
HAL Id: hal-01904112
https://hal.science/hal-01904112

Submitted on 24 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proving the existence of loops in robot trajectories
Simon Rohou, Peter Franek, Clément Aubry, Luc Jaulin

To cite this version:
Simon Rohou, Peter Franek, Clément Aubry, Luc Jaulin. Proving the existence of loops in
robot trajectories. The International Journal of Robotics Research, 2018, 37 (12), pp.1500-1516.
�10.1177/0278364918808367�. �hal-01904112�

https://hal.science/hal-01904112
https://hal.archives-ouvertes.fr

Proving the existence of loops in robot trajectories

Simon Rohoua, Peter Franekb, Clément Aubryc, Luc Jaulina

aENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France
bIST Austria

cISEN Brest, France

Abstract

This paper presents a reliable method to verify the existence of loops along the uncertain trajectory of a robot, based on
proprioceptive measurements only, within a bounded-error context. The loop closure detection is one of the key points
in SLAM methods, especially in homogeneous environments with difficult scenes recognitions. The proposed approach
is generic and could be coupled with conventional SLAM algorithms to reliably reduce their computing burden, thus
improving the localization and mapping processes in the most challenging environments such as unexplored underwater
extents. To prove that a robot performed a loop whatever the uncertainties in its evolution, we employ the notion of
topological degree that originates in the field of differential topology. We show that a verification tool based on the
topological degree is an optimal method for proving robot loops. This is demonstrated both on datasets from real
missions involving autonomous underwater vehicles, and by a mathematical discussion.

Keywords: mobile robotics, SLAM, loop detection, interval analysis, topological degree, tubes

1. Introduction

The SLAM, Simultaneous Localization And Mapping [1,
2], is an approach that ties together the problem of state
estimation and the one of mapping an unknown environ-
ment. Basically, a robot coming back to a previous pose
is likely to recognize an old scene and then refine its local-
ization. The key point of these methods is then to detect
that a place has been previously visited. This problem of
data association is known in the literature as loop closure
[3].

1.1. Detecting loop closures

A loop can be detected thanks to exteroceptive measure-
ments, i.e. the perception of the outside, by scenes com-
parisons [4, 5, 6, 7]. However, it can be difficult to detect
the closure due to poor estimations on both the robot’s
position and map-matchings. The problem appears even
more challenging when dealing with homogeneous envi-
ronments without any point of interest to rely on. This is
typically the case one can encounter in underwater explo-
ration with wide homogeneous sea-floors. Such situation
will unfortunately lead to a few detections of confident
loop closures or, in the worst cases, to false detections
that could lead to a wrong localization and mapping.

Besides exteroceptive measurements, it has been shown in
[8] that loops can be approximated based on proprioceptive

measurements only, namely: velocity vectors and inertial
values knowing the kinematic of the robot. This approach
has the advantage to be applicable regardless of the nature
of the environment to explore. Of course, one should note
that in this case, the loop detections cannot improve by
themselves the localization, as the approach will not bring
new exteroceptive information and so no new constraints
to the problem.

However, this method is of high interest if combined with
classical SLAM techniques that merge both proprioceptive
and exteroceptive measurements, in order to decrease the
computing burden of usual scenes recognitions. Indeed,
the complexity of SLAM algorithms quickly increases with
the exploration of wide environments, as it implies lots of
loop closures to identify among a dense set of data. To
this day, the execution of SLAM programs in 3D environ-
ments during long-term missions is often not affordable for
classical embedded systems powering the robots. A part
of the community hence focuses on light-weight solutions.
This work is heading in this direction, proposing a way
to estimate the loop closures that does not rely on envi-
ronment observations. This approach is then guaranteed
to provide real-time results as it does not go into a costly
analysis of observation datasets.

On top of that, a reliable approach that provides guar-
anteed loop approximations is suited to prevent from false
detections in singular environments. This situation is typi-
cally encountered when two different objects of same prop-
erties are considered as unique by algorithms standing on

Preprint submitted to The International Journal of Robotics Research September 26, 2018

too uncertain positioning estimations. Figure 1 gives an
example of same looking objects and uncertain trajectories
estimations. This situation may lead to the detection of
wrong loop closures. Our method provides a way to reject
the feasibility of a loop closure despite the ambiguity of
the situation.

seamark A seamark B

actual trajectory

p0

Figure 1: A robot flying over two different but same-looking sea-
marks. The actual trajectory is plotted in blue while several dead-
reckoning estimations are drawn in gray. All the trajectories are
consistent with the observations. A well-known map would not pre-
vent from wrong loop closure detections.

1.2. The two-dimensional case

Formally, a robot that performed a loop is a robot that
came back to a previous position p(t). The main con-
tribution of this paper is to provide a reliable method to
prove the existence of loops along the uncertain trajectory
of a robot, based on proprioceptive measurements only,
using a bounded-error approach. In a reliable context, a
distinction has to be made between the detection and the
verification (i.e. the proof) of a loop. Considering a set
of feasible trajectories as the one displayed in Fig. 2, some
of them may cross themselves at some point; this will lead
to a detection. In addition, when we verify that all the
feasible trajectories are looped, then we can speak about
a loop proof since a loop occurs whatever the considered
uncertainties.

We will focus on loops along two-dimensional trajectories:
p(t) ∈ R2. This choice is not a limitation made to keep
things simple, but a practical requirement. Indeed, it is
not possible to physically verify p(t1) = p(t2) in higher di-
mensional spaces. A robot will never reach again the very
same 3D atomic position, in contrast with two-dimensional
cases. Furthermore, the amount of uncertainties we have
to deal with will always be too large to verify this. There-
fore, it is not possible to prove three-dimensional loops,
nor to verify that a robot came back to a previous pose,
including both position and orientation, for the same rea-
son.

Verify a two-dimensional loop is still interesting for many

p1

p2

Detectable
loop

Detectable and
verifiable loop

Figure 2: This view represents the uncertain evolution of a mobile
robot. Feasible trajectories are enclosed within a tube, displayed in
blue. Here, only one loop can be verified, while at least two feasible
loops are detectable. Indeed the actual trajectory, plotted in white,
loops three times whereas there exist trajectories in the tube that
loop only once.

3D applications. For instance, as pictured in Figure 3, an
underwater robot can apply a raw-data SLAM method
using a sonar for exteroceptive measurements. In this
configuration, the SLAM can be reduced to a 2D prob-
lem by merging vertical measurements, namely: depth
from a pressure sensor and altitude from the sonar. Map-
matching will then be achievable over each 2D crossing, as
pictured in the figure with projections on the seafloor.

Figure 3: An underwater robot exploring its environment with a
single beam echo-sounder. This view presents two instants of the
mission, before and after performing a loop. The robot trajectory is
projected in blue on the sea-floor.

The problem of verify a loop is not trivial, even in two-
dimensional contexts. A first proposition has already been
the subject of [8], with a test based on the Newton operator
[9]. However, this test N is not always able to conclude on
obvious existence cases, as it stands on a Jacobian matrix
that is sometimes not invertible. Our contribution is to
propose a new test T relying on the topological degree
theory [10, 11] that outperforms the previous method, thus
increasing the number of proofs of loop closures on robot
trajectories.

2

This paper is organized as follows. Section 2 details how
loops can be detected thanks to proprioceptive measure-
ments, especially in a bounded-error context. It is shown
that proving the existence of a loop amounts to checking
that an uncertain function vanishes at some point, which
can be verified thanks to the topological degree theory pre-
sented in Section 3. This theoretical part applied on our
loop problem is implemented under a new dedicated exis-
tence test provided in Section 4. The same tool is extended
in Section 5 for uniqueness verification purposes in order
to prove that a given detection set encloses a unique solu-
tion for a loop. The proposed algorithms are then applied
on an actual experiment described in Section 6, before the
conclusion of the paper. A discussion about the optimality
of the method is appended to this document.

