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Abstract
Robots often switch from highly dynamic motion to delivering high torques at low speeds. The actuation requirements
for these two regimes are very different. As a consequence, the average efficiency of the actuators is typically much
lower than the efficiency at the optimal working point. A potential solution is to use multiple motors for a single motor
joint. This results in a redundant degree of freedom, which can be exploited to make the system more efficient overall.
In this work, we explore the potential of kinematically redundant actuators in dynamic applications. The potential of a
kinematically redundant actuator with two motors is evaluated against a single-motor equivalent in terms of operating
range, maximum acceleration and energy consumption. We discuss how the comparison is influenced by the design
of the actuator and the way how the power is distributed over the input motors. Our results support the idea that
kinematically redundant actuators can resolve the conflicting torque-speed requirements typical of robots.
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1 Introduction

Mobile robots and wearable robotic devices are gradually
entering our everyday lives. Such devices should have a
long-lasting autonomy, without paying the price of carrying
a heavy and bulky battery pack. The best way to achieve
this is to reduce the energy consumption of the robot itself.
Fortunately, electric motors, one of the prominent actuation
technologies, offer very high efficiencies at their nominal
working point. A motor’s efficiency, however, varies strongly
with speed and torque (Tucker and Fite 2010; Verstraten
et al. 2015). This is an issue in robotics, where actuators
are required to operate at a wide range of working points.
As a result, their motors tend to be used very inefficiently.
In the MIT Cheetah robot, for example, up to 68% of the
total energy was consumed by heating of the motor windings
(Seok et al. 2013). Designs focusing on the reduction of
motor losses can significantly improve the overall efficiency
of a device. With such an approach, Brown and Ulsoy (2013)
managed to decrease the energy consumption of a passive-
assist device by 25%. No less than 90% of the energy savings
was attributed to a more efficient use of the motor.

A well-chosen transmission can help by mapping the
expected working points as closely as possible to energy-
efficient part of the motor’s operating range. Nevertheless,
transmissions with fixed reductions can only do so much
when the working points are widely spread over the
operating range. This is a typical problem of robots
interacting with their environment. Tasks such as turning
knobs or manipulating high payloads often require high
torques from the robot’s actuators at low output speeds. As
a consequence, the actuators will consist of strong motors
with high reductions. When the payload is removed and the

manipulator is brought back to its initial position, however,
the requirement changes to delivering high speeds at low
torques. The speed with which the arm can move will then be
limited by the high reflected inertia resulting from the high-
torque design (Babin et al. 2014).

The conflicting torque-speed requirements resulting from
a loaded and a no-load phase are also a problem in legged
robotics. During the stance phase, the leg needs to carry the
robot’s weight, requiring high motor torques. When the foot
is lifted from the ground (swing phase), the required motor
torque drops considerably since the leg is now only moving
its own inertia, but the motors need to work at higher speeds.
This has serious consequences for the sizing and energy
efficiency of the actuators. A human ankle requires hardly
any power during the swing phase of walking gait, but when
a motor performs the same motion, it displays considerable
peak powers in this phase, even if springs are used to alleviate
the requirements (Hitt et al. 2010; Verstraten et al. 2017).

A potential solution to these problems is to use variable
transmissions (Sugar and Holgate 2013) or, more generally,
to actuate a joint with not one, but two motors. The
second motor then creates an additional, redundant, degree
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of freedom, which can be exploited to distribute the power
requirements among both motors in the most energy-efficient
way. With a proper design and proper control, the overall
quasi-static efficiency of such an actuator can be better than
that of a single motor with gear reducer (Verstraten et al.
2018). In dynamic tasks, however, the inertia of the drivetrain
has a strong influence on the power flow through the motor
(Verstraten et al. 2016) and may lead to high Joule losses
(Plooij and Wisse 2012). This issue is very relevant for
redundant actuators, considering that it consists of not one,
but at least two motors. Still, the important but difficult
question of how this affects their energy consumption and
the ideal power distribution between the motors, is yet to
be answered. This work contributes towards solving this
pertinent issue by providing several insights from theory and
experiments on a kinematically redundant actuator.

We start the paper by giving an overview of different
types of redundant actuators, focusing on previous research
on kinematically redundant actuators (Section 2). Next,
we establish the equations for a kinematically redundant
actuator and its optimal control (Section 3). We then
discuss the design of such an actuator in terms of operating
range, reflected inertia, maximum acceleration and energy
consumption in a dynamic task (Section 4). In Section 5, we
experimentally validate the dynamic model of the actuator by
forcing harmonic oscillations onto an inertial load. Optimal
control is used to distribute the required speed over both
motors in an energy-optimal way. The findings of the
work are summarized in an overview of the advantages
and disadvantages of the DMA (Section 6). We finish
by concluding that kinematically redundant actuators can
provide a solution for conflicting torque-speed requirements
(Section 7).

2 Types of redundant actuators
Redundancy on robot-level is a well-studied topic, with
a vast array of literature on over-actuated robotic arms.
Redundancy on joint-level has received little attention in
comparison. In this section, we provide an overview of
existing concepts for redundant actuators. We divide them
into four classes: statically redundant actuators, kinemati-
cally redundant actuators, Variable Stiffness Actuators and
actuators with Variable Transmissions.

2.1 Statically redundant actuators
In a statically redundant actuator, an infinite number of
input motor torques result in the same output torque (Müller
1982). This can be achieved in a very simple way, by
coupling multiple motors to the same driveshaft. In such an
arrangement, the output torque is the sum of both motor-
gearbox torques. The torque that can be delivered by a motor
increases with its mass to the power 1.25 (Haddadin et al.
2012). Consequently, using one large motor will generally
lead to a more compact and lightweight design than two
smaller motors on the same driveshaft.

Despite their unfavorable scaling with mass, statically
redundant actuators may have benefits in terms of control
performance and energy consumption. In the Parallel-
Coupled Micro-Macro actuator concept proposed by Morrell
and Salisbury (1998), a small motor is coupled directly to

the load, in addition to a larger motor coupled through a
compliant transmission. This actuator exhibited a good force
control bandwidth and excellent force fidelity. Peak impact
force, force distortion and backdrivability were also found
to be better than a single-motor actuator. When combined
with springs and locking mechanisms, statically redundant
actuators can also offer considerable benefits in terms of
energy consumption. An example is the +SPEA actuator
proposed by Mathijssen et al. (2016), which consists of four
motors with series springs, connected to a single output shaft.
Controllable brakes allow the motors to be locked, such
that springs in series with the motors act as parallel springs
on the output shaft. In a blocked output experiment, this
actuator managed a fourfold decrease in energy consumption
compared to a single-motor alternative.

2.2 Kinematically redundant actuators
An actuator is kinematically redundant if its output speed is
not uniquely determined by the speeds of the input motors
(Müller 1982). One way of achieving this is to couple two
motors to a single output through a differential. In this case,
the output speed θ̇o is a linear combination of the input
speeds θ̇1 and θ̇2:

θ̇o = R1θ̇1 +R2θ̇2 (1)

with coefficients R1 and R2 depending on the design of
the differential. The static output torque, however, is divided
over both inputs in a fixed ratio, determined by design.

