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ABSTRACT

Trust is essential in shaping human interactions with one another and with robots. This paper dis-
cusses how human trust in robot capabilities transfers across multiple tasks. We first present a
human-subject study of two distinct task domains: a Fetch robot performing household tasks and a
virtual reality simulation of an autonomous vehicle performing driving and parking maneuvers. The
findings expand our understanding of trust and inspire new differentiable models of trust evolution
and transfer via latent task representations: (i) a rational Bayes model, (ii) a data-driven neural net-
work model, and (iii) a hybrid model that combines the two. Experiments show that the proposed
models outperform prevailing models when predicting trust over unseen tasks and users. These
results suggest that (i) task-dependent functional trust models capture human trust in robot capa-
bilities more accurately, and (ii) trust transfer across tasks can be inferred to a good degree. The
latter enables trust-mediated robot decision-making for fluent human-robot interaction in multi-task
settings.

1 Introduction

As robots enter our homes and workplaces, interactions between humans and robots become ubiquitous. Trust plays a
prominent role in shaping these interactions and directly affects the degree of autonomy rendered to robots [Sheridan
and Hennessy, 1984]. This has led to significant efforts in conceptualizing and measuring human trust in robots and
automation [Muir, 1994, Lee and Moray, 1994, Castelfranchi and Falcone, 2010, Yang et al., 2017].

A crucial gap, however, remains in understanding when and how human trust in robots transfers across multiple tasks
based on the human’s prior knowledge of robot task capabilities and past experiences. Understanding trust in the multi-
task setting is crucial as robots transition from single-purpose machines in controlled environments—such as factory
floors—to general-purpose partners performing diverse functions. The mathematical formalization of trust across tasks
lays the foundation of trust-mediated robot decision making for fluent human-robot interaction. In particular, it leads
to robot policies that mitigate under-trust or over-trust by humans when interacting with robots [Chen et al., 2018].

In this work, we take a first step towards formalizing trust transfer across tasks for human-robot interaction. We
adopt the definition of trust as a psychological attitude [Castelfranchi and Falcone, 2010] and focus on trust in robot
capabilities, i.e., the belief in a robot’s competence to complete a task. Capability is a primary factor in determining
overall trust in robots [Muir, 1994], and this work investigates how trust in robot capabilities varies and transfers
across a range of tasks.

Our first contribution is a human-subject study (n = 32) where our goal is to uncover the role of task similarity
and difficulty in the formation and dynamics of trust. We present results in two task domains: household tasks and
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autonomous driving (Fig. 1). The two disparate domains allow us to validate the robustness of our findings. We
show that inter-task trust transfer depends on perceived task similarity, difficulty, and observed robot performance.
These results are consistent across both domains, even though the robots and the contexts are markedly different:
the household domain, involves a Fetch robot that navigates and that picks and places everyday objects, while the
driving domain involves a virtual reality (VR) simulation of an autonomous vehicle performing driving and parking
maneuvers. To our knowledge, this is the first work showing concrete evidence for trust transfer across tasks in the
context of human-robot interaction. We have made our data and code freely available online for further research [Soh,
2018].

Based on our experimental findings, we propose to conceptualize trust as a context-dependent latent dynamic function.
This viewpoint captures the main findings of our experiments and is supported by prior socio-cognitive research
showing the dependence of trust on task properties and on the agent to be trusted [Castelfranchi and Falcone, 2010].
We focus on characterizing the structure of this “trust function” and its dynamics, i.e., how it changes with observations
of robot performance across tasks. An earlier version of this paper [Soh et al., 2018] presents two formal models: (i)
a Bayesian Gaussian process (GP) [Rasmussen and Williams, 2006] model, and (ii) a connectionist recurrent neural
model based on recent advances in deep learning. The GP model explicitly encodes a specific assumption about how
human trust evolves, via Bayes rule. In comparison, the neural model is data-driven and places few constraints on
how trust evolves with observations. Both models leverage latent task space representations (a psychological task
space) learned using word vector descriptions of tasks, e.g., “Pick and place a glass cup”. Experiments show both
models accurately predict trust across unseen tasks and users. This paper introduces a third model that combines the
Bayesian and neural approaches and show that the hybrid model achieves improved predictions. All three models are
differentiable and can be trained using standard off-the-shelf optimizers.

In comparison with prevailing computational models [e.g., Lee and Moray, 1994, Xu and Dudek, 2015], a key benefit
of these trust models is their abilities to leverage inter-task structure in multi-task application settings. As predic-
tive models, they can be operationalized in decision-theoretic frameworks to calibrate trust during collaboration with
human teammates [Chen et al., 2018, Wang et al., 2016, Nikolaidis et al., 2017a, Huang et al., 2018]. Trust calibra-
tion is crucial for preventing over-trust that engenders unwarranted reliance in robots [Robinette et al., 2016, Singh
et al., 1993], and under-trust that can cause poor utilization [Lee and See, 2004]. To summarize, this paper makes the
following key contributions:

• A novel formalization of trust as a latent dynamic function and efficient computational differentiable models
that capture and predict human trust in robot capabilities across multiple tasks;

• Empirical findings from a human subjects study showing the influence of three factors on human trust transfer
across tasks, i.e., perceived task similarity, difficulty, and robot performance;

• Systematic evaluation showing the proposed methods outperform existing methods, indicating the importance
of modeling trust formation and transfer across tasks.

2 Background and Related work

Research into trust in robots (and automation) is a large interdisciplinary endeavor spanning multiple fields including
human-factors, psychology, and human-robot interaction. This paper extends a prior conference version [Soh et al.,
2018] with additional discussion and analyses of the human-subject experiment. In addition, we include a new com-
putational trust model — that hybridizes the neural and Bayesian methods — with updated experimental results and
expanded discussion on the computational models, learned task-spaces, and word-based task descriptions. In this
section, we provide relevant background on trust and computational trust models.

Key Concepts and Definitions. Trust is a multidimensional concept, with many factors characterizing human trust
in robots, e.g., the human’s technical expertise and the complexity of the robot [Lee and Moray, 1994, Muir, 1994,
Hancock et al., 2011]. Of these factors, two of the most prominent are the performance and integrity of the machine.
Similar to existing work in robotics [Xu and Dudek, 2016, 2015], we assume that robots are not intentionally deceptive
and focus on characterizing trust based on robot performance. We view trust as a belief in the competence and
reliability of another agent to complete a task.

There are two types of trust that differ in their situation specificity. The first is dispositional trust or trust propensity,
which is an individual difference for how willing one is to trust another. The second is situational or learned trust, that
results from interaction between the agents concerned. For example, the more you use your new autonomous vehicle,
the more you may learn to trust it. In this paper, we will be concerned mostly with situational trust in robots.
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Figure 1: Experiment Task Domains: (Left) Household tasks with the Fetch Research Robot picking and placing ob-
jects (top left) and indoor navigation (bottom left) (Right) Autonomous Driving tasks in the Virtual Reality simulation
system. Tasks included parking and various navigation scenarios.

