
Learning compositional models of robot
skills for task and motion planning

Journal Title
XX(X):1–26
©The Author(s) 2020
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Zi Wang∗1,2, Caelan Reed Garrett∗1, Leslie Pack Kaelbling1, and Tomás Lozano-Pérez1

Abstract
The objective of this work is to augment the basic abilities of a robot by learning to use sensorimotor primitives to solve
complex long-horizon manipulation problems. This requires flexible generative planning that can combine primitive
abilities in novel combinations and thus generalize across a wide variety of problems. In order to plan with primitive
actions, we must have models of the actions: under what circumstances will executing this primitive successfully achieve
some particular effect in the world?
We use, and develop novel improvements on, state-of-the-art methods for active learning and sampling. We use
Gaussian process methods for learning the constraints on skill effectiveness from small numbers of expensive-to-
collect training examples. Additionally, we develop efficient adaptive sampling methods for generating a comprehensive
and diverse sequence of continuous candidate control parameter values (such as pouring waypoints for a cup) during
planning. These values become end-effector goals for traditional motion planners that then solve for a full robot motion
that performs the skill. By using learning and planning methods in conjunction, we take advantage of the strengths
of each and plan for a wide variety of complex dynamic manipulation tasks. We demonstrate our approach in an
integrated system, combining traditional robotics primitives with our newly learned models using an efficient robot task
and motion planner. We evaluate our approach both in simulation and in the real world through measuring the quality
of the selected primitive actions. Finally, we apply our integrated system to a variety of long-horizon simulated and
real-world manipulation problems.

Keywords
Machine Learning, Active Learning, Task and Motion Planning, Gaussian Process, Manipulation

1 Introduction

For robots to be useful in a home environment, they will
have to be endowed with a foundational set of capabilities,
such as locomotion and basic object manipulation. They
will then have to build on those capabilities by acquiring
more specialized skills such as pouring milk or scooping
cereal. It is critical that these skills be acquired efficiently,
with relatively few training examples, and that they be used
compositionally, combining with existing skills to generalize
to a wide variety of situations and purposes for which that
skill can be usefully deployed.

The vast majority of research in robot learning has focused
on acquiring closed-loop sensorimotor skills, ranging from
pouring (Yamaguchi et al. 2014) to manipulating a Rubik’s
cube (OpenAI et al. 2019). Very little work has focused
on how to actually combine and execute these skills to
address problems in the world (but see the work of Wang
and Kroemer (2019) for a good example). In this paper,
we provide a framework for integrating new skills with
existing ones by learning skill models and using them to plan
sequences of skill executions to achieve long-horizon goals
in complex environments.

The overall class of problems we wish to address, known
as task and motion planning (TAMP), considers a robot
carrying out tasks in an environment such as a kitchen,
storage depot, and construction site. These tasks require
the robot to manipulate multiple objects, potentially moving

Figure 1. Making coffee in KitchenPR2, which requires
pouring, scooping, dumping, and stirring.

things out of the way, or putting them into or taking them out
of containers, as well as to perform additional operations,
such as pouring or cleaning, in service of a high-level
objective. TAMP planners combine robot motion planning

∗Equal contribution. 1MIT CSAIL, MA. 2Now at Google.

Corresponding author:
Caelan Reed Garrett, MIT CSAIL, 32 Vassar St, Cambridge, MA 02139.
Email: caelan@csail.mit.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:2

00
6.

06
44

4v
2

 [
cs

.R
O

]
 5

 M
ay

 2
02

1

2 Journal Title XX(X)

with the selection of continuous parameters, for example
governing grasps and placements of objects, and the high-
level selection of which operations to perform on which
objects in what order.

In this paper, we will use making coffee as a motivating
example. This task involves picking and placing a variety of
objects, such as cups and spoons. It also involves pouring
cream from one container to another and scooping sugar
from a bowl into a cup. These actions need to be performed
in a wide variety of object arrangements on a tabletop, with
the relevant objects in arbitrary initial poses and possibly in
the presence of extraneous objects. The robot should be able
to apply its skills of picking, placing, and pushing objects as
well as its learned skills of pouring and scooping to enable
successful completion of the coffee-making task in these
arbitrary tabletop environments.

