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Abstract

An important challenge in human–robot interaction (HRI) is enabling non-expert users to specify complex tasks for auton-

omous robots. Recently, active preference learning has been applied in HRI to interactively shape a robot’s behavior. We

study a framework where users specify constraints on allowable robot movements on a graphical interface, yielding a robot

task specification. However, users may not be able to accurately assess the impact of such constraints on the performance

of a robot. Thus, we revise the specification by iteratively presenting users with alternative solutions where some con-

straints might be violated, and learn about the importance of the constraints from the users’ choices between these alterna-

tives. We demonstrate our framework in a user study with a material transport task in an industrial facility. We show that

nearly all users accept alternative solutions and thus obtain a revised specification through the learning process, and that

the revision leads to a substantial improvement in robot performance. Further, the learning process reduces the variances

between the specifications from different users and, thus, makes the specifications more similar. As a result, the users whose

initial specifications had the largest impact on performance benefit the most from the interactive learning.
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1. Introduction

Mobile autonomous robots are being deployed in a grow-

ing number of applications, due to numerous technical

advancements in robot capabilities. Despite these advance-

ments in robot autonomy and capability, specifying the

robots’ task still requires a high level of expertise, which

often hinders their acceptance in practice (Villani et al.,

2018). Consequently, a key challenge in the field of

human–robot interaction (HRI) is enabling a broader range

of users to supervise robots.

This requires more than the design of intuitive interfaces

for robot programming. Autonomous robots make deci-

sions on their own about how to achieve an objective;

supervising and directing their behavior therefore usually

demands a deeper understanding of robotics from the user.

Thus, new methodologies in HRI that combine accessible

interfaces with algorithms to help a novice efficiently use

the robot’s capabilities are required. This would enable the

deployment of robots in more wide-ranging scenarios,

especially dynamic settings where robots are required to

make autonomous decisions in accordance with human

interests.

Research in HRI with non-expert users usually focuses

on only one of these two aspects. For instance, Shaikh and

Goodrich (2017) and Srinivas et al. (2013) investigated

how user interfaces can be made more intuitive. Revising

initial specifications was studied for specification lan-

guages by Vasile et al. (2017) and Hauser (2014), whereas

active preference learning for robotic behavior was dis-

cussed by Daniel et al. (2014), Sadigh et al. (2017), and

Holladay et al. (2016). Recently, Palan et al. (2019) pro-

posed a combined approach where demonstrations are used

as the initialization for preference learning, to speed up

convergence.

The novelty of our work is (1) the integration of a speci-

fication interface and specification revision via learning, (2)
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a learning approach that can obtain improvements with few

user interactions on complex tasks, and (3) a validation on a

realistic scenario with users.

After users initially provide a specification for how a

robot should behave in an environment, we then present

them with a visualization of the resulting robot motions,

together with alternatives based on a modified specifica-

tion. Users choose between the alternatives, enabling the

learning mechanism to refine their specification. This

approach helps especially inexperienced users to deploy

robots more efficiently.

We validate the framework in a user study and show

that, using our proposed framework, users accept alterna-

tive paths and obtain revised specifications, which improve

the robot’s performance by 14% on average, within at most

20 user interactions. Further, we show that while initially

provided specifications vary largely between users, the

learning interaction results in specifications that are more

similar. We observe that it is especially those users whose

constraints initially drastically affect performance who ben-

efit most from the interaction.

We consider an industrial facility where the work space

is shared between pedestrians, human-operated vehicles,

and autonomous vehicles. While mobile robots are capable

of navigating safely given a description of the environment,

their choice of routes might not fit the preferences and

established rules of humans. Without a further specifica-

tion, robots are unaware of the context, e.g., areas that are

designated for vehicles or areas where robot traffic is unde-

sired. In addition, the behavior of autonomous vehicles can

appear unpredictable to humans.

To address these issues, our framework allows users to

specify a set of traffic rules to guide robots in such environ-

ments. In current industrial practice such rules for robot

behavior are designed by trained personnel (OTTO Motors,

2016). We propose an approach for revising specifications

through learning to enable inexperienced users to create

efficient specifications. In our previous work (Blidaru

et al., 2018), we designed a graphical user interface (GUI)

where a user can specify traffic rules such as one- and two-

way roads, areas of avoidance and reduced speed zones by

graphically defining polygons on the map of the environ-

ment (we synonymously refer to the user-defined traffic

rules as user constraints). However, users of such systems

might be oblivious to the impact the specification has on

the task performance; strictly following the traffic rules

potentially leads to large increases in task completion time.

Thus, users might be willing to accept the violation of

some of their constraints that are not mandatory, e.g., for

safety regulations, and when the violation is sufficiently

beneficial for the task performance, i.e., the task comple-

tion time. In Wilde et al. (2018), we captured this trade-off

by assigning a weight to each constraint, describing the

time saving for which violation is acceptable. To reduce

the burden on the user, we do not require them to specify

these weights, but propose an active learning framework to

gain information about the weights through interaction. For

a specific task requiring a robot to navigate between a start

and goal, we iteratively present the user with two alterna-

tive paths the robot could take, illustrated in Figure 1. The

user then chooses between these alternatives. Based on the

constraints that are violated by the two paths and their

respective traversal times, we learn the relative importance

of constraints.

An initial specification assumes that no traffic rules are

allowed to be violated. This allows for computing a path

that strictly follows the defined rules, shown in Figure 1(a).

Through active learning we try to revise the specification

and improve the performance. We extend our work in

Wilde et al. (2018) to consider multiple start–goal tasks. In

each iteration of user interaction, the preferred path

becomes the best path so far. If the same task is presented

to the user in a later interaction, the previously preferred

path constitutes one of the two alternatives. This corre-

sponds to a user-on-the-loop framework: the current best

path can already be executed as the user approved it previ-

ously. The idea of showing the previously preferred solu-

tion in the next iteration is also used in Palan et al. (2019).

Depending on the user feedback, the violation of some

rules might be acceptable for a certain time benefit. In the

example in Figure 1 we show a revised specification fol-

lowing the active learning process, which decreases the

Fig. 1. Example environment (white) with obstacles (black),

user-defined constraints, and a task start and goal locations.

Roads are drawn in green with an arrow indicating the direction.

Speed limit zones where only half the maximum speed is allowed

are drawn in yellow, while areas of avoidance are illustrated in

red. In (a), we see the initial path respecting all user constraints

and preferring roads. Following the user interaction, we obtained

the revised specification in (b), in which some of the constraints

are less important to the user (faded yellow and green). Thus, the

shortest path for the given task is significantly shorter, at the cost

of a violated speed limit zone, and a violated road zone.
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task time. Thereby, one speed limit zone has become less

important and three roads are rewarded less, such that the

robot traverses through the free space, and a one-way road

is effectively removed from the specification.

1.1. Contributions

We extend our previously introduced active learning system

(Wilde et al., 2018) to more complex scenarios consisting

of multiple tasks. Thus, the learning algorithm considers

two aspects: the task to learn about, and the paths to present

to the user for each task. We present an algorithm that eval-

uates this choice based on the path that results in the largest

potential performance increase, and a methodology to com-

bine information learned from user feedback for different

tasks. Further, we combine the learning with our GUI from

Blidaru et al. (2018) into a framework for robot task speci-

fication for inexperienced users. After users initially pro-

vide a specification consisting of a set of traffic rules for a

mobile robot, their specification is revised using preference

learning to yield a more efficient solution. Our second con-

tribution is the evaluation of our framework in a user study.

The performance of the learning system was previously

demonstrated for single tasks in simulations (Wilde et al.,

2018). In this article, we demonstrate the practicality of the

multi-task learning system when used by human operators.