2. Proprioceptive loop detections

This section details how loops can be detected thanks to
proprioceptive measurements only. We recall that pro-
prioceptive measurements shall mean values about robot’s
states sensed by the robot itself, for instance: velocity, in-
ertial values, heading, etc. A definition of a loop set is
provided, before details about guaranteed tools that will
be used then for loop detections in a bounded-error con-
text.

2.1. Formalization

In [8], a loop is defined by a t-pair (t1, t2) such that p(t1) =
p(t2), t1 6= t2, where p(t) is the two-dimensional position
of the robot at t. The loop detection consists in computing
the set T∗ of all loops:

T∗ =
{

(t1, t2) ∈ [t0, tf]2 | p(t1) = p(t2), t1 < t2
}
, (1)

with t0, tf being respectively the start and end times of
the trajectory. Graphically, we represent the loop set T∗
as a set of points in the t-plane. An example of T∗ =
{(ta, tb), (tc, tf), (td, te)} is provided in Figure 4.

We consider a mobile robot moving on a horizontal plane.
Its trajectory is made of several 2D positions defined by

p(t) =

∫ t

t0

v(τ)dτ + p0, (2)

where v(t) ∈ R2 is the velocity vector of the robot at
time t ∈ [t0, tf] expressed in the environment reference
frame. v(t) is a proprioceptive information that can be
easily sensed by the robot at any time. Then, the loop set
T∗ is

T∗ =

{
(t1, t2) ∈ [t0, tf]2 |

∫ t2

t1

v(τ)dτ = 0, t1 < t2

}
, (3)

t1

p2

p1

p(ta) = p(tb)

p(tc) = p(tf)

p(td) = p(te)

t2

t1
ta

tb

tc td

te

tf

Figure 4: A robot performing three loops: its own trajectory has
been crossed three times. A temporal representation provided by
the t-plane (right-hand side) is used to picture the loops by t-pairs
(ta, tb), (tc, tf), (td, te). The diagonal line corresponds to the no-
delay line for which t1 = t2.

which means that for any (t1, t2) ∈ T∗, robot’s move from
t1 vanishes at t2. Therefore, any loop can be detected
based on these velocity measurements.

In practice, trajectories are estimated by noisy measure-
ments which leads to spatial uncertainties. Hence, T∗ can-
not be computed exactly from Eq. (3). In what follows,
we assume that the measurements are performed with a
known bounded error [12], i.e. a box [v](t) contains the
actual v∗(t) for each t ∈ [t0, tf]. This set-membership ap-
proach will stand on interval analysis, a mathematical field
that appeared during the last decades [13] and is partic-
ularly suitable for verified computing. This tool is briefly
presented hereinafter.

2.2. Tools for guaranteed computations

This section first introduces basic notions of interval anal-
ysis [9, 14] before focusing on tubes that will be used to
handle proprioceptive measurements and their uncertain-
ties over time.

2.2.1. Interval analysis

An interval [x] = [x−, x+] = {x ∈ R | x− 6 x 6 x+} is
a closed and connected subset of R delimited by a lower
bound x− and an upper one x+. A Cartesian product
of n intervals defines a box – also called interval-vector –
belonging to the set IRn. In this paper, intervals are writ-
ten into brackets and vectors and boxes are represented in
bold: [x]. The actual but unknown value, enclosed within
a box, is denoted by a star: x∗.

Interval analysis is based on the extension of all classical
real arithmetic operators +, −, × and ÷. For instance:

[x] + [y] = [x− + y−, x+ + y+],

[x]− [y] = [x− − y+, x+ − y−].

3

This extension also includes the adaptation of elementary
functions such as cos, exp, tan. The output is the small-
est interval containing all the images of all defined inputs
through the function.

2.2.2. Tubes

Classical intervals of reals can be extended to trajectories
by means of tubes. A tube [15, 16] [x](·) : R → IRn is
an envelope enclosing an uncertain trajectory denoted by
x∗(·) : R → Rn. This enclosure can be defined as an
interval of two functions x−(·) and x+(·) such that ∀t ∈
[t0, tf],x−(t) 6 x+(t). Figure 5 gives an illustration of a
tube enclosing a trajectory x∗(·) : R → R. In practice,
a tube can be implemented as a set of boxes representing
temporal slices. The enclosure of the tube is then piecewise
constant, which allows classical operations in a simple and
reliable way. An example of this implementation is given
in [17].

As for intervals, tubes can be handled with the extension of
classical real arithmetic operators (such as addition, usual
functions, etc.). This can be done using interval arithmetic
applied on each t of the definition domain [t0, t1].

t

[x]

t0

tf

[x]([t1])

[t1]

[x](t2)

t2

x
∗ (·)

x−(·)

x+(·)

Figure 5: A tube [x](·) defined on [t0, tf] as an interval of two func-
tions [x−(·), x+(·)] and enclosing an unknown trajectory x∗(·). The
thinner the tube, the better the approximation of x∗(·).

The integral of a tube is defined from t1 to t2 as the small-
est box containing all feasible integrals:∫ t2

t1

[x](τ)dτ =

{∫ t2

t1

x(τ)dτ | x(·) ∈ [x](·)
}
. (4)

From the monotonicity of the integral operator, we can
deduce:∫ t2

t1

[x](τ)dτ =

[∫ t2

t1

x−(τ)dτ,

∫ t2

t1

x+(τ)dτ

]
. (5)

The lower bound of this box is illustrated by Figure 6. The
integral can also be computed between bounded bounds
[t1], [t2] by

∫ [t2]

[t1]
[x](τ)dτ =

[
lb (y−([t2])− y−([t1])) ,

ub (y+([t2])− y+([t1]))
] , (6)

where [y](t) =
∫ t

t0
[x](τ)dτ is the interval primitive of [x](·)

and y−(·), y+(·) are the corresponding bounds. The proof
is provided in [8, Sec. 3.3].

t

[x]

b
a

∫ b

a

x−(τ)dτx−(·)

Figure 6: Lower bound of the integral of a tube. Hatched part depicts

the lower bound of
∫ b
a [x](τ)dτ .

A tube is generally used to describe uncertain trajectories
evolving with time and defined by differential equations
[18, 19, 20]. This is useful in mobile robotics where robots
are expressed as uncertain dynamical systems submitted
to temporal constraints such as trajectory evaluations or
delays.

2.3. Loop detections in a bounded-error context

It has been shown in Section 2.1 that a loop can be
detected based on velocity measurements. In practice,
trajectories are estimated by measurements corrupted
by noise, leading to spatial uncertainties. Hence, from
Eq. (3), the set of t-pairs cannot be computed exactly.
In a set-membership context [21, 22], measurement errors
are bounded. In what follows, we assume that the actual
values of the velocity v∗(·) are unknown, but guaranteed
to lie in the known tube [v](·). The loop detection prob-
lem then amounts to computing the set T containing all
feasible loops according to the given uncertainties:

T =

{
(t1, t2) | ∃v(·) ∈ [v](·),

∫ t2

t1

v(τ)dτ = 0

}
, (7)

or equivalently:

T = {(t1, t2) | 0 ∈ [f](t1, t2)} , (8)

with [f] : IR2 → IR2 an inter-temporal inclusion function
defined by

[f] ([t1], [t2]) =

∫ [t2]

[t1]

[v](τ)dτ. (9)

Hence, T is a reliable enclosure of T∗ so that for each t-
pair in T, there exist values in the set of measurements
that lead to the detection of a feasible loop. Therefore,
the following relation is guaranteed:

T∗ ⊆ T ⊆ [t0, tf]2. (10)

4

Figure 7 illustrates numerical approximations of T with a
SIVIA algorithm [23, 8] over several examples. As it can
be seen, the detection of a potential loop is not a proof of
its existence. For instance, Figures 7b–7c are two identical
cases regarding the uncertainties: the detection T pictured
in the t-plane is the same while the actual trajectory may
let appear one loop, two loops, or none.

p1

p2

t1

t2

(a) Loop detection over an undeniable looped trajectory.

p1

p2

t1

t2

(b) Loop detection over a doubtful looped trajectory. In this case the
actual trajectory is made of two loops approximated within the same
detection.

p1

p2

t1

t2

(c) Loop detection over a doubtful looped trajectory. In this case the
actual trajectory never crosses itself despite a loop detection.