Figure 1 demonstrates this task using a real-world PR2
robot. Figure 5 (right) shows a 3D simulation version of
this task in PyBullet (Coumans and Bai 2016–2019). We use
simulations to carry out extensive evaluation of our learning
algorithms. However, crucially, learning on the real robot
does not rely on the simulation. We do not want to be limited
to skills for which a high-fidelity simulation is required, so
we attempt to learn on a real robot in as few trials as possible.

TAMP problems are hybrid, requiring discrete and
continuous choices. TAMP planning approaches generally
combine aspects of discrete planning methods from symbolic
artificial intelligence (AI) with constrained sampling or
direct optimization to select continuous parameters. Our
approach will be to learn models of new skills that allow
them to be incorporated into a TAMP framework and
immediately combined with existing skills in service of
achieving high-level goals.

Given a parameterized sensorimotor policy (a skill) πO(ω)

that was intended to achieve some condition in the world
(such as liquid being in a particular bowl or spoon), our
goal will be to characterize it in a form that enables a TAMP
planner to deploy it in combination with existing skills. To
do this, we need to formally describe the intended effects
of the new skill as well as conditions on the state in which
the skill is initiated that would guarantee that the intended
effect occurs. For example, the intended effect of a pouring
skill is that liquid be in some destination container, and the
precondition of that effect is that the robot is holding some
other container that has liquid in it.

There are three important constraints on the process of
learning the preconditions and effects of a skill:

1. Learning should characterize a comprehensive set of
control parameter values instead of a single value.
The predicted values are subjected to downstream
constraints, for example, arising from robot kinematics
and collision avoidance. There might not be any robot
motion that satisfies these for an individual control
value.

2. The result of learning should have quantified
uncertainty: that is, we should be able to characterize
possible starting states for skill execution in terms of
how sure we are that the intended effect will occur.
Knowing this will allow the TAMP planner, as far as
possible given the problem-solving context, to use the
skill in a way that it is confident will succeed.

Figure 2. Examples of a real-world robot executing a trained
pouring primitive in KitchenPR2 for several contexts parameter
values (cup dimensions) and control parameters values (relative
cup poses).

3. Learning should be sample efficient: that is, it should
require relatively few trial executions of the skill in
different situations to acquire the models needed for
planning. This is critical because of the high cost of
running trials on a physical robot: not only must the
robot execute the skill on each trial, it must set up the
initial conditions appropriately for the next.

Figure 2 illustrates several instances of a parameterized
sensorimotor policy for pouring with a real-world PR2.
Context parameters for the skill encode the approximate
dimensions of both the cup and bowl. Control parameters
specify the cup’s rotation about a coordinate frame, the final
pitch of the cup in this frame, and the pose of this frame
relative to the bowl. See figure 6 for a visualization of
these parameters. Figure 3 displays the robot executing a
sensorimotor policy for scooping. The objective of our work
is to learn the set of sufficiently successful pours and scoops
across a wide range of objects.

This paper is an extended version of Wang et al. (2018).
Our new contributions include an in-depth discussion of how
the learners, motion planners, and TAMP planner interact in
our integrated system (section 2 and appendix B), the appli-
cation of our approach to a high-dimensional robot manip-
ulator operating in a 3D simulated dynamic manipulation
environment (section 6), extensive experimentation within
this environment that compares different learners, learning
strategies, and sampling strategies (section 7), and finally
real-world validation of the efficacy of learning individual
primitives and deployment of the full system to solve multi-
step manipulation problems (section 8).

In the rest of this paper, we 1) formulate a precise
learning problem and explore algorithms based on Gaussian
processes for efficiently learning models for and robustly
applying robot skills (section 3); 2) formalize the overall
problem of generating behavior involving these new skills
using the PDDLStream TAMP planner (Garrett et al. 2020a)
(section 4); and finally 3) present extensive empirical results
both in physics simulations (sections 6 and 7) and on a real
robot (section 8), demonstrating efficient model acquisition
and robust use of new skills in complex problems.