Figure 2: Trust Transfer Experiment Design. Two categories of tasks were used: (A) picking and placing different
objects, and (B) navigation in a room, potentially with people and obstacles. Participants were surveyed on their
trust in the robot’s ability to successfully perform three different tasks (red boxes) before and after being shown
demonstrations of two tasks. The two demonstrated/observed tasks were always selected from the same cell (blue
boxes; cell randomly assigned, with either both successes or both failures). The tested tasks were randomly selected
from three different cells—the (i) same category and difficulty level, (ii) same category but different difficulty level,
and (iii) different category but same difficulty level— compared to the observed tasks.
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Trust Measurement. Trust is a latent dynamic entity, which presents challenges for measurement [Billings et al.,
2012]. Previous work has derived survey instruments and methods for quantifying trust, including binary mea-
sures [Hall, 1996], continuous measures [Desai and Munjal, 2012, Xu and Dudek, 2016, Lee and Moray, 1992],
ordinal scales [Muir, 1989, Hoffman et al., 2013, Jian et al., 2000] and an Area Under Trust Curve (AUTC) mea-
sure [Desai et al., 2013, Yang et al., 2017] which captures participant’s trust through the entire interaction with the
robot by integrating binary trust measures over time. In this paper, we use a self-reported measure of trust [similar to
Xu and Dudek, 2015] and Muir’s questionnaire [Muir, 1994].

Computational Models of Trust. Previous work has explored explanatory models [e.g., Castelfranchi and Falcone,
2010, Lee and See, 2004] and predictive models of trust. Recent models have focused on dynamic modeling, for
example, a recent predictive model—OPTIMo [Xu and Dudek, 2015]—is a Dynamic Bayesian Network with linear
Gaussian trust updates trained on data gathered from an observational study. OPTIMo was shown to outperform an
Auto-Regressive and Moving Average Value (ARMAV) model [Lee and Moray, 1994], and stepwise regression [Xu
and Dudek, 2016]. Because trust is treated as “global” real-valued scalar in these models, they are appropriate when
tasks are fixed (or have little variation). However, as our results will show, trust can differ substantially between tasks.
As such, we develop models that capture both the dynamic property of trust and its variation across tasks. We leverage
upon recurrent neural networks that have been applied to a variety of sequential learning tasks [e.g., Soh et al., 2017]
and online Gaussian processes that have been previously used in robotics [Soh and Demiris, 2015, 2013, 2014].

Application of Trust Models. Trust emerges naturally in collaborative settings. In human-robot collabation [Niko-
laidis et al., 2017b,a], trust models can be used to enable more natural interactions. For example, Chen et al. [2018]
proposed a decision-theoretic model that incorporates a predictive trust model, and showed that policies that took
human trust into consideration led to better outcomes. The models presented in this work can be integrated into such
frameworks to influence robot decision-making across different tasks.

3 Human Subjects Study

In this section, we describe our human subjects study, which was designed to evaluate if and when human trust
transfers between tasks. Our general intuition was that human trust generalizes and evolves in a structured manner.
We specifically hypothesized that:

• H1: Trust in the robot is more similar for tasks of the same category, compared to tasks in a different category.
• H2: Observations of robot performance have a greater affect on the change in human trust over similar tasks

compared to dissimilar tasks.
• H3: Trust in a robot’s ability to perform a task transfers more readily to easier tasks, compared to more

difficult tasks.
• H4: Distrust in the robot’s ability to perform a task generalizes more readily to difficult tasks, compared to

easier tasks.

3.1 Experimental Design

An overview of our experimental design is shown in Fig. 2. We explored three factors as independent variables:
task category, task difficulty, and robot performance. Each independent variable consisted of two levels: two task
categories, easy/difficult tasks, and robot success/failure. We used tasks in two domains, each with an appropriate
robot (Fig. 3):

• Household, which included two common categories of household tasks, i.e., picking and placing objects, and
navigation in an indoor environment. The robot used was a real-world Fetch research robot with a 7-DOF
arm, which performed live demonstrations of the tasks in a lab environment that resembles a studio apartment.

• Driving, where we used a Virtual Reality (VR) environment to simulate an autonomous vehicle (AV) per-
forming tasks such as lane merging and parking, potentially with dynamic and static obstacles. Participants
interacted with the simulation system via an Oculus Rift headset, which provided a first-person viewpoint
from the driver seat of the AV.

The robots were different in both settings and there were no cross-over tasks; in other words, the same experiment
was conducted independently in each domain with the same protocol. Obtaining data from two separate experiments
enabled us to discern if our hypotheses held in different contexts.
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Domain Category ID Task

Household

A. Pick &
Place

1 a bottle of soda
2 a plastic cup
3 a can of chips
4 an apple
5 a glass cup
6 a lemon

B. Indoor
Navigation

1 to the table
2 to the door
3 to living room
4 with people moving around
5 following a person
6 while avoiding obstacles

Driving

C. Parking

1 Forwards, empty lot (aligned)
2 Backwards, empty lot (misaligned)
3 Forwards, empty lot (misaligned)
4 Backwards, with cars (aligned)
5 Backwards, with cars (misaligned)
6 Forwards, with cars (misaligned)

D. Naviga-
tion

1 Lane merge
2 T-junction
3 Roundabout
4 Roundabout with other cars
5 Lane merge with other cars
6 T-junction with other cars

Figure 3: Tasks in the Household and Driving Domains. Tasks with IDs 1 to 3 are generally perceived to be easier
than tasks labelled with IDs 4 to 6.
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In both domains, we developed pre-programmed success and failure demonstrations of robot performance for all tasks.
“Catastrophic” failures were avoided to mitigate complete distrust of the robot; for the household navigation tasks, the
robot was programmed to fail by moving to the wrong location. For picking and placing, the robot failed to grasp the
target object. The autonomous car failed to park by stopping too far ahead of the lot, and failed to navigate (e.g., lane
merge) by driving off the road and stopping (Fig. 4).

The primary dependent variables were the participants’ subjective trust in the robot a’s capability to perform specific
tasks. Participants indicated their degree of trust given robot a and task x at time t, denoted as τax,t, via a 7-point Likert
scale in response to the agreement question: “The robot is going to perform the task [x]. I trust that the robot can
perform the task successfully”. In our form, the left-most point (1) indicated “Strongly Disagree” and the right-most
point (7) indicated “Strongly Agree”. From these task-dependent trust scores, we computed two derivative scores:

• Trust distance across tasks dτ,t(x, x′) = |τax,t− τax′,t|, i.e., the 1-norm distance between scores for x and x′
at time t.

• Trust change over time ∆τax (t1, t2) = |τax,t1 − τ
a
x,t2 |, i.e., the 1-norm distance between the scores for x at

t1 and t2.

As a general measure of trust, participants were also asked to complete Muir’s questionnaire [Muir, 1994, Muir and
Moray, 1996] pre-and-post exposure to the robot demonstrations. We also asked the participants to provide free-text
justifications for their trust scores.

3.2 Robot Systems Setup

For both the Fetch Robot and Autonomous Driving simulator, we developed our experimental platforms using the
Robot Operating System (ROS). On the Fetch robot, we used the MoveIt motion planning framework and the Open
Motion Planning Library [Şucan et al., 2012] to pick and place objects, and the ROS Navigation stack for navigation
in indoor environments.

