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Abstract

This paper presents a distributed algorithm applicable to a wide range of practical multi-robot applications. In such multi-
robot applications, the user-defined objectives of the mission can be cast as a general optimization problem, without
explicit guidelines of the subtasks per different robot. Owing to the unknown environment, unknown robot dynamics,
sensor nonlinearities, etc., the analytic form of the optimization cost function is not available a priori. Therefore, standard
gradient-descent-like algorithms are not applicable to these problems. To tackle this, we introduce a new algorithm that
carefully designs each robot’s subcost function, the optimization of which can accomplish the overall team objective.
Upon this transformation, we propose a distributed methodology based on the cognitive-based adaptive optimization
(CAO) algorithm, that is able to approximate the evolution of each robot’s cost function and to adequately optimize its
decision variables (robot actions). The latter can be achieved by online learning only the problem-specific characteristics
that affect the accomplishment of mission objectives. The overall, low-complexity algorithm can straightforwardly
incorporate any kind of operational constraint, is fault tolerant, and can appropriately tackle time-varying cost functions.
A cornerstone of this approach is that it shares the same convergence characteristics as those of block coordinate
descent algorithms. The proposed algorithm is evaluated in three heterogeneous simulation set-ups under multiple
scenarios, against both general-purpose and problem-specific algorithms.
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1 Introduction

The new era of artificial intelligence and robotics has an
ever-increasing interest in multi-robot systems. The causality
of this trend is outlined in the following three points.
First, the recent advances in hardware and communications
allow the cooperative deployment of many affordable
robots. Second, the use of multiple robots introduces
redundancy, which can be translated into mission speed-
up and/or fault-tolerant characteristics (e.g., in cases when
one or more robots faces a malfunction). Third, the
utilization of multi-robot teams may tackle problems that
cannot be solved with a single robot (e.g., continuous
monitoring/guarding a large area). Robot missions in
which the multi-robot configuration can be more appealing
include surveillance in hostile environments (e.g., areas
contaminated with biological, chemical, or even nuclear
wastes), law enforcement missions (e.g., border patrol),
agriculture activities (e.g., soil sampling), and cleaning
missions (e.g., cleaning up an oil spill).

1.1 Related work
Unfortunately, many of the multi robot tasks have been

proven to be extremely difficult. For example, the online
generation of robot trajectories so as to maximize SLAM
accuracy and efficiency is NP-hard (Singh et al. 2009; Kollar
and Roy 2008a). Moreover, the offline design of multi-robot

trajectories in order to cover a known area of interest in
minimum time/energy has been proven NP-complete (Zheng
et al. 2005), etc.

To alleviate the above problem, many multi-robot
approaches attempt to solve a simplified version of the
original problem. In such a way, it is possible to construct
a computationally feasible solution, utilizing optimal control
or dynamic programming techniques, at the expense,
of course, of sacrificing global optimality. For instance,
to render the decision-making scheme computationally
feasible, many methodologies (Seyboth et al. 2015; Le Ny
and Pappas 2009; De La Cruz and Carelli 2008) assumed
relaxed or linearized versions of the multi-robot problem.
A usual assumption is that the robots operate in a
discrete space where their actions and measurements can
also take values from a finite discrete set of values
(Matignon et al. 2012; Spaan and Vlassis 2005). The
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exploitation of the above assumption can lead to remarkable
results in the context of multi-robot tasks, presenting
many real-life applications (e.g., Capitan et al. (2013)).
Unfortunately, these strategies cannot be fully informed
by the (usually occurring) continuous field measurements,
whereas they can be computationally intractable for large
state systems, e.g., a single mobile robot operating in the
real world often has millions of possible states (Roy and
Thrun 1999). Other multi-robot approaches that fall into
this class adapt the assumption of perfect or sufficient
knowledge of the dynamics of the overall multi-robot
system, i.e., the dynamics of each and every robot along
with their interactions with the other robots and the
external environment (Wang and Schwager 2016; Zhou and
Roumeliotis 2011). In such cases, the multi-robot problem
can be seen to be equivalent to a standard optimization
problem, where the robots’ decision values are generated
according to, e.g., a gradient-descent or gradient-descent-
like algorithm (Nesterov 2007). However, the requirement
for perfect or sufficient knowledge of the overall dynamics
renders the overall control design practically infeasible in
many multi-robot applications, as they typically involve a
large number of controllable variables with highly complex
and uncertain dynamics (Morgan et al. 2016; Chen et al.
2015; Gomes et al. 2013).

Another well-investigated class of multi-robot approaches
is the optimal one-step-ahead methodologies. In this family
of approaches, the next robots’ decision variables are chosen
greedily, so as to optimize an appropriately defined cost
function that is related to the problem in hand. For instance,
in the domain of multi-robot exploration, a common practice
is to choose the next robots’ positions that maximize the
expected information gain (Rooker and Birk 2007; Burgard
et al. 2005; Stachniss and Burgard 2003) or minimize the
trace of the extended Kalman filter (EKF) error covariance
matrix (Cui et al. 2016; Bourgault et al. 2002). Although,
many of these approaches have been successfully evaluated
in real-life multi-robot platforms, the majority of them
suffer from the following drawbacks. First and foremost, the
nonlinearities may give rise to undesirable divergence (such
as in cases where the noise does not follow the additive white
Gaussian noise (AWGN) model). For example, it is usually
considered that a robot can accurately estimate the position
of an object or a point in the environment (landmark/cell)
as soon as it perceives it. In most of the existing optimal-
one-step-ahead approaches, this assumption allows in each
timestamp the a priori calculation of the cost function, as
well as the robots’ decision variables that greedily optimize
such a cost function. Moreover, such an assumption is
crucial for overcoming deadlocks (local minima), which
are frequently encountered when greedy approaches are
employed (Palacios-Gasós et al. 2016; Rathnam and Birk
2013). Finally, the selection of an adequate cost function that
provides an efficient solution to the multi-robot problem is
not always trivial.

On the other side of the spectrum are the simulation-based
multi-robot methodologies (Kapoutsis et al. 2015b; Kollar
and Roy 2008b; Kohl and Stone 2004). The idea behind these
approaches is as follows. First a parameterized decision-
making mechanism is devised for generating the robot
decisions online, with different choices for its parameters,

leading to different decision-making mechanisms. Then,
realistic simulations or similar tools are used in order to
optimize the parameters of the decision-making mechanism.
Thus, conceptually, many of the optimization computations
that otherwise would take place on the real devices are
“moved” offline. The drawbacks of such approaches are as
follows: first, the simulations need to cover a wide range
of different realistic scenarios (and, thus, they may become
“expensive”) and second, because the dimensionality of
the optimization problem is quite high, a large number of
parameters is needed in order to come up with an efficient
decision-making mechanism.

We close this subsection by mentioning that for most
of the centralized approaches, in all three classes, it is
not clear how they can be extended to have a distributed
nature. Furthermore, the majority of the distributed multi-
robot algorithms [e.g., Palacios-Gasós et al. (2016); Morgan
et al. (2016); Rathnam and Birk (2013)] exploit application-
specific dynamics, therefore their solutions cannot be
generalized to a broader context. In other words, if the
problem objectives or the dynamics are changed, most of
the existing approaches must be redesigned from scratch to
adequately tackle the altered problem.

1.2 Contributions
To overcome the aforementioned problems, we propose

a new resource optimization algorithm, specifically tailored
to the context of multi-robot applications, that extends
the cognitive-based adaptive optimization (CAO) algorithm
(Kosmatopoulos 2009). CAO was originally developed
and analyzed for the optimization of functions for which
an explicit form is unknown but their measurements are
available, as well as for the adaptive fine-tuning of large-
scale nonlinear control systems (Kouvelas et al. 2011;
Kosmatopoulos and Kouvelas 2009).

In a nutshell, an update cycle on decision variables of
the proposed algorithm consists of the following steps.
Initially, the robots’ measurements are gathered in a central
node (robot or base station) where the calculation of the
global objective function takes place. In the following, each
robot’s contribution to the cost function is approximated and
forwarded to the corresponding robot. In a fully distributed
fashion, each robot constructs a linear-in-the-parameters
(LIP) estimator to approximate the (unknown, problem-
dependent) evolution of its subcost function. Then, each
robot generates random (or pseudo-random) perturbations
around its current state and neglects those that violate the
operational constraints (if any). Finally, the next robot’s
action is the one valid perturbation that achieves the best
score on the previously constructed estimator.

