1. Optimal geometry from the intersection between a sphere

centered on the target and sea surface plane.

Fig. 2. Error e between the optimal solution and a solution by

using different values of rc. Results obtained for both scenarios:

planar sensors (e1) and planar sensors with a known target’s

depth (e2). These graphs should only be used as an indicator of

the localization performance, they do not give the absolute

accuracy reachable.
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Finally, it can be pinpointed that a large number of mea-

surements m yield a better estimation because

FIMopt = m=(s633) increases proportionally to m.

2.2. With a known target depth

Commonly, the target’s depth can be known easily using a

small and affordable sensor, which implies simple computa-

tion methods for target localization. The information of the

target’s depth can be sent to the Wave Glider at each range

interrogation through the acoustic modems. On the other

hand, if the target lies on the sea floor, the area’s bathymetry

can be used to compute its depth. In such situations, a 2D

scenario can be derived from the 3D problem explained in

the previous subsection knowing zT , where instead of ri, its

projection rci to the fx, yg plane is used. Then, the FIM for

the 2D scenario can be obtained rewriting (3) and (4) as

FIM=
1

s2

Xm

i = 1

∂ri(pT )
∂pTx

� �2
∂ri(pT )
∂pTx

∂ri(pT )
∂pTy

∂ri(pT )
∂pTy

∂ri(pT )
∂pTx

∂ri(pT )
∂pTy

� �2

2
64

3
75 ð16Þ

FIM=
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1

r2
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ix pixpiy
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� �
ð17Þ

where r2
ci = r2

i (1� z2
T=r2

i ), which yields with a FIMopt

equal to

FIMopt =
1

s2

m
2
(1� z2

T

r2
i

) 0

0 m
2
(1� z2

T

r2
i

)

2
4

3
5 ð18Þ

In this scenario, the ratio between the slant range mea-

surement and the target’s depth plays a different role to the

previous one. Here, the maximum FIM will be reached

when r2
i tends to infinity; in such a case,

FIMopt ’ m=(2s2)I2, which is the maximum achievable

value and it is equal to the 2D scenario (zT = 0). Therefore,

if the target’s depth is different to zero and it is known, a

larger circumference radius will provide a proportionally

better estimation on the target’s position.

As done before, the difference between the optimal solu-

tion and a solution by using different values of the circum-

ference’s radius value can be derived using

e2 =
1

2
� 1

2
1� z2

T

r2
c + z2

T

	 

ð19Þ

which can be used as an indicator of how the circumfer-

ence’s radius affects the optimal solution, which is found

when e2 = 0. Figure 2 shows a specific case for a target

depth equal to 1,800 m, where the optimal circumference

radius tends to infinity can be observed.

Until now, all the errors that have been used were

assumed constant, range independent, and with mean equal

to zero, error;N (0,s2). Whereas this is a good approxi-

mation, which yields a tractable formulation to be studied

analytically, in reality the error is more complex. Therefore,

a set of different simulations with a more complex error

have been carried out to study the performance, and the

optimal path of range-only and single-beacon localization

algorithms. However, the starting point for these simula-

tions were the results obtained in this section.

3. Range-only target localization algorithms

The concept of single-beacon range-only positioning can

be divided into two groups: as a navigational aid for a mov-

ing vehicle Tan et al. (2014) (group 1), or to localize a sta-

tionary or moving target Vallicrosa et al. (2014) (group 2).

All these methods use a set of ranges between a target and

different static nodes, known as anchor nodes or landmarks.

Typically, these ranges can be obtained using TOF given

the speed of sound in water. Then, the unknown underwater

target position problem can be solved using trilateration,

where, in general, three or more points are needed in 2D

dimensions and at least four points are required in 3D

scenarios.

In general, the navigation aid problem has received more

attention in the literature (group 1) where an AUV needs to

be located using a set of known transponders, as in Alcocer

(2010). However, similar approaches can be used in the

inverse case, where an autonomous vehicle is used to find

an underwater target (group 2). The method used in this

paper can be seen in Figure 3, where a range-only target

localization method based on a single-beacon architecture

is presented. The target’s position is computed using a

Wave Glider, which periodically measures the range to the

underwater target, while it is moving on the surface.

Therefore, following the same notation as Alcocer

(2010), the underwater target positioning vector can be

defined as pT 2 R
n, where n can be either two or three and

is the space dimension of the problem. All the Wave Glider

positions used in the trilateration problem can be denoted

as pi 2 R
n where i 2 f1, 2, . . . ,mg, where m indicates the

number of measurements carried out. Then, the ranges

Fig. 3. Range-only single-beacon underwater target localization

methodology representation, using a Wave Glider as a moving

LBL.