We show that, given a fixed budget of 20 user interactions,

we are able to substantially improve the quality of user

specifications. Further, we use the metrics introduced in

Blidaru et al. (2018) to systematically evaluate the quality

of the specifications provided by users and the revisions

obtained through the learning process.

The rest of the article is structured as follows. In Section

2 we review related work before Section 3 introduces the

problem statement, briefly reviews our previous work and

presents theoretical extensions. Section 4 describes the sce-

nario and procedure of the user study and introduces our

main hypotheses, while Section 5 reports the results. We

conclude with a discussion and outlook on future work in

Section 6.

2. Related work

Methods for task specification for autonomous systems can

be categorized into three groups: specifications obtained

from experts, revision of specifications, and interactive

learning.

2.1. Specifications obtained from experts

First we review methods for task specification where an

expert operator specifies a robot task by either defining

reward functions, providing optimal demonstrations or

using a specification language. In the first method, reward

functions are used to describe the high-level behavior for

the robot, which then learns the appropriate policy using

reinforcement learning (RL) (Kober et al., 2015; Smart and

Pack Kaelbling, 2002). A user-defined reward function

maps the system states to a numerical value, expressing

how desired that state is. This reward function corresponds

to a high-level specification for how the robot should

behave; through RL the robot then finds a policy that maxi-

mizes the reward. RL has been studied extensively as a tool

to realize a high-level description of a robot’s behavior

(Kober et al., 2015). For instance, Smart and Pack

Kaelbling (2002) and Stone et al. (2005) applied RL in the

domain of mobile robots and robots competing in soccer

games. In both examples the reward function is designed

by a human expert. The practicality of RL approaches has

also been investigated in field studies (Knox et al., 2013).

However, specifying reward functions usually requires a

high level of expertise and can be unintuitive.

The field of learning from demonstration (LfD) uses

expert demonstrations for robot programming (Argall et al.,

2009; Billard et al., 2016). Applications range from high-

level task specification (Ekvall and Kragic, 2008) to the

definition of precise actions such as grasping (Lin et al.,

2012) or manipulation trajectories (Akgun et al., 2012). A

common technique in LfD systems is inverse reinforcement

learning (IRL) (Abbeel and Ng, 2004). The setting is simi-

lar to RL; however, the reward function is unknown. When

using IRL in LfD, the objective is to learn how the robot

should behave. Demonstrations are provided by a human

expert; it is assumed that the human maximizes an internal

reward function (Abbeel and Ng, 2004; Ziebart et al.,

2008). From multiple demonstrations the learning system

tries to recover that reward function in order to imitate the

behavior. The reward function is often modeled as a linear

combination of pre-defined features; the problem then con-

sists of learning the weights for all features (Ziebart et al.,

2008). However, in practice LfD faces challenges when

demonstrating the desired behavior requires a high level of

expertise (Wilson et al., 2012) or are difficult to provide

(Christiano et al., 2017). Specification languages such as

linear temporal logic (LTL) (Bhatia et al., 2010) allow for

abstract specifications, for instance ‘‘First, visit region A

and B, then go to C, and finally visit D.’’ In order to reduce

the burden on the user, Srinivas et al. (2013) proposed a

GUI for LTL mission planning, while Finucane et al.

(2010) designed a framework for using natural language to

provide LTL specifications.

Our research is closely related to the IRL problem: we

want to learn a user’s cost function for the constraints they

specified, i.e., their importance. Any path that is generated

between the start and goal location could be described by a

set of features, including those that describe the violation

of constraints. Then, learning about the importance of con-

straints is analogous to recovering a user reward function

based on these features.

2.2. Revision of specifications

The second approach takes into consideration that demon-

strations and specifications, especially when provided prior
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to the robot executing the task, might be sub-optimal. In

the field of LTL, the works of Lahijanian and Kwiatkowska

(2016) and Karlsson et al. (2018) both revise an initial spe-

cification if it leads to sub-optimal outcomes or is infeasi-

ble. In a general motion planning problem on some

configuration space with spatial obstacles, Hauser (2014)

considered the case when no feasible path exists. The mini-

mal constraint removal problem then finds the biggest sub-

set of obstacles such that a feasibility is re-attained.

The concept of revising initial specifications is also

applied to LfD. The work of Niekum et al. (2013) automat-

ically segments the tasks and then efficiently asks for addi-

tional demonstrations when needed. Moreover, Grollman

and Billard (2011) focused on failed demonstrations.

Instead of imitating the human, the learning system tries to

avoid repeating the mistakes the operator made.

In a comparable fashion, we receive a set of constraints

from a user. We initially set high weights for all constraints

such that the resulting path respects all user constraints to

yield an initial specification. However, we assume that such

a path might not necessarily be optimal as some constraint

violations might be allowable. The user agreeing to the vio-

lation of a constraint can be thought of as relaxing the con-

straint in question, which then leads to a revised

specification.

2.3. Active preference learning

More recently, research has focused on defining the desired

behavior of a robot interactively (Christiano et al., 2017;

Daniel et al., 2014; Laird et al., 2017; León et al., 2013;

Sadigh et al., 2017; Somers and Hollinger, 2016). In active

preference learning, users are presented with possible solu-

tions for a defined problem. When they choose between

alternatives, the autonomous system learns about their pre-

ferences and iteratively improves its strategy. Interactive

task specification addresses several drawbacks of the previ-

ously discussed techniques. For instance, asking a user for

demonstrations is not always desirable, as human demon-

strations can be infeasible, e.g., in swarm robotics (Akrour

et al., 2012), difficult to provide (Abbeel and Ng, 2004;

Daniel et al., 2014), the amount of necessary demonstra-

tions may be prohibitively large (Christiano et al., 2017), or

the demonstration itself may require a high level of exper-

tise (Daniel et al., 2014). Providing rich and precise speci-

fications prior to a robot executing a task might also be

challenging and more prone to inaccuracies (Abbeel and

Ng, 2004). Interactive task specification also improves ease

of use by reducing the information required from the user

upfront. Instead of asking the user for a complete specifica-

tion in the beginning or demanding numerous demonstra-

tions, robot tasks can be learned in an iterative, interactive

way.

The work of León et al. (2013) and Christiano et al.

(2017) addressed these challenges by integrating user feed-

back into RL systems. Also focusing on RL for autono-

mous robots, Krening and Feigh (2018) investigated how

different interactive learning algorithms are accepted by

users and show that users perceive action advice as more

effective than action critique in a study with 24 partici-

pants. Christiano et al. (2017) applied user interaction to

RL. Instead of using human feedback as a reward function

user are asked for their pair-wise preference for possible

trajectories. This allows to drastically reduce the amount of

necessary user interaction.

Recently, numerous contributions to interactive task spe-

cification have been made in the field of active preference

learning, combining techniques from preference elicitation

(Golovin et al., 2010; Guo and Sanner, 2010) and active

learning (Jain et al., 2015; Sadigh et al., 2017). The prob-

lem of preference elicitation considers a set of hypotheses,

tests, and outcomes. By performing tests, some hypotheses

become inconsistent with the observed outcomes and are

rejected. This can be applied to a robot task specification:

hypotheses are possible reward functions of the user. Tests

correspond to presenting the user with alternative solutions

based on these reward functions, whereas observations are

the user’s selections. The user’s internal reward function is

then learned by iteratively ruling out reward functions that

become inconsistent with the user’s choices.