The proposed algorithm deviates from the original version
of CAO in its distributed nature. More precisely, although
each robot does not know explicitly either the decision
variables of the other robots nor of their measurements, it
is able to update its own decision variables effectively in a
way to cooperatively achieve the team objectives. The latter
can be achieved through a cost function that is exclusive
to each robot, designed so as to encapsulate not only
the mission objectives but also the other robots’ dynamics
(“data-driven gradient descent” approach: for more details
see Section 3). Rigorous arguments establish that despite the
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fact that the dynamics that govern the multi-robot system
are unknown, the proposed methodology shares the same
convergence characteristics as those of block coordinate
descent algorithms (Wright 2015). As exhibited in the
presented applications, the distributed nature of the proposed
algorithm also allows rapid convergence, especially in cases
with many robots.

The contributions with respect to the multi-robot
approaches as presented in the previous subsection are as
follows.

(i) The problem is formulated in a continuous domain
without the need to either know all the states and
measurements beforehand, or to perform a relaxation
on the original multi-robot problem (optimal control
and dynamic programming approaches). The ability to
cope with unknown dynamics (robots–environment)
and unknown cost functions imparts a generality to
the proposed algorithm, regarding the spectrum of
applications that can be utilized.

(ii) However, the main advantage of the proposed
algorithm is that it does not require either a
priori calculation of the cost function (optimal
one-step-ahead approaches) or the analytical form
of the system to be optimized to be explicitly
known (optimal control and dynamic programming
approaches). Instead, the proposed algorithm can cope
with cost functions whose calculation can only be
achieved by actually performing the corresponding
course of actions. Along the same lines, the proposed
algorithm does not require evaluation of the decision
variables in the vicinity of their current values for
calculating their corresponding updates. Instead, the
proposed algorithm is able to find the (locally) optimal
configuration for the decision variables by using
only noise-corrupted measurements collected from the
robots’ sensors.

(iii) Furthermore, instead of relying on exhaustive,
computationally intensive simulations (simulation-
based approaches), the proposed scheme is able to
online learn the problem-specific characteristics that
affect the user-defined objectives. By doing so, the
proposed algorithm does not need any elaborate model
in order to learn its decision-making mechanism.

It must be emphasized that apart from rendering the
optimization problem practically solvable, the proposed
approach preserves additional features that make it
particularly tractable:

(i) its complexity is low, allowing real-time implementa-
tions;

(ii) it can handle a variety of physical constraints;

(iii) it has fault-tolerant characteristics, i.e., online
redesign in case one or more robots being added or
removed, an extra task being added to the set of
objectives, etc.;

(iv) it is able to adapt its behavior even in cases where a
time-varying objective function is employed1.

1.3 Simulation testbeds
The proposed control strategy is evaluated on three

different simulation set-ups under multiple scenarios, against
both general-purpose and problem-specific algorithms. All
the simulation set-ups have been chosen so that: i) the
objective of the multi-robot mission can be expressed as
a cost function, and ii) the evaluation of which cannot be
performed beforehand.

In the first simulation set-up, the objective is to spread out
the robots over a 2D environment while aggregating in areas
of high sensory interest. An important aspect of the set-up
is that the robots are not aware beforehand of the sensory
areas of interest - instead, they learn this information online
via sensor measurements from their current positions. The
proposed algorithm is evaluated together with the approach
proposed by Schwager et al. (2009) for the problem in hand.

In the second simulation set-up, the trajectories of the
robots should be designed in real-time having a twofold
objective (which forms a trade-off). On the one hand, the
part of the 3D terrain that is monitored (i.e., visible) by the
robots has to be maximized and, on the other hand, for each
one of these visible points in the terrain, the closest robot
has to be as close as possible to that point. This problem
along with a centralized CAO-based methodology has been
proposed by Renzaglia et al. (2012), therefore a detailed
analysis regarding the performance of both algorithms, in
different scenarios, is presented.

Last but not least, the proposed methodology is evaluated
in the task of persistent coverage. The objective of this
application is to maintain a user-defined level of coverage
in an unknown environment (Palacios-Gasós et al. 2016).
This is a quite challenging task as the mission objectives
constantly change, whereas the unknown morphology of
the environment does not allow the prior calculation of the
improvement in the coverage task.

Conclusively, if it is possible to define a cost function
which encapsulates the mission objectives and can be
calculated through the robots’ measurements for every
decision variables configuration, the proposed methodology
will be directly applicable to the corresponding problem.

1.4 Paper structure
The remainder of the paper is structured as follows.

Section 2 presents the translation of a general-purpose multi-
robot framework to a constrained optimization problem,
highlighting the difficulties and the obstacles of the
general problem. The description of the proposed algorithm,
which tackles such a problem, is presented in Section 3.
Sections 4, 5, and 6 present three indicative multi-robot
applications: adaptive coverage of unknown 2D environment,
3D surveillance of unmapped terrains, and persistent
coverage of unknown 2D environments, respectively. In all
these sections, we perform a series of simulations in different
scenarios to adequately analyze the performance of the
proposed algorithm. The overall conclusions of the paper are
drawn in Section 7.

2 Problem formulation
Consider a team (swarm) that consists of N robots

interacting with each other, towards achieving a global set of
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objectives. Let us assume the following augmented decision
vector

x(k) ≡ [xτ1(k), xτ2(k), . . . , xτN (k)]
τ (1)

where xi(k) ∈ Rn denotes the decision variables of the
ith robot at the k th iteration. These decision variables
represent the controllable parameters of the available robots
(e.g., position, motors, propellers, thrusters, rotation of the
cameras, etc.). Furthermore, the augmented vector which
contains the available exteroceptive measurements takes the
form

y(k) ≡ [yτ1 (k), yτ2 (k), . . . , yτN (k)]
τ (2)

where yi(k) ∈ Rm denotes the measurement vector of the ith
robot at the k th iteration and its evolution can be represented
as

yi(k) ≡ hi(k, xi(k)) (3)

where hi(·) denotes an unknown, nonlinear function
that depends on both xi(k) and the specific problem
characteristics.

The accomplishment of the multi-robot system’s objec-
tives (e.g., mapping, surveillance, etc.) can be translated into
the minimization (or maximization)2 of a specifically defined
global cost function k, i.e.,

k ≡ J
(
x1(k), x2(k), . . . , xN (k)

)
(4)

where J (·) is a non-negative, nonlinear, scalar function
that depends, apart from the robots decision variables, on the
particular dynamics of the problem (e.g., the environment
where the robots operate). Owing to the dependence of the
function J on the particular problem characteristics, the
explicit form of the function J is not known in practical
scenarios; as a result, standard optimization algorithms (e.g.,
gradient descent with an a priori model) are not applicable.
However, in most practical cases, the current value of the
objective function can be approximated from the robots’
measurements,

J
(
x1(k), . . . , xN (k)

)
= J
(
y1(k), . . . , yN (k)

)
+ ξk (5)

where ξk denotes the noise introduced in the estimation
of k, owing to the presence of noise in the robots sensors.3

It must be emphasized that, in contrast to J , J can be
evaluated “offline”, if the measurement vector y(k) is
available. However, the acquisition of a new measurement
vector requires an actual evaluation of the decision variables
on the robotic system (2) and (3).

Apart from the problem of dealing with a criterion for
which an explicit form is not known, but only its noisy
measurements are available at each time, the decision vector
x(k) should satisfy a set of constraints that, in general, can
be represented as follows:

C (x(k)) ≤ 0 (6)

where C is a set of nonlinear functions of the decision
variables x(k). As in the case of J , the constraints function
C depends on the particular problem characteristics and an
explicit form of this function may be not known in many

practical set-ups; however, it is natural to assume that the
low-level algorithm is provided with information whether
a particular selection of decision variables x(k) satisfies or
violates the set of constraints (6).

Given the mathematical description presented above,
the problem of choosing the decision variables online
for a multi-robot system, so as to accomplish a set of
objectives, can be mathematically described as the following
constrained optimization problem:

minimize k
subject to C (x(k)) ≤ 0

(7)

As already noted, the difficulty in solving the constrained
optimization problem (7) in real-time lies in the fact that
explicit forms for the functions J and C are not available.
Although this is not the only problem, jointly optimizing
a function over multiple robots (N ), each of which with
multiple decision variables (n), can incur excessively high
computational cost.