Masmitja et al. 5



measured with Wave Glider between itself and the target

can be expressed as

ri = k pT � pi k + wi, i 2 f1, 2, . . . ,mg ð20Þ

where k pT � pi k = ri is the true range, and wi;N (e,s2)
is some non-zero mean Gaussian measurement error where

s2 is the variance and e is the systematic error.

Thus, Equation (20) can be written in matrix form as

r= r+w. In general, this non-linear, non-smooth, and

overdetermined (when m.n + 1) system does not have a

straightforward solution. At this point, two different meth-

odologies are used in the literature to solve the system and

find the target’s position through ranges (Bertsekas, 1995):

linearize the function and find a closed-form least squares

(LS) solution; or use an iterative minimization algorithm to

minimize a cost function related to the maximum likeli-

hood (ML) estimate.

3.1. Closed-form LS algorithm

As the main goal of this paper is not to compare the perfor-

mance of different algorithms, a simple unconstrained least

squares (ULS) algorithm is used, which was introduced in

Cheung et al. (2004). However, as it will be shown, its per-

formance is quite good.

The main idea on LS algorithms lies in a linearization

of the system by using the squared range measurements to

obtain a linear equation as a function of the unknown tar-

get’s position pT and its norm,

d= d+ j ð21Þ

where d is equal to the squared range r2, and j is the new

measurement error as a function of w and r. In this case, it

is not obvious that j;N (e,s2) as before, and the new error

is not independent to the range. However, under some cir-

cumstances this assumption is possible, for example when

ri � si, but this assumption is not true when the vehicle is

close to the target. See Alcocer (2010) for more informa-

tion. However, from hereafter it is assumed an error that is

independent to the range and its square, which is true as the

ranges used will be much larger than the error itself.

On the other hand, when all the points used to compute

the underwater target position are coplanar (e.g. in the same

z-plane), which in this case is on the sea surface, a 2D for-

mulation can be used. The square ranges are defined by

di = k pT � pik2

= (pTx � pix)
2 + (pTy � piy)

2 + (pTz � piz)
2

= k p0T � p0ik2 + z2
T

= p0Ti p0i � 2p0Ti p0T + k p0Tk2 + z2
T

ð22Þ

where p0 represents the projection of p on the fx, yg plane,

and zT is the target depth. This equation can be formulated

in a matrix form as

d= d(P0TP0)� 2P0p0T + (k p0Tk2 + z2
T )1m ð23Þ

where P= ½p1, . . . , pm� 2 R
nxm, and d is defined as the

diagonal of the matrix.

The unknown scalar terms k p0Tk2 + d2
z are multiplying

the vector of ones 1m. Therefore, this unknown term can be

deleted by multiplying both sides of the equation by matrix

M, which has 1m in its null space, obtaining

Md=Md(P0TP0)� 2MP0Tp0T =Md0 ð24Þ

Consequently, the square range in two dimensions is the

same as in three dimensions and the same algorithm can be

used. In this situation, the depth of the target is not neces-

sary to obtain its (x, y) position. Therefore, the depth can

be computed using Pythagoras’ theorem. Finally, Equation

(23) can be written as a linear system with form

Au = b+ j, which can be solved by minimizing as small

as possible the length of the error, with solution

ATAbu =ATb. Therefore, the target position estimation is

bpT =N(ATA)�1ATb ð25Þ

where

N= In 0½ � ð26Þ

A=

2pT1 �1

..

. ..
.

2pTm �1

2
64

3
75 ð27Þ

b=

kp1k2 � d1

..

.

kpmk2 � dm

2
64

3
75 ð28Þ

u =
pT

kpTk2

� �
ð29Þ

3.2. Iterative minimization algorithm

The main goal of this method is to use the maximum likeli-

hood estimation (MLE), a statistical technique to compute

the value that maximizes the similarity between selected

values and observed data, which come with an unknown

probability density function. For a normal distribution and

using the log-likelihood function, which is a continuous

strictly increasing function over the range of the likelihood,

the log-likelihood can be written as

logL(pT )= �
m

2
log 2p � 1

2
log jRj � 1

2
(r� r)TR�1(r� r)

= K � 1

2
(r� r)TR�1(r� r)

ð30Þ

where R is a diagonal matrix, the values of which are the

measurement error covariance s2. Then the MLE can be

found by solving the optimization problembu = argmin
pT

f (pT ), where the cost function is
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f (pT ) :¼ 1

2
(r� r)TR�1(r� r) ð31Þ

In general, this cost function is non-linear because of

the square root that defines the range measurements, there-

fore there is no closed-form solution. However, an iterative

method can be used to solve this minimization problem,

such as negative gradient descent or Newton’s methods.

Only the final formulation is presented in this paper to

reduce its length, for detailed development see Alcocer

(2010) and Bayat and Aguiar (2013).