Figure 7: Guaranteed loop detections of a mobile robot. Several evo-
lutions are drawn on the left hand side: the true trajectory is plotted
in white while the computed envelope of all feasible trajectories is
represented in blue, depicting some localization uncertainties due to
measurement errors. Parts of the corresponding t-planes are pictured
on the right hand side with the loop detection set T approximated
by a set of boxes [t]j . This reliable approximation is obtained with
a SIVIA algorithm. When an actual loop t∗ exists – pictured by a
black dot – it is surely enclosed by this set of boxes.

Note that depending on robot’s trajectory, the numerical

approximation of T may consist of several connected com-
ponents denoted Ti, see Figure 8.

T1 Ω1

Ω2 T2

[t]1 [t]2

[b]3

[b]1

t1

t2

Figure 8: Approximation of a set T = T1 ∪ T2 with sets of non-
overlapping boxes. In this paper, only the outer approximations Ωi

(unions of connected boxes called subpavings) will be assessed.

The only way to prove the existence of at least one loop
in a given subset Ti is to verify that ∀f ∈ [f],∃(t1, t2) ∈ Ti

such that f(t1, t2) = 0, which is equivalent to verifying a
zero of an unknown function1 f∗ ∈ [f] on Ti. This can be
shown using the Newton test N from [9]. Our contribution
is to propose a new test T based on the topological degree
that outperforms the previous method in most cases of
ambiguous trajectories, i.e. non-robust zeros. This will be
presented in Sections 3 and 4.

3. Topological degree for zeros verification

In what follows, we assume that an inclusion function
[f] : IRn → IRn of the unknown continuous function
f∗ : Rn → Rn is given, possibly in the form of an algo-
rithm for computing [f]([t]).

We want to isolate and verify (prove the existence of) zeros
of f∗. It immediately follows from the definition that if
0 /∈ [f]([t]) for some box [t], then f∗ has no zero on [t].
It is, however, harder to verify the existence of zero inside
a region. If 0 ∈ [f]([t]), we cannot disprove f∗(t) = 0
for some t, but it is also not obvious how to prove the
existence of such t.

A powerful tool for verifying zeros is the topological degree,
denoted by deg(f∗,Ω). It is a unique integer assigned to f∗

and a compact set2 Ω ⊂ Rn such that f∗(t) 6= 0 for all t ∈
∂Ω. In this definition, ∂Ω represents the boundary of the
set Ω. The topological degree satisfies certain properties,

1The unknown function f∗ : R2 → R2, defined as f∗ =∫ t2
t1

v∗(τ)dτ , cannot be evaluated as we do not know the actual ve-

locity v∗(·) of the robot.
2In some references such as [24],Ω is assumed to be open and

bounded, which corresponds to considering the interior of our Ω.
The requirement f∗(t) 6= 0, ∀t ∈ ∂Ω is unchanged.

5

see [24, 10, 25] for detailed expositions. For our purposes,
the most important property is that

deg (f∗,Ω) 6= 0 =⇒ ∃t ∈ Ω | f∗(t) = 0. (11)

Recent advances in computational topology generated
many algorithms for computing the topological degree.
Besides, it can be computed in case where only an inclu-
sion function [f] of f∗ is given. It was argued in [26, Sec. 9]
that the degree test is in many cases more powerful than
more classical verification tools including interval Newton,
Miranda’s or Borsuk’s tests (see [27, 28, 29] for definitions
of those tests). Our application for detecting robot loops
deals with the two-dimensional case, Ω ⊂ R2, for the rea-
son that loops are defined by couples of times. Then the
degree has a particularly nice geometric interpretation: it

is the winding number of the curve ∂Ω
f∗7→ R2 \ {0} around

0, see Figure 9. If [f] is given, then the winding number
can be computed by a number of elementary methods, the
algorithm of [11] being one of them.

t1

t2

Ωi ∂Ωif∗

deg = 0 deg = 1 deg = 2 deg = 3

Figure 9: Computation of the degree of f∗ on Ωi. The illustration
shows several positive degree cases.

Consider a given subdomain T ⊂ Rn in which we want to
find zeros of f∗. For computational purposes, an outer ap-
proximation of T is performed by dividing the space into
a set of non-overlapping boxes denoted [t]j . An algorithm
relying on set inversion such as SIVIA [23] can be used
to this end. Figure 8 depicts such reliable approximation.
The outer set has the properties required for Ω. Conse-
quently, the set Ω we consider will always be a finite union
of boxes.

The following statement is a reformulation of [11, Theorem
2.9] adapted to our notation.

Theorem 1. Let Ω be a union of finitely many boxes in
IRn:

Ω =

l⋃
j=1

[t]j , (12)

and assume that its boundary ∂Ω is a union of finitely

many boxes

∂Ω =

p⋃
k=1

[b]k
3. (13)

If 0 /∈ [f]([b]k) for all k = 1, . . . , p, then the degree
deg(f∗,Ω) is uniquely determined and its computation can
be done from the evaluations of [f]([b]k).

Under the assumptions of the theorem, it immediately fol-
lows that deg(g,Ω) = deg(f∗,Ω) for any g ∈ [f], because
[f] is also an inclusion function for g in such case.

Let Ω1, . . . ,Ωl be connected components of the union of
such boxes [t]j with potential zeros. On each Ωi, if its
boundary is covered by boxes [b]k such that 0 /∈ [f]([b]k)
for each k, we can compute deg(f∗,Ωi). Whenever this
degree is nonzero, we verified the existence of at least one
t ∈ Ωi such that f∗(t) = 0. We emphasize that the func-
tion f∗ was unknown and we only worked with its inclusion
function [f].

In the above paragraph, we never used derivatives of f∗.
Using additional information on derivatives, we can also
count the number of solutions. Namely, if Ω is connected
and deg(f∗,Ω) = ` and we further know that the Jacobian
matrix Jf∗ is nonsingular everywhere on Ω, then f∗ has
exactly |`| zeros in Ω. This immediately follows from the
definition of the degree given, for example, in [30, p. 27].
In particular, if the degree is ±1, then non-singularity im-
mediately implies that there is a unique zero of f∗ in Ω.
More details about this remark are given in Section 5.

4. Loop existence test

The topological degree theory will be used for proving the
existence of robot loops. This section provides the pro-
posed existence test with an explicit algorithm.

4.1. From topological degree to loops proofs

The inclusion function [f] assumed in Section 3 is given
by Eq. (9), computable with Eq. (6). A SIVIA algorithm
relying on Eq. (9) provides an outer approximation Ω
of the set T resulting in several subpavings denoted by
Ωi. Such algorithm provides guaranteed results given the
inclusion function that can be built from datasets, see [23].
The following relation is then guaranteed:

T∗ ⊆ T ⊆
(⋃

i

Ωi

)
⊆ [t0, tf]2. (14)

3We also consider degenerate boxes. In this case, [b]’s are boxes
in IRn of topological dimension n− 1.