3 Proposed algorithm
Having defined the fundamental aspects that govern a

multi-robot application, we proceed to present the proposed
algorithm for updating the decision variables x(k) so as to
minimize the cost function (4) subject to (6). A high-level
diagram of the proposed algorithm is sketched in Figure 1.

3.1 Global coordination
Step 1. As a first step, and for each iteration k, the robots

transmit the acquired measurements, after the execution of
x(k) decision variables.

It must be emphasized that this step can be performed even
in cases where global communication between all robots is
not feasible. In such a case, each robot can send and receive
measurements to and from peer (adjacent) robots, until all
the measurements aggregate to the corresponding processor
unit (robot or ground station). The latter can be guaranteed
by introducing an extra condition on the constraints set (6),
ensuring the connectivity, if applicable to the problem in
hand, among the different robots.

Step 2. Thus, the global cost function can be straightfor-
wardly derived from (see (4) and (5)):

k = J
(
y1(k), . . . , yN (k)

)
In addition, for each i th robot calculate, the following
discrepancy:

∆i(k) ≡ k−

J
(
y1(k), . . . , yi−1(k), yi(k − 1), yi+1(k) . . . , yN (k)

)
(8)

In other words, ∆i(k) encapsulates the effect of the xi(k)
on the current problem for the kth timestamp.

Note that, because the last term of (8) is analytically
available, we can calculate this term, although the resulting
value does not necessary correspond to the actual value when
the robots have the following decision variables:

{x1(k), . . . , xi−1(k), xi(k − 1), xi+1(k) . . . , xN (k)}
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Figure 1. High-level diagram of the proposed algorithm. At each timestamp, all the operational robots first apply their decision
commands and acquire the corresponding measurements y(k), in order to be able to calculate the global cost function index. Then,
the contribution ∆i(k) of the each robot to overall accomplishment of mission objectives is calculated and sent to the ith robot. In a
fully distributed fashion, each robot constructs a linear-in-the-parameters estimator to approximate the (unknown - problem
dependent) evolution of its sub-cost function Ji(k), which encapsulates both the mission objectives and the operational capabilities
of the multi-robot team. Finally, each robot’s next decision vector xi(k + 1) is the one valid perturbation that achieves the best
score on the previously constructed estimator.

Although, there may be a discrepancy between the way
we calculate J(·) and its actual value, that does not affect
the convergence properties of the proposed algorithm. This
discrepancy is application oriented and depicts the effect of
other robots’ decisions on each robot’s measurements. If the
measurements acquired from a robot only affects its own
decision variables and the problem itself (3), then there is
no discrepancy at all.

Step 3. Next, the calculated discrepancy ∆i(k) is sent to
the i th robot.

After this step all the calculations are performed locally,
building a system that i) is resilient to robot failures,
ii) does not require any global coordination, and ii) all
the decision variables’ updates are made in a (parallel)
distributed fashion.

3.2 Distributed decision
Each ith robot, at the same k-th iteration, performs the

following.

(a) Calculate the Ji(k) that corresponds to the last
executed decision variables xi(k) as

Ji(k) = Ji(k − 1) + ∆i(k), ∀k ≥ 1, Ji(0) = 0
(9)

Therefore, each robot is responsible to choose the next
values for its decision variables xi(k + 1), having as
only objective the minimization of its corresponding
cost function Ji(·)4. Each such sub-problem is a
lower-dimensional minimization problem, and thus
can typically be solved more easily than the full
problem.

(b) Construct a LIP estimator of Ji(k + 1) as follows:

Ji(k + 1) ≈ Ĵi(k + 1) = θτi (k)φi
(
xi(k)

)
(10)

where φi denotes the nonlinear vector of L regressor
terms, θi denotes the vector of the parameter estimates

and L is a positive user-defined integer which denotes
the size of the function approximator. Defining the
vector of regressor terms φi as in Section 3.3.1, the
estimator vector θi can be calculated using standard
least-squares estimator principles, i.e., θi is obtained
by solving the following optimization problem:

θi(k) = argmin
ϑ

k−1∑
`=k−T (k)

(
ϑτφi

(
xi(`)

)
− Ji(`+ 1)

)2

(11)
where T (k) denotes the time window over which the
least-squares estimation is taking place.

(c) Generate (randomly or pseudo-randomly) a set of M
valid candidate perturbations:

δx
(1)
i (k), δx

(2)
i (k), . . . , δx

(M)
i (k)

where δx(j)i (k) are vectors of the same dimension as
xi(k) and M is a positive integer that is larger5 than
2n. A candidate perturbation j is considered valid if6 :

C
([
xτ1 , . . . , x

τ
i−1, x

τ
i + δx

(j)
i , xτi+1, . . . , x

τ
N

]τ)
≤ 0

(12)

The random choice for the candidates is essential and
crucial for the efficiency of the algorithm, as such
a choice guarantees that Ĵi(k + 1) is a reliable and
accurate estimate for Ji(k + 1); see Kosmatopoulos
(2009) and Kosmatopoulos and Kouvelas (2009) for
more details.

(d) Estimate the effect of each of the candidate
perturbations on the current vector xi(k) by employing
the previously constructed estimator (10) and pick
the candidate perturbation with the “best” effect, i.e.,
choose the vector δx(j

∗)
i (k) that satisfies

δx
(j∗)
i (k) = argmin

j=1,...,M
θτi (k)φi

(
xi(k) + α(k)δx

(j)
i (k)

)
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(e) Update the i th robot decision variables as

xi(k + 1) = xi(k) + α(k)δx
(j∗)
i (k) (13)

where α(k) is a positive function chosen to be either
a constant positive function or a time-descending
function satisfying α(k) > 0,

∑∞
k=0 α(k) =

∞,
∑∞
k=0 α(k)2 <∞. Furthermore, α(k) ≤ ᾱ ∀k,

where ᾱ is a problem-specific constant, correlated
with the robot’s dynamics (e.g., maximum achievable
movement in one timestamp) and the objectives of the
multi-robot application.

(f) Finally, by applying the xi(k + 1) decision vector, the
corresponding yi(k + 1) measurements vector will be
acquired. This vector, along with all the measurements
from the remaining robots, are utilized in order to
evaluate the k + 1 team configuration (see Step 1 from
the previous subsection).

Remark 1 The above distributed update of the decision
variables (Section 3.2) does not need information about
what is happening to the other robots. All the necessary
information has been “packed” to the scalar value ∆i(k). At
each iteration, each robot attempts to minimize the objective
function Ji(k) by assuming that the other robots’ decision
variables are part of the problem to be solved.

Remark 2 The utilization of random perturbations provides
the proposed algorithm with the potential to escape from
local minima. In essence, the random perturbations inside
the distributed decision mechanism (step (c)), could have
a behavior similar to simulated annealing, which has been
proved that under specific conditions can overcome local
minima (Granville et al. 1994) that may arise from the
distributed nature of the algorithm.

3.3 Estimator implementation
This subsection encloses the implementation details of

the ith robot estimator (10), as outlined in step (b) of the
distributed decision-making scheme.

3.3.1 φ monomial construction. The vector φi of regres-
sor terms must be chosen so that it satisfies the so-called
Universal Approximation Property (Polycarpou and Ioannou
1991), i.e., it must be chosen so that the approximation accu-
racy of the constructed approximator (10) is an increasing
function of the approximator’s size L. Polynomial approx-
imators, radial basis functions, kernel-based approximators,
etc. are known to satisfy such a property (Polycarpou and
Ioannou 1991).

Experimenting with different types of φi, in different
multi-robot set-ups (Sections 4–6, and Kapoutsis et al. (2013,
2015a)), it was found that it is sufficient to construct a
polynomial estimator as in Algorithm 1.