In principle, any type of differential can be chosen to
couple both motors. Differential mechanisms that have been
proposed include a bevel gear differential (Hu et al. 2015;
Fumagalli et al. 2014), a two-stage planetary gear differential
(Fauteux et al. 2010; Gao et al. 2016) and a differential
based on harmonic drives (Tagliamonte et al. 2010; Wolf
and Hirzinger 2008). The most common concept by far is
one that employs a planetary differential. Here, the output
and the two inputs of the actuator can be assigned to any
of the three output shafts of the differential. Assuming that
the motors are grounded, this can be done in three possible
ways. If one of the motors is allowed to be mounted to a
movable component, however, 12 more actuator topologies
can be created (Babin et al. 2014).

To the authors’ knowledge, the first roboticists to suggest
the use of a kinematically redundant actuator were Ontañón
Ruiz et al. (1998), with the aim of reducing stiction.
Here, the carrier and the sun of the planetary differential
were used as inputs, and the load was coupled to the
output. Several important theoretical contributions about this
specific configuration were made by Rabindran and Tesar.
In their analysis of power flows and efficiency (Rabindran
and Tesar 2008), they concluded that the efficiency of this
type of actuator decreases when the reduction ratio of the
planetary differential increases. Furthermore, they found that
the reflected inertia of the actuator has no upper bound, while
it can never be lower than the inertias of both input actuators.
Another study (Rabindran and Tesar 2007) discussed the
cross-coupling in the inertia matrix. The authors argued that
the coupling should be minimized by design, because it
causes the actuators to fight each other’s acceleration. In
addition to these theoretical works, Rabindran and Tesar
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(2014) also showed the potential of the concept in terms of
safe response to collisions.

Another configuration places the load on the carrier, and
uses the sun and ring as inputs. This topology was used
for the first time by Kim et al. (2007, 2010), where one
motor was used to control the output position and the
other to control the stiffness. Later, Lee and Choi (2012)
explored the possibility of shaping the actuator’s operating
range more favorably than that of a regular motor. In their
concept, worm gears were used to prevent the motors from
being backdriven. This makes their concept unsuitable for
applications in robotics. More recently, Girard and Asada
(2015) presented a similar actuator where the worm gears
were replaced by controllable brakes. For this actuator, they
developed several control strategies to divide the required
power over the motors and to deal with the holding brakes
(Girard and Asada 2016, 2017). Much work has also been
done on impedance control (Nagai et al. 2009). A problem
with these actuators in impedance control is that, in order
to obtain high bandwidths, motors are required that are able
to deliver high torques, but have low inertias. In order to
meet these contradicting requirements, Nagai et al. (2010)
proposed to equip one of both motors with a parallel spring.
Nevertheless, the usage of springs in kinematically redundant
actuators is quite rare, with the exception of variable stiffness
actuators.

2.3 Variable Stiffness Actuators
Variable Stiffness Actuators (VSAs) are a variant of Series
Elastic Actuators, where the stiffness can be varied. In case
of a rotational actuator, they can be represented by following
idealized equation:

θout = θ1 +
Tout
k (θ2)

(2)

where θout and Tout represent the output position and
torque, and θ1 and θ2 are the input positions of the primary
and secondary motor. Equation (2) shows that variable
stiffness k (θ2) changes the kinematic relationship between
the primary motor and the output. The variable stiffness
k (θ2) is thus the redundant degree of freedom. Although
exceptions exist, it is regulated by a secondary motor in the
vast majority of cases (Groothuis et al. 2016).

VSAs can be classified as kinematically redundant
actuators if the output torque uniquely defines the torques
required from the input motors. For most VSA designs, this
is not the case. For an extensive overview of VSA designs
and their advantages, we refer to the excellent review papers
by Vanderborght et al. (2013) and Tagliamonte et al. (2012).

2.4 Variable transmissions
Another way to add a redundant degree of freedom is to use
a variable transmission. The actuator can then be described
with following equations:

θout =
θ1

n(θ2)
(3)

Tout = n(θ2)T1 (4)

In this type of actuator, the variable gear ratio – which we
assume to be controlled by a secondary motor – creates the

redundant degree of freedom. The variable gear ratio affects
both the torque and speed, resulting in coupled kinematic and
static redundancy.

Over the years, variable transmissions have proven their
potential to reduce the energy consumption of cars (Carbone
et al. 2001) and wind turbines (Mangialardi and Mantriota
1994). These results have sparked interest from researchers
in robotics. Variable transmissions show great potential in
the field of legged locomotion, prosthetics and exoskeletons.
They can be used to shape a motor’s speed-torque curve
more favorably for its use in ankle prostheses, enabling a
more compact actuator design (Sugar and Holgate 2013).
Combined with energy buffers such as springs (Stramigioli
et al. 2008) or flywheels (Dresscher et al. 2015), they can also
form very efficient actuation units. Simulations have shown
that a knee actuator consisting of an IVT with a flywheel
could reduce the actuator’s energy consumption by 85%
in walking (Aló et al. 2015). Similar reductions have been
reported for an IVT combined with a spring (Mooney and
Herr 2013). In addition to the improved energy efficiency,
variable transmissions can also help to reduce the weight of
knee prostheses (Lenzi et al. 2017).

The most common CVT types, belt and chain CVTs and
toroidal CVTs, tend to have issues with rapid changes in gear
ratio (Srivastava and Haque 2009), while also being heavy
and bulky (Everarts et al. 2015). Small-size CVTs exist, but
often have the disadvantage of having a limited range of
motion. Furthermore, they are often friction-based, limiting
their torque transmission capability (Everarts et al. 2015).
Consequently, the search for the ideal CVT for robotics
is still an ongoing research topic (Belter and Dollar 2014;
Everarts et al. 2015; Lenzi et al. 2017; Kembaum et al. 2017;
Dresscher et al. 2017).

3 Equations
In this work, we study a kinematically redundant actuator
with planetary differential, which we will refer to as ‘’Dual-
Motor Actuator” (DMA) in accordance with Verstraten et al.
(2018). A schematic is depicted in Fig. 1. The planetary
differential is essentially the same as a planetary gearbox,
but the ring is used as a secondary input instead of being
fixed to ground. Just like in a regular planetary gearbox, the
output shaft is connected to the carrier, and the sun is used
as a second input. Other configurations of input and output
shafts are possible, but this specific configuration offers the
highest reductions.

3.1 Kinematics
The relationship between the output speed θ̇o and the input
speeds θ̇S and θ̇R of the sun and ring motor, respectively, is
given by (Müller 1982)

θ̇o = J

[
θ̇S
θ̇R

]
(5)

J =
[ 1
nS

1
1+ρ

1
nR

ρ
1+ρ

]
(6)

with nS and nR the additional reductions provided by the
planetary gearboxes in the ring and sun drivetrain (see
Fig. 1). The dimensionless ratio ρ in Eq. (5) is defined as

ρ = rR/rS (7)
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Figure 1. Schematic of the kinematically redundant actuator
with planetary differential. (a) Overview of the complete
actuator, (b) Planetary differential with definitions of angular
velocities and torques.

in which rR and rS are the radii of the pitch circles
of the ring and sun gear, respectively, of the planetary
differential. Eq. (5) corresponds to the general equation for a
kinematically redundant actuator (1) with R1 = 1

nS
1

1+ρ and
R2 = 1

nR

ρ
1+ρ . Because Eq. (5) cannot be inverted, we define

the speed ratio γ as

γ =
1

nR

ρ

1 + ρ

θ̇R

θ̇o
(8)

This allows us to rewrite the relationships between the input
speeds and output speed as[

θ̇S
θ̇R

]
= Qθ̇o (9)

Q =

[
nS (1 + ρ) (1− γ)

nR
(1+ρ)
ρ γ

]
(10)

