
Design and optimal control of a tiltrotor micro aerial vehicle
for efficient omnidirectional flight

Mike Allenspach1*, Karen Bodie1*, Maximilian Brunner1*, Luca Rinsoz1, Zachary Taylor1,
Mina Kamel1, Roland Siegwart1 and Juan Nieto1

Abstract
Omnidirectional micro aerial vehicles are a growing field of research, with demonstrated advantages for aerial
interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency
have been developed independently, a robust system that combines the two has not been demonstrated to date.
This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any
orientation while maintaining efficient flight configurations. The system design is motivated by the result of a morphology
design optimization. A six degrees of freedom optimal controller is derived, with an actuator allocation approach that
implements task prioritization, and is robust to singularities. Flight experiments demonstrate and verify the system’s
capabilities.
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1 Introduction

Omnidirectional micro aerial vehicles (MAVs) present
a compelling solution for future applications of aerial
robots. Full actuation allows for force-omnidirectionality
(force and torque tracking in six DOF), decoupling the
translational and rotational dynamics of the system, and
permitting stable interaction with the environment. Such a
system proposes significant functional advantages over the
traditional underactuated MAV, which provides only four
controllable degrees of freedoms (DoFs) by nature of the
aligned propeller axes.

With the added criterion that force and torque in any
direction must compensate for the system’s mass, the result
is complete pose-omnidirectionality, where a system can
achieve uninhibited aerial movement and robust tracking
of six DOF trajectories. This extension offers a unique
advantage for aerial filming and 3D mapping, as well as
configuration-based navigation in constrained environments.

A dominant struggle in the development of MAVs is
reaching a compromise between performance and efficiency.
For robust aerial interaction and high control authority in
omnidirectional flight, performance can be represented by
the force and torque control volumes of a system. For pose-
omnidirectional platforms, the force envelope must exceed
gravity in all directions with an additional buffer to maintain
dynamic movement. Countering this performance goal is the
desire for high efficiency and longer flight times, which is
compromised in systems that generate high internal forces
(thrust forces which counteract each other), or add additional
weight for actuation.

Within the past 5 years, substantial growth has occurred in
the field of fully actuated omnidirectional MAVs, from the
emergence of these systems to their application in realistic
inspection scenarios. We consider two dominant categories
of platform actuation: fixed rotor, and tiltrotor platforms. The
fixed rotor OMAV offers a mechanically simple design to
achieve full actuation, creating a thrust vector by varying
propeller speeds of fixedly tilted rotors. However, any
interaction wrench exerted on the environment from a stable
hovering pose creates a proportionately significant amount of
internal force, which directly detracts from flight efficiency.
As a result, orienting the propellers to prefer efficient hover
flight and a higher payload directly reduces the capability
to generate lateral force for interaction. Several fixed rotor
platforms that achieve full pose omnidirectionality have been
developed in recent years (Brescianini and D’Andrea 2016;
Park et al. 2018; Staub et al. 2018), while other platforms
achieve omnidirectional wrench generation from a defined
hover orientation (Ryll et al. 2018; Wopereis et al. 2018;
Ollero et al. 2018). Other concepts have extended the theory
of fixed rotor platforms (Tognon and Franchi 2018), as
interest in these systems grows.
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Tiltrotor platforms can individually tilt rotor groups
with additional actuation, and can achieve optimal hover
efficiency in the absence of external disturbances, when
all propeller thrust vectors are aligned against gravity.
Tiltrotor systems have been demonstrated in the form of a
quadrotor (Falconi and Melchiorri 2012; Ryll et al. 2015)
with limited roll and pitch, and more recently in the form of a
hexarotor (Kamel et al. 2018). These platforms achieve force
omnidirectionality with high hover efficiency in specific
poses, at the cost of additional inertia and mechanical
complexity, but force-omnidirectionality is marginal or
impossible in some body orientations. Another concept that
reduces complexity by coupling the tilt axes to one or two
motors has been evaluated in simulation (Ryll et al. 2016;
Morbidi et al. 2018), providing versatility in force generation
and efficiency, but without pose-omnidirectionality.

When designing a system to target the application of
aerial workers, versatility plays a large role. Navigation
efficiency and payload capacity are often required, while
new tasks of omnidirectional interaction demand high force
capabilities in all directions. The tilt-rotor OMAV provides
a promising solution, having omnidirectional capabilities
while maintaining the ability to revert to an efficient hover.
While additional motors add complexity and weight, we can
take advantage of the highly overactuated system to prioritize
tasks in the allocation of actuator commands.

In this paper we present the design of an omnidirectional
tiltrotor dodecacopter, a jerk-level LQRI optimal controller
for six DOF control of a floating base system, and task
prioritization in actuator allocation. Various experiments
show controller performance, and demonstrate handling of
singularities and individual tilt arm control.

1.1 Contributions
• Design of a novel OMAV that achieves both force-

and pose-omnidirectionality with highly dynamic
capabilities, while maintaining high efficiency in
hover. A tiltrotor design optimization tool is described
and made available open source.
• A full state optimal controller is designed in the form

of a jerk-level LQRI, which takes into account tilt-
motor commands.
• An allocation strategy is developed to prioritize

tracking in 6 DOF, while completing additional tasks
in the null space of the overactuated system.
• Experiments demonstrate the tracking performance of

the LQRI as compared to a benchmark PID controller.
Further tests show singularity handling and cable
unwinding as secondary tasks while tracking a full
pose trajectory.

1.2 Outline
This paper extends upon the work presented at the 2018
International Symposium on Experimental Robotics (ISER
2018) (Bodie et al. 2018) and (Bodie et al. 2019), and
is structured as follows. Section 2 states assumptions and
notation, and derives a general model of the tiltrotor
OMAV. Section 3 describes the parametric design the
system subject to a cost function, and compares the
system’s theoretical capabilities to other state-of-the-art

concepts. Section 4 details the LQRI optimal control
implementation, and describes the allocation of 6 DOF
wrench tracking commands, and additional secondary tasks,
to 18 independent actuators. Section 5 describes the
hardware of the prototype system and the experimental setup.
In section 6, results from experimental flights are presented
and discussed. Finally, section 7 offers concluding remarks
and directions for future work.

2 System Modeling
In this section we present definitions and notation used
throughout the paper, define assumptions, and develop
a generalized tiltrotor MAV model. We further discuss
singularity cases that arise in generalized tiltrotor systems.

2.1 Definitions and notation
In the present work, we consider a general rigid-body model
for a tilt-rotor aerial vehicle. Refer to table 1 for definitions
of common symbols used throughout the paper. We use
following conventions for coordinate frames:

• Inertial world frame FW

• Body frame FB attached to the COM of the MAV with
origin OB

• Rotor frame Fri

Figure 1 illustrates the frames and angles that we use when
describing a tiltrotor MAV. The rotating axis of each rotor
group, xRi

, is defined as the axis of the arm coming out of the
main body, and intersects the body origin,OB . This arm may
be positioned at arbitrary angles γi, βi which respectively
define the rotation about the zB axis, and inclination from
the zB-plane.

Figure 1. Illustration of arm angles.

RWB ∈ SO(3) denotes a rotation matrix expressing the
orientation of FB with respect to FW .

BωWB ∈ R3 denotes the angular velocity of FB with
respect to FW , expressed in FB . We can then express the
orientation kinematics of a frame FB as

ṘWB = RWB [ BωWB ]× (1)

with [·]× ∈ SO(3) as the skew symmetric matrix of the
vector · ∈ R3. The angular acceleration of the body frame
is written as BψWB and the angular jerk as BζWB .