The tunable parameters of this procedure are the maxi-
mum order of monomials (maxorder) and the correspond-
ing number of monomials per order (L1, L2, . . . , Lmaxorder,
where L1 + L2 + · · ·+ Lmaxorder = L− 1 should be hold).
Mathematically speaking, the number of different monomi-
als per order is given by the number of possible combinations

Algorithm 1 φi construction

Input: maxorder, L1, L2, . . . , Lmaxorder, xi, n
Output: φi

1: φi = 1
2: for j ∈ {1, ...,maxorder} do
3: for v ∈ {1, ..., Lj} do
4: g = 1
5: for l ∈ {1, ..., j} do
6: Generate r := random integer ∈ {1, . . . , n}
7: g = g · x(r)i
8: end for
9: φi = [φτi , g]

τ

10: end for
11: end for

with repetitions (multiset coefficient):((n
i

))
=

(
n+ i− 1

i

)
=
n(n+ 1)(n+ 2) · · · (n+ i− 1)

i!

where
(
a
b

)
denotes the binomial coefficient. However,

the summation L1 + L2 + · · ·+ Lmaxoder may exceed the
number of available monomials L− 1. A usual practice is
to downscale the number of monomials as follows:

Li =

[(
n+ i− 1

i

)
s

]
(14)

where [·] denotes the nearest integer and s denotes the
following scaling factor

s =
L− 1∑maxorder

i=1

(
n+i−1

i

)
3.3.2 Solving the least-squares problem. It is worth
pointing out that although the Ĵi(k + 1) is evolving in
a nonlinear fashion with respect to xi, standard linear
regression techniques can be utilized to find θi, as (10) is
still linear in the parameters’ vector. Therefore, the least-
squares problem as defined in (11) can be solved by several
algorithms (normal equation, QR decomposition, SVD, etc.).
Although, singular value decomposition (SVD) is more
computational intensive in comparison to other alternatives,
we utilize this approach due to the fact that it is more
numerical stable (e.g., when the problem is ill-conditioned)
(Demmel 1997).

3.4 Convergence analysis
Remark 3 As shown in Kosmatopoulos (2009); Kos-
matopoulos and Kouvelas (2009), the distributed algorithm
implemented in each robot (Section 3.2) guarantees that
If M ≥ 2× dim (xi), the vector φ satisfies the universal
approximation property and the functions Ji and C are
either continuous or discontinuous with a finite number of
discontinuities, then the update rule of xi (13) is equivalent
to

xi(k + 1) = xi(k)−A(k)∇xi
Ji + ε(k)

where A(k) is a positive definite matrix that depends on
the choice of α (see step (e) of the distributed decision-
making scheme) and ∇xiJi denotes the gradient of Ji with
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STEP Complexity Practical Comments
1-3 O (J (y)) O

(
N3m2

)
Application
dependent

4 O
(
L3
)

O(n3) Least-squares
Table 1. Complexity analysis

respect to the xi decision variables. In addition, ε(k) is a term
that converges exponentially fast to zero with probability
one. In simple words, the analysis of Kosmatopoulos (2009);
Kosmatopoulos and Kouvelas (2009) establishes that the
algorithm will converge to a local minimum of Ji.

The following theorem describes the properties of the
proposed methodology; as the proof of this theorem is along
the same lines as in (Bertsekas 1999, Proposition 2.7.1), only
a sketch of proof is provided.

Theorem 1 The local convergence of the proposed algorithm
can be guaranteed in the general case where the global cost
function J and each robot’s contribution Ji are non-convex,
non-smooth functions.7

Sketch of the proof: By using Remark 3 (projected
gradient-descent on the minimization of Ji) and Equations
(8)–(9), we can establish that the distributed update on each
robot is equivalent to

xi = argmin
w
J (x1, . . . , xi−1, w, xi+1, . . . , xN )

subject to (12) and therefore, the proposed algorithm approx-
imates the behavior of the block coordinate descent (BCD)
(Wright 2015, Algorithm 1) family of approaches. Following
the proof described in (Bertsekas 1999, Proposition 2.7.1), it
is straightforward to see that if the minimum with respect
to each block of variables is unique, then any accumulation
point of the sequence {x(k)} generated by the BCD method-
ology is also a stationary point.

3.5 Complexity
The computational burden regarding the global coordina-

tion (section 3.1) is accumulated in the calculation of ∆i(k)
(8) for each robot i. However, the calculation of J(·) is
problem-dependent, thus, it is not possible to analytically
derive bounds regarding its complexity. In the reported
cases (cost functions (19),(21),(23) and (27)), as well as
in most real-world applications, the computational needs of
J(·) grow, at most, quadratic with the number of robots ×
the number of measurements per robot, i.e., O

(
N2m2

)
.

Technically, the above threshold expresses the case where
an operation is needed per different pair of measurements
{y(i)a , y

(j)
b }, with a, b ∈ {1, . . . ,m} and i, j ∈ {1, . . . , N}.

Overall, J(·) is evaluated N + 1 times, one for each robot
and one for the global cost function term (8); therefore, Steps
1–3 are expected to have O

(
N3m2

)
.

The computational requirements for the distributed
decision (Section 3.2), which is computed on each robot, are
dominated by the requirement of solving the least-squares
problem (11). According to (Golub and Van Loan 2012,
Section 5.5.6, Figure 5.5.1), the best algorithms for least-
squares problem using SVD procedure, take time that is
proportional to O

(
T 2L+ L3

)
. In the interest of simplicity,

and owing to the fact that T ' L, we can assume that the
complexity for the distributed decision scales as O

(
L3
)
.

Although, there exist no theoretical results for providing the
lower bound L̄ for the size of the regressor vector, practical
investigations on many different applications [e.g., Korkas
et al. (2016); Kapoutsis et al. (2015a); Amanatiadis et al.
(2013)] indicate that it is sufficient enough to choose L ≥
L̄ = 2× n, to adequately tackle the local approximation
of Ji. Therefore, it is expected that the computational
requirements will grow with O(n3). Although this step is
executed on each robot (N times), the distributed nature of
the algorithm guarantees that no extra computational needs
will be required.

Overall, it is expected that the complexity of computing
N times the cost function J(·) dominates the requirement
of solving the least-squares problem for one robot. Table 1
summarizes the complexity bounds discussed in this section.

Remark 4 We close this section by accumulating the free
parameters of the proposed algorithm. The set is composed
of the number of perturbations M , the total number of
utilized monomials L and the time window T over which
the least-squares estimation is taking place. According
to Remark 3, the number of perturbations M should be
greater than 2× n. Furthermore, the complexity analysis of
Section 3.2 indicates that the estimator (10) should have
at least L̄ = 2× n number of monomials. Finally, T is a
non-negative integer that expresses the desired “forgetting
factor” for the constructed estimator. In the following
experimental set-ups, we set the algorithm’s parameters
within these bounds. Alternatively, and if required, all
parameters mentioned could be manually tuned in order to
achieve better, application-dependent, performance.

4 Adaptive coverage control utilizing
Voronoi partitioning

The first simulation set-up is the well-investigated optimal
robots’ placement problem (Schwager et al. 2009, 2006;
Cortes et al. 2002). The objective for the network of robots
is to spread out over an environment, while aggregating in
areas of high sensory interest. Furthermore, the robots do
not know beforehand where the areas of sensory interest
are, but they learn this information online from sensor
measurements. The aforementioned task can be found in
applications such as environmental monitoring and clean-up,
automatic surveillance of rooms/buildings/towns, or search
and rescue missions.

4.1 Problem definition
It is assumed that the operational area is a bounded Q ⊂

Rn. A point inside this environment is denoted by q and the
decision vector xi for the i th robot contains its position in
Q. In addition, let {V1, . . . , VN} be the Voronoi partition of
Q, for which the robot positions are the generator points:

Vi = {q ∈ Q| ‖q − xi‖ ≤ ‖q − xj‖ ,∀j 6= i}

(Henceforth, we use ‖·‖ to denote the Euclidean norm ‖·‖2)
Let ζ(·) to be the unknown sensory function such that ζ :
Q→ R>0 (where R>0 is the set of strictly positive real
numbers). In other words, this function ζ(·) assigns in each
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location of the available space Q a weight of importance
related to the necessity of being covered.

