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Abstract

This article exploits a bio-inspired sensor technology named artificial electric-sense to emulate
underwater pre-touch. The sensor is considered as an electric finger remote-controlled by an
operator to follow the boundaries of objects. Using electric measurements only, the approach
feeds back pre-touch forces and torques to the operator through an haptic interface. These
forces and torques are generated by a set of virtual electric charges and dipoles arranged on
the probe and reacting in the electric field reflected by the objects. This model of emulated
forces is passive and guarantees the stability of a position-position haptic feedback loop.
The whole approach is assessed through a set of experiments carried out on a Cartesian slave
robot coupled to an haptic interface. The obtained results show the feasibility of the concept
and its robustness to different configuration of objects. Such an electro-haptic feedback opens
new perspectives in both electric field sensing and underwater robotics.

1 Introduction

Discovered in the 50s by Lissman and Machin (Lissmann & Machin 1958), active electric sense or
”e-sense”, is a sensorial ability evolved by several hundreds of fresh water fish species, which per-
ceive their environment by measuring the perturbations of a self-generated electric field. Weakly
electric fish as Gnathonemus Petersii, use electric sense to navigate turbid waters with many ob-
stacles, communicate between con-specifics, find their preys and escape their predators (Von der
Emde & Bleckmann 1998), (Caputi et al. 1998). The same fish are able to sense exogenous elec-
tric fields generated by other fish, another modality of electric sense named passive electric sense
(Hopkins 2005). Remarkably, passive electric sense is also used by several species of marine fish,
as the shark Scyliorhinus canicula or the ray Raja clavata for finding their preys burrowed in the
sand (Kalmijn 1971). In the recent past years this sense has attracted the interest of robotics with
the aim of equipping a new generation of underwater robots able to operate in confined spaces
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with muddy waters (Solberg et al. 2008), (Silverman et al. 2012), (Boyer et al. 2015), (Lebastard
et al. 2016). In this perspective, several electric sensors have been proposed and can be classified
in two major categories depending whether the electric field is measured through floating voltages
(Bai et al. 2012) or electric currents (Servagent et al. 2013). In (Servagent et al. 2013), the current
measurement mode has been implemented through a family of sensors consisting of some plastic
slender probes on which are arranged a few metal electrodes in different configurations (see one of
them in figure 1-b). In recent years, all these sensor technologies were used to address different is-
sues in underwater robotics ranging from model-based localization (Solberg et al. 2008, Lebastard
et al. 2013), to reactive navigation (Boyer et al. 2013), underwater docking (Boyer et al. 2015),
and shape recognition (Bai et al. 2015, Lanneau et al. 2017). Recently, the electric sense has been
proposed as an assistance for visual feedback in virtual reality (Fang et al. 2016). In the present
article, it is also used in a feedback loop to assist a human operator. However, in contrast to
(Fang et al. 2016), the assistance is not based on visual feedback and virtual reality, but exploits
the haptic modality of e-sense (Caputi et al. 2013) with the sensor of (Servagent et al. 2013), to
emulate underwater pre-touch. As a first illustration of this concept, the article shows how an
operator can use an electric probe as an electric finger, moving it along the boundaries of objects
at a given distance, while having the feeling of touching their surface (see figure 1-a-left). To ad-
dress this task, we will face the following fundamental issue. Let us consider a slave manipulator
remote-controlled by a master haptic interface. The slave is equipped with an active probe at its
tip. The probe is immersed in water in presence of an infinite wall. Knowing the electric currents
measured by the probe and the configuration of the manipulator only, we want to construct a set
of forces which once fed back to the operator through the haptic interface, gives him the feeling
that: (1) In a direction parallel to the wall, the probe can be moved with no effort. (2) Along
other DoFs, some restoring forces appear as soon as the probe is no longer perpendicular to the
wall at a prescribed distance d from it (see figure 1-a-right).
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Figure 1: Schematize of the targeted scenario with restoring electric force and torque Fr and Mr

(green and red arrows) and free-force direction (blue arrows) in slave (a), and master (b-top)
spaces. Picture of a 3-electrode probe (b-bottom).

This issue could be addressed by electro-locating the probe in a virtual environment, or ”proxy”,
and by providing the operator with an haptic feedback based on this geometric model (Mitra &
Niemeyer 2004). However, in realistic conditions, the geometric reconstruction of such a proxy
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would require addressing complex inverse problems which remain largely unsolved so far. To cir-
cumvent this difficulty, we here privileged a sensor-based approach which avoids resorting to such
a virtual model. In this approach, the forces and torques exerted onto the probe, are generated
by a set of virtual electric charges and dipoles arranged along its axis, which reacts in the electric
field reflected by its environment. Designing the Coulomb charges and dipoles accordingly, the
final model stands for a generalization of the so-called Lennard-Johns attractive-repulsive forces
used in physics of gases and liquids to model the interactions between atoms (Hirschfelder et al.
1966). Though conceptually developed for an infinite wall, we will see how this approach remains
robust in more realistic experimental conditions including perturbations induced by corners and
objects.

The contribution of this article is two folds. First, it shows how the haptic modality of electric sense
can be exploited to implement the first 3D electro-haptic remote control loop. In this context, by
combining several concepts in electrostatics and remote control, it can open new perspectives for
electric field sensing in general. Second, it proposes a new sensorial feedback modality which could
assist teleoperated underwater robotics arms on Remotly Operated Vehicles in harsh conditions
as in the case of dam inspection (Maalouf et al. 2012).

The subsequent developments are structured as follows. In section 2, the experimental context
of the article is presented. This includes the electric probe and test bed as well as the haptic
interface. The next section (3) briefly reminds the basic concepts of haptic feedback control used
in the article. In particular, the stability of a feedback-control loop is here considered from the
view point of passivity. Based on this general concept, in section 4, a definition of a passive
restoring force is proposed and illustrated in section 5, on a simple, but instructive example (two
charged particles remote-controlled along one dimension). We then start to address our general
problem, and present in section 6 the model of the environment including the geometry of the
scene, the model of the electric field reflected by a wall, the model of the electric measurements of a
probe, and finally, the sensor-based model of the electric field along the probe. Based on this latter
model, the article continues with its theoretical core which consists of designing a model of the
electric forces exerted onto the probe (section 7). In section 8, an experimental implementation
of the model is proposed. In section 9 we introduce the position-position architecture of the
haptic feedback loop. The entire approach is experimented in section 10, which starts with its
characterization through some preliminary tests, and pursues with operational tests in section 11.
Finally, the article is closed by a conclusion which opens further perspectives for future (section
12).

2 Experimental context

A force-feedback (or bilateral) remote-control loop is composed of five components: a human
operator, a master manipulator, a slave manipulator, and a coupling controller between both
manipulators and the environment. The sub-system ”master-coupling-slave” is named a Teleop-
eration System (TS). Once included into the loop, the operator exchanges forces, positions and
velocities with the master, and wishes to have the feeling of interacting directly with the envi-
ronment. In most industrial applications the master and the slave arms are coupled by some
mechanical devices (e.g. steal wires) (Coiffet & Vertut 1985), and the environment is constituted
of real objects more or less stiff and heavy. In our particular case, the coupling is realized by a
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computer (Geffard et al. 2012), and the environment consists of a given scene in interaction with
an active electric sensor through some emulated forces that remains to be defined (see figure 2).

Figure 2: Architecture of the remote control loop as a network of multiport blocks exchanging
pairs of dual (force-velocity) variables (F, V ), with o, m, s for ”operational”, ”master” and ”slave”.

In the rest of this section, we present our experimental devices that compose the architecture of
figure 2.

2.1 Electric probe

Our electric sensors are slender probes constituted of a cylindrical insulating (plastic) shell on
which are fixed several groups of metal electrodes in contact with water (Servagent et al. 2013).
As represented in figure 1-b, we here consider a probe with 3 groups of electrodes, named, the
head, neck and tail electrodes. The head and the neck electrodes are subdivided into left-right
symmetrical sub-electrodes which provide an independent measurement of the electric currents
that flow across each of them. This probe can be used with same electronics in passive and active
modes, depending whether the electric currents it measures, are generated outside the probe or by
the probe itself. In active mode, the head and neck electrodes are set under voltage with respect
to the tail one, with a wave generator. Due to the Ohmic character of the water, this generates a
field of currents flowing from the tail electrode, named the emitter, to the two others, named the
receivers.

2.2 Electric test-bed and slave manipulator

Our experiments are carried out in a 1m3 tank filled with ordinary tap water of conductivity
' 0.04 S.m−1. The top of the tank is equipped with our slave manipulator. This is a 3-dof
Cartesian robot (a gantry) that allows controlling the motions of a vertical carbon fiber rod at the
tip of which is fixed the probe (see figure 3(a)). The gantry allows translating the probe along the
two horizontal axes (x, y), as well as rotating it about the vertical yaw axis (θ). This is performed
with maximum velocities 0.1 m.s−1 and 80

◦
s−1, and with a precision of 1/10 mm and 0.023

◦
.
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(a) (b)

Figure 3: (a) Tank of 1 m3 with the gantry above. (b) Haptic interface 6D Desktop of Haption
with its position control zone (blue sphere).