Furthermore, we denote the position of the MAV in the
frame FW as Wp. The body velocity, acceleration, and jerk
are described as Wv, Wa, and W j, respectively.
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The time derivative of a vector Ba in a rotating frame FB

is written as follows

d

dt
( Ba) = B (ȧ) (2)

and can be expanded to

B (ȧ) = Bȧ+ [ BωWB ]× Ba (3)

2.2 Assumptions
The following assumptions are adopted to simplify the
model:

• The entire platform can be modeled as a rigid body.
• Thrust and drag torques are proportional to the square

of the rotors angular speed, and rotors are able to
achieve desired speeds ωi with negligible transients.
• The primary axes of the system correspond with

the principal axes of inertia. Products of inertia are
considered negligible.
• The dynamics of tilt motors are independent of the

rotational speed of rotors.
• The tilting axis of each propeller group intersects the

body origin.
• The thrust and drag torques produced by each rotor are

independent, i.e. there is no airflow interference.

2.3 Rigid body model
The system dynamics are derived by the Newton-Euler
approach under the stated assumptions, resulting in the
following equations of motion expressed in the body-fixed
frame:

[
mI3 0

0 JB

] [
Bv̇

Bω̇WB

]
= −

[
[ BωWB ]×m BvB

[ BωWB ]× J BωWB

]
+

[
Bf

Bτ

]
+

[
m Bg

0

]
(4)

where m and J are the mass and inertia of the MAV,[
Bf

T
Bτ

T
]T

are forces and torques resulting from the
actuation, and m Bg is the force resulting from gravity.

2.4 Aerodynamic force model
For any geometry of a tiltrotor MAV we can find a relation
between the individual rotor forces fr,i and torques τr,i and
the total body force and torque vector Bw that is generated
at its center of mass.

As previously presented by Kamel et al. (2018), we
assume that the force and torque produced by a rotor can
be described as

fi = cFω
2
i (5a)

τi = cMω
2
i (5b)

Since both the force and torque are directly proportional to
the squared rotor speed, we define the vector of squared rotor
speeds:

Ω =

Ω1

...
Ωn

 =

ω
2
1
...
ω2
n

 (6)

Considering a tiltrotor model, α represents the active
rotational joint angle about an arm axis. We define the
instantaneous allocation matrix Aα that is a nonlinear
function of the current tilt angles α =

[
α1, . . . , αn

]
with n being the number of tilt arms. Using a matrix
multiplication we can relate the body force and torque
directly with the squared rotor speeds:

Bw =

[
Bf

Bτ

]
= AαΩ (7)

For convenience we can also write this equation with a static
allocation matrix A that is independent of the varying tilt
angles and that only depends on the geometry of the MAV:

Bw = AΩ̃ A ∈ R6×n, Ω̃ ∈ R2n (8)

Ω̃ =


sin(αi)Ωi
cos(αi)Ωi

...
sin(αn)Ωn
cos(αn)Ωn

 ∀i ∈ {1...n} (9)

The elements of the vector Ω̃ correspond to the lateral
and vertical components of each squared rotor speed in the
respective rotor unit frame.

Refer to appendix A.5 for a general formulation of the
static allocation matrixA.

2.5 Tilt motor model
As proposed by Kamel et al. (2018) we model the tilt angle
dynamics using a first order damped system, i.e.

α̇i =
1

τα
(αi,ref − αi) (10)

with αi,ref being the reference, αi the actual tilt angle of
arm i, and τα the time constant of the tilting motion. This
accounts for dynamic effects as well as physical limitations
of the servo motors that are otherwise unmodeled.

2.6 Singularity cases for tiltrotor MAVs
As previously identified by Bodie et al. (2018), an OMAV
can encounter two types of singularity cases that result from
the allocation model.

The first type occurs when the tilt angles αi are aligned
in a way that leads to a rank reduction of the instantaneous
allocation matrix Aα. This corresponds to a state in which
instantaneous controllability of select forces and torques
is lost due to tilt motor delay. We refer to this type of
singularity as a rank reduction singularity. It has been
studied thoroughly by Morbidi et al. (2018).

The second type, which we refer to as a kinematic
singularity, occurs when rotor thrusts cannot contribute to
the desired body wrench wB , which leads to tilt angles not
being uniquely defined. This condition has been described by
Bodie et al. (2018).

3 Tiltrotor morphology design
The tiltrotor MAV offers compelling advantages toward the
goal of versatility in force exertion and hover efficiency.
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Table 1. Symbols and definitions for a tilt-rotor aerial vehicle.

Symbol Definition
FW : {OW , xW , yW , zW } inertial frame: origin and primary axes
FB : {OB , xB , yB , zB} robot body-fixed frame: origin and primary axes
Fri : {Ori , xri , yri , zri} ith rotor unit frame: origin and primary axes
Rab Orientation of Fb expressed in Fa

A,Aα Static allocation matrix and instantaneous allocation matrix, respectively
m mass
J inertia matrix
rcom center of mass offset, given in the body frame
α vector of tilt angles
ω vector of angular velocities of the rotors
Ω vector of squared rotor speeds
Ω̃ vector of lateral and vertical components of Ω
f force vector
τ torque vector
Bw total actuation wrench in the body frame
Wg = [0 0 g]> gravity acceleration vector, g = 9.81 m s−2

Wp position
Wv linear velocity
Wa linear acceleration
W j linear jerk
BωWB angular velocity
BψWB angular acceleration
BζWB angular jerk

However, despite these advantages, tiltrotor systems also
come with drawbacks such as additional actuation mass
and complexity, limited rotation due to possible arm cable
windup, and the presence of singularity cases that are not
encountered in a fixed rotor system. Therefore, morphology
design is important to ensure that the resulting platform
meets performance requirements. This section describes
the morphology design approach, compares this resulting
morphology to other state of the art omnidirectional systems,
and justifies the choice of a tiltrotor OMAV.

isometric
view

side view top view

Figure 2. Definitions of angles θ and β for the tilt-rotor
morphology optimization.

3.1 Evaluation metrics
We aim to achieve the following design goals:

• Fully actuated system in any hover orientation.

• High force and torque capabilities in all directions.
• High efficiency hover in at least one orientation.

To evaluate the dynamic capabilities of force- and pose-
omnidirectionality, as well as hover efficiency, we define the
following metrics:

3.1.1 Force and torque envelopes
Volumes corresponding to the maximum reachable forces
(fvol) and torques (τvol) of the system expressed in
FB can be computed by feeding commands forward
through the actuator allocation matrix (see eq. (8)). We
refer to these volumes as force and torque envelopes.
Maximum, minimum, and mean values for the envelopes are
calculated (fmax, fmin, fmean and τmax, τmin, τmean) and
used to evaluate dynamic capabilities. The force envelope is
computed in the absence of torque, and the torque envelope
is computed in the presence of a static hover force. Torque
envelopes presented here include a hover force aligned with
zB , though other directions have been evaluated to verify full
pose omnidirectionality in all hover conditions for optimized
tiltrotor platforms.

3.1.2 Force efficiency index, ηf
As an efficiency metric of omnidirectional force exertion, we
use a force efficiency index ηf ∈ [0, 1] as originally defined
by Ryll et al. (2016). The index represents the ratio of the
desired body force magnitude to the sum of individual rotor
group thrust magnitudes, as expressed in eq. (11).