Active learning allows the learner to decide what query,

i.e., what set of alternative solutions the user is presented

with next. Daniel et al. (2014) presented a framework where

experts rank the performance of a demonstrated grasping

task. In Sadigh et al. (2017) and Basu et al. (2018), trajec-

tories for a dynamical system are presented to the user, who

then chooses one of two alternatives. Iteratively, weights for

trajectory features are learned and an optimal solution is

found. Sadigh et al. (2017) validated their work in simula-

tion and in a small user study (10 participants). In both

experiments the user model is based on five predefined fea-

tures. While the simulations demonstrated the convergence

of their algorithm over 200 iterations, the user study showed

subjective improvements over 10 iterations. The subsequent

work of Basu et al. (2018) with richer user feedback is sup-

ported by another study with 10 participants that interacted

with the learning system for 20 iterations.

Our framework is based on active preference learning.

We query the user about their preference for alternative

paths and learn about the importance of user constraints

from their feedback. However, in our case the set of hypoth-

eses is the set of all possible paths between the start and

goal, which is not directly given. When planning on a

graph, finding the set of all paths from start to goal is

known to be a #P-complete problem (Valiant, 1979). Other

work in the field of active preference learning often focuses

on user preferences based on robot-centered features, e.g.,

the work by Sadigh et al. (2017), which are assumed to be

known. In our work, we consider environment-centered fea-

tures that are obtained from an initial user specification. By

learning weights for these features we revise the specifica-

tion. Moreover, in our scenario, we have explicit prior infor-

mation about the user’s preferences. We assume they follow

two objectives: minimizing time and only allowing
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constraint violation when sufficiently beneficial. This may

allow us to design strategies for presenting the alternative

paths that are either greedily maximizing the potential infor-

mation gain or that are likely to be accepted by the user.

2.4. Metrics of user performance

Finally, our metrics to quantify the impact of user specifi-

cations relate to work on measuring the effects of altering a

robot’s operating environment. Crandall et al. (2005) and

Lampe and Chatila (2006) have suggested correlations

between the complexity of the robot operating environment

and its performance. Multiple methods for measuring com-

plexity have been proposed. In Crandall et al. (2005),

Crandall (2003), Crandall and Goodrich (2003), and

Crandall and Goodrich (2002), it was suggested that com-

plexity be determined by approximating the branching fac-

tor and amount of clutter in the environment. The work of

Lampe and Chatila (2006), Yang and Anderson (2011),

and Anderson and Yang (2007) proposed a technique

rooted in information theory to determine the robot operat-

ing environment, with Lampe and Chatila (2006) measur-

ing entropy based on obstacle density, whereas Yang and

Anderson (2011) and Anderson and Yang (2007) used the

number of accessible neighbors at every location in the

motion graph. In addition, Anderson and Yang (2007) pro-

posed a secondary complexity measure based on the distri-

bution of obstacle types and the compressibility of the

environment. In Young et al. (2017), the measurement of

complexity was extended from a binary distribution of

local obstacles to a continuous one, enabling the use of

dynamic obstacles.

Our approach uses the work of Anderson and Yang

(2007) to compute an entropy-based complexity of the user

specifications. The entropy directly correlates with the

number of movement-related decisions that the robot will

need to make throughout the environment. User specifica-

tions tend to decrease the entropy of the environment, and

thus increase the predictability of the robot’s behavior, by

prescribing to the robot how to make decisions. With our

focus on warehouse industrial robots, there is a need to

ensure an adequate level of predictability in robot behavior,

so as to avoid negatively impacting the user’s trust and

opinion of the robot (Yagoda and Gillan, 2012).

3. Proposed approach

3.1. Preliminaries

Using definitions from Korte and Vygen (2007), a multi-

graph is a triple G = (V ,E,C), where the function

C : E! f(v,w) 2 V ×V : v 6¼ wg associates each edge

with an ordered pair of vertices. Given a vertex v we call a

vertex w a neighbor of v if v is the start and w the endpoint

of an edge in G. We denote the set of all neighbors of v as

N (v). A graph is called strongly connected if for any two

vertices vi, vj 2 V (G) there exists a path from vi to vj and a

path from vj to vi. Multiple edges are allowed to connect

the same ordered pair of vertices and are then called paral-

lel. In our problem we consider doubly weighed multi-

graphs of the form G = (V ,E,C, c1, c2), where c1 and c2

are independent weight functions, each associating a real

number to each edge of the graph: ci : E! R for

i 2 f1, 2g.
A walk between two vertices v1 and vk + 1 on a graph G

is a finite sequence of vertices and edges v1, e1, v2,
e2, . . . , ek , vk + 1 where e1, e2, . . . , ek are distinct. A path

Pv1, vk + 1
between two vertices v1 and vk + 1 is defined as a

graph (fv1, v2, . . . , vk + 1g, fe1, e2, . . . , ekg) where v1, e1,
v2, e2, . . . , ek , vk + 1 is a walk. On a weighted graph, the

cost of a path is defined as c(P)=
P

e2P c(e). In doubly

weighted graphs we define two costs c1 and c2 where

c1(P)=
P

e2P c1(e), c2(P)=
P

e2P c2(e).

3.1.1. Notation. Vectors are written with bold, lowercase

letters, e.g., v, we address elements of the vector with a sub-

script index vi. A superscript index vi identifies a specific

vector. Sets are denoted by uppercase letters (G), matrices

as bold uppercase letters (A).

3.2. Problem description

The proposed approach contains the following two compo-

nents. First, having obtained a user specification, we use an

extension of the active learning technique introduced in

Wilde et al. (2018), to gain information about the impor-

tance of the user constraints, i.e., the user’s preference

between alternative paths. The technique is extended to

allow its use with a multi-task scenario. Following this, we

apply the metrics proposed in Blidaru et al. (2018) to eval-

uate the impact of the specification, and show how the

learning system improves the quality of the robot’s task

performance.

3.3. Learning user preferences

3.3.1. Problem setup. The learning system receives a

description of the environment, the user specification and a

set of tasks. The environment is considered to be static and

is represented as a weighted strongly connected multigraph

G = (V ,E,C, t). The weight t on the graph encodes the

time a robot requires to traverse an edge. We use parallel

edges with different times to model speed. Such a graph

can be used by a robot motion planner to navigate through

an environment such as that shown in Figure 1. We extend

our previous work from Wilde et al. (2018) and consider a

set of ordered pairs f(s1, g1), (s2, g2), . . .g where si and gi

are vertices on G. A single task consists of navigating from

a start si to a goal gi. On the environment map, the user

specifies a set of constraints G= fg1, g2, . . . , gdg. Each

constraint gk is a pair (Ek ,w
�
k), where Ek is a subset of the

edges of G and w�k is a hidden user weight for the con-

straint. These weights can be positive or negative: a
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positive weight w�k expresses a penalty for using edges in

Ek whereas a negative weight expresses a reward. Note that

a road on the interface entails two constraints: a reward for

using the road in the direction of travel and a penalty for

moving the wrong way. Consequently, a two-way road

maps to four constraints.

We incorporate the user specification by creating a dou-

bly weighted graph GG = (V ,E,C, t,w�). For each edge e

in GG the second weight w�(e) is defined as the sum of all

w�k that belong to a constraint containing e. Our objective is

to find paths P�i between all si and gi that are optimal with

respect to

min
Pi

X

e2Pi

w�(e)+ t(e) ð1Þ

The true user weights w�k are latent, i.e., we do not ask the

user to define w�k during the specification. Nonetheless,

given estimates ŵk of the true user weights, we can also

construct a doubly weighted multigraph ĜG. Moreover, the

weights are defined in units of time, allowing us to pose

the multi-objective optimization as an unweighted sum. To

learn about the weights, we can query the user. In a query,

we present them with a pair of paths (P1
i ,P

2
i ) for a selected

start–goal pair (si, gi). Considering only pairs instead of

more than two paths at a time is motivated by reducing the

burden on the user, as choosing between numerous alterna-

tives is more demanding (Jamieson and Nowak, 2011).