By differentiation, we find the accelerations[
θ̈S
θ̈R

]
= Qθ̈o +

[
−nS (1 + ρ)

nR
(1+ρ)
ρ

]
θ̇oγ̇ (11)

3.2 Dynamics
In a lossless planetary differential, the torques applied to
the ring and sun gear, ToR and ToS , are linked through the

equations
ToR =

rR
rS
ToS = ρToS (12)

In order to model the losses, we introduce the efficiency
function of the planetary gear differential:

CPG = η
sgn
[
TC
(
θ̇S
nS

−θ̇C
)]

PG (13)

where ηPG denotes the meshing efficiency of the sun and
ring gear with the planets. The efficiency functions of the
gearboxes are given by

Cλ = η
−sgn(Toλθ̇λ)
λ (14)

where ηλ represents the catalog efficiency of the respective
gearbox (λ = R,S). Defining the input vector in dual-motor
operation as T2m = (TmS , TmR)T , with TmS and TmR the
motor torques of the sun and ring motor, respectively, we can
write

T2m = Aẋ + Bx + Csgn(x) + D (To + TCCsgn (Jx))
(15)

where To is the output torque, x the state vector

x =

[
θ̇S
θ̇R

]
(16)

and

A =

[
JS 0
0 JR

]
+ JCD

[ 1
nS

1
1+ρ

1
nR

ρ
1+ρ

]
(17)

B =

[
νS 0
0 νR

]
+ νCD

[ 1
nS

1
1+ρ

1
nR

ρ
1+ρ

]
(18)

C =

[
TCS 0

0 TCR

]
(19)

D =

 CS
nS

(ρCPG + 1)
−1

CR
nR

(
1

ρCPG
+ 1
)−1

 (20)

The parameters are defined in Table 1 and 2. The inertia of
the planetary differential’s planets is assumed to be neglible
compared to that of the sun, ring and carrier, which have
an entire drivetrain attached to them. Friction is accounted
for in Eq. (15) by Coulomb friction terms Csgn(x) (friction
at input) and TCCsgn(Jx) (friction at output) and a viscous
friction term Bx (for both input and output). This classical
model captures the main effects of friction in mechatronic
systems (Olsson et al. 1998). Friction coefficients were
obtained experimentally in previous work (Verstraten et al.
2018). A full derivation of the matrix D, which contains the
gearbox efficiency function CPG, can also be found in this
work.

3.3 Motor equations
The motor currents Iλ and voltages Uλ can be calculated
with following motor model:

Iλ =
1

kTλ
Tmλ (21)

Uλ = kTλθ̇λ +RλIλ (22)
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Table 1. Parameters for the planetary differential. Friction
parameters were obtained from steady-state measurements, as
described in (Verstraten et al. 2018). The inertia JC was
retrieved from datasheet information and CAD drawings.

ρ 9
Efficiency of planetary differential ηPG 88
Carrier inertia JC 12e-6 kg m2

Carrier viscous friction νC 1e-3 Nm/(rad/s)
Coulomb friction of carrier TCC 0.1033 Nm

with kTλ the torque constant and Rλ the winding resistance
of the respective motor (λ = R,S). The electrical powers
Pelec,λ of the sun and ring motor are given by

Pelec,λ = Uλ · Iλ (23)

Finally, the total electrical power Pelec is the sum of the sun
and ring motor powers:

Pelec = Pelec,S + Pelec,R (24)

3.4 Constraints
Defining the maximum motor speed θ̇λmax, the maximum
peak current Iλmax,peak and the maximum continuous
torque Tλmax,cont (λ=R,S), we can write following
constraints: ∣∣∣θ̇λ∣∣∣ < θ̇λmax (25)

|Iλ| < Iλmax,peak (26)

rms (Tλ) < Tλmax,cont (27)

The maximum motor speed and maximum continuous torque
can be found in the motor datasheets supplied by the
manufacturer. The peak current is limited by short-term
heating of the motor windings, but also by the maximum
current output of the controller’s power stage. We will take
the latter to define Iλmax,peak. Furthermore, the supply
voltage Umax puts a limit on the speeds that can be achieved
at a certain torque:

kTλθ̇λ +RλIλ < Umax (28)

3.5 Optimal control
As explained in Section 2.2, the actuator’s kinematic
redundancy implies that the speeds of the two input motors
can be chosen freely, even if the output speed is defined.
This property can be used to fullfill a secondary objective in
addition to the primary objective of, e.g., tracking a desired
output force or position.

In this work, more specifically in Section 4.4, the primary
objective is to track an output speed, while the secondary
objective is to minimize the actuator’s electrical energy
consumption. This requires solving an optimal control
problem (OCP) which can be formulated as:

min
u

(
JE =

∫ tf
t0
g(x,u, t)dt

)
ẋ = f(x,u, t)
h(x,u, t) = 0

cmin ≤ c(x,u, t) ≤ cmax

(29)

Generally speaking, the goal is to find the control set u =
(IS , IR)

T which minimizes the cost JE , defined as the
integral of a cost function g(x,u, t) over a time interval
[t0, tf ], with the state vector x defined previously by
Eq. (16). In this work, we wish to optimize the efficiency
of the DMA with respect to a reference drivetrain. The cost
function is thus the total electrical power, which can be
written as the sum of the mechanical power xTKu, which
includes all friction losses, and the Joule losses uTRu:

g(x,u, t) = xTKu + uTRu

K =

[
kTS 0

0 kTR

]
R =

[
RS 0
0 RR

] (30)

Although simpler cost functions based on motor torque
(Uemura and Kawamura 2009; Roozing et al. 2016; Girard
and Asada 2016) or mechanical power (Grimmer et al.
2014; Paryanto et al. 2015; Mohammed et al. 2016) may
also lead to close-to-optimal behavior in terms of energy
consumption (Verstraten et al. 2017), Eq. (30) ensures the
highest accuracy in terms of reducing the actual electrical
energy consumption. This claim was validated in Remy
et al. (2012), where different cost functions were used in an
optimal control formulation to generate running gaits for a
one-legged robotic hopper.

The system has two constraints. First, there is the
dynamics of the system, which can be expressed as a set of
differential equations ẋ = f(x,u, t) . The dynamics of the
system were given by Eq. (15) and can be rewritten as

ẋ = A−1 (Ku−Bx−Csgn (x)−D (To(t) + TCCsgn (Jx)))
(31)

Second, a path constraint is h(x,u, t) = 0 is introduced. It
forces the output of the DMA to track the imposed output
speed θ̇o, which is the primary objective of the controller.
The path constraint is derived from Eq. (5), which describes
the kinematics of the DMA:

h(x,u, t) = θ̇o(t)−
[

1
nS(1+ρ)

ρ
nR(1+ρ)

]
x = 0 (32)

Finally, we would like to ensure that the control set does not
lead to saturation of the actuator. We will thus add inequality
constraints of the form

cmin ≤ c(x,u, t) ≤ cmax (33)

where

c(x,u, t) =

 x
Ku

Kx + Ru

 (34)

contains, respectively, the maximum motor speeds, maxi-
mum motor torques, and maximum output voltages (see 3.4).
The vectors cmin and cmax are given by

cmax = −cmin =



θ̇Smax
θ̇Rmax√

2 · TSmax,cont√
2 · TRmax,cont

Umax
Umax

 (35)
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Table 2. Parameters for the drivetrains of the dual-motor actuator and for the reference drivetrain. Friction parameters were
obtained from steady-state measurements, as described in (Verstraten et al. 2018). The inertias JS , JR and Jref were obtained
from datasheet information and CAD drawings.