2.3 Master manipulator

The slave manipulator is remote controlled by the operator through an haptic display pictured
in figure 3 (b). This is a 6-DoF master parallel manipulator (3×2 parallel haptic interface of
HaptionTM) whose design is detailed in (Gosselin et al. 2005). Its useful workspace consists of a
150mm diameter sphere. The homogeneous orientation workspace remains over ±30◦ in a 100mm
diameter sphere. It can transmit maximum force and torque of 20N and 0.5Nm in the centre of
the workspace, and force and torque over 14.3N and 0.32Nm in the 150mm diameter spherical
workspace. This haptic display is an impedance display, i.e., it measures position and displays
force. It has been designed to be transparent (with low friction and inertia).

2.4 Coupling controller

A controller named TAO (Geffard et al. 2012), is used to perform the Cartesian coupling between
the master and the slave spaces. This controller is a core software platform dedicated to Computer
Aided force-feedback Teleoperation. It is able to control different types of manipulators. In our
case, in spite of the obvious differences of kinematics between our master and slave manipulator,
TAO ensures homothetic displacements in the two Cartesian spaces. It allows high speed synchro-
nization between several real and virtual mechanisms (master arm, slave arm, camera, Virtual
Reality or dynamic simulation engine to name but a few), and provides several control modes and
operator assistances. It can be used to implement different types of coupling (position-position,
force-position, position-force, 3 or 4 channels...). After this short presentation of the experimen-
tal context, the next section provides an intuitive introduction to the basic concepts of haptic
feedback control which are used throughout the article.

3 Characteristics of a haptic-feedback loop

As above introduced, a TS is composed of sensors, amplifiers, motors, software which interact at
one side with an operator, and at the other, with a real or a simulated environment. The operator
and environment are both non-linear systems with varying dynamics and structure. Under these
constraints, designing and tuning a TS able to guaranty the stability of the overall loop (including
the operator and environment) is a challenging issue to which modelling and frequency approaches
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are difficult to apply. This is why, in conventional TS, one commonly assumes the passivity of the
operator and even of the environment, a feature which greatly simplifies stability analysis (Hogan
1989). In this paper, we will resort to this concept to design our feedback loop. In particular, a
particular attention will be paid to design a passive model of restoring electric forces.

3.1 Transparency

Intuitively, a remote-controlled system is perfectly transparent if the operator has the feeling of
directly operating on the environment. Referring to the network representation of figure 2, this
means that the relations between forces and velocities are identical in the slave and master spaces.
In the linear case (i.e., if all the blocks of figure 2 can be modelled by transfer matrices), ideal
transparency is thus achieved when we have Zt = Ze, where Zt = Fo/Vo and Ze = F/V are the
transmission and the environment impedances (Hannaford 1989). Ensuring stability with perfect
transparency is in general impossible. Thus, in practice, the global performance of a remote
control loop is the result of a compromise between these two antagonist ideal goals.

3.2 Stability and passivity

Stability of haptic systems is intuitively satisfied when an operator can interact with the distant
environment through an haptic interface without any parasitic oscillations. There are several
ways to test stability of such a system. One of the most intuitive ones is to use the concept of
passivity. It allows to guarantee the stability without an exact knowledge of the system model and
parameter values. In short, a system is said passive, if the integral of the power extracted from it
over time, does not exceed the initial energy stored in the system (Colgate & Brown 1994). One
important property when studying stability of haptic displays consists of the fact that the serial
connection of two passive elements is also passive. In the subsequent developments, we will exploit
this property to guarantee the stability of our electro-haptic loop. To that end, we will implement
the passive unconditionally stable position-position TS architecture (Aliaga et al. 2004), and will
design a model of the environment in the form of some restoring electric forces that fulfill the
passivity property. Therefore, the passivity of all the components of figure 2 (including that of
the operator that will be assumed), will then ensure the stability of the whole system. Before
starting this design, we provide in the next section a definition of a restoring force in relation to
the general concept of passivity.

4 Concept of passive restoring force

Let us consider a mechanical system with configuration parameters X ∈ C. Intuitively, a restoring
force Fr(X) applied to this system is a force that opposes any dX moving the system away from
an equilibrium point Xd, i.e., such that:

Fr(Xd) = 0. (1)

Such a force is passive if pushing the system out of Xd along any path, always requires imparting
a positive energy to it, i.e., if we have:

−
∫ t

0

F T
r V dν ≥ 0 , ∀ paths in C, (2)
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where t is the time-variable, and V , the velocity of the system. Now assuming that Fr is con-
servative, there exists a state function U such that Fr(X) = −∇XU , and (2) can be rewritten
as:

−
∫ t

0

F T
r V dν = −

∫ X

Xd

F T
r dZ = U(X)− U(Xd) = S(X) ≥ 0 , ∀X ∈ C. (3)

In this condition, the configuration dependent function S fulfills all the requirements of a storing
(energy) function for the lossless passive force Fr. Finally, since S(Xd) = 0, to ensure Fr to be a
passive restoring force, it suffices to fulfill the three following conditions:

1. Fr is conservative.

2. The point Xd is an equilibrium point, i.e., it is such that (1) holds.

3. The equilibrium point Xd is the only minimum of the function S(.) defined by (3).

In all the following, we will seek to build a model of electric forces that fulfills the above conditions.
Before investigating this issue, we illustrate the above concept on a simple case which plays a key
role in our application.

5 Illustrative example: emulation of Lennard-Johns forces

For the sake of illustration, we start by considering an idealized one-dimensional translational
remote-controlled system (i.e. C = R). It consists of a set of two electric particles P1 and P2 of
charge q1 and q2 respectively, both connected through a rigid line of length l (see figure 4). This
rigid system can move along the x-axis, and P1 and P2 have for abscissa x1 = X − (l/2) and
x2 = X+ (l/2), with X ∈ R, the configuration parameter of this rigid system. In this simple case,
our general objective consists of emulating a restoring force around a desired position Xd, the
current position of the system X being known through measurements. With no loss of generality
we assume that X, Xd > 0. This system is now immersed in a 1-dimensional electric field of the
form

E(x) =
1

x2
, (4)

where x here represents the distance between any point along the x-axis and a unit charge particle
located in x = 0. According to laws of electrostatics (Jackson 1999), each of the two particles is
subject to a 1-dimensional (conservative) Coulomb force that reads

Fi = qiE(xi) =
qi
x2i

, i = 1, 2. (5)

From this simple physical picture, for any values of q1 and q2, one can build a restoring force Fr
around any position of equilibrium xd along the x-axis by using the simple model

Fr(X) = F (X)− Fd =

(
q1
x21

+
q2
x22

)
−
(
q1
x21d

+
q2
x22d

)
, (6)

where Fd = F (Xd), and Xd = x1d + l/2 = x2d − l/2 denotes the desired position of the system as
this is illustrated by the schematize of figure 4. Now, let us remark that choosing the two charges
such that

q2
q1

= −
(
x2d
x1d

)2

, (7)
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Figure 4: Emulation of a restoring force with two Coulomb charges immersed in an one-dimensional
electric field. Top axis: electric field. Bottom axis: Restoring force.

with q1 > 0, allows generating a zero resultant force Fd in the desired position. In this case, the
restoring force (6) is reduced to

Fr(X) = F (X) = q1

((
1

x1

)2

−
(
x2d
x1d

)2(
1

x2

)2
)
, (8)

or again, in terms of the dimensionless variables η = 2X/l, ηd = 2Xd/l and ξ = η − ηd:

Fr(ξ) =
4q1
l2

((
1

ξ + ηd − 1

)2

−
(
ηd + 1

ηd − 1

)2(
1

ξ + ηd + 1

)2
)
. (9)

Then, inserting the expression (8) in the path integral of (3) gives:

S(X) = −
∫ t

0

FrẊ dν = −q1
∫ x1

x1d

dz1
z21

+ q1

(
x2d
x1d

)2 ∫ x2

x2d

dz2
z22
. (10)

Now using (9), and because Coulomb forces are conservative1, (10) can be integrated as

S(ξ) =
2q1
l

[(
1

ξ + ηd − 1
− 1

ηd − 1

)
−
(
ηd + 1

ηd − 1

)2(
1

ξ + ηd + 1
− 1

ηd + 1

)]
. (11)

Finally, for any Xd and any positive number q1, the right hand side of (11) defines a nonnegative
storing function S(ξ). This context is illustrated in figure 5 which displays several plots of Fr(ξ)
and S(ξ) for q1 = 1, l = 0.03 and different values of ηd = 2Xd/l. It is straightforward to show that
this model fulfills the three conditions at the end of section 4. Therefore, it is unconditionally
passive on the half positive axis. Moreover, the plots of figure 5 have the typical shape of the
Lennard-Johns force and potential, which model the competition between long range (electric)
attraction, and short range (Pauli exclusion principle) repulsion between atoms in gas and liquids
(Hirschfelder et al. 1966). In summary, these simple considerations show that by immersing two

1Conservativity is here trivially ensured by the integrability of 1/z2.
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charged particles rigidly attached in a one-dimensional electric field, one can emulate a restoring
force Fr(X) = F (X) − Fd around any desired position Xd. Moreover, by tuning the electric
charges according to (7), one can remove Fd from the model and ensure the passivity of the
resulting model. In the rest of the article, these considerations will be extended (from C = R to
C = SE(2)) to build the wrench of emulated restoring forces acting on our electric probe.
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Figure 5: a: Restoring force (9). b: Storage function (11) for q = 1, l = 0.03 and ηd = 3, 4, 5.

