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Abstract
We present a dataset with models of 14 articulated objects commonly found in human environments and with RGB-
D video sequences and wrenches recorded of human interactions with them. The 358 interaction sequences total
67 minutes of human manipulation under varying experimental conditions (type of interaction, lighting, perspective,
and background). Each interaction with an object is annotated with the ground truth poses of its rigid parts and the
kinematic state obtained by a motion capture system. For a subset of 78 sequences (25 minutes), we also measured
the interaction wrenches. The object models contain textured three-dimensional triangle meshes of each link and their
motion constraints. We provide Python scripts to download and visualize the data. The data is available at https://tu-
rbo.github.io/articulated-objects/ and hosted at https://zenodo.org/record/1036660/.
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Introduction
The RBO dataset is a collection of 358 RGB-D video
sequences (67 minutes) of humans manipulating 14 articu-
lated objects under varying exeperimental conditions (type
of interaction, lighting, perspective, and background). All
sequences are annotated with ground truth of the poses of the
rigid parts and the kinematic state of the articulated object
(joint states) obtained with a motion capture system. We
also provide kinematic models of these objects including
three-dimensional textured shape models. For 78 sequences
(25 minutes) the interaction wrenches during the manipula-
tion are also recorded.

We present the first dataset with articulated objects. All
similar datasets contain single rigid-body objects that move
or are being manipulated. There are two datasets that could
be considered close to ours. The first one (Garcia Cifuentes
et al. 2017) is a dataset that was released together with
a method for robot arm tracking. This dataset contains
images and joint encoder values of a moving robot arm
and its kinematic and shape model. In contrast, our dataset
is targeted to the study of interactions with everyday
human objects: it contains models of multiple ubiquitous
articulated objects and sequences of interactions in varying
environmental conditions. The second dataset (Michel et al.
2015) provides models of four everyday articulated objects
and ground truth of the static pose of each link and the
changing pose of camera during the video sequence. The
sequences of this dataset do not contain any interaction or
manipulation of the objects, only camera motion. Therefore,
neither of these datasets can be used to study interactions and
to evaluate methods for perceiving them.

Our dataset will help evaluate algorithms for tracking
articulated objects (e.g. Schmidt et al. (2014)) and building
models of articulated objects (e.g. Martı́n-Martı́n et al.
(2016)). Apart from benchmarking, the dataset can also be

Figure 1. Our sensor setup for recording interactions with
articulated objects; Top: interaction in the motion capture
volume; Bottom left: tool with F/T sensor for recording
interaction wrenches, motion capture markers, and
measurements reference frame; Bottom right: Asus RGB-D
sensor with motion capture markers and measurements
reference frame

used to develop data-driven algorithms by exploiting the
provided models to generating virtual visual data. While
there is a vast amount of three-dimensional models and
datasets of objects (Kasper et al. 2012; Calli et al. 2015), very
few of them include and describe articulated mechanisms.
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Sensor Setup
We use the following sensors to record human interactions
with articulated objects (see Fig. 1):

• RGB-D camera Asus Xtion Pro Live, 640×480 pixels,
30Hz, pointed at the object.

• Motion capture system by Motion Analysis (2017),
capture volume: 1.5m3, including 18 Osprey cameras,
providing 3-D positions of fiducial markers at 100Hz.

• F/T sensor ATI FTN-Gamma DAQ/Net, calibration
SI-130-10, force/torque resolution: Fx = Fy = 1

40N ,
Fz = 1

20N , Tx = Ty = Tz = 1
800Nm, recorded

at 100Hz.

We acquired separately 3-D triangle meshes of each
articulated object part, using the following sensors and
methods:

• Structured light scanning system by David (2017),
SLS-3 HD, scan size: 60-500mm, resolution: down to
0.05mm.

• Reconstruction software Autodesk ReMake (2017),
used with photos taken with Casio Exilim EX-FC100,
9 MP.

Data Structure and Usage
The RBO dataset is available at https://tu-
rbo.github.io/articulated-objects/ and hosted at
https://zenodo.org/record/1036660/. It is composed of
two parts (see Fig. 2): a first part with descriptions
of 14 articulated objects and the main part
containing 358 human interactions with these objects.
We also provide Python scripts to facilitate downloading,
visualizing and working with the data.