The VR simulation platform was developed using the Unity 3D engine. Control of the autonomous vehicle was
achieved using the hybrid A* search algorithm [Dolgov et al., 2010] and a proportional-integral-derivative (PID)
controller.

3.3 Study Procedure

We recruited 32 individuals (Mean age: 24.09 years, SD = 2.37, 46% female) through an online advertisement and
printed flyers on a university campus. Experiments were conducted in our lab where participants were shown live
demonstrations of the Fetch robot performing the tasks, or observed the AV’s behavior using the driving simulator.
After signing a consent form and providing standard demographic data, participants were introduced to the robot.
Specifically, they were provided information about the robot’s parts and basic functions, and then asked questions to
ensure that they were paying attention and understood the information. They then continued with the experiment’s
four stages:

1. Category and Difficulty Grouping: To gain better control of the factors, participants were asked to group the
12 tasks evenly into the four cells shown in Fig. 2. As such, chosen observations matched a participant’s own
prior estimations. We found that participant groupings were consistent — the same grouping was observed
across participants — but there was individual differences within each difficulty group, e.g., some participants
thought picking and placing a lemon was comparatively more difficult than a glass cup.

2. Pre-Observation Questionnaire: Participants were asked to indicate their subjective trust on the three tested
tasks using the measure instruments described above.

3. Observation of Robot Performance: Participants were randomly assigned to observe two tasks from a
specific category and difficulty, and were asked to indicate their trust if the robot were to repeat the observed
task. The revised trust score is the baseline from which we evaluate the trust distance to tested tasks.

4. Post-Observation Questionnaire and Debrief: Finally, participants were asked to re-indicate their subjec-
tive trust on the three tested tasks, answered attention/consistency check questions2, and underwent a short
de-briefing.

2Participants were asked several questions (e.g., what the last survey question was regarding) and to indicate their initial stated
category/difficulty for a subset of the tasks.
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Figure 4: (Left Column) Autonomous car success (top) and failure (bottom) in the lane merge task. In the failure
condition, the car drives off road and stops. (Right column) Autonomous car success (top) and failure (bottom) in the
forwards parking task. In the failure condition, the car stops short of the parking spot.

3.4 Results

In the following, we first report our primary findings using the task-dependent trust distance and change scores defined
above. Then, we discuss the relationship between task-dependent trust and general trust (via comparison to the scores
obtained from Muir’s questionnaire). For the driving domain, one participant’s results were removed due to a failure
to pass attention/consistency check questions.

For the Household domain, an ANOVA showed that the effect of the category group on the trust distance was sig-
nificant, F (1, 89) = 24.22, p < 10−5, as was the effect of difficulty, F (1, 89) = 14.05, p < 0.001. The interaction
between these two factors was moderately significant, F (1, 89) = 2.94, p = 0.089. We also found a significant
effect of category on trust change F (1, 89) = 24.89, p < 10−6, and of success/failure outcomes on trust change
F (1, 89) = 10.04, p = 0.002. Similar results were found for the driving domain.

Fig. 5 clearly shows that tasks in the same category (SG) shared similar scores (supporting H1); the post-observation
trust distances (from the observed task to the tested tasks) are significantly lower (M = 0.28, SE = 0.081) compared
to tasks in other categories (DG) (M = 1.78, SE = 0.22), t(31) = −5.82, p < 10−5 for the household tasks.
Similar statistically significant differences are observed for the driving domain, t(30) = −2.755, p < 10−2. For both
domains, we observe moderate effect sizes (≈ 1 on a Likert scale of 7), which suggests practical significance; the
relative difference in trust may potentially affect subsequent decisions to delegate tasks to the robot.

Fig. 6 shows that the change in human trust due to performance observations of a given task was moderated by the
perceived similarity of the tasks (H2). The trust change (between the pre-observation and post-observation trust scores
for the three tested tasks) is significantly greater for tested tasks in the same group as the observed task (SG) than
tasks in a different group (DG); t(31) = 6.25, p < 10−6 for household and t(30) = 3.46, p < 10−2 for driving.
Note also that the trust change for DG was non-zero (one-sample t-test, p < 10−2 across both domains for successes
and failures), indicating that trust transfers even between task categories, albeit to a lesser extent. Similar to the trust
distances, the trust change effect sizes were moderately large indicating practical significance.

We analyzed the relationship between perceived difficulty and trust transfer (H3) by first splitting the data into two
conditions: participants who received successful demonstrations, and those that observed failures (Fig. 7). For the
success condition, the trust distance among the household tasks was significantly less for tasks perceived to be easier

7



A PREPRINT - AUGUST 27, 2021

Figure 5: Trust distance between a given task and tasks in the same category group (SG) compared to tasks in a
different category (DG). Trust in robot capabilities was significantly more similar for tasks in the same group.

Figure 6: Trust change due to observations of robot performance. Trust increased (or decreased) significantly more
for the tested tasks in the same group (SG) as the observed task versus tasks in different groups (DG).

than the observed task (M = 2.0, SE = 0.27), compared to tasks that were perceived to be more difficult (M =
0.5, SE = 0.27), t(14) = 4.58, p < 10−3. The hypothesis also holds in the driving domain, M = 1.25 (SE = 0.25)
v.s. M = 2.43 (SE = 0.42), t(14) = 3.6827, p < 10−3. For the failure condition (H4), the results were not
statistically significant at the α = 1% level, but suggest that the effect was reversed; belief in robot inability would
transfer more to difficult tasks compared to simpler tasks.

Thus far, we have focussed on task-specific trust; a key question is how this task-dependent trust differs from a
“general” notion of trust in the robot as measured by Muir’s questionnaire. Fig. 8 sheds light on this question; overall,
task-specific and general trust are positively correlated but the degree of correlation depends greatly on the similarity
of the task to previous observations. In other words, while general trust is predictive of task-specific trust, it does not
capture the range or variability of human trust across multiple tasks.

3.5 Summary of Findings and Discussion

Our main findings support the intuition that human trust transfers across tasks, but to different degrees. More specif-
ically, similar tasks are more likely to share a similar level of trust (H1). Observations of robot performance changes
trust both in the observed task, and also in similar yet unseen tasks (H2). Finally, trust transfer is asymmetric: positive
trust transfers more easily to simpler tasks than to more difficult tasks (H3). These findings suggest that to infer human
trust accurately in a collaboration across multiple tasks, robots should consider the similarity and difficulty of previous
tasks.
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Figure 7: Trust distance between the observed task and a more difficult task (Ez→ Df) against when generalizing to
a simpler task (Df→ Ez). Participants who observed successful demonstrations of a difficult task trusted the robot to
perform simpler tasks, but not vice-versa.
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across the three task types, but with different strengths; the general measure is less predictive of task-specific trust for
tasks in different categories (Pearson correlation, ρ = 0.5− 0.6) compared to tasks with same category and difficulty
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Table 1: Effects of Participant Characteristics on Initial Trust and Trust Dynamics. Un-corrected p-values are shown.
Bolded rows correspond to statistically significant coefficients at α = 0.1 after Holm-correction.