6 Model of the environment

In this section, we deal with the ”Environment”-block of figure 2. This model is subdivided into
several sub-models. One is a geometric model of the scene. The others are related to the electric
field and its measurement that will be exploited to build the forces fed back to the operator.

6.1 Geometric model of the scene

From now on, the index d will indicate that a configuration dependent function is evaluated on
the desired pose of the probe, while for any tensor T , iT will denote the matrix of its components
in a frame Fi, all the frames being oriented directly. As discussed in the introduction, for the
purpose of theoretical analysis, we consider a scene consisting of an infinite vertical wall and an
active electric probe able to move in a plane perpendicular to the wall. The wall is assumed to
be insulating and using the method of images (Jackson 1999), its electric influence is equivalent
to that of the mirror image of the probe reflected by the wall. As a result, the scene can be
alternatively defined as a set of two electric active objects: the real probe and its mirror image
(see figure 6). These two objects move in the horizontal plane endowed with a fixed inertial frame
Fs = (Os, ex, ey). The probe is a rigid body equipped with a body-attached frame Fp = (Op, e‖, e⊥)
moving in translation and yaw rotation. The image reflected by the wall is itself endowed with
a body-attached frame Fw = (Ow, ew,x, ew,y) as indicated in figure 6-a. Any of these frames, say
Fi, i ∈ {w, p, s}, is parameterized with respect to any other one, say Fj, j ∈ {w, p, s}, with a
planar rigid transformation (translation and rotation) of R2, i.e., with an element jgi of the Lie
group SE(2). In particular, the configurations of the probe with respect to Fs = (Os, es,x, es,y)
are defined by the matrices of SE(2)

sgp =

(
R(θ) r

0 1

)
, (12)
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where sRp = R(θ) is the planar rotation matrix mapping (es,x, es,y) onto (e‖, e⊥), and sOp = r =
(x, y)T is the vector of the positional coordinates of Op in Fs as this is depicted in figure 6-a.
The transformations (12) are parameterized by the vector Xs = (x, y, θ)T ∈ R3. As regards the
transformation sgw, due to the symmetry of the scene, it is given by:

wgp =

(
R(2α) 2ρ(cosα, sinα)T

0 1

)
, (13)

and is parameterized by (ρ, α) only, where ρ denotes the distance from Op to the wall and α is

the oriented angle between
−−−→
OwOp and ~e‖, with Ow the center of the image (see figure 6-a).

(a) (b)

Figure 6: (a) Parametrization of the scene in the slave space. (b) Portrait of the electric field
generated by the mirror image of the probe in the wall.

Note that in all the subsequent developments, the pose sgp is known by feeding a geometric model
of the slave robot (our gantry), with its joint variables measurements. On the other hand, the
wall position being unknown in Fs, the pose of the mirror image sgw is a priori unknown.

6.2 Model of the reflected electric field

As evoked in the previous section, the electric influence of the wall is equivalent to that of the
mirror image of the probe. Applying laws of electrokinetics (Jackson 1999) to the 3-electrode
probe presented in section 2, its mirror image generates an electric potential of the form:

sx ∈ R2 7→ φ(sx) =
1

4πγ0

3∑
i=1

I
(0)
i

ri,w
∈ R, (14)

where i = 1, 2, 3 denotes the index of an electrode, sxi,w is the position of its mirror image in Fs,
while ri,w = ‖sx− sxi,w‖ stands for the distance between this mirror electrode and the point sx in

which the field is evaluated. Regarding electric quantities, I
(0)
i is the electric current flowing out
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of the electrode i in an homogeneous unbounded medium of conductivity γ0 (Boyer et al. 2012).
Taking the gradient of (14), provides the model of the reflected electric field:

sx ∈ R2 7→ sE(sx) = −s(∇sxφ(sx)) =
1

4πγ0

3∑
i=1

I
(0)
i (sx− sxi,w)

(ri,w)3
∈ R2. (15)

6.3 Model of the electric measurements

Referring to section 2.1, our probe is constituted of a plastic insulating tube on which are aligned
3 electrodes noted εk, where k = 1, 2, 3, numbers the head, neck and tail groups respectively
(see figure 7(a)). The tail electrode is the emitter. The head and neck groups ε1 and ε2 are the
receivers, which are subdivided into two symmetrical left and right electrodes. The electric current
flowing across each of these sub-electrodes is measured by an electronic board (Servagent et al.
2013). In section 7 we will build a model of the electric forces exerted by the wall onto the probe.
To this end, we need first a model of the measured currents when the probe is immersed in the
reflected electric field (15) with potential (14). Referring to (Boyer et al. 2012), such a model is
naturally expressed in terms of the following combinations :

k = 1, 2 : δIaxk =
I lk + Irk

2
, δIlatk =

I lk − Irk
2

, (16)

where the upper indices r and l indicate whether the current is measured by the left or the right
sub-electrode of εk. In (16), δIaxk denote the axial component of currents flowing into εk. As
shown in (Boyer et al. 2012), the vector of axial currents δax = (δax1, δax2)

T models the response
of the probe when it is set under voltage along its axis according to the matrix relation:

δIax = −C(0) Φ , (17)

where C(0) is the 3× 3 symmetric, but not invertible2, conductivity matrix of the probe with no
object in the scene. The minus sign in (17) means that the probe opposes its response to the
imposed external potentials Φ = (Φ1,Φ2,Φ3)

T , with Φk = φ(sxk), φ defined by (14), and sxk, the
position of εk in Fs. For the purpose of illustration, using a Boundary Elements Method (BEM)
which numerically solves the Laplace equations for any geometry (Boyer et al. 2012), the C(0)

matrix of the 3-electrode sensor pictured in figure 1-b, takes the value in Siemens (S):

C(0) = γ0
100

 6.00 −3.25 −3.00
−3.25 6.50 −3.50
−3.00 −3.50 6.50

 . (18)

Similarly, (16) defines the vector of lateral currents δIlat = (δIlat1, δIlat2)
T , which models the local

response of the sensor to the lateral (perpendicular to the probe axis) component of the external
electric vector field as:

k = 1, 2 : δIlatk = p⊥kEk⊥ , (19)

where Ek⊥ = seT⊥
sE(sxk) is the lateral component of the electric field (15) at the center of εk

of position sxk, while the p⊥k’s are some positive scalars standing for the ”lateral polarization
coefficients” of the probe (Boyer et al. 2012). For instance, for the 3-electrode probe of figure 1-b,
a BEM calculation gives p⊥1 = 0.189 × 10−4 and p⊥2 = 1.148 × 10−4, both expressed in Ωm−1.
Finally, the vectors of lateral and axial currents δIax and δIlat, are with sgp, all the information
that will be required by our model of emulated electric forces.

2The currents are in fact not independent since they have to satisfy the conservation of electric charges.
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(a) (b)

Figure 7: (a) Schematize of a 3-electrode probes. (b) Parametrization of the probe in its frame.

6.4 Model of the electric field along the probe

In section 7, the forces exerted by the wall onto the probe will be emulated by a set of virtual
Coulomb charges located on εk, k = 1, 2. In this perspective, we now derive a model able to
estimate the electric field at the electrodes center, from the knowledge of the measured axial
and lateral currents (16). Regarding the lateral components E⊥ = seT⊥

sE, the expected model is
directly deduced by inverting the local relations (19) which gives,:

k = 1, 2 : Ek⊥ = A⊥kδIlatk , (20)

where we introduced the notations A⊥k = p−1⊥k. To derive a similar model of the parallel com-
ponents of the field E‖ = seT‖

sE, we first define the electric potential along the probe as the
function:

φ‖(r, θ, `) = φ(sx3 + ` se‖), (21)

with sx3 = r + (L/2)(cos(θ), sin(θ))T , and ` ∈ R is a (signed) abscissa running along the probe
axis and counted from ε3. Then, we approximate φ‖ with a second order polynomial interpolation:

φ̃‖(r, θ, `) = a0 + a1`+ a2`
2, (22)

where ai=0,1,2 are some pose-dependent coefficients, solutions of the system: 1 `1 `21
1 `2 `22
1 `3 `23

 a0
a1
a2

 =

 Φ1

Φ2

Φ3

 , (23)

and `i, i = 1, 2, 3 are the axial abscissae of εi=1,2,3 counted from ε3, i.e., `1 = −L, `2 = −(L − l),
`3 = 0. Now, referring to (Boyer et al. 2012), one can consider the reduced system extracted from
(17): (

δIax1
δIax2

)
=

(
C

(0)
11 C

(0)
12

C
(0)
21 C

(0)
22

)(
Φ1 − Φ3

Φ2 − Φ3

)
. (24)

In contrast to the full 3× 3 matrix C(0) of (17), the above 2× 2 matrix is not only symmetric but
also invertible, and because `3 = 0⇒ a0 = 0, and one can write(

a1
a2

)
=

(
`1 `21
`2 `22

)−1(
C

(0)
11 C

(0)
12

C
(0)
21 C

(0)
22

)−1(
δIax1
δIax2

)
. (25)
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From this result, one can deduce the following approximation of the axial electric field along the
probe

Ẽ‖(`) = −
∂φ̃‖
∂`

(r, θ, `) = −a1 − 2a2` = −(1, 2`)

(
a1
a2

)
, (26)

which provides the approximation of its values E‖(`k) = Ek‖ on the electrodes εk:

k = 1, 2 : Ek‖ ' A‖k1δIax1 + A‖k2δIax2, (27)

where using (25) and (26), one has:(
A‖11 A‖12
A‖21 A‖22

)
= −

(
1 2`1
1 2`2

)(
`1 `21
`2 `22

)−1(
C

(0)
11 C

(0)
12

C
(0)
21 C

(0)
22

)−1
. (28)

Note that (27) is merely the axial counterpart of (20). Finally, the coefficients A⊥k and A‖kl define
a set of constant parameters (having for dimension Ω−1m) that only depend on the sensor design,
and not on the pose of the probe.