ηf =
‖ Bfd‖∑n
i=1 Bfri

(11)

When ηf = 1, no internal forces are present, and all acting
forces are aligned with the desired force vector fd. While
these internal forces should be reduced for efficient flight,
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they also allow for instantaneous disturbance rejection, since
thrust vectoring can be achieved by changing only rotor
speeds.

A torque efficiency index can be computed similarly in
eq. (12) to evaluate the efficiency of maximum torque
commands, considering the body moment due to propeller
forces acting at distance l from OB . Torque contributions
due to rotor drag are assumed to be negligible, since they
are a significantly smaller multiple of the thrust force.

ητ =
‖ Bτd‖

l
∑n
i=1 Bfri

(12)

3.1.3 System Inertia
The inertial properties of the platform translate generalized
force to acceleration, and therefore shape the agility of the
flying system. Reducing inertia increases agility, and can
be achieved by reducing the total mass m, and bringing
the mass closer the the body origin OB . Dynamic tiltrotor
inertial effects are neglected for this analysis. The mass
and inertia used at each optimization step are parametrically
computed based on a simplified system geometry and
realistic component masses, as derived in appendix A.1.

3.2 Optimization
We present a tiltrotor morphology optimization tool, made
available open source1. This tool performs parametric
optimization of a generalized tiltrotor model as shown in
fig. 2, subject to a cost function of force and torque exertion,
agility and efficiency metrics. We define fixed angles θ,β ∈
Rn as zB- and yB-axis angular deviations from a standard
multicopter morphology with arms evenly distributed in the
zB-plane. Rotor groups can tilt actively about xri , and are
controlled independently. For the purposes of this paper,
we only optimize over θ and β. Although the tool allows
for additional optimization over number of arms n and arm
length l, we set these parameters in advance to 6 and 0.3 m
respectively.

We consider two cost functions to evaluate an omnidirec-
tional tiltrotor system: one that prefers unidirectional flight
efficiency while requiring omnidirectional flight, and another
that maximizes omnidirectional force and torque capabili-
ties. The first cost function is defined as a maximization of
the force envelope in one direction (here, unit vector ẑB),
while requiring a minimum force in all directions, expressed
as

min
θ,β

(−fmaxẑB)

s.t.
fmin > mg

− π

2
< θi <

π

2

− π

2
< βi <

π

2
ωmin < ωi < ωmax, ∀i ∈ {1 . . . n}

(13)

The second cost function seeks to maximize omnidirec-
tional capability by maximizing the minimum force and
torque envelope values in all body directions, i.e. for all
surface point directions on a unit sphere. This result will

Table 2. Optimized morphologies and simplified metrics

property cost function 1, eq. (13)
β [deg] [0, 0, 0, 0, 0, 0]

θ [deg] [0, 0, 0, 0, 0, 0]

mass [kg] 4.0

inertia∗ [kgm2] {0.0725, 0.0725, 0.1439}
{fmin, fmax}[N] {72.4, 144.7}
fvol[N3] 3.5 · 106

{τmin, τmax}[Nm] {26.5, 68.4}
τvol[Nm3] 2.1 · 105

ηf at hover {min, max} {0.75, 1.0}

property cost function 2, eq. (14)
β [deg] 35.26 · [1,−1, 1− 1, 1− 1]

θ [deg] [0, 0, 0, 0, 0, 0]

mass [kg] 4.0

inertia∗ [kgm2] {0.0959, 0.0959, 0.0972}
{fmin, fmax}[N] {96.5, 118.2}
fvol[N3] 4.2 · 106

{τmin, τmax}[Nm] {28.7, 44.0}
τvol[Nm3] 1.7 · 105

ηf at hover {min, max} {0.82, 1.0}
∗Primary components of inertia are presented, products
of inertia are assumed negligible.

guarantee omnidirectional hover if the system’s parameters
provide a sufficient thrust to weight ratio.

min
θ,β

(−fmin,−τmin)

s.t.
fmin > mg

− π

2
< θi <

π

2

− π

2
< βi <

π

2
ωmin < ωi < ωmax, ∀i ∈ {1 . . . n}

(14)

The resulting optimized morphologies and metrics are
presented in table 2. The first optimization function results
in a tiltrotor that takes a standard hexacopter morphology.
Force in a single direction is maximized along zB , and
system properties are sufficient to ensure hover in any
orientation. The second optimization has multiple solutions
of the same result result metrics, placing rotor groups Ori
at the vertices of an arbitrarily oriented octahedron. We
list the β values when θ are 0. Results show that both
systems can sustain omnidirectional hover with additional
force capability, and have omnidirectional force and torque
envelopes, as seen by the fmin, τmin. We further evaluate
the evolution of performance metrics between solutions, with
θ values fixed at 0, and β = β · [1,−1, 1,−1, 1,−1] for
changing β. Results are shown in fig. 3, where we see a
clear maximization of the minimum reachable force in the
left plot. Considering the goal of versatility for efficient
flight with omnidirectional capabilities, the β = 0 solution
presents high reachable forces with a maximum efficiency
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Figure 3. Variation of force and torque envelope metrics (max and min bounds, mean and volume) with changing β, the most
efficient hover solution is at β = 0 and the maximized force/torque envelope is at β = 0.6154 rad (35.26 deg).

index, and sufficiently large minimum reachable forces and
torques for agile flight in 6 DOF.

3.3 Comparison

We compare capabilities of the two optimized tiltrotor
OMAV results to other state-of-the-art omnidirectional
micro aerial vehicles (OMAVs). Platforms selected for
comparison are the fixed rotor tilt-hex realized for aerial
interaction applications (Ryll et al. 2019) and the fixed
rotor omnidirectional platforms derived and realized by
Brescianini and D’Andrea (2016); Park et al. (2016).

For all platforms compared in fig. 4, we show result
metrics in table 3 relative to the first tiltrotor platform. For
intuitive comparison of the second optimized tiltrotor result,
the configuration is rotated such that axes align with the fixed
rotor platform in fig. 4 d).

Force and torque envelopes are colored with the efficiency
index of the maximum achievable values in each direction.
The third column shows the force efficiency index for
each achievable hover direction, plotted on a unit sphere.
As expected, the reachable force and torque envelopes for
the two tiltrotor systems are much larger than their fixed
rotor counterparts. Designs a) and c) achieve high forces in
level hover, while designs b) and d) show a more uniform
distribution of omnidirectional force. Due to its tilting
rotors, design a) still has better omnidirectional force and
torque characteristics than the fixed rotor design d) which
is optimized for omnidirectional force.

The tiltrotor implementation of a standard hexacopter
design promises a versatile and capable morphology
solution. Additional weight and complexity can be justified
by significantly improved performance metrics. Independent
tilting of each rotor group results in overactuation: 12
inputs to control 6 DOF. The controller can act in the null
space of the allocation to assign secondary tasks. We can
further justify the tilt-rotor version of a standard hexacopter
morphology for perception applications, where the dual
unobstructed hemispheres of the zB plane allow for a large
field of view.

As previously discussed, dynamic inertial effects of tilting
rotor groups were not taken into account for the optimization.
As such, we choose to augment the system with double
propeller groups to increase total thrust and to balance
rotational inertia about the tilting axis. Counter-rotating
propellers in each rotor group further reduce gyroscopic

effects. Upper rotor directions alternate with adjacent arms
to reduce the unmodelled effects of dual rotor groups.

Coordinate systems for the platform are described in
fig. 5, with the body and rotor group frames FB ,Fri ,
and definitions of the fixed arm spacing angles γ =
π
6 · [1, 3, 5, 7, 9, 11] and tilting angles αi. Individual rotor
angular velocities ωi for i ∈ (1, 6) represent upper rotors and
i ∈ (7, 12) represent lower rotors.