Initial Trust Trust Change
coeff. std err t-value Pr(> |t|) coeff. std err t-value Pr(> |t|)

Gender 0.43569 0.34425 1.266 0.211 -0.17572 0.10067 -1.745 0.086
Computer Usage

Linear Term -0.57557 0.31259 -1.841 0.071 0.20846 0.09142 2.280 0.026
Quadratic Term 0.46851 0.28246 1.659 0.103 0.06314 0.08261 0.764 0.448
Cubic Term 0.52029 0.27504 1.892 0.064 -0.07554 0.08043 -0.939 0.352

Experience with Robots
Linear Term 1.02462 0.35543 2.883 0.006 -0.14597 0.10394 -1.404 0.166
Quadratic Term 0.06946 0.30585 0.227 0.821 -0.05689 0.08944 -0.636 0.527
Cubic Term 0.27462 0.22962 1.196 0.237 0.03136 0.06715 0.467 0.642

Experience with Video Games
Linear Term -0.54237 0.44622 -1.215 0.223 -0.23355 0.13049 -1.790 0.079
Quadratic Term 0.18745 0.32895 0.570 0.571 0.06359 0.09620 0.661 0.511
Cubic Term -0.07300 0.26911 -0.271 0.787 -0.03880 0.07870 0.493 0.624
Quartic Term -0.61713 0.23753 -2.598 0.012 0.19424 0.06946 2.796 0.007

3.5.1 Qualitative Analyses.

Participant justifications for their trust scores were found to be consistent with the above findings. For example, a
participant who was previously shown the robot successfully pick and place a plastic bottle and asked about her trust
in the robot to pick and place a can, stated “I trust this robot because the shape of the can of chips is similar to the
bottle of soda”, whilst another participant who observed failures stated he distrusted the robot because the task was
“highly similar to the last two failed tasks”.

The justifications also revealed that some participants were more willing to trust initially (higher dispositional trust),
e.g., “Yes, I first gave the robot the benefit of the doubt on a task I saw that similar robot can perform some of the
time; then I revised my trust completely based on what it actually did on a similar task”. Differences in perceived task
difficulty also played a role in initial trust, “I trust the robot because this seems like a simple enough task.” and in trust
transfer, for example, “Robot failed much easier task of navigating around a stationary item, so I don’t think it can
follow a moving object”.

3.5.2 Trust and Participant Characteristics.

Finally, we examine how participant characteristics may affect dispositional and situational trust. Specifically, we
analyzed the effect of four independent variables—gender, amount of computer usage, prior experience with video
games, and prior experience with robots—on the average initial trust and the average trust change. All four inde-
pendent variables were self-reported; participants indicated their level of computer usage per week by selecting one
of the following five choices: <10 hours, 10-20 hours, 20-30 hours, 30-40 hours, >40 hours. Prior experience with
video games and robots was measured using the agreement questions, “I’m experienced with video games” and “I’m
experienced with robots” using a 5-point Likert scale. We used the scores collected using Muir’s questionnaire to
compute the average initial trust and trust change. A polynomial contrast model [Saville and Wood, 1991] was applied
since the independent variables are ordinal and the true metric intervals between the levels are unknown3. We also ran
tests against the task-specific trust but the results were not significant; this was potentially due to participants being
exposed to very different tasks.

Table 1 summarizes our results. After correcting for family-wise error, we found a moderately significant associa-
tion (α = 0.1) between initial trust and prior experience with robots. Participants who had prior exposure to robots
were more likely to trust the robots in our experiments. More experience with video games is significantly associ-
ated with trust changes. Although not statistically significant, it may also be negatively associated with initial trust
(Holm-corrected p = 0.12). These results suggest that participant characteristics, such as their prior experience with
technology, do play a role in trust formation and dynamics. However, the relationships do not appear straightforward
and we leave further examination of these factors to future work.

3Polynomial contrast allows ordinal variables to enter not only linearly but also with higher order to better ascertain monotonic
effects.
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3.5.3 Study Limitations.

In this work, each participant only observed the robot performing two tasks; we plan to investigate longer inter-
actions involving multiple trust updates in future work. Furthermore, our reported results are based on subjective
self-assessments in non-critical tasks. We believe our results to remain valid when the robot’s actions affect the hu-
man participant’s goals. Our recent work [Xie et al., 2019, Chen et al., 2018] includes behavioral measures, such as
operator take-overs and greater forms of risk (e.g., in the form of performance bonuses/penalties; these experiments
also provide evidence for trust transfer across tasks..

4 Computational Models for Trust Across Multiple Tasks

The results from our human subjects study indicate that trust is relatively rich mental construct. Perceived similarity
between tasks plays a crucial role in determining trust transfer. Although we consider trust to be a useful information
processing “bottleneck” in that it summarizes past experience with the robot, it does appear to be task-specific and
hence, is more than a simple scalar quantity [as assumed in prior work Chen et al., 2018, Xu and Dudek, 2016].

In this section, we present a richer model where trust is a task-dependent latent dynamic function τat (x) : Rd → [0, 1]
that maps task features, x, to the continuous interval [0, 1] indicating trustworthiness of the robot to perform the
task. We assume that the task features are given and are sufficiently informative of the underlying tasks; for example,
our experiments utilized word-vector features derived from English-language task descriptions, but visual features
extracted from images or structured task descriptions may also be used.

This functional view of trust enables us to naturally capture trust differences across tasks, and can be extended to
include other contexts; x can represent other factors, e.g., the current environment, robot characteristics, and observer
properties. To model the dynamic nature of trust, we propose a Markovian function g that updates trust,

τat = g(τat−1, o
a
t−1) (1)

where oat−1 = (xt−1, cat−1) is the observation of robot a performing a task with features xt−1 at time t − 1 with
performance outcome cat−1. The function g serves to change trust given observations of robot performance, and as
such, is a function over the space of trust functions. In this work, we consider binary outcomes cat−1 ∈ {+1,−1}
indicating success and failure respectively, but differences in performance can be directly accommodated via “soft
labels” cat−1 ∈ [−1,+1] without significant modifications to the presented methods.

The principle challenge is then to determine appropriate forms for τat and g. In this work, we propose and evaluate
three different approaches: (i) a Bayesian approach where we model a probability distribution over latent functions
via a Gaussian process, (ii) a connectionist approach utilizing a recurrent neural network (RNN), and (iii) a hybrid
approach that combines the aforementioned two methods. All three models leverage a learned psychological task
space in which similarities between tasks can be efficiently computed. Furthermore, as differentiable models, they be
trained using standard off-the-shelf gradient optimizers, and can be “plugged” into larger models or decision-making
frameworks (e.g., deep networks trained via reinforcement learning).