Models of Articulated Object (objects/)
The RBO dataset contains 14 models of articulated mech-
anisms that are commonly found in human environments.
Table 1 depicts these objects and their kinematic structure.
Each object model (<object id>/) consists of:

• Link geometries (meshes/): We describe the shape of
a link as a three-dimensional triangle textured mesh
in the COLLADA (2012) format (<part name>.dae).
We provide the associated texture as JPEG
images (<part name><index>.jpg).

• Kinematic structure (configuration <date>/): We
define the relation of links and joints with the widely-
used Unified Robot Description Format URDF (2017)
(<object id>.urdf), an XML file format to describe
all elements of articulated objects with chain or tree
structure. The objects of the database possess one
degree-of-freedom (DoF) joints that can be either
prismatic or revolute joints. The base link is the
origin of the kinematic tree or chain. It is either
rigidly connected to the environment (represented
with a static joint with zero DoF) or completely
unconstrained (represented with a floating joint with
six DoF). The reference coordinate frame of a link
corresponds to a marker set of the motion capture
system (see Section Data Acquisition). We define

https://zenodo.org/record/1036660/

objects/

book/

meshes/

book bottom.dae

book top.dae

book bottom01.jpg

book top01.jpg

configuration <date>/

book.launch

book.urdf

...

interactions/

interactions index.csv

book/

book01 o.tar.gz

camera rgb/

<index>-<timestamp>.png

camera depth registered/

<index>-<timestamp>.txt

camera rgb camera info.csv

camera depth registered camera info.csv

cortex marker array.csv

rb poses array.csv

tf.csv

book joint states.csv

ft sensor netft data.csv

book02 o.tar.gz

...

...

Figure 2. The dataset is structured by objects and interactions.
Please see text for details.

the joint parameters and link meshes with respect to
these coordinate frames. Since marker set locations
can vary between recording sessions, we provide
a separate kinematic structure description for each
session indicated by the <date> suffix in the folder
name.

Interactions (interactions/)
The RBO dataset contains sensor data of 358 human
interactions with the 14 modelled objects (≥ 25 interactions
per object). The sequences last between 2.7 s and 69.0 s
(median: 9.15 s). They differ in lighting conditions, camera
perspective and motion, background, clutter, actuation of
the mechanisms and human motion (see Table 2). The file
interactions index.csv contains a list of all interactions
and their properties.

The sensor data is organized per object (<object id>/)
and interaction (<object id><index> o/). Each interaction
includes:

• RGB images: We store the color images
as 8-bit loss-less compressed PNG files
(camera rgb/<index>-<timestamp>.png).

• Depth images: We register the depth images to the
RGB camera frame (see Section Data Acquisition) and
store them as text files containing distances in meters
(camera depth registered/<index>-<timestamp>.txt).
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Table 1. The dataset contains 14 articulated objects. Letters in
the last column represent (S)tatic, (F)loating, (R)evolute and
(P)rismatic joints.

Object ID Picture Actuated Joints

globe F R

laptop F R

ikea S
P

R

foldingrule F R R

book F R

treasurebox F R

tripod F P R

clamp F P

pliers F R

cardboardbox F R

rubikscube F R

microwave S R

ikeasmall S
P

P

cabinet S
P

P

Table 2. Properties of the 358 interaction recordings

Lighting Conditions
Artificial
Natural
Dark

178
107

73

Camera Motion
Yes
No

100
258

Type of Background
Plain
Textured
Black

197
91
70

Clutter
Yes
No

109
249

Actuated DoFs
Only internal
Internal and external

162
196

Interaction Wrenches
Yes
No

78
280

• Intrinsic camera parameters: We provide the focal
length, center point and distortion parameters of the
Plumb Bob model (Brown 1966) for both, the camera
that generates RGB (camera rgb camera info.csv)
and the one that generates depth
images (camera depth registered camera info.csv).

• Extrinsic camera parameters: We represent the 6-
D transformation between the cameras of the RGB-
D sensor with a translation vector and a quaternion
(tf.csv).

• Infra-red marker positions: We include the 3-
D locations of all infrared fiducial markers in
the scene measured by the motion capture system
(cortex markers array.csv).

• Rigid body poses: We store the 6-D poses defined by
sets of infrared fiducial markers as position vectors and
quaternions. We include the pose of each link of the
articulated object, the RGB-D and force/torque (F/T)
sensor at 100Hz (rb poses array.csv).

• Joint configurations: We compute the joint configu-
ration of the articulated object in the scene from the
6-D poses of its links (<object> joint states.csv).