4 Control

4.1 Overview
The control problem consists of tracking a 6 DOF reference
trajectory given by (pd(t),Rd(t)) ∈ R3 × SO(3). Previous
works Bodie et al. (2019); Kamel et al. (2018); Ryll
et al. (2015) exploit the rigid body model from eq. (4)
in combination with the aerodynamic force model from
eq. (8) to compute actuator commands based on a thrust
vectoring control. Force and torque commands are computed
from position and attitude errors respectively and actuator
commands can be resolved using the Moore-Penrose pseudo-
inverse of the static allocation matrix.

Ω̃ = A†
[
Bf

Bτ

]
A† ∈ Rn×6 (15)

While this method shows good performance in most flight
scenarios, it exhibits some disadvantages:

1. Singularities in the allocation matrix need to be
avoided or handled explicitly

2. Rotor and tilt arm dynamics are not considered by the
allocation

While controllers for overactuated MAVs usually operate
on the acceleration level, we present two controllers that
generate linear and angular jerk commands rather than
acceleration commands. Specifically, we present

• an LQRI controller based on a rigid body model
assumption, and

• a PID controller that generates acceleration commands
with subsequent numerical differentiation to obtain
jerk.

The main motivation to use jerk rather than acceleration
commands is that this allows us to access the tilt angle
dynamics of the rotating arms. Therefore we also present
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Figure 4. Reachable force envelope, reachable torque envelope at zB hover, omnidirectional hover directions colored by force
efficiency index, all expressed in FB and a morphology design illustration are shown for (a) a tiltrotor optimized for unidirectional
efficiency, (b) a tiltrotor that maximizes fmin and τmin, (c) a fixed rotor design from Ryll et al. (2019), and (d) a fixed rotor design
from Brescianini and D’Andrea (2016); Park et al. (2016).

Table 3. Comparison of relative omnidirectional system properties corresponding to morphologies in fig. 4

property∗ tiltrotor a) tiltrotor b) fixed rotor c) fixed rotor d)
inertia∗∗ {m, Ixx, Iyy, Izz} reference {1.0, 1.33, 1.33, 0.67} {0.77, 0.99, 0.99, 0.99} {0.77, 1.32, 1.32, 0.67}
force {min, max, vol} reference {1.33, 0.81, 1.20} {0, 0.81, 0.01} {0.67, 0.58, 0.26}
torque {min, max, vol} reference {1.14, 0.66, 0.95} {0.21, 0.17, 0.01} {0.31, 0.53, 0.17}
ηf at hover {min, max} reference {1.09, 1.0} {1.08, 0.97} {0.7, 1.0}
∗All values are expressed relative to the first tiltrotor system.
∗∗Primary components of inertia are presented, products of inertia are assumed negligible.

a new method of allocation, based on optimizing over
the differential actuation commands (α̇, ω̇) rather than the
absolute actuation commands. We will refer to this as the
differential allocation. This approach accounts for limited
changes in tilt angles and rotor speeds, and can achieve
almost arbitrary sets of tilt angles.

Figure 6 gives a high-level overview of the controller
block diagram. LQRI or PID can be used interchangeably
in the control block to compute jerk commands that are
resolved to actuator commands by the differential allocation.

In this section, we will use the following notation: u =[
Bj

T
Bζ

T
]T

denotes the commanded body jerk which
corresponds to the input to the differential allocation. ū
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zB

xB

xB

yB
xri

zri

yri

wi

wi+6

γi

ai

yri

Figure 5. Coordinate frames and variables for ith rotor group ri
and body B. Principal axes are shown, as well as rotor group tilt
angle αi, rotor angular velocity ωi, and arm spacing angle γi.

denotes the input after feedback linearization, and ũ =[
ω̇T α̇T

]T
is the set of differential actuator commands.

4.2 LQRI controller

We use an LQRI controller to optimize the system dynamics
according to the following infinite time optimization
problem:

min
ū(t)

∫ ∞
0

e(t)TQe(t) + ū(t)TRū(t)dt

s.t. ė(t) = f(e(t), ū(t))

e ∈ Rn
ū ∈ Rm
Q ∈ Rn×n
R ∈ Rm×m

(16)

where e is the error vector that is to be minimized, ū is the
control input to the system, f(·) is the function describing
the state evolution, and Q,R are weighting matrices for the
error and control input.

In the following sections we present the underlying system
model and the inputs that are used for optimization.

4.2.1 System jerk dynamics

The dynamics of the model are obtained by differentiating
the dynamic equations of a rigid body model:

d

dt
(m Ba) =

d

dt
( Bf +RBW Wg)

m B(ȧ) = B(ḟ)− [ BωWB ]×RBW Wg (17)

where B(ȧ = Bj is the jerk in the body frame. Similarly
we differentiate the angular acceleration:

d

dt
(J BψWB + [ BωWB ]×J BωWB) =

d

dt
(τB − [rcom]× Bf)

(18)

and obtain the following angular jerk equation of motion:

J Bψ̇WB + 2[ BωWB ]×J BψWB

+ [ BψWB ]×J BωWB + [ BωWB ]2×J BωWB

= B(τ̇ )− [[ BωWB ]×rcom]× Bf

− [rcom]× B(ḟ) (19)

Using the kinematics from eq. (3) we can also write the
angular jerk explicitly as

BζWB = B(ψ̇WB) = Bψ̇WB + [ BωWB ]× BψWB

(20)

4.2.2 Error vector
We define the error state vector as a concatenation of linear
and angular differences between the state and the reference.
Reference variables are denoted with a subscript (·)d.

e =



Wep
Wep,i
Wev
Wea
BeR
BeR,i
Beω
Beψ


=



Wp− Wpd∫
Wep dt

Wv − Wvd
Wa− Wad

1
2

(
RT
WBd

RWB −RT
WBRWBd

)∨∫
BeR dt

BωWB −RBW WωWBd,d

Beψ


(21)

with e ∈ R24. Note that the angular velocity reference
WωWBd,d denotes the reference angular velocity of the
reference body frame with respect to the world frame. The
geometric attitude error

The error dynamics are derived as:

W ėp = Wev (22a)

W ėp,i = Wep (22b)

W ėv = Wea (22c)

W ėa =
1

m
RWB

(
B(ḟ)− [ BωWB ]×RBWm Wg

)
− W jd

(22d)

B ėR =
1

2

(
tr
(
RT
WBRBWd

)
I3 −RT

WBRWBd

)
︸ ︷︷ ︸

ARΩ(RWB ,RWBd
)

Beω

(22e)

B ėR,i = BeR (22f)

B ėω = Beψ (22g)

B ėψ (22h)

Refer to appendix A.2, eq. (42) for a full formulation of the
angular acceleration error dynamics.
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Figure 6. Control block diagram.

4.2.3 Feedback linearization
We use feedback linearization to simplify the error dynamics,
specifically eq. (22d) and eq. (22h). We introduce the virtual
input vector ū ∈ R6 and define the total force derivative as
follows:

B(ḟ) = [ BωWB ]×RBWm Wg +mRWB W jd

+mRWB

ū1

ū2

ū3

 (23)

We follow the same principle for the angular dynamics, the
full derivation is shown in appendix A.3, eq. (43).