Reference drivetrain Sun drivetrain Ring drivetrain
(λ = ref ) (λ = S) (λ = R)

Drivetrain inertia Jλ 1.38e-4 kg m2 1.6e-5 kg m2 9.5e-6 kg m2

Viscous friction coefficient νλ 1.0e-3 Nm/(rad/s) 1.5e-5 Nm/(rad/s) 1.5e-12 Nm/(rad/s)
Coulomb friction coefficient TCλ 0.040 Nm 0.0080 Nm 0.0061 Nm

Motor Maxon RE65 Maxon RE40 Maxon RE35

Nominal power Pnom 250 W 150 W 90 W
Nominal torque Tλmax,cont 485 mNm 177 mNm 101 mNm

Max. speed ωλmax 3000 rpm 12000 rpm 12000 rpm
Terminal resistance Rλ 82.1 mΩ 299 mΩ 583 mΩ

Torque constant kTλ 55.4 mNm/A 30.2 mNm/A 19.4 mNm/A

Gearbox Maxon GP82 Maxon GP42 Maxon GP42

Gear ratio nλ 35 15 129
Gearbox efficiency ηλ 70 % 81 % 68 %

Equation (33) ensures that constraints (25), (27) and (28) are
respected. To apply constraint (27) it was assumed that the
motor torque follows a sinusoidal trajectory. In that case, the
peak torque will be

√
2 times higher than the rms torque.

Therefore, by limiting the motor torques to
√

2 · Tλmax,cont,
we effectively limit the rms torque to Tλmax,cont. As we
will show in Section 5, the assumption of a sinusoidal motor
torque (current) is justified. Finally, constraint (26) is, in this
specific case, less strict than constraint (27), which is why it
is not a part of the inequality (33).

The OCP was solved using GPOPS-II (Patterson and Rao
2014). This software transcribes the OCP into a large scale
nonlinear programming problem (NLP) and then solves the
problem by using the NLP solver IPOPT (Biegler and Zavala
2009).

4 Design analysis
In previous work, we showed that the DMA could statically
deliver high torques (20 Nm) at high speeds (100 rpm) while
being lighter and more compact than a traditional motor
with gear reducer (Verstraten et al. 2018). But how does
the actuator perform in dynamic applications? In order to
answer this question, we compare a specific DMA design to
reference drivetrain composed of a motor with gear reducer.
The DMA has a 150W DC motor with 15:1 reduction
(sun) and a 90W DC motor with 129:1 reduction (ring) as
inputs. The reference drivetrain, a 250W DC motor with 35:1
gear reduction, is designed to cover approximately the same
steady-state operating range while respecting the constraints
listed in Section 3.4. The supply voltage Umax is assumed
to be 30V for both motors. Parameters of the drivetrains are
listed in Table 2. The parameters of the planetary differential
used in the DMA are listed in Table 1.

Unlike in Girard and Asada (2015) and Verstraten et al.
(2018), the DMA analyzed in this work does not feature
brakes or other non-backdrivable mechanisms such as the
worm gears in Lee and Choi (2012). In these designs, the
operating range of the DMA can be turned into an L-
shape, i.e. with a high-speed low-torque region and a high-
torque low-speed region (Lee and Choi 2012). Such an L-
shaped operating range is particularly useful for robotic

ankles. Here, motors either provide high torques or high
speeds, but never reach their maximum power output (Sugar
and Holgate 2013). By using a DMA with brakes, the
unused part of the operating range can be eliminated. As
a result, the DMA can be composed of small motors,
reducing the overall weight and size of the actuator (Girard
and Asada 2015) and improving its energy efficiency over
that of a single-motor alternative (Verstraten et al. 2018).
However, non-backdrivable mechanisms also have several
disadvantages. Firstly, they complicate the control of the
actuator, as they introduce discontinuities in the system. If
online control is desired, advanced control algorithms will be
needed in order to deal with these discontinuities. Second,
controllable brakes will require a certain energy input to
keep them engaged or disengaged, or to switch between
those states. Moreover, they also add weight, volume and
cost to the actuation system. Whether the brakes are actually
worthwile therefore depends on the benefit that can be
gained from them in terms of energy efficiency, and to what
extent they enable a reduction of size and weight of the
individual drivetrains. For these reasons, we chose to study a
system without brakes, which is more likely to be preferred
whenever simplicity and cost are important.

We start this section by comparing the operating ranges of
the two motors. Next, we provide a theoretical discussion
of the reflected inertia of a DMA and its impact on the
maximum output acceleration that can be achieved with the
actuator. We conclude the section by comparing the DMA’s
efficiency to that of the reference actuator, in a task where
sinusoidal oscillations are applied to an inertial load.

4.1 Operating range
The operating range of a drivetrain consisting of a motor and
gearbox is limited by the constraints listed in Section 3.4.
All of these constraints are a function of speed and torque,
which is why the operating range is typically represented
on a speed-torque plane. The steady-state operating range
of a drivetrain can therefore be defined as all possible
combinations of speed and torque for which the motor and
gearbox constraints are respected. For the kinematically
redundant DMA, the steady-state operating range is defined
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Figure 2. Steady-state operating range of the (a) dual-motor
actuator, compared to (b) the reference motor. Specifications of
the actuators are listed in Tables 1 and 2. The constraints
associated with the boundaries are indicated on the figure. The
reference drivetrain was designed to cover roughly the same
operating range. The dual-motor, however, is capable of
delivering high torques at low speeds (dark zone), where the
reference drivetrain cannot be used.

by all combinations of speed and torque for which at least
one speed ratio γ can be found which does not violate
the motor and gearbox constraints. In accordance with this
definition, Fig. 2 shows the operating range of the DMA and
the reference drivetrain it is being compared to.

With non-backdrivable mechanisms, it would be possible
to exploit the full torque range of either branch, enabling the
construction of the L-shaped operating range described in
the introduction of this section. The maximum output torque
that can be provided by a DMA without brakes is, however,
limited by the weakest branch, in this case the ring branch.
This was explained mathematically in Verstraten et al.
(2018). In Fig. 2a, many of the operating region’s boundaries
are, indeed, determined by the maximum continuous torque
of the ring drivetrain.
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Figure 3. Optimal speed ratio in steady-state conditions. The
map is obtained by means of a parameter sweep on the ring
speed (step size 1 rpm) through its entire range of permissible
speeds. All speed ratios are between 0 and 1, except for the
dark blue zone, where the speed ratio is just below zero. The
optimal speed ratio is close to one in a large part of the
operating range, indicating that the ring drivetrain is more
efficient than the sun drivetrain. For high speeds, the optimal
speed ratio drops, as the ring motor alone cannot provide the
required output speed.

While previous works (Lee and Choi 2012; Girard and
Asada 2015) have reported on the working range in quadrant
I, we also offer a view on the negative power quadrants
II and IV, which are also of importance in the field of
robotics. The main difference between those quadrants is
the role of friction and gearbox losses. In the positive
power quadrants, these losses increase the torque demanded
from the motor. When power is flowing from the load
to the motor, however, friction and gearbox losses relieve
the motor’s torque requirement by absorbing some of the
incoming negative power. For example, due to the gearbox
alone, a motor equipped with a gearbox with efficiency ηgb
can deliver 1/η2gb times more torque in the negative power
quadrants II and IV than in the positive quadrants I and III.
This is also visible in Fig. 2b where, in the negative power
quadrants, the reference motor can reach torques that are
approximately 1/η2ref = 2 times higher than in the positive
power quadrants.