• Wrenches: We provide the forces and torques
for the interaction as provided by the F/T sensor
(ft ssensor netft data.csv). We include this data in
at least five interactions per object.

Utilities
We provide Python scripts and a ROS package on the website
https://tu-rbo.github.io/articulated-objects/ to facilitate the
download and visualization of the data.

• The download script (rbo downloader.py) fetches
object models and interaction files. The user can
also select groups of interactions fulfilling a certain
property, e.g. all interactions with an object, or all
interactions with wrench measurements.

• The visualization script (rbo visualizer.py) displays
the content of an interaction folder: RGB, depth
images, wrenches and/or joint states.

• ROS package: Additionally to the interaction
sequences in the file format described above, we also
provide all data in the form of a ROSBags (2017). We
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Figure 3. Visualization of the sensor data for opening a drawer: RGB and depth image (left), mesh model, point cloud and
coordinate frames of tracked bodies (middle), and drawer state and applied wrenches (right) with dashed vertical line indicating
current time.

provide a ROS package including scripts to visualize
the data in this format.

Data Acquisition

Visual Data and 6-D Body Poses

The main goal of our dataset is to evaluate and develop
algorithms based on visual data (RGB or RGB-D)
with/without interaction wrenches for the perception of
articulated objects. For this goal, it is crucial to register
accurately the visual information and the ground truth
provided by the motion capture system. We first calibrate
the intrinsic parameters of the RGB-D sensor. We use a
checkerboard of known dimensions and take pictures at
different poses of the checkerboard with respect to the
camera with both the RGB and the infrared camera of the
RGB-D sensor. We use an OpenCV-based camera calibration
tool to estimate the internal parameters of the cameras (focal
length, center point, and distortion parameters of the Plumb
model) by detecting corner points on the checkerboard and
estimating the parameters that minimize the squared error
of the reprojection of the points from a separate multi-
view PnP procedure per camera. We then rectify the color
and infrared images and estimate the 6-dimensional (6-D)
transformation between the RGB and the infrared camera of
the RGB-D sensor from a multi-view PnP procedure between
the cameras.

We calibrate the extrinsic parameters of the RGB-D sensor
with respect to the set of motion capture markers attached to
it (see Fig. 1). We attached infrared markers to the corners
of the checkerboard and use the motion capture system to
detect their 3-D location. The points are projected on the
color image based on the currently estimated transformation
between the sensor and the marker set. We minimize the error
of the projection of the point markers on the color image at
different locations of the checkerboard. After the calibration
procedure, the point clouds recorded from the RGB-D sensor
are registered with respect to the motion capture readings.

To acquire 6-D pose measurements of the articulated
object from the motion capture system we attach marker
sets to each of the links and place them inside the
tracking volume. The motion capture system estimates
the 3-D location of the infrared fiducial markers on the
scene with submillimeter accuracy and generates a 6-D
pose measurement based on the predefined model of the
arrangement of the markers within each marker set. While
a minimum of three infrared markers defines a marker set we
use at least five markers per set to improve the accuracy of
the 6-D pose measurements and the robustness of the system
against occlusions.

Kinematic Properties

We use the 6-D rigid body poses to compute the ground
truth of the joint parameters in an offline batch procedure.
We estimate the axis of a prismatic joint by fitting a line
to the time-varying positions of the child body with respect
to the parent body in a least-squares sense (Fig. 4, left).
The computation of the kinematic state of a prismatic joint
requires to define an origin. Without loss of generality we
use the first pose of the child body with respect to the parent
body as the origin. We calculate the prismatic joint state as
the distance between the child body and this point along the
fitted line.

For revolute joints, we estimate the orientation of the joint
axis as a unit vector, and its position as a 3-D point. We
obtain the plane that best fits the positions of the child body
with respect to the parent body during the interaction by
minimizing the squared distance of the points to the plane.
The plane’s normal corresponds to the orientation of the
revolute axis (Fig. 4, right). We then project all the points to
the plane and estimate a circle using a least-squares fit with
respect to the projected points. The circle’s center indicates
the position of the revolute axis. Without loss of generality
we use the radius connecting the projection of the first pose
of the child body with respect to the parent body as origin.
We calculate the configuration of the revolute joint as the
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Figure 4. Estimating the joint axis for a prismatic (left) and
revolute joint (right): The blue dots show the position of the
moving body, the red lines are the fitted axes. For the revolute
joint (right) the orientation of the axis is obtained by fitting a
plane (blue), while its position is based on a circle fit (red) within
that plane.

angle of the arc between the child body and this point along
the circle defined by joint axis position and orientation.