Using the definitions from eq. (23) and eq. (43) together
with eq. (22d) and eq. (22h) we obtain the simplified error
dynamics for linear and angular acceleration:

W ėa =

ū1

ū2

ū3


B ėψ =

ū4

ū5

ū6

 (24)

4.2.4 Linearization
Having performed the feedback linearization, we obtain
following nonlinear error dynamics:

ė = f(e, ū)

d

dt



Wep
Wep,i
Wev
Wea
BeR
BeR,i
Beω
Beψ


=



Wev
Wep
Wea[

ū1 ū2 ū3

]T
ARΩ(RWB ,RWBd

) Beω
BeR
Beψ[

ū4 ū5 ū6

]T


(25)

As the attitude error dynamics are nonlinear, we linearize
them at each time step around zero attitude error, i.e. BeR =
0, to obtain a linear representation of the form

ė = Ae+Bū A ∈ R24×24,B ∈ R24×6 (26)

Where A is the state transition matrix and B is the input
matrix.

4.2.5 Optimal gain computation
The optimal control inputs can then be computed using the
gainKLQRI :

ū = −KLQRIe ū ∈ R6, KLQRI ∈ R6×24 (27)

To find the optimal LQRI gain matrix, we solve the
continuous time algebraic Riccati equation (CARE):

0 = ATP + PA− PBR−1BTP +Q (28)

and then use it’s solution P � 0, P ∈ R24×24 according to:

KLQRI = R−1BTP (29)

A stability proof can be found in appendix A.4.

4.3 PID controller

In this section we present a PID controller that yields rigid
body jerk commands. The jerk commands are computed by
numerically differentiating acceleration commands that are
computed from a PID controller as in Bodie et al. (2018);
Kamel et al. (2018).

Using the current as well as the reference state of the
system, reference accelerations are obtained as follows:

Wa = Kp Wep +Kv Wev +Kp,i Wep,i (30a)

Bψ = KR BeR +Kω Beω +KR,i BeR,i (30b)

The error terms are defined as in eq. (21) and the
matrices K(·) are diagonal tuning matrices. The reference
accelerations are then numerically differentiated and rotated
to obtain the body jerk commands:

u =

[
Bj

Bζ

]
=

[
RBW W ȧ

Bψ̇

]
(31)

4.4 Differential actuator allocation

ωc,αc

B(ḟ), B(τ̇ ) Differential allocation ω̇d, α̇d

Figure 7. Differential allocation.

The LQRI and PID controllers presented above return
jerk commands that need to be executed by the platform.
Extending the work from Bodie et al. (2018) and based
on work by Ryll et al. (2015), we present a weighted
differential allocation of actuator commands, and include
task prioritization in the null space.

Taking the time derivative of the standard allocation,
we obtain the relation between the derivative of the body
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wrench, actuator controls and their derivatives:

d

dt

([
Bf

Bτ

])
=

d

dt

(
AΩ̃

)

=
d

dt

A

ω2

1 sin(αc,1)
ω2

1 cos(αc,1)
...

ω2
12 sin(αc,6)

ω2
12 cos(αc,6)





= A ·∆A(ωc,αc)︸ ︷︷ ︸
Ã

·



ω̇d,1
...

ω̇d,12

α̇d,1
...

α̇d,6


︸ ︷︷ ︸
ũ∈R18

(32)

The vectors ωc,αc contain the current actuator commands,
and the vector ũ =

[
ω̇Td α̇Td

]T
represents the desired

derivatives of the actuator commands, i.e. rotor accelerations
and tilt angle velocities.

Note that eq. (32) requires the derivative of the body
wrench as input, while the controller returns a desired body
jerk. Just like on the acceleration level, these two quantities
are related by the body inertia properties:[

B(ḟ)

B(τ̇ )

]
=

[
mI3 0

0 J

] [
Bj

Bζ

]
(33)

Since the differential allocation matrix Ã is in R6×18, we
have a high dimensional nullspace that can be exploited
when computing ũ using its pseudoinverse. In order to
gain control over this freedom, we formulate following
optimization problem:

min
ũ
‖W (ũ− ũ∗)‖2

s.t.:
[
B(ḟ)

B(τ̇ )

]
= Ãũ,

(34)

where W ∈ R18×18 is a weighting matrix and ũ∗ are
optimal rotor acceleration and tilt velocity values. The
analytical solution to the problem is given as:

ũ = ũ∗ +WÃT
(
ÃWÃT

)−1
([

B(ḟ)

B(τ̇ )

]
− Ãũ∗

)
(35)

Using the optimization from eq. (34), we are able to choose
optimal differential controls ũ∗ freely. Here we present our
method of finding a ũ∗ that achieves an efficient control
configuration and that allows arm unwinding mid-flight.

Based on the current control inputs αc and ωc, we
compute the resulting body wrench. Using the pseudo
inverse of the static allocation matrix (eq. (8)), we can
compute the optimal tilt angles α∗ and rotor speeds ω∗. The
optimal differential controls ũ∗ are then computed from the
difference and are assigned unwinding velocities vω̇ and vα̇:

ω̇∗ = sign (ω∗ − ωc) vω̇ (36a)
α̇∗ = sign (α∗ −αc) vα̇ (36b)

Figure 8. Optimal control allocation.

After having computed the optimal control inputs we use
eq. (35) to find the desired differential control inputs ũ. In
a next step they are saturated according to predefined limits
on maximum rotor and tilt angle velocities and subsequently
integrated over time (see fig. 6). The resulting commands
for tilt angles α and for rotor speeds ω are then sent to the
actuators.

Kinematic singularities are handled inherently by the
inclusion of α̇ in the differential actuator allocation. Rank
reduction singularities are still present, and we evaluate them
by computing the condition number of the instantaneous
allocation matrix, κ(Aα), defined as

κ(Aα) =
σmax(Aα)

σmin(Aα)
(37)

where σmax and σmin are the maximum and minimum
singular values ofAα.

Figure 9 plots the log of κ(Aα) over a force envelope of
magnitude mg in additional to a static hover force in yB and
zB directions. An allocation of the current wrench according
to eq. (8) produces the envelopes shown in a) and c), with
high condition numbers in the zB-plane, and along the
zB-axis respectively. High condition numbers occur where
σmin(Aα) is significantly reduced, indicating loss of rank
and therefore loss of instantaneous controllability in at least
one DOF.

We can address the above-mentioned rank reduction in the
formulation of α∗, incorporating a bias term αbias derived
according to the alignment of fd in the body frame. The
detailed derivation of αbias is presented by Bodie et al.
(2018). The addition of this bias term to α∗ results in the
log(κ(Aα)) envelopes in fig. 9(b,d). In these plots, values
of κmax(Aα) are significantly reduced, from exp(34.2) to
exp(4.19) in yB hover, and exp(33.6) to exp(5.77) in zB
hover.

5 Experimental Setup

5.1 System hardware
The experimental platform modeled after the morphology
presented in section 3 is a 12 rotor MAV with 6 tiltable arms,
shown in fig. 10. Primary system properties and components
are reported in table 4, and described below. The system
layout consists of equally spaced arms along the zb-plane,
with two rotors per arm to balance the rotational inertia.
Two KDE 2315XF-885 motors per arm with 9in (228.6 mm)
propellers provide sufficient thrust (11 N per motor), to
enable dynamic flight in the least efficient configurations.
Each arm is independently tilted by a Dynamixel XL430
servo actuator, located in the base to reduce system inertia.
Upper and lower propellers counter-rotate such that drag
torques from the propellers are approximately canceled,
and the gyroscopic moment on the tilting mechanism
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Figure 9. The log of the condition number κ(Aα) is plotted in FB for the cases of yB (a,b) and zB (c,d) hover with an envelope of
additional gravitational force in all directions. Envelopes with a tilt bias compensation on α (b,d) significantly reduce the maximum
condition numbers. Condition number magnitudes are indicated on the color scale, with κmax(Aα) indicated in (a,c)

Figure 10. Image of the prototype system.

is minimized, reducing the effort of the tilt motor. The
controller and state estimator operate on an onboard Intel
NUC i7, which sends direct actuator commands to a Pixhawk
flight controller. All rotors and tilting servos, as well as a
high resolution IMU, are connected to the flight controller.
The system is powered by two 3800 mAh 6S LiPo batteries.
The total system mass is 4.27 kg, and it can generate over
130 N of force at maximum thrust in the horizontal hover
configuration.