6

Each of these subpavings Ωi constitutes a potential loop
detection: there exists at least one trajectory with a
v(·) ∈ [v](·) that looped for one t-pair belonging to Ωi.
However, the trajectory related to the actual but unknown
v∗(·) may have never looped in reality despite the detec-
tion, as pictured by Figure 7. As a consequence, proving
a loop amounts to verifying a zero of f∗ : t 7→

∫ t2
t1

v∗(τ)dτ

in Ωi using the known inclusion function given by Eq. (9).
By using the topological degree in this context, the con-
sequent of the implication given in Eq. (11) is a proof of
a loop existence. The algorithm for numerical verification
of deg(f∗,Ωi) 6= 0 is provided hereinafter.

4.2. Implementation

This section shows how to apply a simple version of
the topological degree algorithm for the special case of
a connected two-dimensional region Ωi that consists of 2D
boxes. The following algorithms are an adaptation of [11]
for this special case.

Assume that Ωi ⊂ R2 is a union of finitely many boxes and
the boundary ∂Ωi is a topological circle4. Furthermore,
let a1 . . . ,ap be points in ∂Ωi and [b]1, . . . , [b]p be edges
covering the boundary ∂Ωi, such that ∂[b]i = {ai+1,ai}
for i < p and ∂[bp] = {a1,ap}. We endow each [b]i with
an orientation such that ai+1 is an end-point of [b]i and
ai is the starting-point of [b]i for i < p and, similarly, a1 is
the end-point of [b]p and ap the starting-point of [b]p. We
define the oriented boundary of [b]i to be ai+1−ai for i < p
and the oriented boundary of [b]p to be a1−ap, where we
introduce oriented vertices ±aj as formal symbols. This
structure of oriented edges and oriented vertices can easily
be represented in a computer.

Further, assume that an interval function [f] is given such
that 0 /∈ [f]([b]i) for all i. This means that either the first
or the second coordinate of the box [f]([b]i) has a constant
sign, + or −. We assign to the oriented box [b]i the pair
(ci, si) where ci ∈ {1, 2} and si ∈ {+,−} in such a way
that the ci-th coordinate of [f]([b]i) has a constant sign si.
For example, (2,−) indicates that the second coordinate
of [f]([b]i) is negative: in particular f∗2 is negative on [b]i.
Such choice (ci, si) is not necessarily unique, but any choice
will give us a correct result at the end.

The degree deg(f∗,Ωi) can be computed using the follow-
ing algorithms. The existence test T is then a direct con-
clusion on the computed degree. One should note that, at
this step, Algorithm 1 is not able to reject the feasibility
of a loop. In case of a non-zero degree, it will prove a
loop existence. Otherwise, the “∅” output will reflect a
non-conclusive test.

4Hence, we shall assume that the set Ωi is strictly included in
[t0, tf]2 so that a closed boundary ∂Ωi can be assessed.

Algorithm 1 existenceTestT (in : Ωi, [f]− out : true|∅)

1: begin
2: [b]1 . . . [b]p ← getContour (Ωi)
3: if 2dTopoDegree ([b]1 . . . [b]p, [f]) 6= 0 then
4: return true
5: else
6: return ∅ // not able to conclude about existence
7: end if
8: end

Algorithm 2 2dTopoDegree (in : [b]1 . . . [b]p, [f]− out : d)

1: begin
2: d← 0
3: for i = 1 to p do
4: (ci, si)← tagEdge ([b]i, [f])
5: end for
6: c0 ← cp, s0 ← sp, cp+1 ← c1, sp+1 ← s1
7: for i = 1 to p do
8: if (ci, si) = (1,+) then
9: if (ci+1, si+1) = (2,+) then

10: d← d+ 1
11: end if
12: if (ci−1, si−1) = (2,+) then
13: d← d− 1
14: end if
15: end if
16: end for
17: return d
18: end

An illustration of Algorithm 2 is given in Figure 10. Here
the algorithm returns zero, because the if-conditions are
satisfied only for the edge [b]1 where d will change from 0
to −1, and then in edge [b]4 where d will be changed from
−1 to 0.

[b]7

(2,+)

[b]6(1,−)

[b]5(2,+)

[b]3

(2,−)

[b]4

(1,+)

[b]1 (1,+)

[b]2 (1,+)

+0

+0

+0

+1

+0

+0 −1

Figure 10: Illustration of the degree algorithm. The selected edges in
this case are [b]1, [b]2, [b]4 but only [b]1 results in an addition by −1
and [b]4 in an addition of +1. The overall degree is 1−1 + 5×0 = 0
in this case.

If our representation of Ωi comes from the previous SIVIA

7

Algorithm 3 tagEdge (in : [b], [f]− out : (c, s))

1: begin
2: if 0 6∈ [f1]([b]) then
3: if [f1]([b]) ⊂ R+, return (1,+)
4: else, return (1,−)
5: else if 0 6∈ [f2]([b]) then
6: if [f2]([b]) ⊂ R+, return (2,+)
7: else, return (2,−)
8: else
9: return ∅ // note: this case should not happen

10: end if
11: end

algorithm, we can assume that the getContour func-
tion (in Algorithm 1) is available and has linear time-
complexity. A naive implementation of Algorithm 2 has
quadratic complexity. Its input [b]1, . . . [b]p can be or-
dered and oriented in ∼ p2 steps so that the end-point of
[b]j (resp. [b]p) coincides with the starting-point of [b]j+1

(resp. [b]1). The rest then amounts to finding the signs
(cj , sj) in one pass over all j and adding 1 (resp. −1) to
a global variable whenever (cj , sj) = (1,+) and the next
(resp. previous) sign is (2,+). A better implementation
in O(p) is possible if we can access additional information,
such as the boundary orientation of [b]j induced from ∂Ωi.

5. Reliable number of loops

Aside from proving the existence of a loop, it may be in-
teresting to count the number of solutions. This can be
done using additional information on the derivatives. To
this end, the Jacobian matrix Jf∗ of the unknown f∗ has
to be approximated by [Jf]. From Leibniz’s integral rule,

[Jf] ([t]) =

∂[f1]
∂[t1]

∂[f1]
∂[t2]

∂[f2]
∂[t1]

∂[f2]
∂[t2]

 =

(
−[v1]([t1]) [v1]([t2])

−[v2]([t1]) [v2]([t2])

)
,

(15)
where [v](·) is the tube containing the unknown velocity
v∗(·) of the robot.

If Ωi is a compact set as defined in Section 3 and if the
Jacobian matrix Jf∗ is nonsingular everywhere on Ωi, then
the absolute value of the degree is the exact number of
solutions for f∗ = 0 in Ωi.

Proving the non-singularity of the Jacobian matrix
amounts to verifying that its determinant is non-zero. Us-
ing the inclusion function from Eq. (15), this is equivalent
to verifying 0 6∈ det ([Jf]).

Algorithm 4 provided hereinafter returns the exact num-
ber of loops in a set Ωi when the zeros are robust enough.
Otherwise, nothing can be concluded regarding the uncer-
tainties of the information.

Algorithm 4 loopsNumber (in : Ωi, [f], [Jf]− out : `)

1: begin
2: [t]1 . . . [t]j ← getBoxes (Ωi)
3: for k = 1 to j do
4: if 0 ∈ det ([Jf] ([t]k)) then
5: return ∅
6: end if
7: end for
8: [b]1 . . . [b]p ← getContour (Ωi)
9: `← 2dTopoDegree ([b]1 . . . [b]p, [f])

10: return |`|
11: end

Remark 2. The algorithm used to compute the set Ωi

may provide wide boxes [t]k that will result in an over-
approximation of the [Jf] ([t]k). A bisection of the [t]k
may be applied when 0 ∈ det ([Jf] ([t]k)) in order to deal
with smaller boxes, thus reducing the pessimism of the Ja-
cobian evaluation and increasing the chances to disprove
0 ∈ det ([Jf] ([t]k)). If the determinant approximation still
contains 0 beyond a given precision, then the algorithm
should stop being not able to conclude.