The global cost function for the problem in hand, admits
the following form:

J (x(k)) =

N∑
i=1

∫
Vi

1

2
‖q − xi‖2 ζ(q)dq (15)

Apparently, the above function cannot be calculated in
advance owing to the dependence of the unknown sensory
function ζ. Without loss of generality, we assume that the
sensory function is given by

ζ(q) = K(q)τυ +O(1/W ), ∀q ∈ Q (16)

where K : Q→ RW>0 denotes a vector of bounded,
continuous basis functions (e.g., Gaussians, wavelets,
sigmoids, etc.) and υ ∈ RW is the parameter vector. The
deviation from the actual value of ζ is in the order of the
number of basis functions O(1/W ). Although K is defined
a priori, the mixing parameters vector υ is environment-
dependent and generally unknown. However, the value of the
sensory function can be measured from the robots’ sensors
(e.g., temperature/chemical sensor) at their current position’s
configuration x(k).

y(xi) = ζ(xi) (17)

The value of the parameter estimation vector υ̂ can
be approximated through these measurements, utilizing
standard parameter estimation techniques (e.g., least-squares
approach (11)). Therefore, after the update on the parameter
vector υ̂, a new update on the belief regarding the sensory
function is also available through the equation

ζ̂ = Kτ υ̂ (18)

Hence, the value of the unknown cost function can be
approximated through the following equation:

J(y(k)) =

N∑
i=1

∫
Vi

1

2
‖q − xi‖2Kτ (q)υ̂dq (19)

4.2 Simulation results
For implementation reasons, we assume that the operation

area consists of 225 discrete points, uniformly distributed
across the plane of [0, 1]2. The sensory function, ζ(q), was
parameterized as a linear combination of 49 Gaussians,
i.e., K(j) = 1

2πσ2
j

exp− (q−µj)
2

2σ2
j

, ∀j ∈ {1, . . . , 49}. Each
standard deviation is set to be σj = 0.02 and the Gaussians
centers µj are chosen so as to be uniformly distributed
in the operational area (seven Gaussians in each row and
column). The parameter υ = [υ1, υ2, . . . , υ49]τ was chosen
so that υi = 0.1,∀i ∈ {1, . . . , 49}, apart from two random
integers a, b ∈ {1, . . . , 49} whereas υa = υb = 100. In other
words, for each simulation instance, the sensory function
ζ(q) was dominated by two, randomly selected, Gaussians.
Finally, the equations are integrated using a fixed step of
α = dt = 0.01 and the initial values for the estimation of
parameter vector (robots’ knowledge) was chosen to be υ̂ =
[0.1, 0.1, . . . , 0.1]τ .

In addition with the proposed approach, we present
simulation results from the algorithm as proposed, for the
problem in hand, by Schwager et al. (2009). The weights’
selection was undertaken following the authors’ instructions
in (Schwager et al. 2009, Section 7.2). To construct
comparable simulations instances, we utilize the same
learning rule for the parameter vector υ̂ (Schwager et al.
2009, equation 13). In both the evaluated algorithms, the
update of parameter vector was performed, by aggregating
all the robots’ measurements. To evaluate the performance
of each approach in each timestamp, we also calculate the
real value of the cost function (15), but none of the evaluated
algorithms utilizes this information.

The proposed approach was employed with a constant
time-window for the least-squares estimation of T = 30 and
the number random perturbations was set to beM = 100. To
approximate each robot’s cost function evolution, we utilize
a third-order monomial estimator with L = 10 and using
(14) we calculate the number of monomials per order to be
L1 = 2, L2 = 3 and L3 = 4.

4.2.1 Random initial positions scenario. In the first
simulation scenario, the robots were placed randomly along
the x and y axes of the operation area. An example of
this simulation set-up is illustrated Figure 2, where Figure
2(a) sketches the Voronoi partitioning for the initial robot
configuration. Figure 2(b) illustrates the robots’ trajectories
from their initial positions (squares) to the final configuration
(circles), and, finally, Figure 2(c) illustrates the Voronoi
partitioning for the final robots’ positions. As one can see,
the robots gathered around the areas with the highest values
of the unknown sensory function ζ(·).

Figure 3 presents a comparison study between the
evaluated algorithms, over different sizes of robot teams. The
number of robots was chosen to be 10, 15, 20, and 25 robots,
and for each configuration 60 experiments with randomly
selected initial robots’ placement and sensory function were
performed. The average, final achieved cost function (15)
values, along with the corresponding confidence intervals
are illustrated in Figure 3(a). In addition, we present the
summation of the cost function over the course of each
simulation pair (Figure 3(b)). It must be emphasized that,
although the summation of the cost function may be strongly
dependent on the initial robots’ positions the final achieved
value has a small variance around the average value. This
feature highlights the ability of the proposed approach to
converge to an optimal configuration, independently of the
initial conditions.

4.2.2 Right half-plane scenario. In the second simulation
scenario, the robots’ initial positions were constrained inside
the right half-plane of the operation area. In general, this
scenario has a greater level of difficulty, compared with
random initialization, as the robots can easily get stuck in
highly suboptimal situations. Figure 4 illustrates an instance
of such a scenario where the proposed approach was utilized.

As in the previous scenario, we present a comparison
between the evaluated algorithms for different sizes of robot
teams. The results are illustrated in Figure 5. Again, the
proposed approach utilizes all the available team resources
in order to achieve optimal robot configurations with small
variance around the average values.
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(a) (b) (c)

Figure 2. Illustrative example with random initial positions for the robots. (a) Initial Voronoi partitioning. (b) Robots’ trajectories on
top of the heatmap of the sensory function. The squares and the circles denote the initial and the final positions of the robots,
respectively.(c) Voronoi partitioning of the final configuration. In these figures, we sketch how the proposed algorithm drives the
available robots so as to completely cover the space and to aggregate around areas with high sensory interest.

(a) (b)

Figure 3. Comparison study for the random initial positions scenario: proposed algorithm (blue) and approach presented by
Schwager et al. (2009) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s
horizon.

(a) (b) (c)

Figure 4. Illustrative example where the robots initial positions are constrained inside the right half-plane of the operational
environment. The proposed algorithm navigates the robots around the space, utilizing only their measurements on their current
positions, to achieve the mission objective. (a) Initial Voronoi partitioning. (b) Robots’ trajectories on top of the heatmap of the
sensory function. (c) Voronoi partitioning of the final configuration.

(a) (b)

Figure 5. Comparison study for the right half-plane scenario: proposed algorithm (blue) and approach presented in Schwager
et al. (2009) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s horizon.
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5 Three-dimensional surveillance of
unknown areas

A more elaborate variation of the previously described
set-up has been proposed by Renzaglia et al. (2012) and
applied in several domains (e.g., Kapoutsis et al. (2015a);
Scaramuzza et al. (2014)). Although the problem is again
the optimal placement of robots in realtime, the details
of the simulation set-up are important. First and foremost,
the robots are moving inside a 3D space (e.g., unmanned
aerial vehicles). The terrain to be covered is considered an
unknown, non-convex, 3D surface the formation of which
may form an arbitrary number and shape of obstacles.
Furthermore, a realistic model for the robots’ sensors is
employed and utilized in all the simulation scenarios.

5.1 Problem definition
In this simulation testbed, the decision variables (1)

represent the positions of the robots in 3D space, i.e., x =
[xτ1 , . . . , x

τ
N ]
τ , where xi ∈ R3. It is assumed that the area

to be monitored is constrained within a rectangle in the
(x, y)−coordinates as

U =
{

x, y | x ∈ [xmin, xmax], y ∈ [ymin, ymax]
}

where xmin, xmax, ymin, ymax are real numbers that define
the “borders” of the area of interest. Using the definition of
U , the area can be defined as a function that maps each point
(x, y) ∈ U to a point z = z(x, y) (height of unknown terrain
at (x, y)). A point q = (x, y, z) of the terrain is visible if there
exist at least one robot so that:

• the robot xi and the point q are connected by a line-of-
sight;

• ‖xi − q‖ ≤ thres, where thres defines the maximum
distance the ith robot can “see”.

Given the robots configuration x(k) at timestamp k, we let V
to denote the visible area of the terrain, i.e., V consists of all
points q ∈ U that are visible from the robots.

Furthermore, the measurements’ model for all the robots
admits the following form:

yxi−q =

{
‖xi − q‖+ hξ(xi, q)ξ if q ∈ V
undefined otherwise ∀q (20)

where hξ(xi, q) is the multiplicative sensor noise term
(e.g.,∝ ‖xi − q‖2) and ξ is a standard Gaussian noise. The
above nonlinear noise model is a realistic representation
of the noise effect in many real robot systems (Salavasidis
et al. 2016)(Teixeira 2007, Chapter 3-4). For instance, in the
case of sonar or cameras, the noise affecting such sensors
is proportional to the sensor-to-sensing-point distance, i.e.,
the larger the robot-to-sensing-point distance, the larger the
sensor noise (Scaramuzza et al. 2014).