5.2 Test environment
All experiments are performed in a laboratory environment,
where an external Vicon motion capture system wirelessly
sends high-accuracy odometry information to the onboard
computer. The test area provides a space of approximately
4x4 meters in size and 3 meters in height. Motion capture
pose estimates are taken at 20 Hz and fused by an EKF with
the onboard IMU at a rate of 102 Hz. Reference trajectories
are sent to the controller from a ground control station, or
from the onboard computer. The trajectories are polynomials
that are generated offline based on discrete waypoints. They
contain smooth reference commands for position, velocity,
acceleration, as well as attitude, angular velocity, and angular
acceleration, and are sampled at 100 Hz. A block diagram of
the experimental system setup is shown in fig. 11).

5.3 Acceleration estimation
The suggested jerk level LQRI requires linear and angular
acceleration estimates to find an optimal gain matrix. We use
a first-order SG filter to smooth raw IMU acceleration and

Table 4. Main system components and parameters

component part number qty
onboard computer Intel NUC i7 1
flight controller Pixhawk mRo 1
rotor KDE 2315XF-885 12
propeller Gemfan 9x4.7 12
ESC T-motor F45A 3-6S 12
tilt motor Dynamixel XL430-W250 6
IMU ADIS16448 1
battery 3800 mAh 6S LiPo 2

parameter value units
rotor groups 6
arm length, l 0.3 [m]
total mass 4.27 [kg]
inertia∗ {0.086, 0.088, 0.16} [kgm2]
diameter 0.83 [m]
fri,max 11 [N]
cf 7.1e−6 [Ns2/rad2]
ωmax 1250 [rad/s]
∗Primary components of inertia are obtained from CAD
model.

Vicon

IMU

EKF

SG

trajectory

Controller Actuators

Figure 11. System setup: Vicon and IMU measurements are
fused by an EKF, and combined with the Savitzky-Golay (SG)
filtered angular acceleration estimate for complete state
estimation. The controller processes the state estimate and
reference trajectory, and sends actuator commands.

angular velocity data. The smoothed angular velocity data
is differentiated numerically to obtain angular acceleration
estimates.
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Table 5. Controller parameters for experimental tests

parameter value parameter value
LQRI PID
kp 200 kp 5
kp,i 50 kp,i 0.3
kv 100 kv 1.0
ka 0 kR 3.5
kR 100 kR,i 0.3
kR,i 100 kω 0.8

kω 200 Allocation

kψ 0 kα 1000
rḟ (1.0, 1.0, 0.2) vα 1
rτ̇ (1.0, 1.0, 1.0) vω 250

5.4 Controller parameters
Controller parameters and gains used in experimental tests
are listed in table 5.

6 Experimental Results

6.1 Trajectories and data collection
In order to evaluate and to compare tracking performance of
the controllers, several experimental trajectories are designed
and tested. Videos of the experimental trials can be found in
our supporting multimedia content.

We first define a reference trajectory that covers large
parts of the 6-dimensional pose space. The trajectory
can be described as a figure eight with varying height
and attitudes. Figure 12 illustrates the trajectory with
some reference positions and attitudes. We use three
different adaptions of the trajectory to evaluate controller
performance, specifically:

• Trajectory (a), low angle: The maximum tilt angle does
not exceed 30 degrees, the duration of the trajectory is
29.4 seconds.
• Trajectory (b), high angle: The maximum reference tilt

angle does not exceed 80 degrees and the duration is
29.4 seconds.
• Trajectory (c), fast tracking: Using a maximum tilt

angle of 30 degrees, the duration of the trajectory is
10.7 seconds.

Another set of trajectories target the singular configura-
tions. The first commands a lateral translation and rotation
while in both a kinematic and rank reduced singular state,
namely at 90 degrees roll, and a second demonstrates transi-
tion through the kinematic singularity.

• Trajectory (d), singular translation: The trajectory
transitions to a 90◦ roll, translates, reverses direction,
and rotates about the yB-axis. The duration of the
trajectory is 36.1 s.
• Trajectory (e), cartwheel: The trajectory transitions to

a 90◦ roll, then makes two complete rotations about
the zB-axis while translating in a circular trajectory.
The duration of the trajectory is 35.5 s.

x
−1.0−0.50.00.51.0

y

−1.6
−1.4
−1.2
−1.0
−0.8
−0.6
−0.4

z

1.0
1.1
1.2
1.3
1.4
1.5

Figure 12. Reference figure eight trajectory used for
performance evaluation.

Two additional trajectories are designed to evaluate the
secondary unwinding task with a complete rotation about a
specified axis:

• Trajectory (f), roll flip: complete rotation about the xB
axis. The duration of the trajectory is 16 s.

• Trajectory (g), pitch flip: complete rotation about the
yB axis. The duration of the trajectory is 8 s.

Position and attitude errors throughout the section are
taken from data collected over the complete duration of
a single iteration of each trajectory, for both LQRI and
PID controllers. Since we are interested in exploiting the
omnidirectional capabilities of the system and thus track all
6 axes of a trajectory, errors are given separately in all axes.

Position errors are given in the world frame in meters,
attitude errors are given with respect to the reference attitude
in radians.

All errors are evaluated in boxplots, showing the median,
the upper and lower quartile, as well as the 1.5 IQR.

x y z

0.05
0.00
0.05

[m
]

roll pitch yaw
0.25

0.00

0.25

[ra
d]

Figure 13. Position and attitude errors of LQRI (solid) and PID
(dashed) for trajectory (a), low angle figure eight.

6.2 Full pose tracking
While both control approaches demonstrate stable tracking,
fig. 13 to fig. 15 show a better tracking performance under the
PID control law. We identify two major sources for the higher
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Figure 14. Position and attitude errors of LQRI (solid) and PID
(dashed) for trajectory (b), high angle figure eight.
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Figure 15. Position and attitude errors of LQRI (solid) and PID
(dashed) for trajectory (c), fast figure eight.
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Figure 16. Position and attitude errors of LQRI (solid) and PID
(dashed) for trajectory (d), singular translation.
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Figure 17. LQRI vs PID tracking errors during trajectory (d),
singular translation.
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Figure 18. PID direct controls during trajectory (d), singular
translation.
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Figure 19. Tracking accuracy of PID with and without
singularity handling, of trajectory (d), singular translation.
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Figure 20. Force efficiency index of PID, with (solid) and
without (dashed) singularity handling, of trajectory (d), singular
translation.
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Figure 21. Trajectory (e) actuator commands during a
cartwheel.
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Figure 22. Trajectory (a) tracking errors with and without
unwinding arms (solid and dashed lines, respectively).
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Figure 23. Trajectory (f) actuator commands during a roll flip.
The duration of the flip trajectory is highlighted.
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Figure 24. Trajectory (g) actuator commands during a pitch flip.
The duration of the flip trajectory is highlighted.

tracking error of the LQRI controller. Firstly, all components
of the LQRI error state e are ultimately dependent on
the linear or angular acceleration errors, according to
the dynamic matrix A from eq. (26). Consequently, the
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controller strongly relies on precise acceleration estimates
to perform well. However, due to the introduced delay
in the SG filter and the numerical differentiation, these
estimates may be noisy and inaccurate. Secondly, the LQRI
controller dynamics (especially the feedback linearisation)
are based on the system model presented in section 2. That
being said, several assumptions made are likely to result
in unmodeled forces in the system, e.g. configuration-based
airflow interference, and additional dual-rotor effects. We
expect that these unmodeled disturbances lead to additional
tracking error. While the integrator action might compensate
these effects to a certain extent, it also reduces the ability to
track fast trajectories because of the introduced delay.