6. Application on real datasets

The efficiency of the proposed test is demonstrated over
two experiments involving actual underwater robots. The
underwater case is challenging as robots do not bene-
fit from GNSS fixes except at the very beginning of the
mission. Hence, dead-reckoning methods usually apply
for state estimation, leading to strong cumulative errors.
Loops will be proven in this context.

6.1. Absolute velocities

Underwater robots are usually equipped with an Iner-
tial Measurement Unit (IMU) providing the Euler angles
(ψ, θ, ϕ) depicting the orientation of the robot. In addi-
tion, a Doppler Velocity Log (DVL) will track the vehicle’s
speed vr ∈ R3 over the seabed by acoustic means, provid-
ing values in robot’s own coordinate system. The absolute
speed vector v ∈ R3, expressed in the environment refer-
ence frame, is then obtained by

v = R(ψ, θ, ϕ) · vr, (16)

where R(ψ, θ, ϕ) is a classical Euler matrix. For more
details about state equations for underwater robots, one
can refer to [31].

8

6.2. From sensors to reliable results

6.2.1. Obtaining bounded measurements at time t

In practice, a measurement error is often modeled by
a Gaussian distribution which has an infinite support.
Therefore, setting bounds around this measurement al-
ready constitutes a theoretical risk of loosing the actual
value. A choice has to be made at this step, considering
such risk. After that, however, any algorithm standing on
interval methods is ensured to not increase this risk.

Data-sheets usually give sensor specifications such as the
standard deviation σ. Hence, a measurement v1 is assumed
to belong to an interval [v1] centered on v1 and inflated
according to the sensor uncertainties. For instance, [v1] =
[v1 − 2σ, v1 + 2σ] will provide a 95% confidence rate over
the actual and unknown value v∗1 , considering the Gaussian
distribution.

6.2.2. From measurements to tubes

Common sensors provide us only with a set of measure-
ment vectors sampled over finitely many time values, while
our algorithm deals with continuous interval functions.
Our choice is to build a tube from this data by computing
a piecewise linear interpolation vPL(·) between the mea-
surements. We then create a tube [v](·) such that5

[v](·) = vPL(·) + [−2σ, 2σ]2. (17)

Note that some sensors may provide real-time evaluations
of σ, depending on the uncertainties of the environment6.
In this case, [v](·) can also be built with a reliable non-
constant thickness.

Practically, the time-sampling is much finer than any sud-
den velocity change and it is realistic to assume that the
error vPL(·)−v∗(·) is approximately normally distributed
and centered at zero. An example of a tube [v1](·) is pro-
vided in Figure 11.

The interval function [f] used for loop detection is then
defined with Eq. (9) as the integral of [v](·).

5In fact, in our implementation, we enclose vPL(·) by an even
larger neighborhood. Our choice is to build the tube as a set
of boxes representing slices. We first subdivide [t0, tf] into a set
of small sub-intervals [tk, tk+1] corresponding to groups of sev-
eral velocity measurements. We then define each slice as a box

[tk, tk+1]×
(

[−2σ, 2σ]2 + ∪tk+1
t=tk

vPL(t)
)

.
6With DVL for instance, the velocity estimations are highly re-

lated to the altitude of the sensor over the seabed and the assumed
knowledge of the water column, through which acoustic signals are
propagated.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

v1 (m.s−1)

Figure 11: Tube [v1](·) enclosing the Redermor ’s east velocity. De-
spite appearances, the signal is not noised: the temporal domain of
1H40 is compressed to fit the tube in the figure.

Our method for loop detection is reliable under the as-
sumption f∗([t]) ⊆ [f]([t]). This inclusion immediately
follows from the assumption v∗(·) ⊆ [v](·) but in fact,
the former inclusion is much more robust with respect to
random velocity errors than the latter.7 A quantitative
analysis of error probabilities is a work in progress.

6.3. The Redermor mission

This first application involves an Autonomous Underwater
Vehicle (AUV) named Redermor, see Figure 12. This test
case has already been the subject of [8, Sec. 6], in which
the existence of 14 loops had been proved by using the test
N relying on the Newton operator. Our goal is to compare
these results with the topological degree test T we propose
in this paper.

A two hours experimental mission has been done in the
Douarnenez bay in Brittany (France). A top view of the
area covered by the robot is pictured in Figure 13. Reder-
mor performed 28 loops, 20m deep. The set-membership
approach provides the enclosure of v∗(·), see Figure 11,
and then the approximation of T pictured in the t-plane of
Figure 14. A total of 25 complete loop-detection sets have
been computed on this test-case, the other solutions being
partial. By complete detections we mean loop detection
sets Ωi strictly included in the t-plane. Further comments
on this application will only stand on these detections and
the related actual loops.

In both Figures 13 and 14, the result of the degree test
is displayed in green when it proves the existence of a

7The real displacement
∫ tb
ta

v∗(τ) dτ could lie outside [f](ta, tb)

only if the velocity errors would cumulate in one direction. More
precisely, the projection of vPL(·)−v∗(·) into one particular direction
would have to be at least 2σ in average, over the whole time interval
[ta, tb]. Under fairly general assumptions on the distribution of the
velocity errors, such probability decreases exponentially with (tb −
ta).

9

Figure 12: The Redermor autonomous underwater robot before a
sea trial. This experiment has been done with the kind help of DGA
Techniques Navales Brest (French Ministry of Defense).

-200 0 200 400 600 800

-300

-200

-100

0

100

200

300

400

500

600

700

800

p1

p2

p(t0)

p(tf)

existence
not proven

Figure 13: 2D trace of Redermor AUV. The projected tube [p](·)
(i.e. the bounded estimated positions) is drawn in blue, depicting
an increasing localization uncertainty. The truth is plotted by the
white line while green and black lines are the projections of the results
given by the topological degree test T .

loop and in black when nothing can be concluded. This
latter case means the robot’s uncertainties are too large
to demonstrate that a loop has been performed or not. In
this example, there is only one situation for which nothing
can be concluded. If we have a look at Figure 13, we
can see this inconclusive case, black painted above robot’s
trajectory. Figure 15 provides another view of it. Looking
at the reliable envelope of feasible positions pictured in
gray, it could have been a loop. We know it is not the case
in reality: actual trajectories are not crossing. Here, the
test does not reject the feasibility of a loop, it is simply
not able to conclude.

We define the actual number of loops λ∗ over a mission

0 1000 2000 3000 4000 5000 60000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

t1

t2

existence
not proven

Figure 14: t-plane corresponding to the Redermor mission and com-
puted with a SIVIA algorithm. There exist four partial detections Ωi

on t-plane’s edges that will not be considered here since the ∂Ωi are
not totally defined. They enclose feasible loops (ta, tb) performed at
the very beginning of the mission (ta ' t0) or at the end (tb ' tf).

by:
λ∗ = #

{
t | f∗(t) = 0, t1 < t2

}
. (18)

Now, considering uncertainties from the sensors, the the-
oretical number of provable loops is given by:

λ = #
{
Ti | ∀f ∈ [f],∃t ∈ Ti | f(t) = 0

}
. (19)

This application gives a comparison between the tests T
andN . Corresponding computations provide the following
results:

λN = 14 λT = 24 λ∗ = 24

The white line in Figure 13 shows that the actual trajec-
tory involves λ∗ = 24 loops8. On this application, no other
test than the topological degree would provide better re-
sults.