Because the voltage is sufficiently high, the torque-speed
line does not limit the operating range of the reference
actuator. As a result, the operating range is square in each
of the four quadrants, restricted by only the maximum
continuous torque Tref,max,cont and the maximum speed
θ̇ref,max. The operating range of the DMA is quite similar in
size and shape, except for two additional areas in quadrants
I and III, marked in dark grey in Fig. 2a. The appearance of
these areas can be understood by looking at the optimal speed
ratio (Fig. 3). This figure shows that, in the dark grey areas,
the speed ratio γ is just below zero. According to Eq. (8), this
implies that the ring speed has the opposite sign of the sun
and output speeds. Because, according to the definitions in
Fig. 1, all torques on the planetary differential have the same
sign, a ring speed of opposite sign also indicates a power
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Table 3. Inertias of the drivetrains and their individual
components, reflected to the motor. Because the differential
was constructed from an off-the-shelf gearbox, only the total
inertia of the differential is known; the separate inertias of the
ring and sun were estimated based on datasheet information
and design considerations.

Reference Sun Ring

Motor 1290 gcm2 142 gcm2 79.2 gcm2

Gearbox 88 gcm2 15 gcm2 15 gcm2

Differential - 1.42 gcm2 0.87 gcm2

Total 1.38e-4 kgm2 1.6e-5 kgm2 9.5e-6 kgm2

flow in the opposite direction. Since, in the dark grey areas in
Fig. 2a, power is delivered to the load (output power Toθ̇o is
positive), a negative γ results in a positive sun power TmS θ̇S ,
but a negative ring power TmRθ̇R. In this case, the load as
well as the ring absorb power which they receive from the
ring. In other words, there is an internal power from flow the
sun to the ring.

So what is the advantage of this internal power flow? In
Verstraten et al. (2018), it is shown that the weakest branch –
in this example the ring branch – limits the output torque of a
DMA. However, as explained before, a drivetrain can sustain
higher output torques when it absorbs power (i.e. in the
negative power quadrants) because friction takes over part of
the output torque. It can therefore be advantageous to control
the ring drivetrain to absorb a (small) amount of negative
power: this increases the ring drivetrain’s maximum output
torque and, consequently, the maximum output torque of the
DMA. We thus conclude that the operating range can be
enlarged by creating an internal power flow between the sun
motor and the ring motor. Although the operating range of
kinematically redundant actuators has been analyzed before,
this interesting observation has never been reported, because
back-driving of motors was prevented by design (Lee and
Choi 2012) or simply not considered (Girard and Asada
2015). Nevertheless, we believe that this is an important
feature that can potentially be exploited to reduce the need
for backdrivable mechanisms or brakes.

4.2 Reflected inertia

The inertia of the drivetrain has an important influence on
the energy consumption of an actuator performing a dynamic
task.

An overview of the inertias of the drivetrain components
in the DMA design and the reference drivetrain is given
in Table 3. This table shows that the contribution of the
planetary differential to the total inertia in the dual-motor
drivetrains is negligible since, in both sun and ring branch,
it is attenuated by the gear ratios of the gearbox in that
branch. Furthermore, the inertias of the sun and ring branch
are an order of magnitude lower than that of the reference
drivetrain.

The inertias of the individual drivetrains, of course, do not
reveal much about the overall performance of the DMA. This
is best represented by the reflected inertia w.r.t. the input
(motor side) and the output (load side), which are discussed
below.

4.2.1 Inertia reflected to motors The inertia matrix A,
defined in Section 3.2, contains the inertia reflected to the
motors:

A =

[
JS + CS

n2
S

1
1+ρCPG

1
1+ρJC

CS
nSnR

1
1+ρCPG

ρ
1+ρJC

CR
nRnS

ρCPG
1+ρCPG

1
1+ρJC JR + CR

n2
R

ρCPG
1+ρCPG

ρ
1+ρJC

]
(36)

The inertia matrix contains coupling terms. Neglecting
gearbox losses, the coupling terms are identical and given
by

Jcoupling =
1

nSnR

ρ

(1 + ρ)
2 JC (37)

There are several ways to make the coupling terms disappear:
nSnR →∞, JC → 0, ρ→ 0 or ρ→∞. Considering that,
for a single-stage planetary differential, 1 < ρ, ρ→ 0 is not
realistic. Furthermore, the inertia of the load, if any, will need
to be included in JC . The carrier inertia JC can therefore not
be neglected either. Consequently, the only practical way to
reduce the coupling effect is to use high gear reductions nS ,
nR and ρ, although ρ cannot exceed a value of 9 for a single-
stage planetary differential. High gear reductions, however,
come at the cost of a lower efficiency for the respective
planetary gearbox, especially if stages need to be added.

Note that the coupling term (37) has the same form as the
“dynamic coupling term” proposed by Rabindran and Tesar
(2007) for a DMA design similar to the one presented in this
work, but with the ring of the planetary differential as output
and the carrier as secondary input. The main difference is
the dimensionless ratio ρ, which is defined differently for the
two designs.

4.2.2 Inertia reflected to output The total inertia reflected
to the output can be defined as

J∗
DMA,refl = −To/θ̈o (38)

i.e., the ratio of output torque to output acceleration. An
expression for J∗

DMA,refl can be obtained by imposing
T2m = 0 in Eq. (15) and neglecting all friction terms:

0 = Aẋ + DTo (39)

By combining Eq. (39) with Eq. (5) and performing some
simple mathematical operations, we obtain

J∗
DMA,refl =

(
JA−1D

)−1
(40)

If gearbox losses are neglected (CS = 0, CR = 0, CPG =
0) then D = JT , and Eq. (4.2) corresponds to the
pseudo kinetic energy matrix defined in Khatib (1987) for
kinematically redundant manipulators. In this specific case
of a single-output system, J∗

DMA,refl is a scalar given by

J∗
DMA,refl =

(1 + ρ)
2

1
JSn2

S
+ ρ2

JRn2
R

+ JC (41)

Note that, if JSn2S = 0 or JRn2R = 0, the reflected inertia
J∗
DMA,refl will reduce to JC . In other words, a low

inertia in either of both branches will greatly improve the
backdrivability of the actuator. Also note that Eq. (41) is
independent of the speed ratio γ. This is explained by the
fact that, in the derivation of Eq. (41), the influence of the
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Figure 4. Inertia reflected to load for the DMA (JDMA,refl(γ),
blue) and the 250W reference motor (Jref,refl, red). The
contributions of the sun (JS,refl(γ)) and ring (JR,refl(γ)) are
also indicated with dotted lines. For the DMA, the inertia
reflected to the load is a quadratic function of the speed ratio γ.

control input was removed by imposing T2m = 0. Eq. (41)
therefore does not provide any insights into how the energetic
cost of dynamic motions can be minimized by controlling γ.