To use these two iterative minimization methods the

cost function gradient and its Hessian must be calculated,

obtaining

rf (pT )=� Cd(r)�1R�1(r� r) ð32Þ

and

r2f (pT )=� Cd(r)�2R�1d(2r� r)CT + aTd(r)�11mIn

ð33Þ

where

R=

s2 � � � 0

..

. . .
. ..

.

0 � � � s2

2
64

3
75 ð34Þ

a =R�1(r� r) ð35Þ
C= pT � p1 � � � pT � pm½ � ð36Þ

Using the gradient of the cost function and its Hessian,

the iterative minimization algorithm can be computed by

Algorithm 1.

After these mathematical formulations, a set of different

simulations and real tests can be conducted to characterize

the performance of the system and identify the

best parameters for underwater target localization using a

Wave Glider with single-range and single-beacon

architecture.

4. Simulations

Different simulations were conducted to determine the best

parameters to increase the capabilities of the acoustic posi-

tioning system. The scenario chosen is a Wave Glider on

the surface conducting different paths and an underwater

target at 1,800 m of depth to be located. Four parameters

were selected: path shape, number of points needed, radius

around target, and offset from target. Moreover, the perfor-

mance of the derived LS and MLE algorithms was com-

pared to the Cramer–Rao bound (CRB), which specifies

the best possible performance attainable with any estimator

(Rao, 2008).

The CRB theorem states that under some regular condi-

tions of the probability density functions, the variance (37)

represents the lower bound on the mean-square error of an

unbiased estimator. For a scalar unbiased case, the variance

of estimator p̂T is bounded by the Fisher information I(p̂T )
as

var(p̂T )ø
1

I(p̂T )
ð37Þ

where the Fisher information is defined by

I(p̂T )=� E
∂2‘(r; pT )

∂p2
T

� �
ð38Þ

where ‘(r; pT )= logL(pT ), which can be seen in (30), and

E denotes the expected value. Computing the second deri-

vative of the likelihood logarithm function and its expected

value, the CRB obtained is

var(p̂T )øtr½(Cd(r)�1R�1d(r)�1CT)�1� ð39Þ

which can be compared with the root mean-square error

(RMSE), which represents the sample standard deviation

of the differences between predicted values and observed

values, using the expression RMSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(p̂T )

p
.

Different scenarios can be computed using (39) to

observe the theoretical performance of the system (a Wave

Glider as an LBL system to find an underwater target at

1,800 m of depth). For example, Figure 4 shows the

CRB using four points as landmarks to compute the target’s

location. This figure shows that the best accuracy and pre-

cision are obtained when the target is located in the path’s

centre.

However, more scenarios have been simulated to obtain

a better characterization, such as path shape, radius around

the target, number of points or offset from the target. All

the simulations conducted for this paper have been obtained

through 1000 Monte Carlo iterations, with a normal noise

probability distribution, with zero mean and variance equal

to

Algorithm 1 Iterative Minimization method

1: Start from an initial estimation value pT0. And set k = 0
2: Calculate a search direction using Gradient descent (32) or
Newton descent (33).

h(pT )= �rf (pT )
h(pT )= � (r2f (pT ))

�1rf (pT )
3: Determine the step size (Armijo rule).

sk = sbmi

where s.0, b, s 2 (0, 1), and mi is the first integer that satisfies
f (pTk + sbmih(pTk))ł
ł f (pTk)+ ssbmih(pTk)

Trf (pTk)
4: Update the estimation value.

pTk + 1 = pTk + skh(pT )
k = k + 1

5: if k rf (pT ) k ł e or køkmax : stop
otherwise: go to 2

Masmitja et al. 7



U2
c(r)=

XN

i = 1

∂r

∂xi

	 
2

U2(xi)=
1

2

XN

i = 1

ciU2(xi) ð40Þ

For a better explanation of this mathematical error model

and all of the parameters, see Masmitja et al. (2016b).

4.1. Path shape

One of the first aspects to be considered in range-only tar-

get localization is the landmark’s position, or in our case the

Wave Glider path shape. It is well known that the non-

collinear points are mandatory, where the circular path is

the optimum one as was demonstrated in the previous sec-

tion. However, the best landmark positions will be deter-

mined in each case for the specific mission requirements

(e.g. vehicle’s use, time required, or power consumption).

In this situation, path shapes other than circles could be

used, where any shape can be considered as a conjunction

of multiple circles and, therefore, its optimum performance

is guaranteed. Figure 5 shows the RMSE evolution as a

function of the path’s completed ratio for four path shapes:

a circle with 400 m of radius, and a square, a triangle, and

an L shape with 800 m for each side. They all use 17 points

of landmarks, which are placed on the surface of the sea,

owing to the use of a Wave Glider. The dimension of these

paths were chosen owing to time constraints as it is exposed

in the following subsection, where they are compared with

real field tests.