6.4. The Daurade mission

We provide a complementary example involving another
AUV named Daurade, pictured in Figure 16. A simi-
lar mission has been performed without surfacing during
1h40. Figure 17 presents the corresponding trajectory to-
gether with its estimation and the test results. Figure 18
and 19 provide views of the t-plane.

8Without considering the four loops in the components Ωi that
intersect the boundary of [t0, tf]2.

10

-40 -20 0 20 40 60 80-10

0

10

20

30

40

50

60

70

80

90

100

110

p1

p2

p(t−1)

p(t+1)p(t−2)

p(t+2)

Figure 15: Independent projection of the non-conclusive case. Let
us consider the loop-box [t−1 , t

+
1]× [t−2 , t

+
2] enclosing the correspond-

ing Ωi approximation. The actual trajectory over both [t−1 , t
+
1] and

[t−2 , t
+
2] is plotted in blue. The bounded approximation is pictured

in dark gray for the first part and light gray then. Note that we do
not represent the amount of uncertainties gathered before t−1 : p(t−1)
is centered in (0, 0) in this independent view. However, the amount
of uncertainties over [t−2 , t

+
2] is such that other crossing trajectories

would have been possible given the assumed uncertainties, see e.g.
the red one. This shows the impossibility to both disprove this loop
detection and conclude about a loop existence.

Figure 16: Daurade AUV managed by DGA Techniques Navales
Brest and the Service Hydrographique et Océanographique de la Ma-
rine (SHOM), during an experiment dedicated to this work, in the
Rade de Brest, October 2015.

For this test case, 116 subpavings Ωi have been computed.
The test T proved the existence of loops in 114 of them.
The uniqueness was also verified for each proof. Compu-
tations have been performed in less than one second on a
conventional computer, which also demonstrates the rele-
vancy of our approach for real applications.

The actual trajectory involved λ∗ = 118 loops8 while we

proved λT = 114 of them. For two loop detection sets,
the algorithm did not conclude due to strong uncertain-
ties. One of these cases is highlighted in Figure 20. The
conclusion is that in this Daurade experiment, no more
loops would have been proved by other means than the
topological degree.

-600 -500 -400 -300 -200 -100 0 100

-100

-50

0

50

100

150

200

250

300

350

400

450

500

550

600

p1

p2

p(t0)p(tf)

existence
not proven

Figure 17: 2D trace of Daurade AUV. The topological test was not
able to conclude for two loop detections involving a total of four
actual loops. Figure 20 details one of these cases.

0 1000 2000 3000 4000 50000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

t1

t2

Figure 18: t-plane of the Daurade experiment. The blue box is
detailed in Figure 19.

11

100 200 300 400 500 600 700 800 900 1000 1100 12002500

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

t1

t2

existence
not proven

Figure 19: Zoom on t-plane of Figure 18, presenting eight clusters Ωi

corresponding to loop detection sets. Two of them, black painted,
are non-conclusive cases with the topological degree test.

-150 -100 -50 0 50 100-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

p1

p2

p(t−1)
p(t+1)

p(t−2)

p(t+2)

Figure 20: Independent projection of one of the two non-conclusive
detection cases, as for the Redermor mission, see Figure 15. Contrary
to the previous experiment, an actual loop plotted in blue has been
performed, twice. However, the red trajectory reminds that a non-
crossing case is still feasible.

7. Conclusion

This paper has presented a new method to prove the ex-
istence of loops in robot trajectories. The algorithm relies

on interval analysis, allowing guaranteed computations of
robot trajectories by considering sensor uncertainties in
a reliable way. This set-membership approach stands on
measurements’ bounds which allow to take conclusions by
always considering worst-case possibilities. This is well
suited for proof purposes and, in our case, to prove that a
robot crossed its own trajectory at some point. In this ap-
proach, conclusions can be taken considering propriocep-
tive measurements only and no scene observation. This is
helpful to solve SLAM problems as it proves a previously-
visited location to be recognized.

This topic has already been the subject of previous work
but the offered existence test, relying on the Newton op-
erator, did not give satisfactory results in some cases of
undeniable looped trajectories. This was due to the use of
Jacobian matrices not always invertible. Our contribution
has been to propose a new test relying on the topologi-
cal degree theory. The algorithm behaves better as it does
not use the information of the derivatives. Besides the loop
existence proof, the same tool can provide the exact num-
ber of reliable loops performed by the robot, better than
the Newton test did. The efficiency of the new method
has been demonstrated on actual experiments involving
autonomous underwater robots performing several loops
under the surface.

Supplementary materials are available on: http://

simon-rohou.fr/research/loopproof/

8. Acknowledgments

The work of Simon Rohou has been funded by the French
Direction Générale de l’Armement (DGA) during the UK-
France PhD program. The one of Peter Franek has been
supported by Austrian Science Fond, M 1980.

[1] R. Smith, M. Self, P. Cheeseman, Estimating Uncertain
Spatial Relationships in Robotics, in: Autonomous Robot
Vehicles, Springer, New York, NY, 1990, pp. 167–193.
doi:10.1007/978-1-4613-8997-2_14.
URL https://link.springer.com/chapter/10.1007/

978-1-4613-8997-2_14

[2] M. Bosse, P. Newman, J. Leonard, S. Teller, Simultaneous local-
ization and map building in large-scale cyclic environments us-
ing the atlas framework, The International Journal of Robotics
Research 23 (12) (2004) 1113–1139.

[3] Y. Latif, C. Cadena, J. Neira, Robust loop closing over time
for pose graph slam, The International Journal of Robotics Re-
search 32 (14) (2013) 1611–1626.

[4] A. Angeli, D. Filliat, S. Doncieux, J.-A. Meyer, Fast and In-
cremental Method for Loop-Closure Detection Using Bags of
Visual Words, IEEE Transactions on Robotics 24 (5) (2008)
1027–1037. doi:10.1109/TRO.2008.2004514.
URL http://ieeexplore.ieee.org/document/4633680/

[5] M. Cummins, P. Newman, FAB-MAP: Probabilistic Localiza-
tion and Mapping in the Space of Appearance, The Interna-
tional Journal of Robotics Research 27 (6) (2008) 647–665.
doi:10.1177/0278364908090961.
URL http://dx.doi.org/10.1177/0278364908090961

12

http://simon-rohou.fr/research/loopproof/
http://simon-rohou.fr/research/loopproof/
https://link.springer.com/chapter/10.1007/978-1-4613-8997-2_14
https://link.springer.com/chapter/10.1007/978-1-4613-8997-2_14
http://dx.doi.org/10.1007/978-1-4613-8997-2_14
https://link.springer.com/chapter/10.1007/978-1-4613-8997-2_14
https://link.springer.com/chapter/10.1007/978-1-4613-8997-2_14
http://ieeexplore.ieee.org/document/4633680/
http://ieeexplore.ieee.org/document/4633680/
http://ieeexplore.ieee.org/document/4633680/
http://dx.doi.org/10.1109/TRO.2008.2004514
http://ieeexplore.ieee.org/document/4633680/
http://dx.doi.org/10.1177/0278364908090961
http://dx.doi.org/10.1177/0278364908090961
http://dx.doi.org/10.1177/0278364908090961
http://dx.doi.org/10.1177/0278364908090961

[6] C. Stachniss, D. Hahnel, W. Burgard, Exploration with active
loop-closing for FastSLAM, in: 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE
Cat. No.04CH37566), Vol. 2, 2004, pp. 1505–1510 vol.2. doi:

10.1109/IROS.2004.1389609.
[7] L. A. Clemente, A. J. Davison, I. D. Reid, J. Neira, J. D. Tardós,

Mapping Large Loops with a Single Hand-Held Camera, in:
Robotics: Science and Systems, Vol. 2, 2007.