6.5 Assessment of the model of the electric field along the probe

We now consider the 3-electrode probe pictured in figure 1-b. Its geometric parameters are l =
0.04m, L = 0.21m, D = 0.02m. With such a design, using (18) and the values of the lateral
polarization coefficients after (19), the A⊥ and A‖-matrices of the above analytical model are (in
Ωm−1):(

A⊥1 0
0 A⊥2

)
=

(
5.29 0

0 6.75

)
104,

(
A‖11 A‖12
A‖21 A‖22

)
=

(
5.1497 −5.8237
3.6415 −1.6150

)
103. (29)

In order to assess the analytical model of the field in section 6.4, we compare its predictions for
our 3-electrode probe to those predicted by the BEM. Assuming that Fs is aligned with the wall
according to figure 7, the probe is first positioned in X0 = (x0, 0, 0)T with x0 such that the distance
between Op and the wall is 15cm. The probe is then moved along:

• A x-path such that (y, θ) = (0, 0), and x runs between 0m and 0.3m,

• a y-path such that (x, θ) = (x0, 0), and y runs between −0.4m and 0.4m,

• a θ-path such that (x, y) = (x0, 0), and θ runs between −π/2 and π/2,

The axial and lateral components Ek‖ and Ek⊥ are then calculated with the BEM and the analytical
approximations (20, 27, 29) fed by the electric currents calculated by the BEM. The results of
these calculations are illustrated in Figures 8 and 9 which display the non-zero plots provided by
these two models for the x, y, and θ-path. In all these simulations, the analytical approximation
of the electric field based on the measurements fits well with the BEM. In particular, both models
inherit the basic properties of the reflected field. Along θ-paths, Ek‖ and Ek⊥ are symmetric and
skew-symmetric respectively, with respect to (w.r.t.) (x0, 0, 0). Along the y-path, Ek‖ remains
constant while Ek⊥ = 0. Finally, as expected from laws of electrostatics, along the x-path, Ek‖
drops as the inverse of the square of the distance between the probe and the wall.
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Figure 8: Axial components of the electric field at each measurement electrodes along the x (left)
and y-path (right): comparison between BEM (dashed lines) and analytical model (solid lines).
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Figure 9: Lateral and axial components of the electric field along the θ-path: comparison between
BEM (dashed lines) and analytical model (solid lines).

7 Emulation of the electric restoring forces

In this section we use the above measurements with the aim of building a model of the pre-touch
forces exerted by the wall onto the probe. These forces will be fed-back to the operator through
the haptic interface as presented in section 2. As mentioned in introduction, this model consists
of some restoring forces that tend to steer the probe in a pose perpendicular to the wall. In such a
desired pose, the head of the probe faces the wall at a prescribed distance d−L/2 from it. Due to
the symmetry of the scene, it exists an infinity of such desired poses sgpd . However, once expressed
in the frame of the mirror image Fw, the desired pose wgpd is unique. In words, wgpd given by
(13) with (ρ, α) = (d, 0), defines the desired pose relative to the wall regardless of its particular
position along it. This context is illustrated by the figure 1 with the parameters of figure 6-a.
With this picture in mind, we will build upon the basic concepts of sections 4 and 5, by imposing
to our model of restoring forces, the further requirements:

• Requirement 1: The model needs to be conservative.

• Requirement 2: It’s a function of measurements δIax, δIlat and the probe pose sgp only.
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• Requirement 3: The desired pose wgpd is an equilibrium pose of the model.

• Requirement 4: The desired pose is the unique minimum of the associated S function.

Note that requirements 1, 3 and 4 are nothing else than the conditions required by our model of
passive restoring force as defined at the end of section 4, with S the corresponding storing function.
As regards requirement 2, let us also remind that while the poses sgp and wgpd are known (the
first is deduced with the geometric model of the slave, the second is prescribed), the pose wgp is
of course a priori unknown, and should be steered toward wgpd by our emulated restoring forces.
In the subsequent developments we will address these requirements step by step. To that end, we
will build on the model of Coulomb forces of electrostatics as it is reminded in the next subsection.

7.1 Reminder of electrostatics

In the subsequent developments we will base our emulation of restoring forces on basic facts of
electrostatics (Jackson 1999) in continuity with the Lennard-Johns model of section 5. First, let
us consider an electric field x ∈ R3 7→ E(x) ∈ R3 (for the sake of concision, the index of the
expression frame is omitted). Then, any electric charge q ∈ R of position vector x in space, is
subject to the Coulomb force:

F (x) = qE(x). (30)

In the same way, if the field E varies enough slowly with respect to x, then any electric dipole
p ∈ R3 immersed in E, is subject to no force but to the Coulomb couple:

C(x) = p× E(x), (31)

which tends to align the dipole with the field. Moreover, Coulomb forces and couples are conser-
vative.

7.2 Requirement 1: Emulation of virtual Coulomb charges and dipoles

To properly emulate a system of external conservative forces exerted onto the probe by the en-
vironment (its mirror image reflected by the wall), one can use the above model of electrostatic
forces and torques. The key idea thus consists of using the measurements of the probe to emu-
late a set of virtual Coulomb charges and dipoles rigidly attached to the probe considered as a
compass that can move and rotate freely under the influence of the reflected electric field. These
virtual Coulomb charges and dipoles are positioned at the centers of the measurement electrode
groups εk, k = 1, 2. Thus, any εk is paired with a virtual electric charge qk and a virtual electric
dipole ppk ∈ R2. Regarding dipoles, they are imposed to be aligned with the probe axis, i.e.,
ppk = (pk, 0)T in order to generate an alignment torque with the local value of the measured
electric field. Hence, referring to section 7.1, we can define for any εk the following external force
and torque expressed in the probe frame

pFk = qk
pEk , Ck = pk Ek⊥, (32)

where we used the fact that a virtual dipole is aligned with the probe, while for the sake of
concision, we shall note from now on pE(sxk) = pEk = (Ek‖, Ek⊥)T . In the case of our 3-electrode
probe, because the electric field can be measured on ε1 and ε2 only, the superimposition principle
allows writing the wrench of virtual electric forces in the general form:

pF =

(
pF
M

)
=

(
pF1 + pF2

C1 + C2 − l1F⊥1 − l2F⊥2

)
, (33)
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Figure 10: Model of virtual electric charges and dipoles.

where l1 = L/2 and l2 = (L/2)−l are the distances between ε1 and Op, and ε2 and Op, respectively
(see figure 7-b). Such a configuration of charges and dipoles is illustrated in figure 10. According to
section 7.1 and superposition principle, the wrench (33) is conservative and does fulfill requirement
1. Starting from this general configuration of charges and dipoles, we will impose to it some
restrictions in order to fulfill the three further requirements.

7.3 Requirement 2: Sensor-based model of electric forces

We now address the second requirement of the beginning of section 7, i.e., we check whether the
virtual forces and torques of (33) can be built from the knowledge of our embarked measurements
and the pose sgp, only.