3.3.2. Linear learning model. Given a specification of d

constraints, the latent user weights can be summarized as a

column vector w� 2 R
d. Furthermore, a path P is described

by the time it takes to traverse t(P) and a vector f 2 N
d

that indicates for each constraint gk 2 G how many edges

in Ek are traversed by a path, i.e., fk(P)= jE(P) \ Ek j. The

cost of a path is then written as C(P)= f(P) � w�+ t(P).
We distinguish between penalty and reward constraints.

Penalty constraints include the edges within an avoid zone,

edges within a speed-limit zone where the traversal time

does not correspond to obeying the speed limit, and the

edges going against the defined direction of travel in a

one-way road. Reward constraints describe the edges that

follow the direction of traffic on a road. Thus, for any pen-

alty constraint the weight wi is non-negative whereas for a

reward constraint the weight is non-positive. As w� is hid-

den, we initially only know that its values are finite, i.e.,

li ł w�i ł ui for some real number lower and upper bounds

li and ui.

Let Pi and Pj be two paths. If the user prefers path Pi it

implies that C(Pi)ł C(Pj). We can write this as a half-

space in R
d containing w�

fw 2 R
d j(fi �fj)w�ł tj � tig ð2Þ

Thus, obtaining user feedback allows us to iteratively

learn inequality constraints on the user weights. We write

the intersection of the learned half-spaces as a polyhedron

F = fw 2 R
djli ł wi ł ui, Aw

�ł bg ð3Þ

which we refer to as the feasible space.

The half-spaces obtained from user feedback can be

used to iteratively shrink the feasible space.

3.3.3. Equivalence regions. Finally, if a path is optimal

with respect to (1) for two different vectors of weights wi

and wj, we call wi and wj equivalent. This implies that there

exist different possible weight configurations that are indis-

tinguishable for the user in our setting, as they correspond

to the same path. Consequently, we call a set of weights

where all elements are equivalent to one another an equiva-

lence region. This implies that we do not need to exactly

determine w�; it is sufficient to find an estimate ŵ that is

equivalent to w�.

3.4. Active learning algorithm

In Wilde et al. (2018), we introduced a learning algorithm

based on the notion of equivalent weights and the resulting

discretization of the weight space.

In each iteration we pick a weight from the feasible

space that is not equivalent to the weight of the path that

has been presented to the user in the previous iteration.

Receiving user feedback allows us to remove at least one

equivalence region from the feasible space. As the number

of paths and therewith the number of equivalence regions

is finite, the algorithm will not be able to find a new weight

after a finite number of iterations. Then the algorithm ter-

minates as it has converged to the optimal solution, i.e., all

remaining feasible weights are indistinguishable to the user.

Initially, we set the lower and upper bounds for all

weights: for penalty constraints, li = 0, whereas ui is the

sum of all ti for all edges ei on the graph G. For reward

constraints we have ui = 0. However, the lower bound li
needs to guarantee that there are no negative cycles so that

Algorithm 1. pvertexSearch, find new weights using DFS.

Input: A, b, k,W, ŵ
best

Output:Wnew

1. Initialize setWnew = ;, openList= fŵbestg and maximum
iterations imax

2. for i = 0 to imax do
3. if jWnewj= k or openList is empty then
4. returnWnew

5. ~w = openList.pop()
6. if ~w is not equivalent to any ŵ 2 Wnew [W then
7. Add ~w toWnew

8. if ~w is not labelled as discovered then
9. Label ~w as discovered
10. for all w0 2 getAdjacentVertices(~w) do
11. if w0 62openList and ~w is not labelled as discovered

then
12. openList.insert(w0)
13. returnWnew
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the optimization problem is well-defined. Let gi be a con-

straint containing edges that follow a road. To obtain the

lower bound we choose the negative of the length of the

shortest edge in the constraint, denoted by tmin
i . Further, we

subtract a small amount such that a path planner breaks ties

in favor of paths using fewer edges: li = � (1� e)tmin
i

where 0\e� 1. Then we pick a path P0 that is optimal

for some weight w0 where w0
i = ui if gi is a penalty con-

straint and w0
i = li if gi is a reward constraint. Hence, P0

follows the user specification, i.e., it does not violate any

avoid or speed zones, does not traverse roads in the wrong

direction and uses roads as much as possible. In each itera-

tion we then present the user with the current best path and

one alternative. If the user prefers the alternative it becomes

the new current best path Pbest.

In Wilde et al. (2018), we presented two policies for

finding a new alternative path, pvertexSearch and

pminVertex, detailed in Algorithms 1 and 2. Both perform

a depth first search (DFS) for k steps over the vertices of

the current feasible space, similar to the pivot step in the

simplex algorithm. Furthermore, given a large enough k

both policies are guaranteed to find a new path, unless the

current feasible space is a subset of an equivalence region,

in which case the algorithm has converged. While

pvertexSearch starts at the weight of the current best path

ŵ
best

, its variation pminVertex starts at the minimal weight

within the feasible space. This more greedy approach

showed a better performance in simulation; hence, we use

the minVertex policy in the user study. The corresponding

function minVertex(�) takes the following arguments:

the current feasible space described by A and b, the number

of new weights to be returned k, the set of weights that

were presented in previous iterations Wi and the current

best estimate ŵ
best
i .

3.5. Multiple tasks

We now extend our framework to multiple tasks. The moti-

vation for a multi-task scenario is two-fold. In practice, an

autonomous robot usually has to perform more than one

task, making the multi-task setting more relevant.

Furthermore, learning about several tasks in parallel has

potential computational advantages as it allows for an addi-

tional degree of freedom in the active learning: choosing

what task to learn about in the next iteration. We consider a

set of points of interest in the environment yielding multi-

ple start–goal pairs. We learn about the constraints in each

interaction round by obtaining feedback for a single task.

We can combine the information from multiple rounds by

intersecting the feasible spaces of all individual tasks. This

leads to a passive learning effect: obtaining feedback about

a task (s1, g1) potentially affects the learning for another

task (s2, g2), as some weights corresponding to paths for

(s2, g2) might no longer lie in the feasible space.

In the multiple task setting we additionally have to pick

a start–goal pair for which we want to present new paths.

We propose a simple policy for this in Algorithm 3. Let a

learning instance li be the collection (si, gi,w
best
i ) for a task

i where wbest
i is the weight vector corresponding to the cur-

rent best path. Further, let L be the set containing all li for

all tasks in the scenario. Given L and the current feasible

space described by Aw�ł b, the algorithm iterates over all

li and computes a new alternative path with the

minVertex policy (line 4). Then, it selects the task, i.e.,

start–goal pair, where the time difference between the cur-

rent best path and the tentative alternative is maximized

(line 7). As a result the user is usually presented with those

tasks for which the alternatives consist of very different

paths in the first few iterations. After some user feedback

is obtained, fewer paths are feasible and the respective

weights are less different. Hence, in later iterations the two

paths presented to the user become more similar.

Remark. The evaluation of Algorithm 3 can take signifi-

cant computation time in practice. We can approximate the

selection of li by sampling a random subset L0 of L and

iterate over the elements in L0 in line 2 of the algorithm.

Further improvements can be achieved by parallel execu-

tion of the for loop.

Algorithm 2. pminSearch, find minimizing new weights.