Interaction Wrenches
For each object we provide five interactions with measure-
ments of the interaction wrench. In these interactions the
humans actuate the articulated object with a tool attached to
a force/torque (F/T) sensor (Figure 1). The motion capture
system measures the pose of the interaction tool and we
provide it as part of the interaction data. We also provide a
three-dimensional textured model of the tool with the sensor.
The wrenches measured by the sensor and included in the
dataset are raw values with bias. We measured the bias in the
measurements with a calibration procedure where we align
in turns one of the main axis of the F/T sensor to the vertical
direction and collect the sensor readings. The result of the
calibration is the following wrench bias vector:

wb =

(
fb
τb

)
=

(
(−0.927N, 1.122N, 1.332N)

(0.104Nm, 0.027Nm,−0.033Nm)

)
In order to subtract the effect of the tool from the wrench
readings we measured the following dynamic properties of
the elements attached to the F/T sensor

• Mass: 163.0 g
• Center of Mass: (0 cm, 0 cm, −1.5 cm)

and the transformation between the frame tracked by the
motion capture system and the measurements frame depicted
in Fig. 1:

T ft meas
ft mocap =


0.991 0.052 −0.123 0.019
−0.060 −0.650 −0.757 −0.008
−0.120 0.758 −0.642 −0.001
0.0 0.0 0.0 1.0


Link Geometries
We use three alternative methods to generate three-
dimensional triangle meshes of the links of the articulated
models. For small-scale objects, we use a system based
on structured light (David 2017). It projects a known light
pattern onto the object to generate 3-D information. The
scanner acquires partial 3-D models from 24 different view
points using a rotating plate and integrates them into a
colored triangle mesh. Before the scan we perform an
initial calibration procedure to segment background from

foreground. For large-scale textured objects we use the
software Autodesk ReMake (2017), which reconstructs a
high definition 3-D mesh by applying a multi-view geometric
algorithm on overlapping color photos of the object. We
take ≈ 25 photos per object with a Casio Exilim EX-FC100
(resolution: 9 megapixel), located on a hemisphere centered
around the object. For large-scale textureless objects like the
cabinet we generate meshes by hand using the 3-D creation
suite Blender. We post-process all models to fill holes, to
remove parts of the surrounding environment, and to register
them to the attached motion capture markers.
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Martı́n-Martı́n R, Höfer S and Brock O (2016) An Integrated
Approach to Visual Perception of Articulated Objects. In:
Proceedings of the IEEE International Conference on Robotics
and Automotion (ICRA). Stockholm, Sweden: IEEE, pp. 862–
869.

Michel F, Krull A, Brachmann E, Yang MY, Gumhold S and Rother
C (2015) Pose estimation of kinematic chain instances via
object coordinate regression. In: Proceedings of the 2015
British Machine Vision Conference (BMVC). pp. 181–1.

Prepared using sagej.cls

http://remake.autodesk.com/about
http://remake.autodesk.com/about
http://hp.com/go/3dscan


6 The International Journal of Robotics Research XX(X)

Motion Analysis (2017) Motion analysis corporation. http://

ftp.motionanalysis.com. Accessed: 2017-05-30.
ROSBags (2017) Robot operating system (ros), bags of messages.

http://wiki.ros.org/Bags. Accessed: 2017-05-30.
Schmidt T, Newcombe RA and Fox D (2014) DART: Dense

articulated real-time tracking. In: Robotics: Science and
Systems. Berkeley, California, USA, pp. 342–350.

URDF (2017) Robot operating system (ROS), unified robot
description format (URDF). http://wiki.ros.org/

urdf. Accessed: 2017-05-30.

Prepared using sagej.cls

http://ftp.motionanalysis.com
http://ftp.motionanalysis.com
http://wiki.ros.org/Bags
http://wiki.ros.org/urdf
http://wiki.ros.org/urdf

	Introduction
	Sensor Setup
	Data Structure and Usage
	Models of Articulated Object (objects/)
	Interactions (interactions/)
	Utilities

	Data Acquisition
	Visual Data and 6-D Body Poses
	Kinematic Properties
	Interaction Wrenches
	Link Geometries