Having the above formulation in mind, we define the
following combined cost function that the team of robots has
to minimize

J(y(k)) =

∫
q∈V

min
i=1,...,N

yxi−qdq +K

∫
q∈U\V

dq (21)

The fist term is equivalent to the cost function considered
in many coverage problems for known 2D environments
(Cortes et al. 2002; Choset 2001). The second term is related
to the invisible area in the terrain. The positive constant K
serves as a weight for giving less or more priority to one of
the objectives.

Moreover, the set of nonlinear constraints (6), which must
be held for each new robots’ configuration x(k), include the
following:

• the robots remain within the terrain’s limits, i.e., within
[xmin, xmax] and [ymin, ymax] in the x- and y-axes,
respectively;

• the robots satisfy a maximum height requirement,
while they do not hit the terrain, i.e., they remain
within [z + dh, zmax] along the z axis, where dh
denotes the minimum safety distance the robots should
always have from the terrain and zmax denotes the
maximum allowable operational height for the robots;

• ‖xi − xj‖ ≥ dr, ∀i, j ∈ {1, . . . , N} and i 6= j, i.e.,
the safety distance between two robots is dr.

5.2 Simulation results
The centralized CAO-based approach that has been

proposed for the problem in hand (Renzaglia et al.
2012) is utilized for comparison purposes. The proposed
approach was parametrized with a time window T = 40
for the least-squares estimation, with M = 100 random
perturbations, the corresponding approximator was a third-
order monomial estimator with L = 18, and the number of
monomials per order (14) were L1 = 2, L2 = 5 and L3 =
10. Acknowledging the fact that the CAO algorithm performs
optimization in a higher-dimensional space (centralized
optimization scheme), a different set of parameters was
chosen. Evaluating the CAO version for different numbers
of random perturbations, we found that after M = 900
the number of random perturbations does not affect
its performance. Furthermore, to cope with the higher-
dimensional state space, the time window was set to
T = 60 and the approximator was chosen to be a third-
order monomial estimator with L1 = 3, L2 = 12 and L3 =
40 (with overall size of L = 56). In both algorithms, we
utilize α = 0.1 to update the robot’s positions. For the rest
of this section, we use these values in all the presented
experiments.

To perform simulations in a realistic environment,
we utilized the morphology of an area located in
Zürich, Switzerland (Figure 6(a)). This map was generated
using a state-of-the-art visual-SLAM algorithm (Doitsidis
et al. 2012), which tracks the pose of the camera
while, simultaneously and autonomously, building an
incremental map of the surrounding environment. The
terrain’s dimension is [0, 162] m and [0, 84] m for x and y
axes, respectively, while the height of the terrain is between
[0, 7.2] m and the maximum operational height was set to
25 m. Following the authors instructions Renzaglia et al.
(2012),K weight (21) was chosen to be 30, whereas both the
safety distance from the terrain and the minimum allowable
distance between two robots were set to be dh = dr = 0.5m.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6. Surveillance of unknown terrain by a team of robots. The proposed algorithm and the CAO-based approach (Renzaglia
et al. 2012) are evaluated on the same set-up (environment, robots initial positions, robots sensor capabilities). (a) 3D
representation of the surface to be covered; (b) initial positions of the available robots; (c) 3D view, CAO-based approach; (d) top
view, CAO-based approach; (e) 3D view, proposed approach; (f) top view, proposed approach; (g) cost function evolution.

Finally, the duration of each experiment was set to kmax =
600 timestamps.

Figure 6 depicts such a simulation instance with six
robots. The initial positions of the robots, as it is sketched
in Figure 6(b), were selected to be “crowded” inside a
sub-area of the terrain. Figures 6(c) and 6(d) illustrate the
final robots’ configuration, as calculated by the CAO-based

algorithm in 3D and 2D representation, respectively. The
corresponding final robots’ assignment as calculated by the
proposed approach is presented in Figures 6(e) and 6(f). In
both cases, the 3D representation reports which sub-area
of the terrain is covered by each robot, whereas the 2D
representation reveals the exact positions of the robots in
x− y plane and the distance between them. Figure 6(g)
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depicts the evolution of the cost function (21) for both
the evaluated algorithms. Apart from the difference in the
convergent state, the proposed approach is able to find this
solution from its early steps (< 50). The centralized CAO
needs more iterations to learn the dynamics of the robots
and the unknown terrain, because it performs its optimization
scheme in the higher-dimensional space of R3N (R18 for the
six robots). In contrast, the proposed algorithm separately,
although cooperatively, solvesN (=6 robots for this instance)
optimization problems of the size of R3.

In the specific problem set-up, the speed of convergence
requires extra attention, as a slow convergence rate may lead
to instability or loss of convergence at all. More specifically,
if a navigation algorithm does not converge fast enough to
the optimal configuration, one or more robots may have
reached high-altitude positions, from which they cannot
acquire useful measurements (out of their sensor capabilities
(20)). This is a non-recoverable situation, as the robots do
not have any “feedback” from the terrain to properly evaluate
their actions.

5.2.1 Scalability analysis. To validate both the efficiency
and the effectiveness of the proposed algorithm in the case
of larger robot teams, we performed experiments with 5, 10,
15, and 20 robots8. For each different size of robotic team,
we created 20 experiment instances with randomly chosen
initial robots’ positions. The aforementioned simulation
instances are evaluated on both the proposed approach and
the centralized CAO-based approach.

The results of these simulations are summarized in Figure
7. Figure 7(a) displays the average value of the resulting cost
function J(kmax), along with the corresponding confidence
interval, over the different number of robots. In addition,
Figure 7(b) displays a statistical analysis on the summation
of cost function

∑kmax
0 J(k), to investigate the convergence

rate of each pair (scenario–algorithm).
Overall, the proposed approach achieves an average

improvement of 23% on the final achieved cost function
value, with 55.33% improvement on the deviation around
that average value. Moreover, the summation of cost
function has been improved by 23.84% with a corresponding
improvement on the deviation of 65.06%, against the
centralized CAO-based approach. The proposed approach
achieves these performance enhancements mainly due to the
two following reasons.

(i) The proposed algorithm has a better perspective on the
change of the overall cost function by evaluating the
appropriate combinations of historical measurements
on that cost function (Step 2-3 of the proposed
approach).

(ii) The fast convergence of the proposed approach
eliminates the chances for a robot to be found out of its
sensors capabilities. Therefore, the proposed approach
is able to converge on approximately the same robots’
configuration (per different team size), independently
on the robots’ initial positions. The latter is depicted
in the substantial improvements on the corresponding
confidence intervals.

5.2.2 Fault-tolerant characteristics. In this scenario, we
investigate the performance of the proposed algorithm in

the case of catastrophic events or hardware failures. More
precisely, five robots were initially deployed to perform
the aforementioned coverage task, whereas the duration of
the experiment was increased to kmax =1,000 timestamps.
It is assumed that, at timestamp 330, one robot did not
correspond to our control commands and the measurements’
flow had been interrupted. Under these new circumstances,
the surveillance task has to be undertaken by remaining,
properly working robots. After the completion of two-
thirds of the available timestamps, we assume that another
robot had an equipment malfunction and cannot continue its
covering task. Thus, the number of available robots, which
are called to cover the area of interest for the∼300 remaining
timestamps, has dropped to three.

Figures 8(a)–8(f) illustrate the evolution of the robots
positions during the course of the previously described
scenario, utilizing the proposed approach. After both the
robots’ malfunctions, the algorithm redesigns the remaining
robot positions to achieve the best possible coverage.
Overall, Figure 8(g) demonstrates the evolution of the
objective function for the proposed approach in comparison
with the centralized CAO-based approach (Renzaglia et al.
2012).

It must be emphasized that the proposed algorithm does
not need any separately designed, fault-detection mechanism
(e.g., failure in establishing communication, operator to
detect the malfunction, etc.), as it is able to implicitly
derive this kind of information from the changes in the cost
function J with respect to the commanded positions. The
above feature is of paramount importance in real-life multi-
robot applications, because it removes the tedious, and in
many applications impossible, task to predict (or identify
online) all the possible malfunctions, as well as to design the
appropriate course of actions.