Input: A, b, k,W, ŵ
best

Output:Wnew

1. Wnew = ;
2. ŵ= min 1Tw s.t. Awł b
3. if ŵ 62 W then
4. add ŵ toWnew

5. if jWnewj= k then
6. returnWnew

7. newSearchDirections= ;
8. for gi where fi(P(ŵ)) . 0 do
9. �c= c

10. �ci = � 1
11. add c to newSearchDirections
12. for c 2 newSearchDirections do
13. ~w = min �cTw s.t. Awł b
14. if ~w 62 W then
15. add ~w toWnew

16. if jWnewj= k then
17. returnWnew

18. W0  pvertexSearch(A, b, k � jWnewj,W [Wnew, ŵ)
19. returnWnew [W0

Algorithm 3. Choose task for learning.

Input: A, b, L
Output: lmax

1. time_saving = � ‘
2. l�= ;
3. for (si, gi,w

best
i ) in L do

4. Pick P1 as the optimal path for ŵ
best
i

5. wnew
i = minVertex (A, b, 1,W i, ŵ

best
i )

6. Compute new path P2 for wnew
i

7. if t(P1)� t(P2). time_saving then
8. time saving = t(P1)� t(P2)
9. l�= li

10. return l�
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3.5.1. Impact of learning on performance. Note that the

interactive learning does not guarantee improvements in the

completion time of paths. Users accept alternative paths if

they have a lower cost with respect to (1), which does not

necessarily imply a lower time. Consider the simple exam-

ple in Figure 2. Following the specification leads to the

direct path Pinit, shown in purple. However, a possible alter-

native enters into the avoid zone (shown in red), but also

traverses along a user-specified road (shown in green). The

alternative path (shown in yellow) might have a lower cost

with respect to the user preference. This effect becomes

especially relevant in the multi-task setting due to passive

learning: obtaining feedback for paths between some s1

and g1 adds inequality constraints to the feasible space,

which then affects the optimal path between s2 and g2.

Relating back to the example from Figure 2, the user might

not be presented with these two paths as the learning sys-

tem might infer about the importance of the avoid zone

from a different task. However, in the results of the user

study we analyze the performance in detail and show that,

in practice, the interactive learning improves the perfor-

mance for most users.

3.6. Metrics

To quantitatively measure the quality of specifications, two

metrics are employed: entropy ratio and time ratio. Similar

metrics were originally introduced and applied to user

specifications as part of our earlier work in Blidaru et al.

(2018).

3.6.1. Entropy ratio. Given a graph G and a specification

G, the entropy quantifies the complexity of the robot’s

action space, generated by the combination of the environ-

ment and user specification, by considering the number of

outgoing edges available at each node, taking their cost

into account. The entropy ratio is expressed as the ratio of

entropies between graph GG and graph G (See Section

3.2), i.e., the constrained and unconstrained environment.

We measure complexity using entropy, defined similarly to

previous work in Blidaru et al. (2018) and Anderson and

Yang (2007). Given an estimate ŵ of the user weights, let

the cost of an edge be the sum of time and the estimated

weight: ĉ(e)= t(e)+ ŵ(e). Further, let ĉmin(vi, vj) be the

minimal cost between all parallel edges from vi to vj.

For a given vertex vi on a graph and the set of its neigh-

bors N (vi), the entropy of vi is given by

H(vi)= �
X

vj2N (vi)

p(vi, vj) log2 p(vi, vj) ð4Þ

where we define p(vi, vj) as

p(vi, vj)=

1

ĉmin(vi, vj)P
k, vk2N (vi)

1

ĉmin(vi, vk )

ð5Þ

To obtain the entropy of a graph, we take the sum over

the individual vertex entropies:

HG =
X

vi2V

H(vi) ð6Þ

where V is the set of vertices of a graph G, and HG is the

entropy of a graph. The entropy ratio is then denoted by

h =
H

GG

HG
. The entropy is maximized for HG, when there are

no user specifications the robot can move freely in any

obstacle-free regions of the environment. Adding con-

straints always decreases entropy as the robot’s movement

becomes more restricted. Thus, small entropy ratios indi-

cate rigorous specifications where the robot behaves in a

more predictable way.

3.6.2. Time ratio. Given a graph G, a specification G and a

set of start and goal pairs V 0 where each start and goal is a

vertex on G, the time ratio metric describes the effect of the

constraints G on the average duration of the shortest paths

with respect to (1), i.e., the ratio between the average opti-

mal path durations in graph GG and in graph G. Thereby,

paths for all pairs in V 0 are considered. Similarly to our pre-

vious work (Blidaru et al., 2018), we distinguish two forms

of the metric: the global time ratio considers all vertices on

the graph, i.e., V 0= V ×V where V is the set of vertices on

G, whereas the task time ratio considers only a defined set

of start and goal pairs, i.e., V 0= f(s1, g1), (s2, g2), . . .g.

4. User study

In this section, we detail the study scenario and procedure

and propose our main hypotheses.

4.1. Scenario

The study scenario describes a simulated industrial envi-

ronment adapted from the layout of a real-world facility.

An autonomous mobile robot is required to fulfill material

transport tasks; a single task consists of navigating from a

given start to a given goal location.

Users are provided with a description of the environment

detailing different zones as illustrated in Figure 3. This

Fig. 2. Example for increase in task completion time. The initial

specification results in path Pinit, shown in purple. An alternative

solution (yellow) might have a longer traversal time, but

correspond better to the user preferences if they value the avoid

zone as less important and prefer the use of the road.
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includes areas with high pedestrian traffic, loading docks,

storage space, robot parking and charging, dedicated human

work and break areas, and an assembly line. The tasks con-

sist of navigating between the labeled areas, for instance

traversing from the robot charging zone to the upper end of

the assembly line. The user is asked to generate a specifica-

tion such that the robots are able to reach any of the areas,

excluding the human break rooms. Further, robots are never

allowed to cross through the assembly line.

Before starting the specification task, users receive an

explanation of the traffic rules and instructions on how to

use the interface (for more details see Section 4.2). One-

way roads are described as encouraging the robot to tra-

verse them in the direction of traffic and discouraging the

robot from traversing in the opposite direction. Two-way

roads function as two adjacent and opposing one-way

roads. Areas of avoidance simply define a part of the envi-

ronment where robot traffic is undesired, whereas speed

limits express that the robot is required to drive with a

reduced speed in a specific area.

Finally, users are told that ‘‘the robot can navigate freely

in the environment without any traffic rules’’ and has funda-

mental safety features such as obstacle avoidance. The traf-

fic rules are ‘‘meant to guide the robot’s behavior’’ in a way

preferable for the user, and users are free to specify as few

or many rules as they deem necessary.

4.2. Procedure

4.2.1. Structure. The study was approved by the Office of

Research Ethics at the University of Waterloo. Each study

session took approximately 1 hour. The study process is

structured in three parts: overview and introduction, train-

ing, and main study. In the first part, the scenario and the

role of the participant are briefly explained. A video intro-

duces the user interface and demonstrates how to create

traffic rules in detail. Further, written information about the

traffic rules and the robot’s capabilities is provided.

In the training phase the objective is to familiarize parti-

cipants with the interface. They are presented with a

smaller example environment including a similar descrip-

tion as in Figure 3 and are asked to create traffic rules until

they feel confident in using the interface. At the end of the

training, participants teleoperate the robot in the simulated

environment.

The main study has three phases: specification, interac-

tion, and teleoperation. The first two phases are illustrated

in Figure 4. In the specification phase, participants are pre-

sented with the environment from Figure 3 and the written

instructions on the traffic rules and the robot’s capabilities.

It is once more stated that the robot is required to navigate

between all marked areas on the environment (with the

exception of the dedicated human break areas) and that the

robot is able to navigate without any traffic rules present.

Participants are then asked to define the traffic rules they

find appropriate to achieve the desired robot behavior.

Once they are satisfied with their set of traffic rules, the

first phase is concluded.