7.3.1 Sensor based model of Coulomb forces and couples

Let us express the virtual Coulomb forces and torques induced by a charge and a dipole (qk, pk)
placed in εk in terms of the reflected electric field. In a frame Fpεk centered on εk with vector
basis (e‖, e⊥), we have from (32):

pεkFk =

 qkEk‖
qkEk⊥
pkEk⊥

 . (34)

Hence, if for any group εk, one can derive an expression of Ek‖ and Ek⊥ in terms of the measured
currents δIax and δIlat only, the model fulfills our requirement 2. Indeed, referring to section 6.4,
Ek⊥ and Ek‖ can be imaged by δIlat and δIax as follow:

pEk =

(
Ek‖
Ek⊥

)
=

(
A‖k1δIax1 + A‖k2δIax2

A⊥kδIlatk

)
. (35)
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Finally, inserting (35) into (34) shows that a Coulomb charge and dipole located in εk can be
emulated by the measure-based model:

pεkFk =

(
pFk
Ck

)
=

 Fk‖
Fk⊥
Ck

 =

 K‖k1δIax1 +K‖k2δIax2
K⊥kδIlatk
KθkδIlatk

 , (36)

where K‖kl, K⊥k and Kθk are four design constants (four gains) parameterized by the virtual
charges qk and the virtual dipoles pk through the relations:

k = 1, 2 : K‖kl = qkA‖kl , K⊥k = qkA⊥k , Kθk = pkA⊥k. (37)

These four gains being pose-independent, each pεkFk depends on the measurements only, and thus
satisfies the requirement 2. Now, let us apply these results to our configuration of charges, i.e., one
charge and one dipole on the neck and the head electrode. In this case, the wrench of emulated
electric forces (33) reads

pF =

(
pF
M

)
=

(
pF1 + pF2

C1 + C2 − l1F1,⊥ − l2F2,⊥

)
=

 q1E1‖ + q2E2‖
q1E1⊥ + q2E2⊥

(p1 − l1q1)E1⊥ + (p2 − l2q2)E2⊥

 , (38)

which can be detailed in terms of measurements as

pF =

 K∗‖1δIax1 +K∗‖2δIax2
K⊥1δIlat1 +K⊥2δIlat2
K∗θ1δIlat1 +K∗θ2δIlat2

 , (39)

with the further notations:

K∗‖1 = K‖11 +K‖21 , K∗‖2 = K‖12 +K‖22 , K∗θ1 = Kθ1 − l1K⊥1 , K∗θ2 = Kθ2 − l2K⊥2, (40)

which will be systematically used in the subsequent developments. Note that in these expressions,
the star indicates that the definition of the gain involves non-local measurements (introduced by
the momentums of forces or by the coupled model of E‖).

7.3.2 Sensor-based model of the restoring wrench

To achieve the design of our emulated wrench, we need to ensure it to represent a system of restor-
ing forces. To that end, we prolong the idea developed in the simple illustrative one-dimensional
example of section 5. We first define the desired wrench as that exerted by the virtual Coulomb
forces and torques when the probe is in its desired pose with respect to its mirror image. Using
(39), such a wrench is defined by its components in the (desired) probe frame:

pdFd =

(
pdFd
Md

)
=

(
q1
pdE1d + q2

pdE2d

0

)
=

 K∗‖1δIax1d +K∗‖2δIax2d
0
0

 , (41)

where we used the fact that for any pose aligned with the mirror image, the symmetry of the scene
imposes δIlati = p⊥iEi⊥ = 0, i = 1, 2.
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Then, the emulated wrench is obtained by subtracting this desired wrench from the corresponding
electric wrench in the current pose. Using the definition of the probe configuration space as the Lie
group SE(2), when comparing pF and pdFd through this substraction, we should use the transport
of wrenches:

pFr = pF− AdTpdgp
pdFd, (42)

where Adpdgp is the adjoint action of SE(2) onto its Lie algebra se(2) (Murray et al. 1994),
which depends on the probe pose pdgp and thus does not satisfy our requirement 2. Therefore, to
preserve this requirement, we use the idea presented in section 5 and fix the particles charge such
that pdFd = 0 (remind that the alignment already imposes Md = 0), i.e., we impose the condition
on the two charges:

q1
pdE1d + q2

pdE2d = 0 ⇒ q2
q1

= −
E1‖d

E2‖d
, −αEd , (43)

with q1 > 0 and where we used the fact that due to symmetry, E1⊥d = E2⊥d = 0. In short, imposing
(43), the desired force disappears from the model (42) which then enjoys the requirement 2, while
being consistent with the comparison of two wrenches in the same basis of se(2)?. Finally, in the
probe frame, this model of the restoring electric forces simply reads:

pFr =

(
pFr
Mr

)
=

(
pF − 0
M − 0

)
=

 Fr‖
Fr⊥
Mr

 =

 q1(E1‖ − αEdE2‖)
q1(E1⊥ − αEdE2⊥)

(p2 + l2αEdq1)E2⊥ + (p1 − l1q1)E1⊥

 . (44)

So far, the model of electric forces has been expressed in the mobile probe frame. However, for
the purpose of position-position remote control, it is required to transport this model in a frame
related to the slave space according to:

s?Fr = AdTpgs?
pFr, (45)

with:
s?Fr =

(
sFr
Mr

)
=

(
sRp

pFr
Mr

)
, (46)

and pFr = (Fr‖, Fr⊥)T defined by (44). In this slave-related model, we used the frame F?s , indicated
by the left upper index ”s?” in (46). This frame is deduced by parallel translating the basis vector
of Fs from Os to the probe center Op (see Figure 6). Such a choice is systematically used in the
following. It is more intuitive than using Fs since it allows directly feeding back the momentum
of Coulomb forces related to the probe center Op, to the yaw DoF of the joystick. Finally, the
ego-centered model (44) depends only on the electric measurements, while the allo-centered one
(45) also depends on the pose sgp. Therefore, they both satisfy the requirement 2.

7.4 Requirement 3: Equilibrium analysis of the restoring forces

In this section we study the equilibrium poses of our model of emulated forces, i.e., we seek the
poses wgp that ensure pFr = 0 and Mr = 0. Using (44), these two vector conditions impose the
three scalar constraints on the electric field in Fp

Fr‖ = q1(E1‖ − αEdE2‖) = 0, (47)

Fr⊥ = q1(E1⊥ − αEdE2⊥) = 0, (48)

Mr = (p2 + l2αEdq1)E2⊥ + (p1 − l1q1)E1⊥ = 0. (49)
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According to our requirement 3, this set of 3 algebraic nonlinear equations needs to have as root,
the desired pose whose parameters related to the wall are (ρd, αd) = (d, 0), with d fixing the
distance between the probe and the mirror image when they are aligned as in figure 10.

To achieve this further requirement, it is convenient to impose the following further constraints
on our four design parameters (q1, q2, p1, p2):

p1 = l1q1 , p2 > l2q2 = −l2αEdq1. (50)

This allows changing (47-49) into

Fr‖ = q1(E1‖ − αEdE2‖) = 0 , Fr⊥ = q1(E1⊥ − αEdE2⊥) = 0 , Mr = (p2 + l2αEdq1)E2⊥ = 0. (51)

To find the roots of (51), one can progress through simple considerations based on the symmetries
of the scene and the parameters (ρ, α) of figure 6. To that end, let us first remark that the two
above conditions Fr⊥ = 0 and Mr = 0, impose E1,⊥ = E2,⊥ = 0, which can hold solely when the
probe axis is aligned with the unique straight line of the reflected electric field, i.e., when it is
perpendicular to the wall (see figure 6-b). With our parameters, this means that α = 0 or π. Now
imposing each of these two values in the third condition Fr‖ = 0, defines in both cases, a single
equation with respect to ρ which reads:

q1(E1‖ − αEdE2‖)(ρ) = 0 ⇔
E1‖

E2‖
(ρ) = αEd. (52)

This equation has no root for α = π. On the other hand, when α = 0, according to the definition
(43) of αEd, (52) has for unique root ρ = d and the requirement 3 is fulfilled. To close this section,
one can now state our restoring wrench compatible with requirements 1, 2, 3 in the final form Fr‖

Fr⊥
Mr

 =

 q1(E1‖ − αEdE2‖)
q1(E1⊥ − αEdE2⊥)
(p2 + l2αEdq1)E2⊥

 , (53)

which only depends on the two physical parameters q1 and p2. Equivalently, using (20), (27) with
(37), (40), as well as the fact that the equality constraint of (50) imposes K∗θ1 = 0, one can obtain
the general form of the restoring wrench as a function of the measured currents: Fr‖

Fr⊥
Mr

 =

 K⊥1[(β11 − β21λ)δIax1 + (β12 − β22λ)δIax2]
K⊥1(δIlat1 − λδIlat2)

K∗θ2δIlat2

 . (54)

Note that (54) is entirely defined by the two independent gains K⊥1 = q1A⊥1 and K∗θ2 = (p2 +
l2αEdq1)A⊥2, as well as the further constants

βkl =
A‖kl
A⊥k

, λ = αEd
A⊥2
A⊥1

, (55)

which only depend on the probe morphology and the desired pose.
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7.5 Requirement 4: Passivity of the restoring forces

In this section we wonder whether the desired pose is the unique minimum of the storing function
associated to our virtual wrench sFr = (sF T

r ,Mr)
T . To this end, we refer to the general context

of section 4, and remark that for our electric compass, the path integral of (3) is instantiated for
any Xs = (rT , θ)T by:

S(Xs) = −
∫ r

rd

sF T
r dr −

∫ θ

θd

Mrdθ , (56)

in which we have introduced the detailed expression of sFr given by (46) and (drT , dθ) = (dx, dy, dθ)
defines a path in SE(2). Looking at (56), it is straightforward that we have:

sFr = −∇XsS. (57)

Thus, as shown in the previous section, S has a unique singularity which is such that the probe is
perpendicular to the wall with its head facing it (i.e. on the axis α = 0 of the (ρ, α) space). In this
case we are in the conditions of the Lennard-Johns forces of section 5 and S → +∞ when ρ→ L/2
(i.e. when the head electrode touches its mirror image). Hence, this unique singular point of S can
only be a saddle point or a global minimum (not a maximum). But a saddle point would mean
that there would exist other singularities of S out of the axis α = 0, what is impossible. Thus,
S has a global minimum for (ρ, α) = (d, 0), and this minimum is such that S = 0. Therefore, S
is nonnegative and does define a storing function. Finally, our model of forces defined by (53) or
equivalently (54), does be passive.