4.1 Bayesian Gaussian Process Trust Model

In our first model, we view trust formation as a cognitive process, specifically, human function learning [Griffiths et al.,
2009]. We adopt a rational Bayesian framework, i.e., the human is learning about the robot capabilities by combining
prior beliefs about the robot with evidence (observations of performance) via Bayes rule. More formally, let us denote
the task at time t as xt, and the robot a’s corresponding performance as cat . Given binary success outcomes (where
cat = 1 indicates success), we introduce a latent function fa and model trust in the robot as,

τat (xt) =

∫
P (cat = 1|fa,xt)pt(fa)dfa (2)

where pt(fa) is the human’s current belief over fa, and P (cat |fa,xt) is the likelihood of observing the robot perfor-
mance cat given the task xt. Intuitively, fa can be thought of as a latent “unnormalized” trust function that has range
over the real number line. Given an observation of robot performance, the human’s trust is updated via Bayes rule,

pt(f
a|xt−1, cat−1) =

P (cat−1|fa,xt−1)pt−1(fa)∫
P (cat−1|fa,xt−1)pt−1(fa)dfa

, (3)

where pt is the posterior distribution over fa.
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Figure 9: A High-level Schematic of the Neural Trust Model. The trust vector is updated using GRU cells as memory
of previously observed robot performance. The model uses feed-forward neural networks to project tasks into a dot-
product space in which trust for a task can be efficiently computed.

To use this model, we need to specify the prior p0(fa) and likelihood P (cai |fa,x) functions. Similar to prior work in
human function learning [Griffiths et al., 2009], we place a Gaussian process (GP) prior over fa,

p0(fa) = N (m(x), k(x,x′)). (4)

where m(·) is the prior mean function, and k(·, ·) is the kernel or covariance function. The literature on GPs is large
and we refer readers wanting more detail to Williams and Rasmussen [2006]. In brief, a GP is a collection of random
variables, of which any finite subset is jointly Gaussian. In this model, any given task feature x indexes a random
variable representing the real function value fa(x) at specific location x. The nice properties of Gaussians enable us
to perform efficient marginalization, which makes the model especially attractive for predictive purposes. Note that
the GP is completely parameterized by its mean and kernel functions, which we describe below.

Covariance Function. The kernel function is an essential ingredient for GPs and quantifies the similarities between
inputs (tasks). Popular kernel functions include the squared exponential and Matérn kernels [Williams and Rasmussen,
2006]. Although our task features are generally high dimensional (e.g., the word features used in our experiments),
we consider tasks to live on a low-dimensional manifold, i.e., a psychological task space. With this in mind, we use a
projection kernel:

k(x,x′) = exp(−(x− x′)>M(x− x′)) (5)

with a low rank matrix M = ΛLΛ> where Λ ∈ Rd×k and L is a diagonal matrix of length-scales capturing axis-
aligned relevances in the projected task space.

Capturing Prior Estimations of Task Difficulty and Initial Bias. As our studies have shown, perceived difficulty
results in an asymmetric transfer of trust (H3), which presents a difficulty for standard zero/constant-mean GPs given
symmetric covariance functions. To address this issue, we explore two different approaches:

1. First, the mean function is a convenient way of incorporating a human’s prior estimation of task difficulty;
tasks which are presumed to be difficult (beyond the robot’s capability) will have low values. Here, we have
used a data-dependent linear function, m(x) = β>x where β is learned along with other GP parameters.

2. A second approach is to use pseudo-observations x+ and x− and associated fa’s to bias the initial model.
Intuitively, x+ (x−) summarizes the initial positive (negative) experiences that a person may have had. The
pseudo-observations are implemented simply as pre-observed data-points that the models are seeded with,
prior to any trust updates. Similar to β, these parameters are learned during training. In our experiments, the
pseudo-observations are trained using data from all the individuals in each training set, and thus, represent
the “average” initial experience.

12
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Both approaches allow the GP to accommodate the aforementioned asymmetry; the evidence has to counteract the
prior mean function or pseudo-observations respectively.

Observation Likelihood. In standard regression tasks, the observed “outputs” are real-valued. However, partici-
pants in our experiments observed binary outcomes (the robot succeeded or failed) and thus, we use the probit likeli-
hood [Neal, 1997],

P (cat |fa,xt) = Φ

(
cat (fa(xt)−m(xt))

σ2
n

)
(6)

where Φ(y) = 1√
2π

∫ y
−∞ exp

(
− t

2

2

)
dt is the CDF of the standard normal, and σ2

n is the noise variance. Here, Φ(y)

is a response function that “squashes” the function value y = fa(x) ∈ (−∞,∞) onto the range [0, 1]. Alternative
likelihoods can be used without changing the overall framework.

Trust Updates via Approximate Bayesian Inference. Unfortunately, the Bayesian update (3) under the probit
likelihood is intractable and yields a posterior process that is non-Gaussian. To address this problem and enable
iterative trust updates, we employ approximate Bayesian inference: the posterior process is projected onto the closest
GP as measured by the Kullback-Leibler divergence, KL(pt||q), and q is our GP approximation [Csató and Opper,
2002]. Minimizing the KL divergence is equivalent to matching the first two moments of pt and q, which can be
performed analytically. The update equations in their natural parameterization forms are given by:

µt(x) = α>t k(x) (7)

kt(x,x
′) = k(x,x′) + k(x)>Ctk(x′) (8)

where α vector and C are updated using:

αt = αt−1 + γ1(Ct−1kt + et) (9)

Ct = Ct−1 + γ2(Ct−1kt + et)(Ct−1kt + et)
> (10)

where kt = [k(x1,xt), ..., k(xt−1,xt)], et is the tth unit vector and the scalar coefficients b1 and b2 are given by:

γ1 = ∂fa log

∫
P (cat |fa,xt)dfa =

cai ∂Φ

σxΦ
(11)

γ2 = ∂2fa log

∫
P (cat |fa,xt)dfa =

1

σ2
x

[
∂2Φ

Φ
−
(
∂Φ

Φ

)]
(12)

where ∂Φ and ∂2Φ are the first and second derivatives of Φ evaluated at c
a
i (µt(x)−m(x))

σx
.

Trust Predictions. Given (9) and (10), predictions can be made with the probit likelihood (6) in closed-form:

τat (x) =

∫
P (ca = 1|fa,x)pt(f

a)dfa

=Φ

(
µt(x)−m(x)

σx

)
(13)

where σx =
√
σ2
n + kt(xi,xi).

4.2 Neural Trust Model

The Gaussian process trust model is based on the assumption that human trust is essentially Bayesian in nature.
However, this assumption may be too restrictive since humans are not thought to be fully rational or Bayesian4. Here
we consider an alternative “data-driven” approach based on recent advances in deep neural models.

The architecture of our neural trust model is illustrated in Fig. 9. We leverage a learned task representation or
“embedding” space Z ⊆ Rk and model trust as a parameterized function over this space. The key idea is that
(un-normalized) trust for a task is obtained via an inner-product between two components: a trust-vector θt and a

4Moreover, whether brains are truly Bayesian remains a matter of debate within the cognitive sciences [Bowers and Davis,
2012].
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task representation z. The trust vector θt is a compressed representation of the human’s prior interaction history
(observations of robot performance oat ) and is derived using a recurrent neural network. The task representations z are
derived using a learned function fz(x) over task features x. To obtain a normalized trust score between [0, 1], we use
the sigmoid function,

τat (x;θt) = sigm(θ>t fz(x)) = sigm(θ>t z). (14)

The trust function τat is fully parameterized by θt and its linear form has benefits: it is efficient to compute given a
task representation z and is interpretable in that the latent task space Z can be examined, similar to other dot-product
spaces, e.g., word embeddings [Mikolov et al., 2013]. Similar to the GP, Z can be seen as a psychological task space
in which the similarities between tasks can be easily ascertained.