6.3 Singularity handling
The proposed differential allocation is capable of inherently
dealing with kinematic singularities as described by Morbidi
et al. (2018). The described optimization ensures finite tilt
velocities and thereby allow stable flight, as shown in figs. 16
and 17.

Figure 20 shows how the proposed rank reduction
singularity handling procedure reduces the force efficiency
index by increasing internal forces. This configuration, while
slightly less efficient, allows instantaneous omnidirectional
force generation, avoiding the singularity condition. Results
in fig. 19 do not show an improvement in tracking
performance with additional singularity handling. This can
be explained by small correction terms of force and torque
that are constantly present, so the system is rarely if ever in
a true singular state.

6.4 Unwinding
We illustrate the advantage of the differential allocation by
performing trajectory (a) while commanding four arms to
perform a full rotation. This is achieved by starting the
experiment with four arms set to α = 2π, then activating the
unwinding task at the start of the trajectory.

Figure 22 illustrates tracking errors during a standard
trajectory, comparing with and without unwinding 4 out of
6 arms. The comparison in fig. 22 shows, that despite the
full unwinding of 4 arms, the tracking performance is only
affected slightly. Figure 24 shows that the unwinding is done
sequentially. As the trajectory starts and the pitch increases,
two arms are unwound completely in the first half of the
trajectory. The opposite two arms are unwound in the second
half. This sequential unwinding of arms results from the
optimization of the differential allocation in combination
with the given trajectory and has not been specifically
designed.

As a comparison, the roll flip control inputs in fig. 23
shows that the optimization triggers the unwinding only after
the flip (blue background) has been completed. Similarly,
during pitch flip (actuator commands shown in fig. 24) it
can be observed how the 2 arms that are aligned with the
y axis perform a full rotation while the remaining 4 arms can
already unwind during the second half of the flip. Unwinding
for the remaining two arms continues afterwards in steady
hover. The delay of unwinding is influenced by the choice
of vα̇, vω̇ and weighting matrix W , which are selected
based on a compromise of responsive unwinding and overall

system stability. The weighting matrixW for the differential
allocation has been set to be blkdiag(I12, kα · I6).

In all three cases, the rotor speeds are ramped down to
avoid force inversion. However, because the rotor speeds
and therefore the rotor thrusts are not upper bounded in the
optimization, the procedure could result in the simultaneous
unwinding of more arms than minimally necessary for hover.
Additionally, the differential allocation does not incorporate
knowledge of the future trajectory and might thus start
unwinding, even if it turns out to be unfavourable later on.

6.5 Complexity and efficiency
The differential actuator allocation demonstrates prioritiza-
tion of 6 DOF tracking, while optimally exploiting the null
space to fulfill secondary tasks. Results show successful
kinematic singularity rejection and stable arm unwinding for
different trajectories. That being said, the mentioned opti-
mality comes at the cost of higher computational load, since
a high dimensional matrix inversion needs to be performed
at each iteration. We can justify this computational load with
a high performance onboard computer, which completes an
iteration of the control loop in 3 ms on average.

The additional complexity of the actuation can be justified
by comparing to other morphological designs. The added
complexity of tilting rotor groups allows force- and pose-
omnidirectionality, enabling the system to track 6DOF
trajectories with highly dynamic capabilities. This is not
possible with regular underactuated multicopters. Fixed rotor
systems that enable full actuation directly select a tradeoff
of flight efficiency and omnidirectional force capabilities via
their design morphology.

The proposed tiltrotor system takes advantage of both
highly efficient flight and omnidirectional capabilities, at
the expense of additional weight and actuation complexity.
Morphology optimization results presented in section 3
quantify these metrics. Verified system performance in
experimental flights and the opportunity of null space task
prioritization further strengthen the case for the tiltrotor
OMAV.

7 Conclusion
In this paper, the complete system design and optimal
control for a novel efficient and versatile tiltrotor OMAV
has been presented. We have open sourced a morphology
optimization tool for design of a tiltrotor OMAVs, and used
it to demonstrate the advantages of the system. A new
controller has been derived and implemented, based on a
jerk-level LQRI and a differential actuator allocation. We
have further integrated secondary tasks to trajectory tracking
into the actuation null space, such as maximizing hover
efficiency, avoiding cable windup, and singularity handling.
Through various experiments we have compared tracking of
the LQRI and PID controllers, and verified the capabilities of
task prioritization in the actuator allocation.

Regarding future work, we intend to improve the system
model, and perform a diligent system identification, the
importance of which is discussed in section 6. We expect that
higher model accuracy will improve the LQRI performance.
The integration of constraints in actuator allocation, and
consideration of further secondary tasks, are also the subject
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of future work. Acceleration estimation has a significant
influence on the controller, and will be evaluated in more
detail. The controller presented in this paper sets the stage for
further optimization over the trajectory horizon, e.g. using a
nonlinear MPC.
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Notes

1. Tiltrotor morphology optimization tool is available open source
at github.com/ethz-asl/tiltrotor morphology optimization
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A Appendix

A.1 Morphology Optimization Inertia Calculations
We consider a constant core mass mc,const that allows for complete on-board autonomy, an additional core mass ma to
provide tiltrotor actuation for each of n rotor groups, and a mass for each rotor group mri . The mass of each rigid arm tube
mt is a function of its length L and length normalized mass mt,norm.

mc = mc,const + n ·ma (38a)
mt = mt,norm · L (38b)

m = mc +

n∑
i=1

(mri +mt) (38c)

The core inertia is modeled as a solid cylinder centered at OB with radius rc and height hc. Rigid tilt arms that connect
to propeller groups are modeled as cylindrical tubes, with radii r1, r2 and length L. For fairness of comparison, we consider
that all systems have single rotor groups with origin Ori , and a tilt axis xri aligned with the corresponding arm axis. The
inertia of each rotor group is modeled as a cylinder of radius rri and height hri , with inertial values in y and z axes averaged
to approximate a system independent of tilt. Values are chosen based on components presented in section 5.1.