The RMSE for the square, the L, and the triangle paths

is much larger than the circle path at the beginning of the

path, when the path’s completed ratio is less than 20%. This

is because all the points in these cases are still coplanar. At

the end of the path the best case obtained is the square path,

while the worst cases are the triangle and L path. This dif-

ference is because of the ranges obtained between the Wave

Glider and the target. Longer ranges are used in the square

path, and have been demonstrated in the previous sections,

longer ranges cause better accuracy, where the square path

can be considered as a combined set of multiple circle paths

(Moreno-Salinas et al., 2016). Therefore, other aspects such

as time to the path completed or power consumption should

also be taken into account (for example, the Wave Glider

will take more time to finish the square path than the circle

path). Finally, if the path is not closed a worse performance

is obtained (i.e. the square and L shape), and therefore a

closed path is desired, which has been demonstrated in the

previous section, where all the measurements should be

made equally distributed over the whole path.

Fig. 4. CRB representation for four points as landmarks (blue dots): (a) planar representation and (b) 3D representation plots.

Fig. 5. RMSE evolution as a function of path completed ratio.

The circle, square, triangle, and L-shape paths are represented.
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4.2. Radius around target

Another interesting test is to observe the behavior under

different path radii centered over the target, this parameter

is shown in Figure 6 where 50, 100, 200, 400, 600, 800,

1,000, 5,000, 10,000, and 20,000 m path radii are simu-

lated, where six points have been used as landmarks in each

case. LS and ML algorithms have been compared with

CRB. However, it was observed that the performance of

both algorithms was very similar and very close to that of

CRB. Therefore, only the LS is represented to ease under-

standing of the graphs. Moreover, the depth error owing to

the systematic range measurement error has been treated

separately (dashed line). Finally, the time necessary to fin-

ish the path has been plotted (PathTime), which can be

helpful to decide the optimal circle radius.

On the other hand, a greater radius results in a lower

RMSE until a specific distance where the signal-to-noise

ratio (SNR) error causes an important error increase can be

observed. This behavior can be derived computing the sur-

face range rs, which is

rs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � depth2

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � (r � a)2

q
ð41Þ

where a is the difference between range and depth. The

error can be defined as the true value and its estimation

e= (rs � rs), and is

e =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ra� a2
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r(a + w)� a2 + w2

p
ð42Þ

where w is some non-zero mean Gaussian measurement

error. With (42) if a ’ 0 (depth and range are very similar)

the error is e ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rw + w2
p

and if a ’ r (range is much

larger than depth) the error is e ’ w can be observed.

If the error model described in Masmitja et al. (2016b),

and is shown in (40), is used (blue dotted line, LS(Emod)),

the RMSE increases rapidly after a radius equal to 5,000 m

can be observed. Therefore, the best radius will be between

1,000 and 5,000 m. However, the time required to complete

the path have to be considered, in this case the best radius

can be less than 1,000 me, where the necessary time is less

than 1 hour (moreover, the depth error is the most reduced).

Another method such as increasing the number of points

used as landmarks can be used to reduce the RMSE instead

of increasing the radius.

4.3. Number of points

One of the main ways to increase the precision of the sys-

tem is by using more points to compute the target’s posi-

tion. This is the most common method to reduce the

variance of any measurement with random noise, and is

given by

var(zi)=
1

n� 1

Xn

i = 1

(zi � z)2 ð43Þ

where zi are n independent observations of z. This behavior

can be seen in Figure 7, which shows the results for 4, 6,

12, 24, and 48 points. However, the optimal number of

points will also be constrained by power consumption

requirements, where more points will increase power

consumption.

Figure 7 shows that if more points are used to compute

the target’s position, a better accuracy in x and y position is

obtained, while the depth error is still equal. Therefore, the

best solution is to use as many points as can be possible if

the power consumption is not taken into account. This con-

sumption can also be observed (black line) as a normalized

power consumption in Figure 7, where if 50 points are used

the maximum power ‘‘1’’ will be used, and otherwise, if

zero points are used, the minimum power ‘‘0’’ will be used.

An important difference between 20 and 50 points cannot

be observed, whereas a great power consumption reduction

can be obtained (note that y-axis is on a logarithmic scale).

Therefore, around 20 points will be the desired number of

landmarks to use for locating the target.

4.4. Offset from target

Finally, a set of simulations have been conducted to observe

the RMSE with different offsets between the centre of the

circular path and the underwater target, with a 400 m radius

and 12 landmarks (Figure 8).

In this case, the introduction of a systematic error and

error model LS(Emod) owing to the uncertainty of water

sound velocity knowledge lead to a significant difference

Fig. 6. The RMSE evolution, as a function of the circle radius

for a target at 1,800 m of depth, using the LS algorithm, where

LS(Emod) + Depth incorporates the range error model explained

in Masmitja et al. (2016b), and shown in (40). In addition, the

RMSE, when depth error is not taken into account, is plotted as

LS(Emod)-Depth. In both cases a 1% systematic error is added to

the range measurement. These two results can be compared with

a simple s = 1 error, which is used in Section 2, where the

optimal radius (30) is defined. Finally, the time to complete the

path is also shown (black line).
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between this and the previous work shown in Masmitja

et al. (2016a), where a simple random error was used (LS).