In the interaction phase, users are iteratively presented

with two alternative paths for a task. First, a brief instruc-

tion explains the interface: on the map of the environment

both paths are shown simultaneously, a simple menu allows

participants to select a path, which is then highlighted in

color. Further, if a path is highlighted and violates a penalty

Fig. 4. Flowchart of the study with the resulting specifications,

black arrows are only executed once whereas blue arrows are

executed multiple times. Participants initially receive an

instruction set and a description of the environment. The

environment yields a base specification, only including obstacles.

Using the traffic rules they create the initial user specification for

the robot. During the learning interaction users provide feedback,

leading to a revised, final specification.

Fig. 3. The scenario described in the study. Black corresponds

to physical obstacles whereas white is the free space. The

described areas in the environment are labeled as follows: high

pedestrian traffic, purple; loading docks, yellow; storage, orange;

robot parking and charging, green; human work and break areas,

dark blue; assembly line, light blue.
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constraint, the perimeter of the constraint in question is also

highlighted. Finally, the menu features information about

the duration of the two paths and lists the violated penalty

constraints. All participants go through 20 iterations of the

interaction process, unless the learning algorithm cannot

find a new path for any of the tasks and terminates earlier.

The task for which they are presented with two alternatives

is selected by Algorithm 3 using an approximated set L0

containing five tasks, sampled randomly.

In the last phase of the study, participants are asked to

teleoperate the robot from a given start to a goal location.

Thereby, they can choose freely if they follow their own

traffic rules or violate them.

4.2.2. Questionnaires. During the study, participants are

also presented with several questionnaires. Before provid-

ing the specifications, users indicate their trust in the robot’s

capabilities to fulfill the described tasks. After each of the

main steps users are presented with a questionnaire where

they rate how well they specified the traffic rules and how

confident they feel about using the system. Further, during

each step of the interaction participants are asked how

acceptable both paths were and, in every third iteration,

what their reasoning for their choice was. Finally, the study

concluded with a longer questionnaire where users evaluate

the overall system. We use the standardized system usabil-

ity score (SUS) (Bangor et al., 2008) for evaluating the

interface design and additional questions focusing on the

warehouse scenario.

4.2.3. Evolution of specifications. We define the specifica-

tions corresponding to different stages of the process,

detailed in Figure 4. Before a user specification is provided,

the environment including the obstacles yields a base spe-

cification where the optimal paths Pbase
i for each task only

minimize time. After receiving the traffic rules, but before

the learning, we obtain the initial specification. The opti-

mal paths Pinit
i are the optimal paths corresponding to

wmax, i.e., the paths that categorically follow the initial spe-

cification if possible. After learning, the algorithm has not

necessarily converged to the optimal solution due to the

limited number of iterations. Therefore, the feasible space

might contain weights that are not equivalent to one

another. In our learning model, all paths that are optimal

for a feasible weight are equally good solutions, so the final

path is not uniquely defined. Hence, we need to pick some

wfinal from the resulting feasible space F final after learning

(see Section 3.3). We propose a conservative approach for

determining the final specification by choosing Pfinal
i to be

the optimal paths for the maximum feasible weight, i.e.,

wfinal = argmax
w2F final

f1 � wg.

4.2.4. Types of evaluation. Further, we categorize different

evaluations: interaction-specific evaluation only considers

tasks that were presented to the user during interaction. As

we directly observed the user choosing between given pairs

of paths, we have access to the path characteristics, i.e.,

time and violation, for each user choice. Task-specific and

global evaluations are based on the metrics from the defini-

tions in Section 3.6. Task-specific evaluations consider the

shortest paths for all tasks defined in the scenario, whereas

global evaluations are based on the shortest paths between

all pairs of vertices on the graph. As the interaction is lim-

ited to 20 iterations, not every user is necessarily presented

with alternative paths for all start–goal pairs. Therefore,

task-specific changes between the initial and final specifi-

cation might result from passive learning.

4.3. Interface design

The interface employed in this study is an evolution of that

used in Blidaru et al. (2018). It allows users to create a set

of robot constraints by defining polygons on the map of

the environment. The interface allows for the creation of

roads, areas of avoidance and reduced speed zones. In

addition, the interface also accommodates the interaction

phase, as well as the embedding of study questionnaires

that automatically pop-up at predetermined sections of the

study. Integrating all the elements of system interaction in

a single interface results in a more compact and easy to

manage interface, which has been previously correlated to

an increase in the resulting human–robot team performance

(Steinfeld, 2004; Yanco et al., 2015).

During each iteration of the interaction phase, the inter-

face presents the user with a pair of labeled start and goal

points, two alternative paths between these points, the time

duration of the two paths, and the constraints that each path

violates. The interaction phase interface elements are illu-

strated in Figure 5. The violated constraints are shown both

in list form, highlighted on the map.

In order to measure how users evaluate the system, they

are asked several questions throughout the study. To mini-

mize the effect that constant interruptions could potentially

have on the users’ performance, the questionnaires were inte-

grated directly into the interface in the form of dialog boxes.

4.4. Hypotheses

Finally, we propose the two main hypotheses for the user

study.

Hypothesis 1 (H1). The learning process has the following

properties: (a) users accept alternative paths that violate

some of the constraints they specified over the course of

the learning process and (b) the task performance improves

through the interaction process.

Hypothesis 2 (H2). Users find the specification process, and

the interaction with the learning system intuitive and efficient.

Hypothesis 1 focuses on quantitative analysis of the user

interaction. For (a) we analyze the user feedback from the

interaction whereas (b) is based on the metrics described in
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Section 3.6. To validate Hypothesis 2 we conduct quantita-

tive analyses based on the questionnaire, including the SUS

score, as well as a qualitative analysis using the free-form

user comments.

5. Results

5.1. Participants

For the study we recruited 31 participants (21 male and 10

female) via mailing lists. In total 24 participants were

affiliated with the Faculty of Engineering at the University

of Waterloo. Moreover, 22 participants were pursuing or

have completed a graduate education whereas 8 were pur-

suing or have completed an undergraduate degree. Finally,

6 participants stated that they have background knowledge

in robot motion or urban planning.

The population of the study consists of two groups: 21

novice users and 10 repeat users. The novice users had

never interacted with the presented framework before,

whereas the repeat users had previously used the system

once (e.g., during the pilot phase of the study). No partici-

pant is part of both groups. In Sections 5.2–5.4 we present

results for all users whereas Section 5.5 focuses on differ-

ences between the two groups.

5.2. Specifications

The initial specifications provided by the users vary in their

complexity. We summarize the characteristics of the initial

specifications in Table 1. Recall that the number of user-

defined roads does not correspond to the number of con-

straints for the planning problem as roads constitute a

reward and a penalty constraint for each lane. We show

Fig. 5. Preference learning user interface displaying duration and traffic rule violations for each path. In addition, the violated traffic

rules are also highlighted on the map.

Table 1. Characteristics of the initial user specifications. We show the individual mean, median, min, and max for each type of

constraint and the number of traffic rules. Further we report the characteristics of the overall smallest and largest specification as well

as the example of participant 5 (P 05), shown in Figure 6.

Roads Avoidance Speed Traffic Rules

Mean 15 4 8 21
Median 13 5 7 21
½min , max� ½0, 40� ½1, 9� ½0, 19� ½10, 38�
EXAMPLES

Smallest 10 1 5 10
Largest 39 1 13 38
P 05 21 1 17 31
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three example specifications, the smallest and largest with

respect to the number of traffic rules as well as the specifi-

cation from participant 5 that is illustrated in Figure 6.

5.3. Hypothesis 1

(a) Acceptance of alternative paths

For each user we define aj
all to be the percentage of

iterations in which user j accepted the alternative path.