5.2.3 Target monitoring. We close this section by inves-
tigating the algorithm’s capability to process objectives that
can be alternated/activated on the fly, without stopping and
restarting the mission. To achieve this, simultaneously with
the coverage task, we introduce the task of monitoring a
target. For the sake of this simulation set-up, it is assumed
that, in addition to the sensors which are responsible for the
coverage task (20), the robots are equipped with exterocep-
tive sensors (e.g., cameras, sonars, etc.) which are able to
estimate the targets’ positions, according to the following
measurement model:

yxi−χj
=

 ‖xi − χj‖+ hξ(xi, χj)ξ if χj has
been detected

undefined otherwise
(22)

where χj denotes the jth target’s position in 3D space,
hξ(xi, xt) and ξ, similar to equation (20), denote the
multiplicative sensor noise term and the standard Gaussian
noise, respectively. Therefore, an extra term has to be
added to the cost function (21) to appropriately evaluate the
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(a) (b)

Figure 7. Comparison study over different number of robots: proposed algorithm (blue) and CAO-based approach (Renzaglia et al.
2012) (red). (a) Final achieved value of the cost function. (b) Summation of the cost function over the experiment’s horizon

progress of targets’ monitoring, as follows:

J(y(k)) =

∫
q∈V

min
i=1,...,N

yxi−qdq +K

∫
q∈U\V

dq

+Kt

nt∑
j=1

min
i=1,...,N

yxi−χj

(23)

where Kt serves as a weight to give more or less priority
to the monitoring task in comparison with the coverage. In
addition, nt denotes the number of targets to be monitored.

The experiments were performed in the same terrain,
under the previously defined set-up parameters. Figure
9 illustrates four key snapshots, which demonstrate the
functionality of the proposed algorithm. Figure 9(a) depicts
the robots’ initial positions along with the corresponding
coverage on the terrain. After 367 timestamps (figure 9(b)),
the algorithm has converged to the (locally) optimal robots’
configuration for the coverage-only problem. At k = 370
timestamp, it is assumed that a target, which requires closer
examination, appears inside the operation area. The proposed
algorithm, after the time needed to learn the changed
problem dynamics (activation of the third term in (23)),
starts to adapt the robots’ positions to minimize the updated
cost function (23). More precisely, as illustrated in Figure
9(c), the purple robot (which was, at the time, closer to the
target) starts to gain height to minimize its distance from
the detected target. However, such an action leads to poor
coverage on the subarea underneath that robot. To alleviate
the above undesirable situation, the proposed algorithm
redesigns the remaining robots’ positions so as to achieve
the best coverage of the terrain with the available resources.
The final robots’ positions with the corresponding coverage
of the terrain is sketched in Figure 9(d). The evolution of the
objective function for the proposed approach in comparison
with the centralized CAO-based approach is demonstrated
in Figure 10. Conclusively, for this simulation scenario, the
proposed algorithm:

• chooses to assign a robot to be as close as possible to
the target without any explicit command;

• adapts the other robots positions so as to “fill the hole”
in the coverage task; and

• achieves almost the same level of terrain coverage with
the centralized CAO-based approach for five robots
(Figure (10) dashed line), whereas one (out of five)
robots is occupied with another task.

6 Persistent coverage inside unknown
environment

In the final application, we focus on the problem of
persistent coverage in an area of interest with a team of
robots. In this application, it is assumed that the operational
robots are equipped with the appropriate sensors that are
able to cover a portion of the environment. The objective
in a persistent coverage application is to continuously
cover an area of interest, assuming that the coverage level
follows a time-decaying function. The problem along with
a specifically designed algorithm has been proposed in
Palacios-Gasós et al. (2016). The authors also established
a well-defined, heuristic mechanism to online share the
coverage evolution between the robots in a distributed way.

Although the results are remarkable, the proposed
decision-making mechanism in Palacios-Gasós et al. (2016)
utilizes a model that accurately predicts the improvement
in the coverage level with respect to the robots movement
(Palacios-Gasós et al. 2016, equations (10),(18)-(21)). In
real-world applications, the above assumption does not
always hold, as the increase in coverage level (i) is
usually corrupted by nonlinear noise, (ii) can be affected
by environmental specific characteristics, such as local
morphology, obstacles, other robots’ positions, etc., (iii)
may follow a time-varying model (e.g., coverage level
deteriorates over time). To circumvent these difficulties, we
propose a variation of the above problem, where the changes
in the level of coverage cannot be accurately predicted
before the action. The actual information about the exact
covered area is only available after the execution of each
corresponding action through the robot’s measurements. The
above formulation is not only more realistic, as it does
not require an exact model of the environment or robot’s
coverage capabilities, but also more generic, as it does not
need to redesign the approach when robots with different or
unknown coverage models are deployed.

6.1 Problem definition
It is assumed that the operational area is a bounded Q ⊂

R2, which a team of robots has to persistently cover. The
decision variables (1) represent the collective vector of all
the robots’ positions, i.e., x = [xτ1 , . . . , x

τ
N ]
τ , where xi ∈ Q.

Inside the environment there are several positions q ∈
O ⊂ Q that cannot be traversed by the robots and
additionally the presence of these obstacles affects each
robot’s coverage distribution. Although the exact positions
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 8. Malfunction scenario: five robots were initially deployed for the surveillance task. At two distinct timestamps, the swarm
of robots loses one of its member due to a simulated malfunction. The surveillance task have to be continued with the remaining
team resources. (a) Initial positions of the five available robots. (b) Coverage task with all five available robots. (c) One timestamp
after the malfunction on the red robot. (d) Coverage task with four robots. (e) One timestamp after the malfunction on the yellow
robot. (f)Again, the algorithm redesigns the robots positions to cover the area in the best possible way utilizing the available
resources. (g) Cost function evolution.

of the obstacles are generally unknown, we assume that
the robots are able to sense their presence when they are
in close proximity. The above assumption is in line with

the most commercial robots which are also equipped with
proximity sensors to avoid collisions (e.g., Nieuwenhuisen
et al. (2014)). Thus, each robot’s new candidate position xcand

i
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(a)

(b)

(c)

(d)

Figure 9. Target monitoring scenario. The robots have been deployed with an extra objective (apart from the surveillance task) to
get as close as possible to a target. The target appears inside the operation area of the robots in the middle of the mission. (a)
Timestamp 1:initial positions of the five available robots. (b) Timestamp 367: coverage task with all five available robots. (c)
Timestamp 427: the purple robot starts to gain height to minimize the distance from the target. As a consequence, it cannot cover
adequately its underneath surface. (d) Timestamp 1,000: finally, the algorithm redesigns the robots positions so as to cover the
area in the best possible way utilizing the available resources.

should verify the following constraint [see equation (6) of the
general problem formulation]:

min
q∈O

(∥∥xcand
i − q

∥∥) ≥ b (24)

where b denotes the safety distance. At each timestamp
k, the overall coverage increase is given by y(q, k) =
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Figure 10. Cost function evolution in target monitoring scenario.

∑
i∈{1,...,N} yi(q, k), ∀q ∈ Q, where

yi(q, k) =


γi(q, xi) if ‖xi − q‖ ≤ rcov

i &
there is line-of-sight
between xi and q

0 otherwise

(25)

and γi(q, xi) denotes a nonlinear function that models
how the coverage level evolves in the area around the
ith robot’s position. Note, that coverage distribution model
γi(q, xi) may be different for each robot as it expresses the
functionality of its on-board sensors.

The coverage of the operational area can be modeled by a
time-varying field and, in general, admits the following form:

Z(q, k) = d(q)Z(q, k − 1) + y(q, k), ∀q ∈ Q (26)

In other words, the coverage level decreases to a constant
decay gain d(q), with 0 < d(q) < 1, and increases according
to the y(q, k). The objective of the multi-robot team is to
maintain a desired coverage level, Z∗(q) > 0, ∀q ∈ Q.

Having the above formulation in mind, we define the
quadratic coverage error the robot team has to minimize

J(k) =

∫
Q

(Z∗(q)− Z(q, k))
2
dq (27)

6.2 Simulation results
All simulations were performed in a rectangle environ-

ment consisting of 100× 150 units, with uniformly dis-
tributed decay rate d(q) = 0.995, ∀q ∈ Q. The desired cov-
erage level is Z∗(q) = 100, ∀q ∈ Q. The number of robots
was N = 6, whereas their maximum motion is umax = 5.
The coverage increase in open space (obstacle-free), caused
by the robots’ movements, can be simulated by:

γi(q, k) =
P

rcov2
i

(‖xi − q‖ − rcov
i )

2 (28)

The maximum value is set to P = 17 and the coverage
radius is set to rcov

i = 10 units. Please note that this equation
is not utilized during the decision-making process, but
it is only employed to simulate the increase in the area
coverage, with respect to the robot’s movement. Finally, the
experiments’ duration is set to kmax = 900 timestamps.