Moreover, this is also different to what is derived in

Section 2, and also explained in Moreno-Salinas et al.

(2016), where the systematic error is not taken into account

and, therefore, the error produced by circles not centered

over the target is neglected. Finally, the worst effect pro-

duced by the offset is in the x and y RMSE can be observed

in Figure 8, which in the end will rise to the same error that

it is obtained with the depth measurement

(LS(Emod) + Depth). Therefore, a zero offset is mandatory

if a good target accuracy is desired.

5. Real field tests

Several sea tests have been conducted to compare and vali-

date the algorithm’s ability to locate a target, and to validate

the optimal path, radius, and number of points suggested

by simulations. These tests have been conducted with the

Benthic Instrument Node (BIN) target placed in Monterey

Bay, California, which is at 1,800 m of depth (in the middle

of Monterey Canyon). Three groups of tests were con-

ducted over the BIN, one to determine the best shape,

another to find the best radius, and finally a third to charac-

terize the offset effect.

5.1. Path shape

First, three path shapes were made with the same dimen-

sional characteristics to observe the main differences

among them. These paths were a circle with 400 m radius,

and a square and triangle with 800 m sides. These values

have been chosen to be able to compare them with simula-

tions. Figure 9 shows the paths obtained and Table 1 lists

the main values: the target’s position computed using the

LS algorithm (easting, northing, and depth), the error ver-

sus the target’s true position, the number of points used

(Np), and the total of time to complete the path. The target’s

true position was obtained using the average value of three

paths shapes with a total of 154 ranges.

Fig. 7. RMSE evolution as a function of the number of points

used to compute the target’s position, for circles centered over the

target (with 1,800 m target depth and 400 m of radius). The red

line is the simulation result using the LS algorithm. The

triangular blue dashed line is the same algorithm but with the

error model LS(Emod) + Depth, and the dotted blue dashed line

is the error without the depth error, LS(Emod)-Depth. In both

cases, a 1% systematic error is added to each range

measurement. Finally, the black line is the normalized power

consumption (PowerConsumpion).

Fig. 8. RMSE evolution as a function of the offset between the

circumference centre and the target, for a target at 1,800 m of

depth. The red line is the simulation result using the LS

algorithm, the triangular blue dashed line is the same algorithm

but with the error model plus a systematic error of 1%

LS(Emod) + Depth, and the dotted blue dashed line is without

the depth error, LS(Emod)-Depth.

Fig. 9. Wave Glider trajectories performed over the BIN target

(X) with three different paths, a square, a triangle, and a circle.

10 The International Journal of Robotics Research 00(0)



In Table 1 the main results obtained during the three

different path shape tests can be observed. The target loca-

lization RMSE (for x and y positions) obtained during

these paths was approximately the same, 3.5 m. However,

a better accuracy for the square path was measured, owing

to two reasons: first, the square path uses longer ranges,

and this causes a better accuracy (Section 2) as it has been

pinpointed in Section 4.1, where the square path can be

considered as a combined set of multiple circle paths with-

out loss of generality (Moreno-Salinas et al., 2016); sec-

ond, the square path used in this field test had more points

to compute the target’s localization (Np = 51), and increas-

ing the number of points yields into the reduction of the

variance of a measured value as it is highlighted in Section

4.3. Nevertheless, the square shape’s time required to com-

plete the path was around 1 h more than the time required

for the triangle and circle paths, this reduced the viability

of using this path for scenarios where speed is an impor-

tant factor, for example where multiple scientific tests have

to be carried out or the weather prediction is not very

good. Similar results were obtained with the simulations,

therefore the circle is one of the best paths among these

path shapes can be concluded, owing to its speed and

accuracy.

5.2. Radius around target

Figure 10 shows the path shapes of the second group of

tests, which consist of three circles of 100 m, 400 m and

800 m of radius, all of them centered over the BIN, where

the main results are shown in Table 2. Note that an 800 m

of maximum radius was selected during the field test to

reduce the time consumption, which does not compromise

the accuracy, as explained in section 4.

Moreover, the ranges obtained during the field tests can

be observed in Figure 10, which were around 2,020, 1,920,

and 1,880 m for path circles with a radius equal to 800,

400, and 100 m, consecutively.