Further, we introduce aj
tasks as the percentage of the tasks

presented to the user where user j accepted at least one

alternative, i.e., where they rejected the initial path at some

point.

Overall 30 out of the 31 participants accepted at

least one alternative path. On average, we found that

aall= 0:44, meaning that users accepted alternatives in

44% of the interactions. The task-related acceptance has a

mean of atasks= 0:62; thus, for roughly 2 out of 3 tasks

users preferred an alternative path over the initial one.

Further, we investigate the correlation of atasks and the

richness of user specifications. We characterize the richness

of a specification in two ways: the number of traffic rules

that the user defined and the number of resulting constraints

for the planner. We found that the Spearman rank correla-

tion of the number of traffic rules and the acceptance rate is

0:51 whereas the correlation of constraints and acceptance

is 0:60, both with a confidence of p\0:005. This corre-

sponds to a moderate correlation, indicating that users who

define a larger set of constraints are more likely to accept

alternative paths.

Together with the task-specific acceptance rate of

atasks= 0:62 we find strong support for our first hypoth-

esis: users are unaware of the impact of their specification

and, thus, allow robots to violate traffic rules (or use roads

less frequently) when presented with different possible

solutions. Further, the obtained revised specification leads

to paths where users chose an alternative path over the

initial one in 62% of cases. Moreover, the correlation of

complexity and acceptance shows that this effect becomes

more apparent for users defining many traffic rules. In

Wilde et al. (2018), we postulated three types of users for

the simulations: a low-trust user with many constraints for

which the importance varies drastically, a high-trust user

with few constraints that all are relatively important, and an

intermediate user. In the user study we do not observe a

discrete separation but rather a continuous distribution for

the user behavior. From the difference in the correlation we

can conclude that users defining many traffic rules are

more likely to accept deviations from the initial path.

(b) Increased performance

To evaluate the changes in the performance, we compare

the time ratio metric of the initial and the final specification,

illustrated with violin plots in Figure 7. Further, we compare

the metric for global and task-dependent evaluation.

For both evaluations we observe a decrease in the time

ratio after the learning process as well as a reduction in the

standard deviation. A paired-samples one-sided t test was

conducted on the task time ratio between initial and final

specifications. The task time ratio of initial specifications

(M = 1:81, SD = 0:43) was found to be significantly dif-

ferent (p\0:01) from that of final specifications

(M = 1:55, SD = 0:22).
Unsurprisingly, the initial specifications vary largely in

their impact on the performance as the number of traffic

rules users defined range from 10 to 38. However, the

decrease in the population standard deviation following

interaction indicates that the learning reduces the variation

in the performance impact of user input and thus helps

users to create more efficient task specifications.

Further, we note that the task-dependent time ratios are

higher than the global values for the initial and final speci-

fications. The global metric takes into account locations

that are less relevant in the scenario, e.g., the lower left cor-

ner of the environment (shown in Figure 6) is not part of a

robot task and therefore neglected by most users. Moreover,

as the global evaluation considers all vertices on the graph,

Fig. 6. Example specification from participant 5. Reduced speed

rules are marked in yellow, road rules in green, and avoidance

rules in red.

Fig. 7. Change in the task-dependent and global time ratio

metric of the specification due to active learning. In both plots

the left bar shows the time ratio of the initial specification,

averaged over all users. The right bar illustrates the time ratio of

the final specification, also averaged over all users.
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many close-by pairs of vertices are considered, where the

specification often has little influence. Although the task-

specific performance is worse, the relative change in time

ratio is higher in the task-specific case (14:4%) compared

with the global metric (11:8%). Hence, the learning effec-

tively improves the performance of the tasks in the

scenario.

Figure 8 illustrates the change of the task-dependent

time ratio and the entropy ratio for all user specifications.

From the plot, we observe that while the time ratio

decreases the entropy ratio increases. Entropy corresponds

to how predictably the robot behaves. It captures the robot’s

degree of freedom with respect to the edge cost on GG,

which is the sum of time and user weight. As the learning

process initially assumes high weights on the constraints

and thus only reduces weights after obtaining feedback, the

entropy increases. After learning, the robot might be

allowed to violate some constraints, which enables more

options to navigate in the environment. This leads to fewer

restrictions on robot behavior, which may not always be

desirable. However, this relaxation of the specification is

traded-off with the increase in performance.

Running a paired-samples one-sided t test, we found

the entropy ratio of initial specifications

(M = 0:881, SD = 0:064) to be significantly different

(p\0:01) from the entropy ratio of final specifications

(M = 0:9142, SD = 0:046). Moreover, we notice that

while the mean entropy increases, the standard deviations

of the time and entropy ratios decrease due to the learn-

ing. With respect to the metrics, the specifications

become more similar during the learning. Two-sample f

tests between the initial and final time ratios show a sig-

nificant difference (p\0:01) in the variances, both in the

case of global and task versions of the metric. However,

no significant difference in the variances was found when

performing the two-sample f test between the initial and

final entropy ratios of the specifications. In addition,

Figure 8 also suggests that the specifications with low

initial values of entropy and high initial task time ratios

generally see more improvement following the preference

learning process. This is verified by a strong Pearson cor-

relation between the initial values and the difference

between the final and initial values, resulting in

r = � 0:88 (p\0:01) for time ratio, and r = � 0:85

(p\0:01) in the case of entropy ratio.

In summary, the learning system leads to a significant

improvement in the time ratio metric, especially when mea-

sured for the tasks in the scenario. Further, the learning

revision reduces the variance between the performance of

specifications. Moreover, specifications that are initially

more inefficient benefit more from the learning process.

5.4. Hypothesis 2

We now report on the users’ assessment of the usability of

our framework, based on the SUS. Although the SUS does

not provide a grade for the usability itself, the work of

Bangor et al. (2008) provides a reference frame based on

2,324 surveys using the SUS. In our study, users gave a

mean SUS score of 69 whereas the median is 75. The dif-

ference arises from two outliers in the dataset with a differ-

ence from the mean of over 2 and over 3 standard

deviations. The mean corresponds to the second highest

quarter of all surveys examined in Bangor et al. (2008).

Specifically, for computer-based GUIs, Bangor et al.

(2008) reported a mean of SUS of 75.

After the three main parts of the study, constraint speci-

fication, learning interaction, and teleoperation, participants

were asked to asses how well they specified the robot beha-

vior on a 1 to 10 scale. On average, users reported similar

ratings at each step, varying between 7:5 and 7:9, with

standard deviations between 1:1 and 1:6. Hence, users felt

relatively confident about how they used the framework.

Interestingly, we observe an inverse correlation (Spearman

coefficient �0:65, p\0:01) between the second self-

assessment and the richness of the specification, i.e., the

number of constraints. Users defining a larger set of con-

straints tended to view their specification more critically

after the learning. Thus, the interactive framework helps

users to better understand the impact of their specification

on the robot’s performance.

5.5. Differences in the population

5.5.1. Acceptance rates. When splitting the data into the

two populations, we observe only a minor increase in the

acceptance rates for the novice users compared with the

repeat ones. However, the correlation of acceptance rate

and complexity of the specifications disappears for the

repeat users whereas it is stronger for novices. Repeat users

Fig. 8. Change in the task time ratio and entropy ratio metrics of

the specifications due to active learning. Red indicates the

metrics for the initial specification, blue shows the metrics for

the final one, and the lines associate the initial and final

specifications of each individual users. The ellipses represent the

95% confidence intervals.
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are more aware of the impact of their specifications whereas

novice users benefit from the interaction to improve the

robot’s behavior.