To study the influence of the imposed speed ratio γ, we
will calculate an alternative expression for the total reflected
inertia to the output. We do this by following the approach
suggested by Rabindran and Tesar (2008). Here, the reflected
inertia is derived by stating that the sum of the system’s
kinetic energies should be equal to the kinetic energy of the
reflected inertia rotating at the output speed. In a lossless
system, this can be written as

1

2
JDMA,refl(γ) · θ̇

2

o =
1

2
JC θ̇

2

o +
1

2
JS θ̇

2

S +
1

2
JRθ̇

2

R (42)

Finding JDMA,refl(γ) would require an inversion of Eq. (5).
Due to the kinematic redundancy, this is impossible to
achieve. As a workaround, we introduced the speed ratio γ,
yielding the inverted relationships (9) and (11). This results
in the following expression for the reflected inertia:

JDMA,refl(γ) = JC + JS,refl(γ) + JR,refl(γ) (43)

with
JS,refl(γ) = n2S (1 + ρ)

2
(1− γ)

2
JS (44)

JR,refl(γ) = n2R
(1 + ρ)

2

ρ2
γ2JR (45)

Equation (43) indicates that the reflected inertia of the dual-
motor actuator JDMA,refl(γ) is a quadratic function of the
speed ratio γ. The dependence is visualized in Figure 4 for
the dual-motor actuator studied in this work. The minimal
reflected inertia Jtot,min occurs at

γ? =
1

1 +
JRn2

R

ρ2JSn2
S

(46)

and is equal to

Jtot,min =
(1 + ρ)

2

1
JSn2

S
+ ρ2

JRn2
R

+ JC (47)

which is exactly the same expression as Eq. (41). In
other words, the reflected inertia J∗

DMA,refl = Jtot,min
corresponds to the minimal value of the γ-dependent
reflected inertia JDMA,refl(γ).

Interestingly, the value of Jtot,min is lower than
JDMA,refl(γ = 0), where the speed is completely delivered
by the ring motor, and JDMA,refl(γ = 1), where the speed
is completely delivered by the sun drivetrain. This shows
that, in terms of reflected inertia, a dual-motor actuator
architecture is not bounded by the inertia of its separate
branches. Because the kinetic energy of a drivetrain is
proportional to the square of the speed, and the output
speed of the DMA is divided linearly over both actuators
(Eq. (5)), one would expect the dual-motor architecture to
be advantageous in applications where high accelerations are
required. This will be studied in Section 4.3.

Nevertheless, even the lowest reflected inertia of the DMA
Jtot,min is still slightly higher than that of the reference
motor (Jref,refl). A disadvantage of the DMA is that it
consists of more rotating components than a conventional
actuator. In particular, the ring gear and the couplings
required to attach the motors to the differential all add inertia
to the actuator. This is, however, not the reason for the higher
reflected inertia, since the contribution of these components
to the total inertia is negligible compared to the inertias of
the sun and ring drivetrains. The real reason is the additional
reduction through the planetary differential. Although the
inertias of the branches themselves are smaller than that of
the reference drivetrain (Table 3), the reduction from the
differential causes their inertia, reflected to the output, to be
approximately 4 times (sun) and 2 times (ring) higher than
that of the reference drivetrain.

Still, it must be noted that this analysis did not consider
the efficiency of the actuator, which also has an impact on
the reflected inertia. In this regard, it is important to note
that the dual-motor actuator was designed to have a higher
average efficiency throughout its operating range (Verstraten
et al. 2018). The higher efficiency can compensate somewhat
for the increased reflected inertia. Furthermore, the reflected
inertia was not considered in the design phase. By doing so,
it might be possible to conceive a design with lower reflected
inertia, without compromising on efficiency.

4.3 Maximum acceleration
So far, we have established that the DMA has a slightly
larger operating range, but a higher reflected inertia. We will
now discuss how this translates to the maximum achievable
output acceleration.

A common metric to assess the acceleration capability
is the ratio between the maximum torque Tmax and the
rotor inertia Jm. An analysis similar to the one presented in
Haddadin et al. (2012) shows that this metric scales with the
motor ’s length lm and its radius rm as

Tmax
Jm

∼ l0mr−3/2
m (48)

This relationship is in line with catalog data, which exhibits
a scaling of Tmax/Jm ∼ r−1.6

m (Wensing et al. 2017). A
motor’s acceleration capability is thus proportional to its
length and decreases with its radius according to r−3/2

m . In
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other words, smaller motors can deliver relatively higher
accelerations. This appears to be a favorable situation for the
DMA where, in essence, we replaced a large motor with two
smaller ones. However, the DMA also links the accelerations
and torques of the output to those of the motors, which
complicates the discussion. Consequently, a more detailed
analysis is required to assess whether a DMA really can
really reach higher accelerations.

In accordance with Eq. (5), the maximum output
acceleration is simply the sum of the maximum accelerations
of the sun and ring branch:

θ̈max = J

[
θ̈Smax
θ̈Rmax

]
(49)

In order to relate the maximum acceleration to the design, we
simplify the motor torque (15) by neglecting friction:

T2m = Aẋ + DTo (50)

There are two contributions to the motor torque that must
be taken into account. The first part is related to the
accelerations of the motors, which is strongly influenced by
γ. The second part is related to the desired output torque
To. This torque is divided over both motors according to
Eq. (15), and consumes current from both motors. The
distribution over the motors is determined by the design
(parameter ρ) and, in contrast to the other term, cannot be
influenced by the speed ratio γ – except indirectly, through
manipulation of the speed-related friction terms.

The maximum acceleration for a specific static output
torque is achieved when both motor torques saturate.
Defining the vector of saturated motor torques,

T2max =

[
TSmax
TRmax

]
=

[
kTSISmax,peak
kTRIRmax,peak

]
(51)

Eq. (50) can be rewritten as

A−1 (T2max −DTo) =

[
θ̈Smax
θ̈Rmax

]
(52)

Left multiplication with J, defined in Eq. (6), gives

JA−1 (T2max −DTo) = θ̈max (53)

This equation defines the maximum acceleration θ̈max for
a specific output torque To. If we neglect the efficiencies
CPG, CS and CR and assume that both motors are identical
(TSmax = TRmax , Tmax and JS = JR , Jm), we find the
maximum acceleration

θ̈max (To) =

1
1+ρ

(
1
nS

+ ρ
nR

)
Tmax − 1

(1+ρ)2

(
1
n2
S

+ ρ2

n2
R

)
To

Jm +
(

1
n2
S

1
(1+ρ)2

+ 1
n2
R

ρ2

(1+ρ)2

)
Jo

(54)
where we replaced the carrier inertia JC with Jo, the
combined inertia of the carrier and load:

Jo = JC + Jload (55)

Compare to a regular DC motor with gear reducer:

θ̈max (To) =
1
nTmax −

1
n2To

Jm + Jo
n2

(56)
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Figure 5. Influence on the maximum acceleration of (a) load
inertia Jo and (b) static torque To. In Fig. (a), To = 0 Nm, and in
Fig. (b), Jo = 0 kgm2. There is an inverse quadratic relationship
between θ̈max and Jo, and an inverse linear relationship
between θ̈max and To. The DMA can achieve much higher
accelerations than the reference actuator at low loads. However,
the output torque and, especially, the load inertia have a much
stronger effect on the DMA. For high values of Jo, the maximum
achievable acceleration of the DMA approaches that of the
reference actuator, and will eventually drop below it.