To compare field test results with the simulation results,

the target’s position using only six equidistant points

among all the ranges obtained in the field test during one

circle path was computed, which allows us to choose differ-

ent groups of six points and take the average value of the

RMSE (represented by red circles and denoted as Real

Data in Figure 11). In addition, the power trend line (red

dashed line) is computed and represented to obtain a better

representation of performance. The target position was

computed using the LS algorithm in both simulations and

field test. The LS algorithm is accurate enough compared

with MLE as is explained in Section 4. Moreover, the error

bars are plotted to show the standard deviation of uncer-

tainty and the mean point LS(Emod), during a 1,000 run

Table 1. Main results for field test 1.

Path Easting Errora Northing Errora Depth Errora Np Time

Circle 580,937.0 0.9 4,062,175.6 23.8 1,858.7 25.1 36 56’
Square 580,937.5 1.4 4,062,177.4 22.0 1,861.9 21.9 51 1 h 50
Triangle 580,937.9 1.8 4,062,176.0 23.4 1,858.5 25.3 39 55’

aError from target’s true position was obtained using the average value of three path shapes with a total of 154 ranges. Values in meters.

Fig. 10. Wave Glider trajectories conducted over BIN target

with three different radius, which were 100, 400, and 800 m. The

ranges are also plotted using the color bar legend on the right.

Table 2. Main results for field test 2.

Path Easting Errora Northing Errora Depth Errora Np Time

r100 580,922.1 15.1 4,062,178.8 21.2 1,860.7 0.7 11 13’
r400 580,937.0 0.2 4,062,175.6 2.0 1,858.7 2.7 36 56’
r800 580,936.1 1.1 4,062,179.4 21.8 1,863.8 22.4 64 1 h 57’

aError from target’s true position was obtained using the average value of the three paths’ shapes from test 1 with a total of 154 ranges. Values in

meters.
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times simulation using the error model described in

Masmitja et al. (2016b).

In this graph the real data behavior is similar to the

results obtained with simulations can be observed. With a

radius equal or greater than 400 m a good performance was

obtained, with a RMSE lower than 10 m. A RMSE lower

than 5 m can be obtained for a radius greater than 800 m.

However, the time required (PathTime) by the Wave Glider

to complete the path has to be taken into account, which

introduces an important limitation. For example, the Wave

Glider needs almost 2 h to complete a circle of 800 m

radius, while this time is reduced to 1 h for a radius equal

to 400 m.

5.3. Offset from target

Finally, a third field test was conducted over the BIN target

to observe the offset’s influence in the accuracy. For this

purpose three paths were conducted, with distances of 0,

500, and 1,000 m between the circumference center and

the target, and with a radius of 400 m. Figure 12 shows the

path shapes of this third test, where the ranges obtained are

also represented using the color bar on the right. Ranges

between 2,030 and 1870 m were obtained. Moreover, the

main results are shown in Table 3.

The RMSE using different groups of six equidistant

ranges to compare the field results with simulations were

computed, as has done in the previous subsection. These

results can be observed in Figure 13, where the similarity

between both the behavior and the RMSE in real tests and

simulations can be observed. Therefore, a better mathemat-

ical model than in our previous work (Masmitja et al.,

2016a) has been obtained, which consisted in taking into

account the systematic error and a better random error

model (40).

6. Benthic Rover mission

Finally, a mission performed to find a Benthic Rover

(McGill et al., 2007), and to know its trajectory is explained

in this section. This is a final demonstration to show some

of the uses of a Wave Glider as a moving LBL system. The

Benthic Rover is a mobile physiology laboratory designed

by Dr Ken Smith at MBARI, which slowly crawls along the

seafloor. The Rover and its deployment localization can be

observed in Figure 14, which also shows Monterey Bay

and the MBARI laboratories’ localization.

The main goal of this mission was to observe whether

the moving benthic instrument was working correctly. The

Rover was moving forward very slowly on the seafloor fol-

lowing a straight line. The initial parameters were set to a

velocity equal to 5 m/day, following a line of 458 in inclina-

tion with respect to the magnetic north. As a result, its

Fig. 11. Comparison of the behavior between simulation (with

error model LS(Emod)) and real data results for different radii of

circle paths centered over the BIN target. Using six equidistant

points to compute the target’s localization and the LS algorithm.

The dashed line is the power trend line computed using real data

(red circles). Moreover, the time which was required to complete

the path is also represented (black line).

Fig. 12. Wave Glider trajectories performed over BIN target

with three different offsets between target and circle centre,

which were 0, 500, and 1,000 m.

Table 3. Main results for field test 3.

Path Easting Errora Northing Errora Depth Errora Np Time

d0 580,937.0 0.2 4,062,175.6 2.0 1,858.7 2.7 36 56’
d500 580,946.3 29.1 4,062,187.1 29.5 1,860.3 1.1 34 59’
d1000 580,956.8 219.6 4,062,190.2 212.6 1,856.3 5.1 43 1 h 4’

aError from the target’s true position was obtained using the average value of the three paths’ shapes from test 1 with a total of 154 ranges. Values in

meters.
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position’s estimation could be computed. Therefore, the

Rover’s position estimated using its initial parameters and

the position founded using the Wave Glider could be com-

pared, and used to observe whether the trajectory followed

by the Rover was the programmed one.