5.5.2, Time ratio metric. Between novice and repeat users

the time ratio metric varies. We recall that the task-

dependent metric better reflects the effect of specifications

on the task performance and, thus, we show the results for

the task-dependent time ratio in Figure 9. We observe that

the initial specifications provided by the novice users show

a larger variance compared with repeat users. While the

median values are relatively similar, the distribution for

novice specifications spreads out to higher time ratios.

However, the time ratios of final specifications are much

more similar.

A two-sample one-tailed t test was performed on the dif-

ference in time ratio between the initial and final specifica-

tions of novice and repeat users, which revealed that the

two populations are significantly different (p\0:01). In

other words, the changes in the time ratios differ between

the two groups.

We conclude that novice users create more diverse spec-

ifications with respect to the impact on performance.

However, the learning process helps them to improve the

specification and obtain better performance. Repeat users

seem to have a better understanding of the effect of the traf-

fic rules and, thus, design specifications more carefully.

Consequently, they allow for fewer violations that effec-

tively render constraints insignificant and therefore obtain

a smaller time benefit.

5.5.3. Entropy ratio. Although small differences in the

mean entropy ratios across the two populations were

observed for both the initial (0:890 for novice and 0:870

for repeat) and final (0:922 for novice and 0:901 for

repeat) specifications, these differences were not found to

be statistically significant.

5.5.4. SUS score. The mean SUS of repeat users is 70

(median 77) whereas the mean of novice users is 68 (med-

ian 74). Naturally, participants who have interacted with

the GUI before are likely to find it more easy to use.

Nonetheless, the reported difference is less than half of the

standard deviation among all users scores and thus is not

statistically significant. This supports our claim that the

presented framework is suitable for inexperienced users.

6. Discussion and future work

6.1. Summary

In this article, we have presented a framework to allow

users to specify spatial and temporal constraints, i.e., traffic

rules, for robot movement on a map. This yields an initial

specification where each path a robot would take to

accomplish a task follows all constraints. However, users

might misjudge the impact of their constraints on task per-

formance as well as robot behavior and, thus, may allow

the violation of constraints to enable the robot to take more

preferable paths. Therefore, the initial specification is

revised using active preference learning: the user is itera-

tively presented with the current path for some task and an

alternative solution. From their feedback the system learns

about the importance of constraints which we represent by

weights. After up to 20 iterations of user interaction, a

revised specification is obtained. In the study we observed

that all but one user accepted alternative paths during the

interaction and we improve the task-specific performance

on average by 14%. Further, users were generally positive

regarding the usability of the GUI. In this section, we dis-

cuss additional findings in the study that do not directly

relate to our introductory claims or the proposed

hypotheses.

6.2. User feedback

Although most users ranked the interaction with our sys-

tem as positive, participants provided several suggestions

for improving the framework in the questionnaire feedback.

Almost half the users expressed the desire to change their

specification during the learning process. This indicates

that although instructed on general robot behavior, partici-

pants found it somewhat difficult to envision how all of the

created traffic rules affect the behavior of the robot. They

could be well served by visualizations showing robot beha-

vior during the specification phase.

Another aspect that could be improved is how the user

feedback is incorporated into the learning. Currently users

express their traffic rules preferences by selecting the pre-

ferred path. Although this approach is intuitive and simple

to use, users occasionally expressed frustration when both

paths presented to a user contain undesirable behavior, and

so users have to select the lesser of two evils. As a result,

future work should investigate additional forms of feedback

Fig. 9. Change in the task-dependent time ratios of the

specification, comparing novice and repeat users.
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that might better reflect a user’s preference, and could

potentially lead to a more efficient learning process.

The work of Basu et al. (2018) investigated richer forms

of feedback in active preference learning. In addition to ask

for the user’s preference, feature queries give the user the

opportunity to express their reasoning, i.e., ‘‘Which feature

is most responsible for the difference in your preference

between these two trajectories?’’ This aligns with feedback

from the questionnaire: some participants stated that they

rejected alternative paths as they violated both a minor and

a major constraint at the same time; the violation of only

the minor constraint would have been acceptable, but that

was unknown to the learning system. In this case richer user

feedback would help in two ways, allowing users to express

the reasoning for their path selection, and potentially reduc-

ing the number of iterations of the learning. On the other

hand, a drawback of this approach is the increased com-

plexity of the interaction.

Another approach for richer feedback could allow users

to manually indicate, and potentially correct, the undesir-

able sections of presented paths. This idea is investigated

by Cui and Niekum (2018) where users segment a robots

trajectory into good and bad parts.

6.3. Repeat and novel users

In Section 5.5, we have shown that specifications originat-

ing from novice and repeat users differ in the time ratio

metric. This indicates that there are differences in how

the two groups of users specify the robot constraints, and

that these metrics could be used to identify the expertise

of a user based on the specification provided. In multi-

user systems, this could be used to combine multiple

specifications, emphasizing those of expert users. Despite

the observed differences, the iterative preference learning

system was shown to be capable of improving the specifi-

cation performance of both types of users. This leads us

to hypothesize that even in the case of specifications

designed by domain experts, the learning framework

could still be used to help increase specification perfor-

mance. To further investigate this, we currently develop a

web-based user interface for remote study participation,

allowing us to recruit more domain experts, i.e., people

working in industrial facilities.

6.4. Learning framework

In our previous work Wilde et al. (2018), we evaluated the

active learning framework in simulation. Validating the

extended algorithm proposed here in the user study allows

us to make additional observations about the practicality of

the approach. Unlike the work of Sadigh et al. (2017),

Daniel et al. (2014), Guo and Sanner (2010), and Golovin

et al. (2010), our learning framework is currently based on

a deterministic user model. The major drawback is that our

model does not consider users who behave differently than

described in the assumed cost function. Nonetheless, we

were able to demonstrate that using a simplified linear user

model, the framework proposes alternative paths that users

accept over the initial paths and revises the specification to

improve the task performance within a small number of

iterations. Although the resulting final specification does

not necessarily correspond to the optimal solution with

respect to the hidden user preferences, the deterministic

model allows for quick learning, yielding substantial

improvements within only 20 iterations. A more complex,

potentially probabilistic user model would make fewer

assumptions about the user’s behavior and, thus, be more

robust; however, usually at the cost of performance, i.e.,

the number of iterations required for learning in a compara-

ble setting.

Further, due to the multi-task scenario we were able to

observe some inaccuracies in the user feedback with respect

to our user model. When learning about a single task, the

feasible space can never be empty as the algorithm stops

when all feasible weights are equivalent. However, inter-

secting the feasible spaces for different tasks can lead to an

empty set. In that case, the user feedback to different tasks

contradicts one another, assuming the linear cost function.

Note that an empty intersection of the feasible spaces is not

a necessary but a sufficient condition for inaccurate user

feedback. In the study we observe this phenomenon for a

total of 4 out of the 31 users. A more expressive user model

could be used to avoid this issue of converging to a subopti-

mal solution, however, a richer model is likely detrimental

to the efficiency of the learning.

In summary, the user study successfully validates the

active learning framework and helps users to create better

specifications. The algorithm assumes users’ preferences

can be described by a deterministic linear model, which

should be addressed in future work, for instance by using a

probabilistic model for the user. In Wilde et al. (2019), we

proposed such a model together with an adapted learning

algorithm and demonstrated performance and robustness in

simulations. Nonetheless, the simpler user model is benefi-

cial for performance; the study showed that the current

algorithm allows for a substantial improvement of specifi-

cations while requiring few iterations of user interaction. In

particular, users who generate initial specifications most

detrimental to robot performance received the most benefit

from the interaction, resulting in final specifications that

are more similar across users, and thus reducing the need

for user training.
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