8 Implementation of the model of restoring forces

The model of Coulomb charges reacting to an electric field, has revealed to be a useful tool for
designing Fr. However, for its practical implementation, it is preferable to express Fr directly
in terms of the measured currents (while preserving the passivity of the model). This practical
implementation of Fr is presented in this section.To implement the model of restoring forces, one
can first consider it in the form (53), i.e., as a function of the electric field components Ek‖ and
Ek⊥, which then should be replaced by their expressions in terms of the measured currents as they
are given in section 6.4. In particular, the αEd-coefficient can be easily expressed as:

αEd =
A‖11δIax1d + A‖12δIax2d
A‖21δIax1d + A‖22δIax2d

. (58)

Adopting this process, one could entirely parameterize the model with the two gains K⊥1 and
K∗θ1 as this is apparent in the expressions (54), (55). Though this first implementation process is
valid, we used an equivalent, but more straightforward alternative based on the general form of
the restoring wrench (42), in which one inserts (39) and (41). This gives:

pFr =

 K∗‖1δIax1 +K∗‖2δIax2
K⊥1δIlat1 +K⊥2δIlat2
K∗θ1δIlat1 +K∗θ2δIlat2

− AdTpdgp
 K∗‖1δIax1d +K∗‖2δIax2d

0
0

 . (59)

Then, comparing (59) with the general form of the restoring wrench (42), it becomes apparent
that one can directly remove the desired component pdFd in (59) as follows. We first position the
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probe in the desired pose (ρd, αd) = (d, 0). Then, we measure the two axial currents of the neck
and the head electrodes, and tune the gains K∗‖1 and K∗‖2 in order to fulfill the condition:

K∗‖2
K∗‖1

= −δIax1d
δIax2d

, −αId, (60)

which stands for a counterpart of the condition (43) where the influence of the electric field
is replaced by the measured currents. For instance, for our 3-electrode probe and with d =
(L/2) + 0.11m, one finds αId = 1.23. As expected, this process is equivalent to this based on (54)
and (58), but has the advantage of being more straightforward. In the same way, one can directly
fulfill the conditions (50) by imposing K∗θ1 = 0 and K∗θ2 > 0 in (59). Using these considerations,
our experimented model of the emulated restoring forces takes the general form: Fr‖

Fr⊥
Mr

 =

 K∗‖1(δIax1 − αIdδIax2)
K⊥1δIlat1 +K⊥2δIlat2

K∗θ2δIlat2

 . (61)

Now, in order that (61) emulates two Coulomb charges (and realizes the counterpart of (53)), the
lateral gains K⊥1 and K⊥2 need to satisfy the further relation deduced from (37), (40) and (60):(

K⊥1
K⊥2

)
=

(
A⊥1 0

0 A⊥2

)(
A‖11 A‖21
A‖12 A‖22

)−1(
1
−αId

)
K∗‖1 ,

(
ν1
ν2

)
K∗‖1. (62)

Note that this relation is the only one required by the approximated model of the axial electric
field of section 6.4. Moreover, it only depends on the intrinsic morphology of the probe and of the
direct measurement of αId . For our 3-electrode probe, one introduces αId = 1.23 and (29) into
(62), which gives: (

ν1
ν2

)
=

(
+5.5
−0.7

)
. (63)

To conclude this section, introducing (62) into (61) yields: Fr‖
Fr⊥
Mr

 = K

 δIax1 − αIdδIax2
ν1δIlat1 + ν2δIlat2

ξδIlat2

 . (64)

where ξ = K∗θ2/K
∗
‖1 and K∗‖1 = K stand for the angular reactivity and a scaling force factor

respectively. In all the experiments hereafter reported, we use (64) with (63), while the two
independent gains K and ξ are tuned in situ in a unique preliminary phase.

9 Haptic feedback control law

Though having the advantage of being intrinsically passive, the position-position con-
trol that we here adopt, suffers from several drawbacks. First, compared to the
force-position law, it provides TS with low transparency, a limitation which is here
compensated by using an extremely back-drivable master arm. Second, with small
displacements of the master manipulator, we wish the slave to perform both long
range displacements of low accuracy, and accurate fine maneuvers, which is difficult
due to the size difference between our two work-spaces. To address these different
issues, one commonly uses position and force adaptative scale factors (see Figure 11),
online decoupling (see paragraph 9.3), a velocity sphere (Salcudean et al. 1995), or a
combination of all these solutions.
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9.1 Linearization of the slave and master Cartesian dynamics

The Cartesian position-position control is conceptually simple and partly inspired from the active
stiffness control (Salisbury 1980), or impedance control (Hogan 1985). To design such a controller,
the idea consists of coupling with virtual springs and dampers, the dynamics of the master and
the slave robots, both being considered as admittances in their respective Cartesian space. In
the case of the slave robot, the Cartesian space has been already defined as the space of poses
sgp ∈ SE(2) or alternatively the parametric space of Xs = (x, y, θ)T . As regards the master
robot, i.e., the haptic interface, its roll, pitch and altitude DoFs being locked, the configuration
space of the joystick frame Fm is also SE(2) and its poses with respect to the interface basis are
parameterized by the Cartesian coordinates vectors Xm = (xm, ym, θm)T . With these notations,
the Cartesian dynamics of the master and slave are of the general form3:

Mk(qk)Ẍk + Ck(qk, q̇k) +Qk(qk) = J−Tk (qk)τk + s?Fext k, (65)

where the index k stands for the slave or master index m or s, while Mk and Ck are the Cartesian
mass matrix and the Cartesian vector of Coriolis-centrifugal forces, qk and τk are the vectors of
joint angles and torques, Jk is the Jacobian matrix of the manipulator, and s?Fext k stands for the
wrench of external Cartesian forces applied onto the considered manipulator. In the case of the
master, s

?Fext m is exerted by the operator (on the joystick) and denoted s?Fo, while in the case
of the slave s?Fext s stands for our emulated electric restoring wrench s?Fr. Finally, J−Tk τk = s?Fk,
k = m, s, stands for the wrenches coupling the master and the slave. Their design for impedance
control is briefly summarized hereafter.

To perform impedance (linear) control, one can easily resort to some simplifications allowing
removing most of the nonlinearities of the general dynamics (65). In fact, the slave is a Cartesian
robot, and one can consider that Cs = Qs = 0, while Js and Ms are some constant diagonal
matrices depending on the mechanical design of the gantry. As regards the master, this is a light
parallel robot subject to motions of small magnitude. Thus, one can also neglect the Coriolis
forces Cm as well as the inertia of the legs, and consider in Mm and Qm, the influence of the
joystick only. In such simplified conditions, one can consider the so-called Jacobian scheme:

τm = JTm
(
s?Fm +Qm

)
, τs = JTs

(
s?Fs

)
, (66)

which once applied to the two robots, allows changing their Cartesian dynamics (65) into the
linearized-decoupled ones:

MmẌm = s?Fo + s?Fm , MsẌs = s?Fs + s?Fr, (67)

where s?Fm and s?Fs define a feedback control law emulating the expected position-position dy-
namics of the remote control loop as detailed in the next section. Finally, it is worth noting that
the mapping (s

?F, s?V) 7→ (τ, q̇) being lossless, the law (66) preserves the intrinsic passivity of the
position-position scheme.

9.2 Position-position control loop

The principle of the position-position control consists of coupling together the master and slave
linearized dynamics (67) with a law of the form:

s?Fm = s?Km(Xs −Xm) + s?Bm(Ẋs − Ẋm) , s
?Fs = s?Ks(Xm −Xs) + s?Bs(Ẋm − Ẋs), (68)

3Note that this form is shared by serial and parallel robots.
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where from left to right, the first of the above relations stands for a PD servoing of the master on the
slave position while the second relation stands for a PD servoing of the slave position on the master
one. Furthermore, taking s?Km = s?Ks = K and s?Bm = s?Bs = B, allows emulating a mechanical
spring-damper coupling, which is intrinsically passive. In such conditions, s

?Fm = −s?Fs and (67)
is changed into:

MmẌm + B(Ẋm − Ẋs) + K(Xm −Xs) = s?Fo , MsẌs + B(Ẋs − Ẋm) + K(Xs −Xm) = s?Fr. (69)

Finally, these two linear decoupled dynamics define the master and slave admittance Ym and Ys
of figure 11.

Ym(s)
s* Fo s* Fm s* Fs s* Fr

-

- -

Passive Master Device Unconditionally Stable 
Bilateral Coupling

Passive Slave Device

Figure 11: Implemented position-position Teleoperating System (TS). sv and sf are matrices of
scaling ”velocity” and ”force” factors.