To accomplish this objective, an initial position and two

localization missions were used (as shown in Figure 15).

(a) Initial position: The Benthic Rover was deployed at

geographic coordinates 3587059:98800N and 1238W, on

11 August 2015.

(b) Test 1: First localization mission conducted on 14 April

2016. In this case the Rover was localized at

3588022:066800N and 122859039:300W, which means that

it had traveled 858 m in 158 days, with an angle of 528.

(c) Test 2: Finally, a last mission conducted on 11 July

2016, localized the Rover at 3588030:573600N and

122859031:923600W. In this case, it had traveled 322 m

in 88 days, with an angle of 558, from the last known

point.

Therefore, the Benthic Rover traveled 1,180 m in total

for 246 days. This indicates a velocity of 4.8 m/day, which

is highly close to the programmed one, obtaining an error

of 40 m between the final estimated position and the posi-

tion obtained using the Wave Glider. On the other hand, the

inclination followed by the Rover was around 53:58 in

respect to the geodetic north. If the magnetic declination is

taken into consideration, which was 13:158 east in this

area, the trajectory of the rover was 40:358 with respect to

the magnetic north, which yields an error of less than 58

compared with the programmed one.

The missions performed to find and track the Benthic

Rover, using a Wave Glider, shows an example of colla-

boration between two autonomous vehicles, with minimal

human intervention. Moreover, using range-only and

single-beacon methods for target localization, we are not

limited to work in a specific area (as in traditional LBL

systems), and we do not need to introduce more instru-

ments (like a USBL), instead of that, standard acoustic

modems can be used, which are also used to communicate

and download information from underwater instruments.

For these reasons, this method is interesting in terms of

cost, flexibility, and consumption.

Finally, the reasons to choose the paths selected to per-

form this mission were twofold, the time required to com-

plete the path and the desirable accuracy. The first test was

carried out using a 200 m radius circle. In this case, a first

Fig. 13. Behavior comparison between simulation (with error

model LS(Emod)) and real data results for different offsets of

circle paths over the BIN target. Using six equidistant points to

compute the target’s localization. The dashed line is the

exponential trend line computed using real data.

Fig. 14. Initial Benthic Rover deployment at ‘‘Station M’’ in the

North Eastern Pacific Ocean, at 348500N and 1238000W, a region

with 4,000 m of depth, situated at 220 km west of central

California coast. In addition, the MBARI localization is

represented at the center of Monterey Bay.

Fig. 15. The Benthic Rover’s deployment position (yellow

triangle), and the two missions conducted to find it (red and

green triangles and circles).
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inaccurate estimation of the Rover’s position was required.

Moreover, owing to other tests that had to be carried out, the

time constraint was a key factor. Then, a more accurate loca-

lization was desirable during the second test and, therefore,

more time was designated for the localization mission. In this

case, an 800 m radii circle was used, which is one of the best

radius in terms of accuracy and time consumption, as can be

observed in the previous study explained above.

7. Discussion

The aim of this paper was to study and develop new proce-

dures for underwater target localization using a Wave Glider

(an AUV), which could be used as a platform in support of

applications in marine, geoscientific, ecology, and archaeol-

ogy, which have been increasingly used over the past 30

years (Williams et al., 2016). Here, a complete study about

the best practices for underwater target localization using

range-only techniques has been carried out, which includes

different areas such as analytical studies, simulations, and

field tests. At the same time, a real mission to find an under-

water rover has been presented, where the successful colla-

boration between both autonomous vehicles was shown.

From a methodology point of view, this work advanced the

understanding of accuracy that can be achievable by using

both range-only and single-beacon localization methods and

an autonomous vehicle, which has been demonstrated not

only numerically, but also in real tests. In this context, those

advancements would contribute to expanding the use of sur-

face vehicles, and in concrete Wave Gliders, as multi-

purpose platforms, which have been used widely around the

world (Manley et al., 2017).

Most of the works about optimal sensor placement for

underwater target localization are centered on analytical

studies (Kaune et al., 2011; Moreno-Salinas et al., 2016).

Whereas this is an important area of study, real tests have a

great impact on the final users, which demonstrates not

only in simulations but also in real missions the operability

of this kind of systems. As far as the authors know, such

complete study, where both theoretical and practical work

is addressed, has not been conducted previously.

The initial point of this paper is the work performed by

Moreno-Salinas et al. (2016), which studied the optimal

sensor placement for target localization. However, whereas

they work with multiple sensors, the work presented here is

focused on a single sensor (which is the Wave Glider),

therefore a different point of view is used. Moreover, owing

to the mission’s limitations, such as time and power con-

sumptions, new different limitations have been studied.