Task Projection. Whilst it is possible to train the model to learn separate task representations z for each task in the
training set, this approach limits the model to only seen tasks. Our aim was to create a general model that potentially
generalizes to new tasks. One could use the task features x directly in the trust function, but there is no guarantee that
the task features would form a space in which dot products would give rise to meaningful trust scores. As such, we
project observed task features x into Z via a nonlinear function, specifically, a fully-connected neural network,

z = fz(x) = NN(x; θz) (15)

where θz is the set of network parameters. Similarly, the robot’s performance ca is projected via a neural network,
ca = NN(ca; θac ). During trust updates, both the task and performance representations are concatenated, ẑi = [z; ca],
as input to the RNN’s memory cells.

Trust Updating via Memory Cells. We model the trust update function g using a RNN with parameters θg ,

θt = RNN(θt−1, ẑt−1; θg). (16)

In this work, we leverage on the Gated Recurrent Unit (GRU) [Cho et al., 2014], which is a variant of long short-term
memory [Hochreiter and Schmidhuber, 1997] with strong empirical performance [Jozefowicz et al., 2015]. In brief,
the GRU learns to control two internal “gates”—the update and reset gates—that affect what it remembers and forgets.
Intuitively, the previous hidden state is forgotten when the reset gate’s value nears zero. As such, cells that have active
reset gates have learnt to model short-term dependencies. In contrast, cells that have active update gates model long-
term dependencies [Cho et al., 2014]. Our model uses an array of GRU cells that embed the interaction history up to
time t as a “memory state” ht, which serves as our trust parameters θt.

More formally, a GRU cell k that has state h(k)t−1 and receives a new input ẑt, is updated via

h
(k)
t = (1− v(k)t )h

(k)
t−1 + v

(k)
t h̃

(k)
t , (17)

i.e., an interpolation of its previous state and a candidate activation h̃(k)t . This interpolation is affected by the update
gate v(k)t , which is parameterized by matrices Wv and Uv ,

v
(k)
t = sigm

(
[Wvẑt + Uvht−1)]k

)
. (18)

The candidate activation h̃(k)t is given by

h̃
(k)
t = tanh([Wẑt + U(rt � ht−1)]k) (19)

where � denotes element-wise multiplication. The reset gate r(j)t = [rt]k is parameterized by two matrices Wr and
Ur,

r
(k)
t = sigm

(
[Wrẑt + Urht−1)]k

)
(20)

4.3 A GP-Neural Trust Model

Both the neural and Bayesian models assume Markovian trust updates and that trust summarizes past experience with
the robot. They differ principally in terms of the inherent flexibility of the trust updates. In the RNN model, the
update parameters, i.e., the gate matrices, are learnt. As such, it is able to adapt trust updates to best fit the observed
data. However, the resulting update equations do not lend themselves easily to interpretation. On the other hand, the
GP employs fixed-form updates that are constrained by Bayes rule. While this can hamper predictive performance
(humans are not thought to be fully Bayesian), the update is interpretable and may be more robust with limited data.

14



A PREPRINT - AUGUST 27, 2021

A natural question is whether we can formulate a “structured” trust update that combines the simplicity of the Bayes
update, while allowing for some additional flexibility. Here, we examine a variant of the GP model that incorporates a
neural component in the mean function update. In particular, we modify Eq. (9) with an additional term:

αt =αt−1 + γ1(Ct−1kt + et) + u(αt−1,Ct−1kt,Λxt−1, c
a
t−1) (21)

where u(·) models any residual not fully captured by the Bayes update. The function u takes as input the previous
mean parameters αt−1, Ct−1kt, the latent task vector zt−1 = Λxt−1, and the robot performance cat−1. The key idea
here is that a neural component may modify the posterior distribution in a data-driven (non-Bayesian) manner to better
capture the intricacies of human trust updates. In our experiments, u(·) is a simple feed-forward neural network, but
alternative models can be used without changing the overall framework. For example, using a GRU-based network
would enable non-Markovian updates and may further improve performance.

5 Experiments

Our experiments were designed to establish if the proposed trust models that incorporate inter-task structure outper-
form existing baseline methods. In particular, we sought to answer three questions:

Q1 Is it necessary to model trust transfer, i.e., do the proposed function-based models perform better than existing
approaches when tested on unseen participants?

Q2 Do the models generalize to unseen tasks?
Q3 Is it necessary to model differences in initial bias, specifically perceptions of task difficulty?
Q4 Does incorporating additional flexibility into the GP trust updates improve performance?

5.1 Experimental Setup

To answer these questions, we conducted two separate experiments. Experiment E1 was a variant of the standard
10-fold cross-validation where we held-out data from 10% of the participants (3 people) as a test set. This allowed
us to test each model’s ability to generalize to unseen participants on the same tasks. To answer question Q2, we
performed a leave-one-out test on the tasks (Experiment E2); we held-out all trust data associated with one task and
trained on the remaining data. This process yielded 12 folds, one per task.

Trust Models. We evaluated six models in our experiments:

• GP: A constant-mean Gaussian process trust model;
• PMGP: The GP trust model with prior mean function;
• POGP: The GP trust model with prior pseudo-observations;
• RNN: The neural RNN trust model;
• GPNN: The Bayesian GP-neural trust model with prior pseudo-observations;
• LG: A linear Gaussian trust model similar to the updates used in OPTIMo [Xu and Dudek, 2015];
• CT: A baseline model with constant trust.

The baseline CT and LG models did not utilize task features as they do not explicitly consider trust variation across
tasks. The general LG model applies linear Gaussian updates:

p(τat |τat−1, cat−1, cat−2) = N

(
w>LG

[
τat−1
cat−1

cat−1 − cat−2

]
, σ2

LG

)
(22)

where wLG and σ2
LG are learned parameters. In our dataset, the robot a’s performance in the two time steps was the

same (both success/failure). Hence, the updated trust only depends on the previous trust τat−1 and robot performance
cat−1.

We implemented all the models using the PyTorch framework [Paszke et al., 2017]. Preliminary cross-validation runs
were conducted to find good parameters for the models. The RNN used a two layer fully-connected neural network
with 15 hidden neurons and Tanh activation units to project tasks to a 30-dimensional latent task space (Eqn. (15)).
The trust updates, Eqn. (16), were performed using two layers of GRU cells. A smaller 3-dimensional latent task
space was used for the GP models. GP parameters were optimized during learning, except the length-scales matrix,
which was set to the identity matrix L = I; fixing L resulted in a smoother optimization process. For the GPNN, u(·)
was set as a simple two-layer feed-forward neural network with 20 neurons-per-layer and Tanh activation units.
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Datasets. The models were trained using the data collected in our human subjects study. The RNN and GP-based
models were not given direct information about the difficulty and group of the tasks since this information is typically
not known at test time. Instead, each task was associated with a 50-dimensional GloVe word vector [Pennington et al.,
2014] computed from the task descriptions in Fig. 3 (the average of all the word vectors in each description). Complete
task descriptions and code to derive the features are available in the online supplementary material [Soh, 2018].