To adapt the parameters of the proposed algorithm to the
current application, we have to take into consideration that
the navigation algorithm has to rapidly change its behavior
owing to the time-varying nature of the cost function.

Therefore, the time window for the least-squares estimation
was only T = 5 timestamps and the number of perturbations
was M = 100 candidates. To solve the underlying least-
squares optimization problem (11) with such a reduced
historical values, we utilize only a second-order monomial
estimator with L1 = 2 and L2 = 2 (with overall size of
L = 5). Finally, following also the problem definition in
(Palacios-Gasós et al. 2016, Section II.), we utilize α = 1
to update the robot’s positions.

6.2.1 Obstacle-free environment. In the first simulation
scenario, we deploy the team of robots in an obstacle-free
environment. An indicative simulation run of this scenario
is summarized in Figure 11. Figures 11(a)–11(c) present the
evolution of the coverage across the environmentQ, for three
different timestamps. In addition, Figures 11(d), 11(e), and
11(f) depict the evolution of the average coverage level,
the corresponding standard deviation, and the quadratic
coverage error for the course of the experiment, respectively.
After the experiment execution, the average coverage level
in all the operational environment Q was 97 with a standard
deviation of 21.2 and the corresponding quadratic coverage
error was 6.9× 106.

It should be highlighted that, the objective (27) is a
time-varying function with high rate of change, i.e., the
evaluation of (27) may result in significantly different scores
for the same robots positions, even for very close timestamps.
However, the proposed scheme is able to appropriately tackle
the above problem, by constantly learning these cost function
variations with respect to the robots’ positions.

Although the proposed algorithm presents an equivalent
performance compared with the dedicated one (Palacios-
Gasós et al. 2016, Section VI.), if the problem is defined as
in this scenario and the coverage evolution with respect to
the robots movement being accurately predicted, a dedicated
approach should be preferred to avoid the extra time due to
learning (equations (10) and (11) of the proposed algorithm).
However, the proposed approach has several advantages
when it is deployed in a real-world environment, where the
evaluation of the coverage increase cannot be performed
beforehand. Such a scenario is presented in the following
paragraph.

6.2.2 Unknown cluttered environment. In the final sim-
ulation scenario, we investigate the performance of the
proposed approach for the persistent coverage task, when it
is evaluated on an unknown environment with non-convex
obstacles. The obstacles have been created randomly and do
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(a) (b) (c)

(d) (e) (f)

Figure 11. Obstacle-free scenario: the coverage level for three different timestamps ((a) timestamp 1, (b) timestamp 200, and
(c)timestamp 400) and the corresponding performance indices ((d) average coverage level, (e) standard deviation of coverage level,
and(f) cost function, quadratic coverage error).

(a) (b) (c)

(d) (e) (f)

Figure 12. Scenario in an unknown environment with non-convex obstacles: the coverage level for three different timestamps
((a)timestamp 1, (b) timestamp 200, and (c) timestamp 400) and the corresponding performance indices ((d) average coverage
level, (e)standard deviation of coverage level, and (f) cost function, quadratic coverage error).

not hold any kind of pattern. The minimum distance between
the obstacles and any robot (24) has been set to b = 2.5.

Again, an illustrative example is presented in Figure 12.
Following the same presentation policy, Figures 12(a), 12(b),
and 12(c) illustrate the evolution of the of the coverage across
the environment Q, for three different timestamps. Figures
12(d), 12(e), and 12(f) depict the evolution of the average
coverage level, the corresponding standard deviation, and
the quadratic coverage error (27), respectively.

The cost function (27) does not need any adaptation to
this scenario as the coverage values Z(q) that correspond to
obstructed locations q ∈ O will remain zero, independently
of their distance from any robot. In other words, the
calculation of (27) does not need the information of the
unknown obstacles, as the robots would never send coverage
updates (25) about the obstacles’ positions. However, to
construct comparable metrics with the previous scenario, we
exclude the values that correspond to obstacles’ locations

from the calculation of the average coverage level (Figure
12(d)). After the experiment execution, the average coverage
level insideQ was 90.7 with a standard deviation of 32.1 and
the corresponding quadratic coverage error was 6.6× 106.

Comparing the outcomes of two scenarios side by side, we
can draw the following observations:

• In the cluttered environment scenario, the robots
can more easily get “trapped” in overcovered areas,
resulting in a higher standard deviation. In other
words, when a robot detects (implicitly from the
changes in its corresponding cost function) that its
position deteriorates the coverage level, may have only
a small subset of possible new positions.

• During the course of the experiment in the cluttered
environment, the obstacles “blocked” a portion of
the robots’ coverage capabilities. Therefore, for the
cluttered environment scenario, the robots achieved
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a smaller average coverage level (excluding the
obstacles positions).

7 Conclusions
A distributed methodology for dealing with multi-robot

problems, where the mission objectives can be translated
into an optimization of a cost function, has been proposed.
In contrast to the majority of the multi-robot approaches,
where the objectives are accomplished in a cost function
optimization scheme, the proposed approach has been
designed for multi-robot problems where the a priori
calculation of the cost function is not feasible. In a nutshell,
the proposed approach has the following key advantages:

• it does not require any knowledge of the dynamics of
the overall system;

• it can incorporate any kind of operational constraint or
physical limitation;

• it shares the same convergence characteristics as those
of BCD algorithms;

• it has fault-tolerant characteristics;

• it can appropriately tackle time-varying cost functions;

• and it can be realized in embedded systems with
limited power resources.

Conclusively, we expect that many interesting tasks
in mobile robotics can be approached by the proposed
scheme. This is basically due to the fact that the
proposed approach, instead of explicitly solving a particular
problem, which requires prior knowledge of the system
dynamics, learns, from the real-time measurements, exactly
the features of the system which affect the user-defined
objectives. Furthermore, the proposed approach can be
appealing in many real-life application owing to its fault-
tolerant characteristics, without an explicitly designed fault-
detection mechanism. All the above issues are considered of
paramount importance in the emerging field of multi-robot
applications.

As future directions, we are interested in performing an
extensive set of experiments, ideally with a large number of
robots (e.g., a large swarm of femtosatellites (100 g class
spacecraft) Hadaegh et al. (2016)). In particular, in such a
set-up, it is impossible to explicitly program each and every
robot to perform a subtask, therefore the goal will be to
achieve an abstract set of objectives, which are defined in
the form of cost function optimization. The idea behind the
above formulation is, by excluding the intermediate steps
from the design process, we enrich the multi-robot decision
making scheme with autonomy, regarding the “type” of
converged solutions.
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Notes

1. The rate of change in the objective function should be smaller
than the learning capabilities of the algorithm (see Section 2)

2. Without loss of generality, in the rest of the paper we assume a
minimization problem.

3. Note that, although it is natural to assume that the noise
sequence ξk, is a stochastic zero-mean signal, it is not realistic
to assume that it satisfies the typical AWNG property, even if
the robots sensors do; as J is a nonlinear function of the robots
decision variables and, thus, of the robots sensor measurements
(3), the AWNG property is typically lost.

4. In general case:
∑N

i=1 Ji(k) 6= k and
∏N

i=1 Ji(k) 6= k, ∀k
5. See Kosmatopoulos (2009) for more details about the

sufficiency of this condition.
6. The distributed nature of the algorithm may impose a stricter

set of constraints, in comparison with cases where a centralized
control is applied.

7. Moreover, recent studies imply that BCD methodologies can
achieve global convergence even in cases where the global
cost function (4) is non-convex but holds some properties. For
example, in Xu and Yin (2013) the authors established global
convergence of the BCD algorithm in the general case where
the global cost function J and each robot’s contribution Ji are
non-convex functions, but the so-called Kurdyka-Łojasiewicz
(KL) property is satisfied.

8. Note that, for the current experiment set-up with the previously
defined sensor’s capabilities, the utilization of more than 15
robots cannot significantly affect the coverage task.
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