9.3 Switching between coupled and uncoupled position control modes

According to the position-position scheme, when the operator moves the joystick in the master
space, the probe is moved with a similar motion but amplified by a certain scaling factor. Each
of these two motions is defined with respect to a reference frame fixed in its own space, these
two frames Fm and Fs being matched to each other. Due to the difference of size between the
two working spaces (slave and master) and the limitations of the scaling factor (imposed by the
accuracy), this frame matching needs to be updated. This is especially the case when performing
long range motions in the slave space. This updating process works as follows. At any given time
t0, if the operator pushes a button, the two frames Fp(t0) and Fm(t0) are matched to each other,
and Fp(t0) becomes the new slave reference frame Fs (i.e. the time-evolution Fm(t)/Fm(t0) for
t > t0, generates a homothetic motion of Fp(t)/Fp(t0)). Reciprocally, when the joystick reaches
the boundary of its working space (defined as a ball in the space of Xm centered on the joystick
neutral position), the operator can switch off the frame matching. Then, the slave is locked in
its current position while the joystick being uncoupled from the slave, it can be moved freely by
the operator in a novel reference frame position fixed by the next activation of the button. This
iterative process can be repeated as many times as required by the task. We now illustrate it on
an arbitrary path specified in the master space by the 6 maneuvers (labelled in chronological order
A,B, ..F ) displayed in figure 12(a), and reproduced in the slave one as shown in figure 12(b). In
this test, the electric force is not fed-back to the master, while as in all the subsequent experiments,
the working space is such that −2 <

√
x2m + y2m < 2cm and −10 < θm < 10◦. As expected, when

the joystick reaches the limit of the working ball (drawn by a circle), the operator switches off
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the matching between two spaces, and then moves the master to another pose which becomes
the reference frame for the next manoeuver. In the slave space, the path of the probe appears as
the iterative cumulation (integration) of all these elementary paths, each being constructed with
respect to a different reference frame Fs as indicated in figure 12(b).

(a) (b)

Figure 12: (a): Paths followed by the master. In green the initial frame of the manoeuver, in red
the final one. (b) Path in the slave space, with Fa an absolute frame located at the tank center,
and Fp(ti) the successive values of the reference frame Fs, updated at the switching instants ti
which bound the manoeuvres A,B,C...F .

To supplement the illustration, figure 13(a) shows the time-evolution of the joystick pose param-
eters Xm = (xm, ym, θm)T and of those of the probe frame w.r.t. an absolute slave frame Fa
positioned at the center of the tank. This vector of parameters is denoted Xa = (xa, ya, θa)

T , with
”a” for ”absolute”. To illustrate the frame updating, the time-evolution of a switching Boolean
variable (B = 1 if the master and slave are coupled, and B = 0 if not) is plotted in figure 13(b).
These further plots show how Xm moves between two manoeuvres (coupled phases), while in these
cases, Xa is locked in its last coupled position.

10 Experimental characterization of the electro-haptic loop

This section deals with the implementation and characterization of the haptic loop. This is the
preliminary step before its operational experimentation that will be addressed in the next section.
In this section, we consider a test where the joystick remains in its working ball with no change
of reference frame.

10.1 Experimental implementation of the Teleoperation System (TS)

In all tests, we uses sv = diag(1, 1, 1), sf = diag(0.3, 0.3, 0.01) which are the matrices scaling the
velocities and forces between the master and slave spaces. In practise, the PD controller of figure
11 is reduced to a single diagonal proportional component, with gains defined by:

Kpx = 100N/m , Kpy = 100N/m , Kpθ = 30Nm/rad, (70)
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(a) (b)

Figure 13: (a) Time evolution of Xm (red), Xs (green) and Xa (blue) in the same conditions as
figure (12). (b) Time evolution of the switching Boolean variable B for the same example.

while the scaling factor and the angular reactivity of the electric restoring wrench (64) are

K = 5000N/A , Kξ = 5000Nm/A. (71)

Note that this set of gains has been chosen (by trials and errors) in order to ensure the stability
of the slave-master and master-slave position loops in a comfortable bandwidth for the operator4.

10.2 Characterization based on the alternation of single DoF com-
mands

In this first test, the probe is initially positioned in one of its desired poses at the middle of one
of the walls of the tank presented in section 2.2. Then, the test starts by a phase from t ' 4s to
t ' 30s during which xm is moved, then from t ' 30s to t ' 58, ym is moved, and finally θm is
moved from t ' 58s to t ' 95s. For the operator’s comfort, the coupling wrench s?Fm = −s?Fs is
not fed back to the joystick but solely monitored by the teleoperation system.

(a) (b)

Figure 14: Path of the joystick (a) and the probe (b) in their Cartesian space: when the x, y and
θ DoFs are moved one after the other.

4Note here that though being unconditionally stable, the position-position coupling can be destabilized by the
inherent delays introduced by digital transmissions (Hannaford & Ryu 2002).
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Figure 15: Time evolution of Xm and Xs when the x, y and θ DoFs are moved one after the other.

Figure 16: Time evolution of s?Fs and s?Fr when the x, y and θ DoFs are moved one after the
other.
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The paths of Xm and Xs are displayed in figures 14-a and 14-b, while figure 15 displays the time
evolution of their three components. The time evolution of the three components of the position-
position coupling wrench s?Fs = −s?Fm = (F ?

sx, F
?
sy,M

?
s )T and of the electric wrench s?Fr =

(F ?
rx, F

?
ry,M

?
r )T are reported in figures 16. As expected, both the positions Xm = (xm, ym, θm)T

and Xs = (x, y, θ)T follow each other. The examination of the time lags between the curves of
15 and 16 allows confirming the causality of the events. In the case of the x-channel, the first
cause is the xm-motion which contracts the spring of the position-position coupling wrench (its x
component F ?

sx). This wrench makes the slave move along x so generating an electric force F ?
rx

which tends to balance the spring force along x. The same causality holds along the y and θ
DoFs. However, in these further cases, due to the θ − y couplings introduced by the model of
electric forces (64), any θ-variation of the probe generates an additional restoring electric force
F ?
ry. Finally, the probe being perpendicular to the wall, this coupling does not express on the
y-channel, and the y-variations do not generate any restoring lateral force F ?

ry.

10.3 Experimental characterization of passivity

The passivity of the model of electric forces has been theoretically proved in section 7.5. One
can now confirm this prediction experimentally. To that end, we reconsider the single DoF test
of section 10.2 and numerically calculate from (56), the values of the S function along the probe
path. This time evolution of S is displayed in figure 17-a. As this has been observed for all our
experiments, the path integral remains lower bounded by zero. To supplement this observation,
we reported in figure 17-b, the evolution of this storing function S versus the x-coordinate between
times t = 4s and t = 30s, i.e. along a few cycles of the first phase of the test of section 10.2 (when
the x-DoF is moved). As predicted by the theoretical analysis of section 5, in this case the integral
nearly draws the typical profile of the Lennard-Johns interaction potential close to its equilibrium
position, the slight discrepancies being due to the residual motions of the two other DoF that the
operator cannot avoid.

(a) (b)

Figure 17: (a): Time evolution of the storing function S along the entire test of section 10.2. (b):
S versus x in the first phase of the test of section 10.2, i.e., when x is moved.
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11 Operational tests of the electro-haptic feedback loop

In this section, our model of electric restoring forces is used in the remote-control position-position
architecture of section 9. The concept of the electro-haptic feedback loop has been tested through
a set of experiments carried out by an operator in different working conditions. We here report a
representative sample of these first results and give an interpretation of them.

(a) (b)

TANK

Haptic interface
Operator

PC

Probe

Opaque screen

(c)

Figure 18: Operational view point without (a) and with (b) the opaque screen. (b): Top-view
schematize of the setup.

11.1 Experimental results

The task consists in following the boundaries of the environment while the probe is maintained
perpendicular to them at a fixed distance. The subjective goal of the operator is to push the
probe as a far as possible along the translational DoF offering zero force, while on the two others,
he allows himself to be guided by some restoring force and torque. These experiments consist
of four tests numbered 1, 2, 3, 4 and organized as follows. In the first test, the probe is alone
in the tank of section 2.2. In the second, we add a small insulating sphere close to one of its
walls. In the third, a conductive spherical object is added in the scene. Finally, in the fourth
test, some movable walls are added in order to create a ”hole” in a wall. Note that, compared to
our ideal infinite wall, all these tests introduce some electric perturbations: corners, hole, objects
that we expect to be rejected by our remote-control strategy. All the tests are started in the
same initial conditions. The probe is first positioned in its equilibrium position at the middle of
one wall. The joystick is positioned close to its neutral position and its frame is matched with
the probe frame in the equilibrium position. All the tests are performed with no visual feedback
since the tank is occulted with an opaque screen (see figure 18). The results are presented as
follows. For the 4 tests, we reported the paths of the probe in the tank (figures 20, 23, 26, 29);
the time-evolution of Xm = (xm, ym, θm)T and Xa = (xa, ya, θa)

T (figures 21, 24, 27, 30); the time
evolution of pFr = (Frx, Fry,Mr)

T (figures 22, 25, 28, 31). Note that Xa and pFr are reconstructed
from Xs and s?Fr with the frame updating process of section 9.3 and using equation (46). These
variables are preferred to Xs and s?Fr for the convenience of interpretation of results. To initiate
our reporting, the test 1 is enriched of the plots of the joystick path in the master space and the
time-evolution of the Boolean variables indicating the switches between coupled pairs of reference
frames in the two spaces (figures 19(a) and 19(b)). For the purpose of readability, we used a color
code in the above plots. In figures 21, 24, 27, 30, the Xa and Xm plots are indicated with the blue
and red colors respectively. The green color is preferentially used to indicate the values of some
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variables when the distance between the probe and the nearest orthogonal wall is equal to the
expected value d. Finally, along the probe paths of figure 20, 23, 26, 29 several snapshots of its
pose are indicated in dashed line. On the corresponding sub-figures numbered (a) these snapshots
are plotted at a regular time rate, while in sub-figures (b), they are plotted at key instants relevant
to our discussion. All these snapshots are indicated by capital letters (A,B,C...) that are used in
other plots to point out the corresponding instants.