Training. In these experiments, we predict how each individual’s trust is dynamically updated. The tests are not
conducted with a single “monolithic” trust model across all participants. Rather, training entails learning the latent task
space and model parameters, which are shared among participants, e.g., β and Λ for the PMGP and the gate matrices
for the GRU. However, each participant’s model is updated only with the tasks and outcomes that the participant
observes.

To learn these parameters, all models are trained “end-to-end”. We applied maximum likelihood estimation (MLE)
and optimized model parameters θ using the Bernoulli likelihood of observing the normalized trust scores (as soft
labels):

L(θ) = −
∑

τ̂a log(1− τa(x)) + (1− τ̂a) log(1− τa(x)) (23)

where τ̂a is the observed normalized trust score. In more general settings where trust is not observed, the models can
be trained using observed human actions, e.g., in [Chen et al., 2017]. We employed the ADAM algorithm [Kingma and
Ba, 2014] for a maximum of 500 epochs, with early stopping using a validation set comprising 15% of the training
data.

Evaluation Evaluation is carried out on both pre-and-post-update trust. For both experiments, we computed two
measures: the average Negative Log-likelihood (NLL) and Mean Absolute Error (MAE). However, we observed that
these scores varied significantly across the folds (each participant/task split). To mitigate this effect, we also computed
relative Difference from Best (DfB) scores: NLLDfB(i, k) = NLL(i, k) − NLL∗(i), where NLL(i, k) is the NLL
achieved by model k on fold i and NLL∗(i) is the best score among the tested models on fold i. MAEDfB is similarly
defined.

5.2 Results

Results for E1 are summarized in Tbl. 2 with boxplots of MAEDfB shown in Fig. 10. In brief, the GPNN, RNN,
and POGP outperform the other models on both datasets across the performance measures. The POGP makes better
predictions on the Household dataset, whilst the RNN performed better on the Driving dataset. The GPNN, however,
obtains good performance across the datasets. In addition, the GP achieves better or comparable scores on average
relative to LG and CT. Taken together, these results indicate that the answer to Q1 is in the affirmative: accounting for
trust transfer between tasks leads to better trust predictions.

Next, we turn our attention to E2, which is potentially the more challenging experiment. The GPNN, RNN, and POGP
again outperform the other models (see Tbl. 3 and Fig. 11). Both models are able to make accurate trust predictions on
unseen tasks (Q2), suggesting that (i) the word vectors are informative of the task, and (ii) the models learnt reasonable
projections into the task embedding space.

To answer Q3 (whether modeling initial human bias is required), we examined the differences between the POGP,
PMGP, and GP. The PO/PMGP achieved lower or similar scores to the GP model across the experiments and domains,
indicating that difficulty modeling enabled better performance. The pseudo-observation technique POGP always out-
performed the linear mean function approach PMGP, suggesting initial bias is nonlinearly related to the task features.
Potentially, using a non-linear mean function may allow PMGP to achieve similar performance to POGP.

Finally, we observed that the including additional flexibility in the GP mean update improved model performance
(Q4). As stated above, the GPNN achieves similar or better performance on both datasets compared to the other GP
variants.

5.3 Discussion

In summary, our experiments show that modeling trust correlations across tasks improves predictions. Our Bayesian
and neural models achieve better performance than existing approaches that treat trust as a single scalar value. To
be clear, neither model attempts to represent exact trust processes in the human brain; rather, they are computational
analogues. Both modeling approaches offer conceptual frameworks for capturing the principles of trust formation and
transfer. From one perspective, the GP model extends the single global trust variable used in Chen et al. [2018] and
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Figure 10: MAEDfB scores for experiment E1 with medians (lines) and means (triangles) shown. The proposed
task-dependent trust models (GPNN, RNN, and POGP) models are superior at predicting trust scores on unseen test
participants. The GPNN achieves the lowest average MAEDfB scores across the two domains.

Table 2: Model Performance on Held-out Participants (Experiment E1). Average Negative log-likelihood (NLL) and
Mean Absolute Error (MAE) scores shown with standard errors in brackets. Best scores in bold.

Models Household Driving
NLL MAE NLL MAE

GPNN 0.558 0.158 0.555 0.172
(0.028) (0.011) (0.026) (0.010)

RNN 0.571 0.173 0.549 0.175
(0.023) (0.010) (0.024) (0.011)

POGP 0.558 0.161 0.553 0.176
(0.027) (0.013) (0.025) (0.012)

PMGP 0.577 0.176 0.567 0.197
(0.019) (0.010) (0.018) (0.011)

GP 0.575 0.175 0.588 0.208
(0.023) (0.013) (0.022) (0.012)

LG 0.578 0.182 0.584 0.208
(0.023) (0.011) (0.022) (0.011)

CT 0.662 0.249 0.649 0.266
(0.029) (0.016) (0.017) (0.010)
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Figure 11: MAEDfB scores for experiment E2 with medians (lines) and means (triangles) shown. The proposed task-
dependent trust models (GPNN, RNN, and POGP) models are superior at predicting trust scores on unseen test tasks.
Similar to Fig. 10, the GPNN achieves the lowest average MAEDfB scores across the two domains.

Table 3: Model Performance on Held-out Tasks (Experiment E2). Average Negative log-likelihood (NLL) and Mean
Absolute Error (MAE) scores shown with standard errors in brackets. Best scores in bold.

Models Household Driving
NLL MAE NLL MAE

GPNN 0.533 0.156 0.542 0.163
(0.014) (0.007) (0.019) (0.009)

RNN 0.542 0.166 0.531 0.174
(0.012) (0.006) (0.016) (0.014)

POGP 0.542 0.164 0.562 0.186
(0.014) (0.007) (0.018) (0.008)

PMGP 0.564 0.174 0.574 0.202
(0.014) (0.009) (0.015) (0.008)

GP 0.551 0.174 0.586 0.207
(0.010) (0.009) (0.013) (0.009)

LG 0.568 0.195 0.584 0.222
(0.014) (0.009) (0.013) (0.010)

CT 0.669 0.273 0.661 0.284
(0.008) (0.007) (0.013) (0.005)
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Xu and Dudek [2015] to a collection of latent trust variables. In the following, we highlight matters relating to the
learned feature projections, changes in trust during a task, and the neural-GP trust updates.

Learned Trust-Task Spaces. Although the neural and Bayesian models differ conceptually and in details, they both
leverage upon the idea of a vector task space Z ⊆ Rk in which similarities—and thus, trust transfer—between tasks
can be easily computed. For the RNN, Z is a dot-product space. For the GP, similarities are computed via the kernel
function; the kernel linearly projects the task features into a lower dimensional space (z = Λx) where an anisotropic
squared exponential kernel is applied. As an example, Figs. 12 and 13 show the learned GPNN latent task points
for the Household and Driving domains respectively; we observe that tasks in the same group are clustered together.
Furthermore, the easy and difficult tasks within each task group are also positioned closer together. This structure is
consistent with the use of a squared exponential kernel where distances between the latent points determine covariance;
the closer the points (more similar), the similar the latent function value at those points.