[8] C. Aubry, R. Desmare, L. Jaulin, Loop detection of mobile
robots using interval analysis, Automatica 49 (2) (2013)
463–470. doi:10.1016/j.automatica.2012.11.009.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0005109812005456

[9] R. Moore, Methods and Applications of Interval Analysis, Stud-
ies in Applied and Numerical Mathematics, Society for Indus-
trial and Applied Mathematics, 1979.
URL https://books.google.fr/books?id=WYjD2-R2zMgC

[10] D. O’Regan, Y. J. Cho, Y. Q. Chen, Topological degree theory
and applications, no. 10 in Series in mathematical analysis and
applications, Chapman & Hall/CRC, Boca Raton, FL, 2006,
oCLC: ocm64592216.

[11] P. Franek, S. Ratschan, Effective topological degree
computation based on interval arithmetic, Mathe-
matics of Computation 84 (293) (2014) 1265–1290.
doi:10.1090/S0025-5718-2014-02877-9.
URL http://www.ams.org/mcom/2015-84-293/

S0025-5718-2014-02877-9/

[12] D. Meizel, A. Preciado-Ruiz, E. Halbwachs, Estimation of mo-
bile robot localization: geometric approaches, in: M. Milanese,
J. Norton, H. Piet-Lahanier, E. Walter (Eds.), Bounding Ap-
proaches to System Identification, Plenum Press, New York,
NY, 1996, pp. 463–489.

[13] R. Moore, Interval analysis, Prentice-Hall series in automatic
computation, Prentice-Hall, 1966.
URL https://books.google.fr/books?id=csQ-AAAAIAAJ

[14] E. R. Hansen, Interval arithmetic in matrix computations - part
I, SIAM Journal on Numerical Analysis: Series B 2 (2) (1965)
308–320.

[15] T. F. Filippova, A. B. Kurzhanski, K. Sugimoto, I. Vályi, El-
lipsoidal State Estimation for Uncertain Dynamical Systems,
in: M. Milanese, J. Norton, H. Piet-Lahanier, É. Walter (Eds.),
Bounding Approaches to System Identification, Springer US,
Boston, MA, 1996, pp. 213–238.
URL https://doi.org/10.1007/978-1-4757-9545-5_14

[16] F. Le Bars, J. Sliwka, L. Jaulin, O. Reynet, Set-membership
state estimation with fleeting data, Automatica 48 (2) (2012)
381–387. doi:10.1016/j.automatica.2011.11.004.
URL http://linkinghub.elsevier.com/retrieve/pii/

S0005109811005322

[17] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres,
Guaranteed computation of robot trajectories, Robotics and
Autonomous Systems 93 (2017) 76–84. doi:https://doi.org/

10.1016/j.robot.2017.03.020.
URL http://www.sciencedirect.com/science/article/pii/

S0921889016304006

[18] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres,
Reliable non-linear state estimation involving time uncertain-
ties, Automatica 93 (2018) 379–388. doi:https://doi.org/10.
1016/j.automatica.2018.03.074.
URL https://www.sciencedirect.com/science/article/pii/

S0005109818301699

[19] T. Räıssi, N. Ramdani, Y. Candau, Set membership state
and parameter estimation for systems described by nonlinear
differential equations, Automatica 40 (10) (2004) 1771–1777.
doi:10.1016/j.automatica.2004.05.006.
URL http://www.sciencedirect.com/science/article/pii/

S0005109804001529

[20] A. Goldsztejn, W. Hayes, P. Collins, Tinkerbell Is Chaotic,
SIAM Journal on Applied Dynamical Systems 10 (4) (2011)
1480–1501. doi:10.1137/100819011.
URL http://epubs.siam.org/doi/10.1137/100819011

[21] V. Drevelle, P. Bonnifait, High integrity GNSS location zone
characterization using interval analysis, in: ION GNSS 2009,
Savannah, GA, United States, 2009, pp. 2178–2187.
URL https://hal.archives-ouvertes.fr/hal-00444819

[22] F. Abdallah, A. Gning, P. Bonnifait, Box particle filtering for
nonlinear state estimation using interval analysis, Automatica
44 (3) (2008) 807–815. doi:10.1016/j.automatica.2007.07.

024.
URL http://www.sciencedirect.com/science/article/pii/

S0005109807003731

[23] L. Jaulin, É. Walter, Set inversion via interval analysis for
nonlinear bounded-error estimation, Automatica 29 (4) (1993)
1053–1064. doi:10.1016/0005-1098(93)90106-4.
URL http://linkinghub.elsevier.com/retrieve/pii/

0005109893901064

[24] I. Fonseca, W. Gangbo, Degree theory in analysis and appli-
cations, no. 2 in Oxford lecture series in mathematics and its
applications, Clarendon Press ; Oxford University Press, Oxford
: New York, 1995.

[25] M. Furi, M. Pera, M. Spadini, A Set of Axioms for the
Degree of a Tangent Vector Field on Differentiable Manifolds,
Fixed Point Theory and Applications 2010 (1) (2010) 845631.
doi:10.1155/2010/845631.
URL http://www.fixedpointtheoryandapplications.com/

content/2010/1/845631

[26] P. Franek, S. Ratschan, P. Zgliczynski, Quasi-decidability of a
Fragment of the First-Order Theory of Real Numbers, Journal
of Automated Reasoning 57 (2) (2016) 157–185. doi:10.1007/

s10817-015-9351-3.
URL https://doi.org/10.1007/s10817-015-9351-3

[27] R. E. Moore, A Test for Existence of Solutions to Nonlinear
Systems, SIAM Journal on Numerical Analysis 14 (4) (1977)
611–615. doi:10.1137/0714040.
URL http://epubs.siam.org/doi/10.1137/0714040

[28] R. E. Moore, J. B. Kioustelidis, A simple test for accuracy of
approximate solutions to nonlinear (or linear) systems, SIAM
Journal on Numerical Analysis 17 (4) (1980) 521–529.

[29] K. Borsuk, Drei Sätze über die n-dimensionale euklidische
Sphäre, Fundamenta Mathematicae 20 (1) (1933) 177–190.
URL http://eudml.org/doc/212624

[30] J. W. Milnor, Topology from the differentiable viewpoint, rev.
ed Edition, Princeton landmarks in mathematics, Princeton
University Press, Princeton, N.J, 1997.

[31] T. I. Fossen, Guidance and control of ocean vehicles, Wiley,
Chichester ; New York, 1994.

Appendix: Optimality of the degree test

In this complementary section, we extend the aforemen-
tioned practical demonstration by a theoretical discussion
of the degree test and its strength.

First of all, in a situation where the interval Newton testN
is strong enough to detect a (unique) solution of f∗(x) = 0
in a connected region Ω, then the Jacobian matrix Jf∗ is
necessarily everywhere non-singular in Ω and the degree
is either +1 or −1. However, the degree test does not use
derivatives and can succeed even in cases where deriva-
tives are either not at hand, or when the Jacobian matrix
is potentially singular. For loop detection, this includes
situations such as in Figure 21, where the self-crossing is
close to parallel.