One has to take into consideration such limits before plan-

ning each missions, these are a key factor, which are really

important for vehicle operators. As shown, finally a rela-

tionship between accuracy and time/power consumptions is

obtained, and the mission planner must deal with that.

As a summary, the following indications should be, in

general, followed before planning a mission to find the

optimal path.

(a) The optimal path is a circle centered over the target’s

position.

(b) The optimal circle’s radius is:
� rc =

ffiffiffi
2
p

zT if the target’s depth is unknown; or
� as large as possible if the target’s depth is known.

(c) The optimal measurements distribution is equally dis-

tributed over the circle’s path.

The optimal number of measurements is as large as

possible.

However, as demonstrated, in some scenarios it is not

possible to use these indications (e.g. when the time to

complete the mission is not long enough) and, therefore, a

smaller radius has to be used. Nevertheless, in the field test

(for a target depth equal to 1,800 m) a RMSE of less than

5 m had been obtained using a radius of 800 m instead of

1, 800
ffiffiffi
2
p

m, which is in general good enough for many

missions.

In contrast, a Gaussian noise with zero mean and var-

iance equal to s as range error has been used during the

analytical derivation of the optimal path’s shape. It was

assumed that this error was range independent and equal

for all range values. This procedure enables the analytical

interpretation of the mathematical equations. However, the

variance of the range error can be much more complex,

which is determined by different parameters such as SNR,

transmission frequency, weather conditions, and sea state.

All these factors were discussed in Masmitja et al. (2016b).

Moreover, the range error suffers from a systematic error,

which is due to underwater sound speed uncertainty, which

is usually difficult to measure qualitatively in situ. As a

consequence, this error introduces a constant error in the

range measured. This is also dependent to the range.

Consequently, in the simulations that have been conducted,

the range error introduced in Masmitja et al. (2016b) plus a

1% systematic error have been used to increase the similar-

ity between simulations and the real world. It has been

observed that to reduce the range error consequences, a

path centered over the target is desired. However, while the

error in x and y can be solved easily using this recommen-

dation, with the depth error one has to be more careful.

The common way to solve the depth error is by using a

depth sensor, because it is easy to find a small and cheaper

sensor on the market with good performance. Moreover,

other methodologies can be used such as pre-calibration or

path techniques to find the exact underwater speed sound

or depth position (McPhail and Pebody, 2009).

Finally, the similarity among the performance of the

analytical methodology used, the simulations using LS and

MLE, and the field tests can be highlighted. For example,

if Figures 2 and 6 are compared, in both cases a minimum

error is obtained at a similar radius, which is when the e1

and LS graphics are minimum. However, if the error model

plus a systematic error is used, the minimum error that is

achievable is obtained much earlier, LS(Emod) + Depth.

This performance is also observed in the field tests, see

14 The International Journal of Robotics Research 00(0)



Figure 11. Similar situations can be derived in the other

cases under study, such as path shape and target offset.

To conclude, the main benefit of the simulations with

respect to the analytical studies is that they can give the

final users the expected RMSE, instead of a simple indica-

tion of their performance. Therefore, the simulations can

be used to find the accuracy that can be achievable under

different conditions, such as the path shape, but also the

range error estimated.

8. Conclusions

This work extends the study conducted in Masmitja et al.

(2016a) and shows the Wave Glider’s performance as a

moving LBL with simulations and real sea tests.

Mathematical algorithms and performance have been com-

pared with sea tests, showing a good similarity, which cor-

roborates the simulations conducted in this paper.

Two different algorithms have been implemented, the LS

and the MLE, which have been compared through 1,000

Monte Carlo iteration simulations. The scenario implemen-

ted was a static target at 1,800 m depth. In this case, both

algorithms show a similar performance, which is close to

the CRB.

Moreover, three types of field tests have been conducted

to observe the system’s performance under different condi-

tions: the path shape, the path radius, and the offset from

the target. For each test three different paths have been con-

ducted, which result in nine Wave Glider missions, more

than 300 ranges, and around 10 hours of tests.

With this study the best path and its characteristics can

be determined, such as the number of points, the radius, or

offset, to obtain the desired target localization performance,

which are a minimum number of points equal to 12, a

radius between 400 and 800 m, and an offset as low as pos-

sible. With these parameters a RMSE less than 4 m can be

obtained, while maintaining both low time and power con-

sumption requirements.

Finally, it can be concluded that the Wave Glider can be

used as a moving LBL to find underwater targets with a

good accuracy, as demonstrated in the experimental tests

and the Benthic Rover mission explained in this paper. This

system has been mathematically modeled and tested under

real conditions, obtaining a good performance. Therefore,

this will be a new powerful tool among MBARI’s equip-

ment for future missions.
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