Generalization across Task Word Descriptions. In our experiments, we used word vector representations as task
features, which we found to enable reasonable generalization across similar descriptions. For example, after seeing the
robot successfully navigate around obstacles, but failing to pick up a lemon, the model predicts sensible trust values
for the following tasks:

• “Navigate while following a path”: 0.81

• “Go to the table”: 0.86

• “Pick up a banana”: 0.61

We posit that this results from the fact that vector-based word representations are generally effective at capturing
synonyms and word relationships. Given a latent space with sufficiently large dimensionality, we expect the model
to scale to a larger number of task categories and domains; there is evidence that moderately-sized latent spaces
(< 1000) yield accurate models for complex tasks such as language translation [Sutskever et al., 2014] and image
captioning [Ren et al., 2017]. Given longer task descriptions, more sophisticated techniques from NLP [e.g., Bowman
et al., 2016] beyond the simple averaging used in our experiments can be adapted to construct usable task features of
reasonable length.

A prevailing issue is that the current word/sentence representations may not distinguish subtle semantics, e.g., the task
features lack a notion of physical constraints. As such, the model may make unreasonable predictions when given
task descriptions that are syntactically similar but semantically different. As an example, the same model predicts
the human highly trusts the robot’s capability to “Navigate to the moon” (τa = 0.83). To remedy this issue, we can
use alternative features; more informative vector-based features can be used without changing the methods described.
Applying structured feature representations (e.g., graphs) would require different kernels and embedding techniques.
Future work may also examine more sophisticated hierarchical space representations.

5.3.1 Trust Variations within a Task.

The presented computational models are “event-based” in that trust was updated after each complete task performance.
However, prior work has shown that trust can change even as the task is being carried out [Desai et al., 2013, Yang
et al., 2017]. To accommodate intra-task trust variability, the presented Bayesian and neural models can be easily
altered to be updated at user-defined intervals with a corresponding observation. These modifications and studies to
validate such models would make for interesting future work.

GP-Neural Updates. Finally, we sought to better understand the relationship between the Bayesian and neural
components of the GPNN mean update. Was the neural network u(·) only making minor “corrections” to the trust
update or was it playing a larger role? To answer this question, we compared the relative norms of the second term
(ηGP = ‖γ1(Ct−1kt + et)‖/‖αt−1‖) and third term (ηNN = u(αt−1,Ct−1kt,Λxt−1, cat−1)/‖αt−1‖) on the RHS
of Eq. (21) during updates across randomly sampled tasks. Fig. 14 shows a scatter plot of the relative norms of
both components. We find a positive correlation (Kendall tau = 0.2, p-value = 10−39), but the relationship is clearly
nonlinear. Interestingly, ηNN could be relatively large when the ηGP was close to zero, indicating that neural component
was playing a significant role in the trust update. We also experimented with completely removing the Bayesian portion
of the update, but this modification had poorer performance, potentially due to limited data. This suggests that trust is
not purely Bayesian and a non-trivial correction is needed to achieve better performance.
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Figure 12: The task space for the Household domain where each point is a task. Tasks of a similar type and difficulty
are clustered together; tasks labelled A correspond to Pick-and-Place tasks and B are Indoor Navigation tasks. The
lower-numbered tasks (1-3) were considered easier by participants.

Figure 13: The task space for the Driving domain. Similar to Fig. 12 above, similar tasks are closer together. Points
C corresponds to Navigation tasks (e.g., lane merging) and D are Parking tasks. The lower-numbered tasks (1-3) were
considered easier by participants.
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Figure 14: The relative norms of the GP component ηGP (x-axis) and neural component ηNN (y-axis) for updates across
randomly sampled tasks. Blue points are for the Household domain and orange +’s for Driving. There is a general
positive correlation between the norms, but the relationship is nonlinear.

6 Conclusion

This paper takes a first step towards conceptualizing and formalizing predictive of human trust in robots across multiple
tasks. It presents findings from a human-subjects study in two separate domains and shows the effects of task similarity
and difficulty on trust formation and transfer.

The experimental findings leads to three novel models that capture the form and evolution of trust as a latent function.
Our experiments show that the function-based models achieved better predictive performance on both unseen partici-
pants and unseen tasks. These results indicate that (i) a task-dependent functional trust model more accurately reflects
human trust across tasks, and (ii) it is possible to accurately predict trust transfer by leveraging upon a shared task
space representation and update process.

Formalizing trust as a function opens up several avenues for future research. In particular, we aim to fully exploit this
characterization by incorporating other contexts. Does trust transfer when the environment changes substantially or a
new, but similar robot appears? Proper experimental design to elicit and measure trust is crucial. Our current experi-
ments employ relatively short interactions with the robot and rely on subjective self-assessments. Future experiments
could employ behavioral measures, such as operator take-overs and longer-term interactions where trust is likely to
play a more significant role.

This work limits the investigation to trust resulting from complete observations of the robot’s performance/capabilities.
However, in real-world collaborative settings, the human user may not observe all the robot’s successes or failures: how
humans infer the robot’s performance under conditions of partial observability remains an interesting open question.
It is also essential to examine trust in the robot’s “intention”, e.g., its policy [Huang et al., 2018] and decision-making
process. Arguably, trust is most crucial in new and uncertain situations whereby both robot capability and intention
can influence outcomes. In very recent work [Xie et al., 2019], we have begun to examine how human mental models
of these factors influence decisions to trust robots.

Finally, it is important to investigate how these trust models enhance human-robot interaction. In our current experi-
ments, the human does not get involved in task completion. Our trust model can be used without modification in the
collaborative setting where the human and the robot work together to complete a task, provided that the shared goal
is unaffected by the change in trust. Embedding trust models in a decision theoretic framework enables a robot to
adapt its behavior according to a human teammate’s trust and as a result, promotes fluent long-term collaboration. We
have begun a preliminary investigation using trust transfer models in a Partially-observable Markov Decision Process
(POMDP), extending the work in [Chen et al., 2018]. We are particularly interested in how trust models impacts
decision-making in assistive tasks [Gombolay et al., 2018, Soh and Demiris, 2015].

21



A PREPRINT - AUGUST 27, 2021

Acknowledgements

This work was supported in part by a NUS Office of the Deputy President (Research and Technology) Startup Grant
and in part by MoE AcRF Tier 2 grant MOE2016-T2-2-068. Thank you to Indu Prasad for her help with the data
analysis.

References
Deborah R Billings, Kristin E Schaefer, Jessie Y C Chen, and Peter A Hancock. Human-Robot Interaction: Developing Trust in

Robots. HRI ’12, pages 5–8, 2012.

Jeffrey S Bowers and Colin J Davis. Bayesian just-so stories in psychology and neuroscience. Psychological bulletin, 138(3):389,
2012.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a
continuous space. CoNLL 2016, page 10, 2016.

Christiano Castelfranchi and Rino Falcone. Trust Theory: A Socio-Cognitive and Computational Model. Wiley Publishing, 1st
edition, 2010.

Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu, and Siddhartha Srinivasa. The role of trust in decision-making for human
robot collaboration. In Workshop on Human-Centered Robotics, RSS, 2017.

Min Chen, Stefanos Nikolaidis, Harold Soh, David Hsu, and Siddhartha Srinivasa. Planning with trust for human-robot collabora-
tion. In HRI’18, pages 307–315, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-4953-6.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. In EMNLP, pages
1724–1734, 2014.
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