In Eq. (54), it is not the sum of actuator inertias JS + JR ≈
2Jm but the inertia of a single motor (Jm) that appears. This
implies that the maximum acceleration scales favorably with
the inertias of the DMA drivetrains. On the other hand, if

n =
1

1 + ρ

(
1

nS
+

ρ

nR

)
(57)

then

n2 >
1

(1 + ρ)
2

(
1

n2S
+
ρ2

n2R

)
(58)

The static output torque and load inertia are thus reduced
more strongly by the conventional solution of a motor
with gear reducer. This means that, if the DMA and the
conventional actuator are designed to deliver the same static
torque output, the conventional actuator will perform better
dynamically at high output torques or with high inertial
loads. However, as demonstrated in Table 3, the inertia Jm
of the DMA’s motors can be made smaller than that of a
single drivetrain. As a consequence, the DMA starts off with
a higher acceleration capability, which nonetheless declines
more rapidly with increasing Jo and To than that of the
reference drivetrain. This is visualized in Fig. 5.
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Figure 6. Average electrical power per cycle required by (a) the
dual-motor actuator and (b) the reference motor to complete the
cyclic task given by Eqs. (59) and (60). The speeds are
calculated with optimal control, as specified in Section 3.5. The
dual-motor actuator maintains more of its acceleration capability
at high static loads. Furthermore, its energy consumption is
generally lower than that of the single-motor solution.

4.4 Energy efficiency comparison
In order to evaluate the energy efficiency of the actuator, we
calculate the electrical energy consumption in a task where
the actuator applies a sinusoidal speed to a variable load. The
trajectory is given by

θ̇imp = A0ω sin (ωt) (59)

with fixed amplitudeA0 = 60° and variable frequency ω. The
variable load consists of a variable static torque To and a
constant inertial load (Jload = 11.7 gm²):

Tload = T0 + JloadA0ω
2 cos (ωt) (60)

Based on the inertia matching principle (Pasch and
Seering 1984), the reference drivetrain design would be ideal
for an inertial load of Jload = 0.17 kgm2. The actual inertial
load is more than ten times lower to reflect the problem of
performing dynamic motions with drivetrains designed for
high torques, explained in the introduction of this article.

By varying the static torque To and the frequency ω, we
can test the actuator’s dynamic capabilities for different static
loads. The results are shown in Fig. 6.

In the absence of a static load, the reference drivetrain
is capable of reaching slightly higher frequencies than the
DMA, but the difference is rather small. Conversely, the
DMA is much more capable of dealing with static torques. In
accordance with the results from Section 4.1, the reference
drivetrain can only deliver torques of up to 10 Nm at

Load 
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(a) Test setup with inertial load.
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(b) Close-up view of the DMA.

Figure 7. Experimental test setup.

low frequencies, whereas the DMA can reach more than
20 Nm. What also sets both actuators apart is their energy
consumption, presented in Fig. 6 as the average electrical
power over a cycle. At low frequencies, the electrical energy
consumption is quite similar, but the difference increases
fast with increasing frequency. At frequencies approaching
2 Hz, the average power of the reference drivetrain easily
exceeds 100 W, while the average power of the DMA is only
around 30 W. In conclusion, these calculations demonstrate
that the better quasi-static efficiency of the DMA outweighs
the slight increase in reflected inertia.

5 Experimental results
In order to validate the results, an experimental test setup was
built. In this setup, depicted in Fig. 7a, a dual-motor actuator
(close-up in Fig. 7b) is coupled to a flywheel, which acts as
the load. The flywheel has an inertia of Jload=11.7 gm², the
same as in Section 4.4. The DMA is built using only off-the-
shelf components, and matches the one studied in Section
4 (parameters in Tables 1 and 2). It consists of a planetary
differential, constructed out of a 10:1 Neugart PLFE 064
planetary gearbox with an ordinary spur gear attached to the
ring. The sun gear is driven by a 150W Maxon RE40 DC
motor with a Maxon GP42C planetary gear reducer of ratio
15:1, and the ring gear by a 90W Maxon RE35 DC motor
with a 43:1 reduction provided by a Maxon GP42C planetary
gearbox. The ring drivetrain is coupled to the ring by means
of a 3:1 spur gear transmission, bringing the total reduction
of the ring branch to 129:1. Both motors are equipped with
a Maxon AB24 holding brake (24V, 0.4Nm) which adds an
inertia of 1 gcm² to the motor.
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Figure 8. Modeled (red) and measured (blue) speeds, voltages, currents and electrical powers in the ring and sun branch, for a
sinusoidal output speed with a frequency of 1.5 Hz. The measured values are averages over at least ten cycles. The 3σ confidence
interval is shown as a grey fill.

An ETH Messtechnik DRBK-50 torque sensor is mounted
between the actuator and the load. Finally, a US Digital
E6 encoder (2000 CPT) measures the output position. The
motor positions and speeds are retrieved from Maxon HEDL
5540 encoders (500 CPT) mounted on the motor shafts.
The signals from these encoders also serve as feedback
for the speed control, which is performed by a Maxon
EPOS3 controller (sun motor) and a Maxon MAXPOS 50/5
controller (ring motor), using the built-in profile velocity
mode. The electrical power measurement is obtained by
multiplying the motor voltage and current. Voltage is sensed
with custom-made differential amplifiers, while the current
is retrieved directly from the EPOS3 and MAXPOS units.

A sinusoidal speed is imposed at the output, according
to the specifications in Section 4.4. Imposed frequencies
are 0.25, 0.5, 1 and 1.5 Hz. The imposed input speeds are
obtained from optimal control, as explained in Section 3.5.

5.1 High-frequency measurement
We first present a high-frequency measurement in order to
gain a better understanding of how the DMA works, and
to demonstrate the validity of the model. Figure 8 shows

the speed, currents and electrical power consumption for the
measurement at 1.5 Hz.

5.1.1 Speed distribution The speed trajectories of the sun
and ring are roughly sinusoidal, their frequency in line with
that of the imposed trajectory. Between 0.14-0.2 s and 0.48-
0.53 s, the ring speed is capped at approximately 10 000 rpm.
This is due to saturation of the voltage, which was limited
to 30 V (see Section 3.4). To ensure that the correct output
speed is still reached, the sun delivers a slightly higher
speed during these time intervals, giving its speed profile a
sawtooth-like appearance.

Higher-frequency components are avoided in order to
prevent additional accelerations, which are the cause of most
of the torque delivered by the motors. This means that the
speed ratio γ should roughly be constant throughout most of
the cycle. Indeed, in Fig. 9, which shows the (imposed) speed
ratio over a range of cycles with different frequencies, we
observe that γ tends to stay close to a single value for most
of the cycle. For frequencies of 0.5 Hz and below, γ = 1 at all
times, meaning that the sun is held still and all speed is being
delivered by the ring branch – the most efficient branch in
the design. Because, at this low frequency, the dynamics can
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Figure 9. Imposed speed ratio γ over a range of sinusoidal
cycles with different frequencies. At low frequencies, only the
ring branch – the most efficient branch – is used, corresponding
to a speed ratio of γ = 1. When the frequency is increased, γ
takes on an average value between 0 and 1 in order to reduce
the reflected inertia. Upon velocity reversals (0%, 50% and
100% of cycle), γ can take on values above one or below zero
to smoothen the acceleration profiles of the individual motors.

be neglected, this result can be found by tracing the required
combinations of output torque and speed on the map with
the optimal speed ratio (Fig. 3). With a peak output torque
of 0.12 Nm and a maximum output speed of 30 rpm for the
0.5 Hz measurement, it is easy to see that the speed ratio γ
= 1 indeed corresponds to the optimal speed ratio according
to the map. At higher frequencies, the average value of γ
decreases towards γ∗ = 0.68, the value that minimizes the
reflected inertia JDMA,refl(γ), as discussed in Section 4.2.
We can therefore conclude that, in highly dynamic motions,
the decrease of individual motor speeds and accelerations
dominates the choice of the optimal speed distribution.