Similarly, the degree test can be shown to be more pow-

13

http://dx.doi.org/10.1109/IROS.2004.1389609
http://dx.doi.org/10.1109/IROS.2004.1389609
http://linkinghub.elsevier.com/retrieve/pii/S0005109812005456
http://linkinghub.elsevier.com/retrieve/pii/S0005109812005456
http://dx.doi.org/10.1016/j.automatica.2012.11.009
http://linkinghub.elsevier.com/retrieve/pii/S0005109812005456
http://linkinghub.elsevier.com/retrieve/pii/S0005109812005456
https://books.google.fr/books?id=WYjD2-R2zMgC
https://books.google.fr/books?id=WYjD2-R2zMgC
http://www.ams.org/mcom/2015-84-293/S0025-5718-2014-02877-9/
http://www.ams.org/mcom/2015-84-293/S0025-5718-2014-02877-9/
http://dx.doi.org/10.1090/S0025-5718-2014-02877-9
http://www.ams.org/mcom/2015-84-293/S0025-5718-2014-02877-9/
http://www.ams.org/mcom/2015-84-293/S0025-5718-2014-02877-9/
https://books.google.fr/books?id=csQ-AAAAIAAJ
https://books.google.fr/books?id=csQ-AAAAIAAJ
https://doi.org/10.1007/978-1-4757-9545-5_14
https://doi.org/10.1007/978-1-4757-9545-5_14
https://doi.org/10.1007/978-1-4757-9545-5_14
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://dx.doi.org/10.1016/j.automatica.2011.11.004
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://linkinghub.elsevier.com/retrieve/pii/S0005109811005322
http://www.sciencedirect.com/science/article/pii/S0921889016304006
http://dx.doi.org/https://doi.org/10.1016/j.robot.2017.03.020
http://dx.doi.org/https://doi.org/10.1016/j.robot.2017.03.020
http://www.sciencedirect.com/science/article/pii/S0921889016304006
http://www.sciencedirect.com/science/article/pii/S0921889016304006
https://www.sciencedirect.com/science/article/pii/S0005109818301699
https://www.sciencedirect.com/science/article/pii/S0005109818301699
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.03.074
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.03.074
https://www.sciencedirect.com/science/article/pii/S0005109818301699
https://www.sciencedirect.com/science/article/pii/S0005109818301699
http://www.sciencedirect.com/science/article/pii/S0005109804001529
http://www.sciencedirect.com/science/article/pii/S0005109804001529
http://www.sciencedirect.com/science/article/pii/S0005109804001529
http://dx.doi.org/10.1016/j.automatica.2004.05.006
http://www.sciencedirect.com/science/article/pii/S0005109804001529
http://www.sciencedirect.com/science/article/pii/S0005109804001529
http://epubs.siam.org/doi/10.1137/100819011
http://dx.doi.org/10.1137/100819011
http://epubs.siam.org/doi/10.1137/100819011
https://hal.archives-ouvertes.fr/hal-00444819
https://hal.archives-ouvertes.fr/hal-00444819
https://hal.archives-ouvertes.fr/hal-00444819
http://www.sciencedirect.com/science/article/pii/S0005109807003731
http://www.sciencedirect.com/science/article/pii/S0005109807003731
http://dx.doi.org/10.1016/j.automatica.2007.07.024
http://dx.doi.org/10.1016/j.automatica.2007.07.024
http://www.sciencedirect.com/science/article/pii/S0005109807003731
http://www.sciencedirect.com/science/article/pii/S0005109807003731
http://linkinghub.elsevier.com/retrieve/pii/0005109893901064
http://linkinghub.elsevier.com/retrieve/pii/0005109893901064
http://dx.doi.org/10.1016/0005-1098(93)90106-4
http://linkinghub.elsevier.com/retrieve/pii/0005109893901064
http://linkinghub.elsevier.com/retrieve/pii/0005109893901064
http://www.fixedpointtheoryandapplications.com/content/2010/1/845631
http://www.fixedpointtheoryandapplications.com/content/2010/1/845631
http://dx.doi.org/10.1155/2010/845631
http://www.fixedpointtheoryandapplications.com/content/2010/1/845631
http://www.fixedpointtheoryandapplications.com/content/2010/1/845631
https://doi.org/10.1007/s10817-015-9351-3
https://doi.org/10.1007/s10817-015-9351-3
http://dx.doi.org/10.1007/s10817-015-9351-3
http://dx.doi.org/10.1007/s10817-015-9351-3
https://doi.org/10.1007/s10817-015-9351-3
http://epubs.siam.org/doi/10.1137/0714040
http://epubs.siam.org/doi/10.1137/0714040
http://dx.doi.org/10.1137/0714040
http://epubs.siam.org/doi/10.1137/0714040
http://eudml.org/doc/212624
http://eudml.org/doc/212624
http://eudml.org/doc/212624

t1

t2

Figure 21: A “non-transversal” loop like this can easily be detected
by the degree test, but methods requiring non-singular Jacobian ma-
trix will fail to verify it.

erful than other interval-based verification tests, such as
Mirranda’s or Borsuk’s test, due to the following result [26,
Thm 6]:

Whenever a function f∗ has a robust zero (one that can-
not be removed by arbitrary small perturbations), then it
can be verified by the degree test, assuming that we have
a sufficient subdivision and sufficiently precise interval-
measurements.

One could still argue that such arbitrary precise interval
approximations are practically not at hand. Here we state
another variant of the optimality of the degree, which is
adapted to the setting of this paper:

Proposition. Let Ω, [f], [t]j , [b]k be as in Theorem 1 and
assume further that the degree deg(f∗,Ω) = 0 and that
the interior of Ω is connected. Then there exists a function
g ∈ [f] such that

— 0 /∈ g(Ω);

— g([t]j) ⊆ [f]([t]j) for all j, and

— g([b]k) ⊆ [f]([b]k) for all k.

In other words, whenever we detect a zero degree on some
set Ω with connected interior, then it is still possible that
f∗ has no zero: indeed, the unknown function f∗ may be
the function g from the theorem.

If we subdivided our domain more and obtained more data,
our region Ω could split into more components — for exam-
ple, Ω1 with a degree 1, and Ω2 with a degree −1. Each Ωi

would then provably contain a zero. However, based only
on the above interval evaluations, we cannot conclude the
existence of a zero.

In particular, if we cannot conclude a zero based on the
degree test, we argue that no other test (such as Newton)
would conclude it either, unless more data or finer inter-
val evaluations are provided. The proof of this statement
is elementary9, but it requires some necessary definitions

9The main idea is to define the function g to be equal to f∗

on ∂Ω and, in a small enough ε-neighborhood of the boundary, to
extend it to a positive scalar multiple of f∗ such that its norm is
small enough for any x that is ε-far from the boundary. This map
takes {x : dist(x, ∂Ω) = ε} into a sphere of small diameter, and due
to the fact that the degree is zero, can be extended to a function
g : Ω → Rn that it is still small farther from the boundary, and
avoids zero.

from topology, so we omit it here in order to keep the paper
self-contained and readable for a wide audience. Our main
message is to underline the usefulness of the degree test for
zero detection of functions with bounded uncertainty, and
its relevancy for loop closure proofs.

14

	1 Introduction
	1.1 Detecting loop closures
	1.2 The two-dimensional case

	2 Proprioceptive loop detections
	2.1 Formalization
	2.2 Tools for guaranteed computations
	2.2.1 Interval analysis
	2.2.2 Tubes

	2.3 Loop detections in a bounded-error context

	3 Topological degree for zeros verification
	4 Loop existence test
	4.1 From topological degree to loops proofs
	4.2 Implementation

	5 Reliable number of loops
	6 Application on real datasets
	6.1 Absolute velocities
	6.2 From sensors to reliable results
	6.2.1 Obtaining bounded measurements at time t
	6.2.2 From measurements to tubes

	6.3 The Redermor mission
	6.4 The Daurade mission

	7 Conclusion
	8 Acknowledgments