Jc = diag

( 1
12mc(3rc

2 + hc
2)

1
12mc(3rc

2 + hc
2)

1
2mcrc

2

) (39a)

Jt = diag

( 1
2mtrc

2)
1
12mt(3(r1

2 + r2
2) + L2)

1
12mt(3(r1

2 + r2
2) + L2)

) (39b)

Jri = diag

( 1
12mri(3rri

2 + hri
2)

1
2 ( 1

12mri(3rri
2 + hri

2) + 1
2mrirri

2)
1
2 ( 1

12mri(3rri
2 + hri

2) + 1
2mrirri

2)

) (39c)

Total system inertia is then computed using the parallel axis theorem to express all inertias in FB .

pt =
[
L
2 0 0

]>
(40a)

pri =
[
L 0 0

]>
(40b)

OB
Jt = Jt +mt ‖pt‖2 I3 − ptpt> (40c)

OB
Jri = Jr +mri ‖pri‖

2 I3 − pripri> (40d)
RBri = Rz(γi)Rz(θi)Rx(βi) (40e)

J = Jc +

n∑
i=1

(RBri(OB
Jt + OB

Jri)RBri
>) (41)

A.2 Angular acceleration dynamics
The dynamics of the angular acceleration error can be expanded to

B ėψ = B(ψ̇WB) + [ B(ω̇WB)]×RBW WωWBd
+ [ BωWB ]×ṘBW WωWBd

+ [ BωWB ]×RBW W ( ˙ωWBd
)− ṘBW WψWBd

−RBW W (ψ̇WBd
)

= J−1
(
B(τ̇ )− [[ BωWB ]×rcom]× Bf − [rcom]× B(ḟ)

)
J−1

(
−2[ BωWB ]×J BψWB − [ BψWB ]×J BωWB − [ BωWB ]2×J BωWB

)
+ [ BωWB ]× BψWB + [ BψWB ]×RBW WωWBd

− [ BωWB ]2×RBW WωWBd

+ 2[ BωWB ]×RBW WψWBd
−RBW W ζWBd

(42)

A.3 Linearization
Feedback linearization of angular acceleration error dynamics:
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B(τ̇ ) = [[ BωWB ]× Brcom]× Bf + [ Brcom]× B(ḟ) + 2[ BωWB ]×J BψWB

+ [ BψWB ]×J BωWB + [ BωWB ]2×J BωWB

+ J
(
−[ BωWB ]× BψWB − [ BψWB ]×RBW IωWBd

+ [ BωWB ]2×RBW IωWBd

)
+ J (−2[ BωWB ]×RBW IψWBd

+RBW IζWBd
) + J

ū4

ū5

ū6



(43)

Using eq. (43) in combination with eq. (42) yields a feedback linearized dynamic system of the angular acceleration error
dynamics, see eq. (24).

Finally, we can write a linear representation of the error dynamics as follows:

d

dt



Wep
Wep,i
Wev
Wea
BeR
BeR,i
Beω
Beψ


=



0 0 I 0 0 0 0 0
I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0
0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 I
0 0 0 0 0 0 0 0


︸ ︷︷ ︸

A



Wep
Wepi
Wev
Wea
BeR
BeRi
Beω
Beψ


+



0 0
0 0
0 0
I 0
0 0
0 0
0 0
0 I


︸ ︷︷ ︸

B


ū1

ū2

ū3

ū4

ū5

ū6

 (44)

where I and 0 are identity and zero matrices in R3×3.

A.4 Stability proof of the proposed LQRI controller
We prove the stability of the proposed control law eq. (27) using Lyapunov stability theory. The closed loop system can be
written as

ė = (A−BKLQRI) e (45)

We define the Lyapunov function:
V (e) = eTPe V (e) ∈ R (46)

According to Lyapunov stability theory, the system is asymptotically stable, if V̇ (e) < 0, ∀e 6= 0. The time derivative is
computed to be:

V̇ (e) = ėTPe+ eTP ė

= eT (A−BKLQRI)
T
Pe+ eTP (A−BKLQRI) e

= −eT
(
Q+ PBR−1BTP

)
e (47)

Note that due to Q � 0, R � 0, P � 0 and the structure of B, the matrix Q+ PBR−1BTP is always positive definite.
Therefore, we have V̇ (e) < 0, ∀e 6= 0 and the closed loop system is asymptotically stable.

Since real system dynamics are nonlinear, the closed loop system needs to be written as follows:

ė = f(e,u = −KLQRIe) (48)

with the Taylor series of the function f evaluated at the origin:

f(e,−KLQRIe) = Ae−BKLQRIe+ o|0(eTe) (49)

As above, we can derive the time derivative of the Lyapunov function:

V̇ (e) = ėTPe+ eTP ė

= −eT
(
Q+ PBR−1BTP

)
e+ 2eTPo|0(eTe) (50)

For the above expression to be < 0, the following must hold:

2eTPo|0(eTe)
!
< eT

(
Q+ PBR−1BTP

)
e∥∥2eTPo|0(eTe)

∥∥ !
<
∥∥eT (Q+ PBR−1BTP

)
e
∥∥

2 ‖e‖ ‖P ‖
∥∥o|0(eTe)

∥∥ !
< ‖e‖2 λmin(Q+ PBR−1BTP )∥∥o|0(eTe)

∥∥
‖e‖

!
<
λmin(Q+ PBR−1BTP )

2 ‖P ‖
(51)
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where λmin(·) denotes the minimum eigenvalue of (·). Looking at the dynamics in eq. (25), it is clear that all higher order
terms are coming from ėR,B , i.e.

∥∥o|0(eTe)
∥∥ =

∥∥oR|0(eTe)
∥∥. Lee (2012) shows that

‖ėR,B‖ ≤
3√
2
‖ Beω‖ (52)

This can be extended to

‖ėR,B‖ ≤
3√
2
‖ Beω‖∥∥

Beω + oR|0(eTe)
∥∥ ≤ 3√

2
‖ Beω‖∥∥oR|0(eTe)

∥∥− ‖ Beω‖ ≤ 3√
2
‖ Beω‖

∥∥oR|0(eTe)
∥∥ ≤ 3 +

√
2√

2
‖ Beω‖ (53)

Plugging this into the equation above, we finally get the asymptotic stability condition:

3 +
√

2√
2

‖ Beω‖
‖e‖

!
<
λmin(Q+ PBR−1BTP )

2 ‖P ‖
(54)

Looking at eq. (54), we see that a small angular velocity error Beω will make the condition more likely to be fulfilled
and thus increase the overall system stability. This can be achieved to some extent by increasing the corresponding weights
in theQ matrix and thereby changing the objective function for eq. (16) accordingly.
Real-world experiments have confirmed this behaviour, as generally speaking, higher angular velocity gains lead to less
oscillations.

Note however, that eq. (54) is a very conservative and only sufficient condition, meaning that stability might be achieved,
even when it is violated.

A.5 General formulation of the static allocation matrix
For a general tiltrotor MAV with n arms we can write the relation between the body force and torque and the rotor force
components as follows: [

Bf

Bτ

]
= AΩ̃ (55)

where the rotor force components u are defined as the lateral and vertical components of the squared rotor speeds:

Ω̃ =


sin(αi)Ωi
cos(αi)Ωi

...
sin(αn)Ωn
cos(αn)Ωn

 ∀i ∈ {1...n} (56)

The static allocation matrixA can then be written as follows:

A = cf


sin(γi) − sin(βi) cos(γi) . . .
− cos(γi) − sin(βi) sin(γi) . . .

0 cos(βi) . . .
−sjcd sin(γi) + lx sin(βi) cos(γi) lx sin(γi) + sicd sin(β) cos(γ) . . .
sicd cos(γi) + lx sin(βi) sin(γi) −lx cos(γi) + sicd sin(β) sin(γ) . . .

−lx cos(βi) −sicd cos(βi) . . .

 (57)

where γi are the angles between the body x axis and arm i in the body x-y-plane, βi are the angles between the body x-y
plane and arm i, as illustrated in fig. 1. cf is the rotor thrust coefficient, cd is the rotor drag coefficient (relative to cf ), and si
are rotor spin directions of rotors attached to arms i.
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