5.1.2 Current Many of the conclusions in this work are
derived from the dynamic model presented in Section
3. The validity of the model is proven by the excellent
agreement between the measured currents (blue) and the
currents estimated from Eqs. (15)-(21) (red). The currents
in both drivetrains are dominated by the inertial torque of the
respective drivetrain, and therefore follow their acceleration
pattern.

5.1.3 Electrical power and power flows Fig. 8 shows that
the peak electrical power in the ring branch is approximately
three times higher than that of the sun branch. But how much
of this power makes its way to the load, and how much is
lost as heat? To gain a better understanding of the power
consumption, we present four important contributions to the
electrical power in Fig. 10: the power related to the inertia of
the load (Jloadθ̇oθ̈o), the power related to the inertia of the
drivetrain (Jλθ̇λθ̈λ), the Joule losses (RλI2λ) and the friction
losses, which include the power lost through viscous and
Coulomb friction, as well as the gearbox losses.

The power flow related to the load is almost negligible
compared to the power flows related to the inertia of the
branches. In both branches, most of the input power is
used to move the inertia of the drivetrain itself. This is a
result of using a drivetrain designed for high torques to
perform dynamic motion. Such drivetrains are composed of
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Figure 10. Power flows for a sinusoidal oscillation at 1.5 Hz,
averaged over ten cycles. The power flows were estimated from
the position and current measurements.

high torque motors and/or high gear reductions, leading to
drivetrain inertia which is much higher than the inertia of the
robot’s links. When the payload is removed, most power will
move back and forth from the motor to the drivetrain inertia.

Inertia acts as an energy buffer, and therefore, the net
energy consumption of these power flows, however big
they are, is zero. They do, however, have an influence on
the required motor torque and, consequently, on the Joule
losses. These are much higher in the ring branch, where the
acceleration is the highest. The winding resistance in the ring
branch (RR = 583 mΩ) is also almost twice as high as that
of the sun branch (RS = 299 mΩ).

The other source of losses is friction. Friction losses are
related to the speed of the drivetrains, and therefore are not
affected by the drivetrain inertia. The losses are similar in the
sun and ring branch, but their contribution relative to the total
power flow is clearly higher in the sun branch, which has the
highest friction coefficients.

5.2 Energetic comparison

The measurements also allow for a direct comparison with
the simulated energy consumption in Section 4.4. The
calculated average power over a cycle is shown in Figure 11
and compared to the measurements on the setup. The
measured values are slightly higher than the predicted values,
indicating that there are still some unmodeled losses in the
system. Nevertheless, the quantitative behavior is similar.
Figure 11 also provides a good visualization of the difference
between the reference drivetrain (red) and the DMA (blue).
The energy consumption of the reference drivetrain rises
much more quickly than that of the DMA. At a frequency
of 1.5 Hz, the DMA only consumes 18 % of the energy
consumed by the reference drivetrain.
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6 Discussion In this section, we briefly
summarize and discuss the main
advantages and disadvantages of the
DMA design, based on the findings
presented in this work.

6.1 Extended operating range
In Section 4.1, we made the interesting observation that
the DMA was capable of providing high torques at low
speeds in the positive power quadrants, whereas the single-
motor alternative was not. This was achieved by exploiting
internal power flows. If the power flow in the most loaded
branch is reversed, friction can be used to absorb a part
of the output power, lowering the torque requirement from
the motor. This is a very important finding, since internal
power flows are generally considered to have an adverse
effect on the actuator’s efficiency, and therefore avoided.
This explains why, in previous analyses, the benefit of
internal power flows in terms of operating range was not
discovered. We do, however, consider the extended operating
range as a strong potential advantage, even if it comes at
a slightly higher energetic cost. The extended operating
range may, for example, reduce the need for brakes or non-
backdrivable mechanisms which increase the volume, weight
and mechanical complexity of the actuator.

6.2 Increased acceleration capability and
energy efficiency

The main goal of the study was to gain insight in how
the DMA performs in dynamic tasks. In Section 4.2, we
concluded that the ratio between the ring speed and output
speed, characterized by the variable γ, can be chosen in
such a way that the inertia of the actuator, reflected to the
output, is smaller than that of its composing drivetrains.
Nevertheless, we also found the minimal reflected inertia of
our DMA design to be slightly higher than that of a single-
motor alternative. This does not have to be a disadvantage
in terms of dynamic performance, though. In Section 4.3,

the maximum acceleration of the DMA was shown to be
higher than the single-motor reference drivetrain, although
the advantage declines with the inertia of the load. The
DMA, thanks to its extended operating range, was also able
to provide higher accelerations when a static torque was
added to the load. Furthermore, its energy consumption is
considerably lower than that of its single-motor equivalent.
This was evidenced by the calculations in Section 4.4 and the
experimental results in Section 5.2.

6.3 Flexibility towards conflicting torque-speed
requirements

The optimal speed distribution γ depends strongly on
the required output torque, speed and acceleration. If the
accelerations are low, most power will go through the branch
with the least amount of friction. For higher accelerations,
the optimal speed ratio tends to move towards the speed ratio
that minimizes the reflected inertia. In other words, the speed
ratio γ of the DMA can be tuned to meet the conflicting
torque-speed requirements of loaded and unloaded phases
in robotic tasks. The results from Section 5.1.1 suggest that
this adaptation should be performed relatively slowly with
respect to the motion. In all our trials with sinusoidal output
speeds, γ remained fairly constant, indicating that rapid
changes in γ should be avoided because of the additional
energetic costs that would result from the high accelerations
related to the high-frequency motion.

6.4 Trade-offs and further opportunities

Kinematically redundant actuators also have an obvious
disadvantage: the redundant drivetrains lead to a higher
total number of components. This gives rise to increased
investment costs and entails additional complexity in terms
of design, assembly and control. Intuitively, one would also
expect the volume and weight of the DMA to be larger
than that of a single-motor alternative. This is, however, not
necessarily true, since a kinematically redundant design may
be composed of smaller and lighter motors in combination
with smaller, more efficient gearboxes. The results in
Verstraten et al. (2018), for example, indicate that a DMA
design can actually be made lighter than a single-motor
alternative having the same operating range, provided that
its composing drivetrains are selected in a smart way. With
integrated designs, where the motors and the planetary
differential are combined in a single housing (Girard and
Asada 2015), the actuator’s volume and weight can be
further reduced. Even greater advantages may be achieved
by adding non-backdrivable elements to the design, as
they allow shaping the working range of the actuator to
fit the application more closely. However, as discussed in
the introduction of Section 4, the reduction in size and
weight of motors and gearboxes must be assessed against
the volume, weight and complexity added by the non-
backdrivable mechanisms. This work, where the optimal
usage of a simple DMA without brakes was studied, can
serve as a baseline for comparison.
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7 Conclusion
In this work, we explored the potential of kinematically
redundant actuators by studying its most common embodi-
ment: two electric motors coupled by a planetary differential.
To assess its qualities, this actuator, which we named “Dual-
Motor Actuator” (DMA), was evaluated against a single-
motor alternative capable of spanning roughly the same oper-
ating range. Our results indicate that a DMA can, indeed, be
used as an energy-efficient alternative to a classic drivetrain
consisting of a motor with speed reducer. Its capability of
providing higher torques at low speeds, combined with its
ability to divide the acceleration over two motors, makes it a
very suitable solution for applications which require a wide
range of torques, speeds and accelerations.
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