11.2 Test 1

In this first test, the operator goes around the tank in 900s while maintaining the probe perpendic-
ular along the 4 walls. To perform the task, the operator has updated the reference slave frame 85
times according to the plots of figures 19(a) and 19(b). As illustrated in figures 20(b), the probe
correctly performs the task through a sequence of distinguishable phases consisting of translations
along the walls (A→ B, C → D, E → F , G→ H, I → J) and rotation around corners (B → C,
D → E, F → G, H → I). Along translation phases, the plots of figure 21 clearly show that one of
the probe positional DoF varies linearly, while the two others are maintained fixed. Reciprocally,
on the rotating phases, only the angular DoF linearly varies. Looking at the plots of figure 22
shows that over the translation phases, the operator feels a zero restoring force (Fr⊥) on the trans-
lated DoF. The same plot shows that the restoring force and torque, Fr‖ and Mr, fed back to the
operator are small along translation phases but brutally vary in the rotation phases. In this case,
referring to the method of mirror images in electrostatics (Jackson 1999), when the probe is close
to a corner, it is no more influenced by a single mirror image (reflected by an infinite wall), but by
three images, one per wall and another for the corner (Boyer et al. 2012). The superposition of all
these images generates a reflected field rotated (along the diagonal of the corner) with respect to
that generated by a single wall. In all these phases, the restoring momentum Mr encourages the
operator to align the probe with this rotated field while the two components of the restoring force
Fr keep the probe at a reasonable distance (' d) to the walls (see the three plots of figure 22, e.g.
between B and C). The combined effects of the three components of s

?Fr are consistent together,
and the operator has the feeling to escape a valley by performing a rotational manoeuver.

(a) (b)

Figure 19: Test 1: Path of the joystick in the master space (a), and time evolution of B (b).
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(a) (b)

Figure 20: Test 1: Path of the probe in the slave space (a), with some distinguished poses (b).

Figure 21: Test 1: Time evolution of Xm and Xs.
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Figure 22: Test 1: Time evolution of pFr.

11.3 Test 2

In this second test, a 6cm diameter sphere has been placed at a distance of 6cm from one of the
walls as indicated in figure 23(a). The sphere being insulating, for the probe it is electrically
equivalent to a bump on the wall. The test starts as that of section 11.2 with a translation
A→ B, a rotation at a corner B → C, and another translation C → D. Looking at the top plot
of figure 25 shows that when approaching the sphere (after D), a repulsive lateral restoring force
Fr⊥ is produced by the sphere on one side of the probe. After the probe has passed the object,
a similar repulsive force is applied on it, but on the other side. At the same time, the probe is
slightly pushed away (of about 3 cm) from the wall between D and E by a force F‖ (see top plot
of figure 25). These forces are fed to the operator who feels a negative (resistive) force followed
by a positive (driving) force along xm and a negative one along ym. Due to the y − θ couplings,
figure 23(b) shows that this also generates two slight rotations of opposite sign before and after
passing the sphere (note that this coupling does not express when the wall is alone as seen in
section 10.2). Remarkably, the influence of the sphere remains perceptible in spite of the fact that
its contribution to the reflected field is about 3 orders (≈ 1/d3) lower than that reflected by the
wall (≈ 1/d) (Boyer et al. 2012). At the end, the presence of the sphere generates on the joystick,
a feeling of sweeping past a beading. Finally, beyond E, the operator achieves the task with a
corner rotation E → F and a wall parallel translation F → G.
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(a) (b)

Figure 23: Test 2: Path of the probe in the slave space (a), with some distinguished poses (b).

Figure 24: Test 2: Time evolution of Xm and Xs.
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Figure 25: Test 2: Time evolution of pFr.

11.4 Test 3

In this test, a 6cm diameter conductive sphere is placed at 10cm from the wall as pictured in
figure 26. The probe starts again in an equilibrium pose A at the middle of one wall. The test
includes two translation phases A → B and C → D, and one corner rotation B → C. As for
an insulating object, the probe avoids the sphere while being pushed away from the wall beyond
the desired distance d (see D → F ). However, in this second case, the probe orientation strongly
changes between D and F (see figure 26). Looking at the bottom plot of figure 28, this rotation is
generated by the restoring momentum Mr which quickly increases and decreases above and below
zero between D and F . This can be explained by the fact that when the probe approaches the
sphere, the sphere is polarized by the probe field (and its mirror image reflected by the wall). As
a result, an induced dipolar momentum parallel to the wall located on the sphere appears. This
induced dipolar momentum and its mirror image generate together a further perturbative electric
field nearly parallel to the wall, along which the probe tries to align (thanks to Mr). While the
probe passes the sphere or its mirror image, its polarization is inverted which creates the changes
of sign of Mr between D and E, and E and F on bottom plot of 28. Just after passing the sphere,
the wall becomes dominant and the probe quickly reorients toward it and the next corner. Once
again the operator feels a beading while sweeping past the conductive sphere, but this time on
the angular DoF of the joystick.
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(a) (b)

Figure 26: Test 3: Path of the probe in the slave space (a), with some distinguished poses (b).

Figure 27: Test 3: Time evolution of Xm and Xs.
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Figure 28: test 3: Time evolution of pFr.

11.5 Test 4

In this latter test, some removable walls have been added to the scene. In particular a holed
wall is installed in parallel with one of the tank’s walls (see figure 29). As in all the tests, the
probe is initially in the pose A, and the operator starts by following a wall from A to B, then
rotates around a corner from B to C, and translates along a second wall from C to D. Between
the poses D and E (figure 29(a)), the influence of the corner dominates while between E and
F , the operator perceives the influence of the removable wall, and finally, that of the hole. The
point E is the transitional point when shifting from one influence to the other. In contrast to the
previous tests, this is very difficult to interpret the results by using simple models of electrokinetics.
Indeed, the presence of the two walls and of a hole with sharp edges introduces multiple reflections
and singularities (with point-effect) that are beyond analytical models in the field. Nonetheless,
one can observe that the operator rotates correctly around the corner (D → E) and follows the
removable wall (E → G) before being attracted by the hole beyond G. In this latter phase, the
probe discovers the wall of the tank and attracts the operator in order to recover the equilibrium
of the restoring force Fr‖ (see the top plot of figure 31 between G and H).
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(a) (b)

Figure 29: Test 4: Path of the probe in the slave space (a), with some distinguished poses (b).

Figure 30: Test 4: Time evolution of Xm and Xs.
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Figure 31: test 4: Time evolution of pFr.

12 Conclusion

In this article, we presented the first implementation of underwater artificial electric sense in a
haptic feedback loop. To that aim, we used the haptic modality of this bio-inspired sense, to
emulate some pre-touch forces able to assist an operator to feel and follow the boundaries of
immersed objects. This issue remains challenging for underwater robotics especially in cluttered
spaces with turbid waters, which are the natural working conditions of electric sense. The model
of emulated force has been sought in the form of a restoring wrench exerted onto an active electric
probe measuring the electric field reflected by the obstacles. To derive the model of the electric
forces fed back to the operator through an haptic interface, we first exploited the currents measured
by the probe to reconstruct the electric field along its body. Based on this reconstructed field,
we were able to emulate a set of Coulomb forces and couples, and finally the expected model.
Remarkably, this model can be interpreted as a three-dimensional extension of the attractive-
repulsive Lennard-Johns force field modelling the atomic interactions in liquids and gas. Taking
benefit from the properties of electrostatic interactions, this model is passive. This is a key
property since, once coupled with a position-position tele-operating system, such a passive model
guarantees the stability of the whole remote control loop. Finally, the feasibility of the concept has
been proved through experiments including a first set of operational tests in different conditions.
These results tend to confirm our theoretical predictions and show that artificial electric-sense
could be useful for assisting other sensorial feedbacks for underwater tele-manipulation with no
visibility. Beyond this proof of concept, this work opens further perspectives in electric field
sensing for robotics, especially in air, where capacitive sensors could be used in the same way as
the resistive sensing probe of this article.
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