Prepared using sagej.cls

Wang et al. 3

Figure 3. Examples of a real-world robot executing a trained
scooping primitive in KitchenPR2 for several contexts (bowl and
spoon dimensions) and control parameters (relative spoon
poses).

2 Approach

We model the TAMP problem as one of controlling a robot
operating in a deterministic discrete-time hybrid system.
The state s of the system is comprised of a set of discrete
and continuous state variables, which describe the properties
and configuration of the robot as well as the objects in the
environment. At each time step, the robot executes an action
a, which corresponds to applying low-level motor torques.
Let S be the state space of the system and A be the action
space of the robot. The initial state of the system is s0 ∈
S, and the objective of the robot is to control the system
to a state s∗ contained with a specified set of goal states
s∗ ∈ S∗ ⊆ S. Let T : S ×A → S be the system’s transition
function.

We assume that a set of parameterized skillsO has already
been programmed or learned, and it is our objective to learn
a characterization of each skill that can be used by a task-
and-motion planner. Each skill O(ω) ∈ O is specified as
an option (Sutton et al. 1999) with initiation set IO(ω) ⊆
S, policy πO(ω) : S → A, and termination set GO(ω) ⊆ S
where ΩO is the parameter space for skill O and ω ∈ ΩO
is a particular parameter value. Let ΓO : S × ΩO → S be
the option transition function for skill O where ΓO(s, ω) =
s′ if and only if executing option O(ω) from state s ∈
IO(ω) terminates in state s′ ∈ GO(ω), which is the result
of recursively applying s← T (s, πO(ω)(s)) until reaching a
termination state s ∈ GO(ω). Controlling the system can now
be viewed as a planning problem over skill instances where
the objective is to find a finite sequence of k skill instances
O1(ω1), ..., Ok(ωk) such that the corresponding sequence
of states s0, s1, ..., sk satisfies ΓOi(si−1, ωi) = si for i ∈
{1, ..., k} as well as sk ∈ S∗. Importantly, we consider the
setting in which the robot does not have full knowledge of
ΓO, i.e. it does not have have a complete model of the effects
of skill O. Without a model, the robot is unable to plan over
sequences of different skill instances. Thus, we seek to learn

ΓO for each skill O from data in order to combine and apply
them during planning.

We learn ΓO through estimating a constraint χO : S ×
ΩO × S → {0, 1} where χO(s, ω, s′) = 1 if and only if
ΓO(s, ω) = s′. We will learn from training examples in the
form of (s, ω, s′) triplets, which represent a present state
s, skill parameter value ω, and future state s′. In many
systems, χO can be naturally expressed as a conjunction
defined over a set of atomic constraints, each of which
might only involve a small subset of the state variables
and skill parameters present within (s, ω, s′). Additionally,
we often have at least a partial model of ΓO, namely we
might know the analytic form of some constraints, such as
geometric constraints involving kinematics and collisions,
and thus need not redundantly learn these constraints from
scratch. Finally, we will assume that the structure of each
atomic constraint is given, meaning that we know which state
variables and skill parameters are relevant for predicting the
effects of the skill (but see work by Xia et al. (2019) for one
strategy for learning the structure).

As an example, suppose the robot is given a skill whose
intended effect is to pour the contents of a cup into a bowl,
and we would like to learn the conditions under which
executing that skill will transfer a sufficiently large fraction
of the cup’s initial contents into the target bowl. These
conditions can be articulated as a constraint representing a
relation among the initial poses of the cup and bowl, some
aspects of their shapes, and the trajectory of the cup, defined
in terms of waypoints and a final pose relative to the bowl.
During planning, some of these state variable values, such as
the dimensions of objects, are given by the problem and thus
cannot be chosen by the robot. Thus, it is convenient to define
constraint χ generically on (θ, α) parameter pairs instead of
(s, ω, s′) triplets where α are fixed context parameters and
θ are control parameters that the robot can choose. These
control parameters can include both parameters ω passed
directly to the skill as well as additional aspects of the state s
that the robot can control indirectly through the execution of
other skills. It is important to note that the learned constraint
does not apply directly to robot configurations: all operations
will include default constraints on kinematic path existence
and lack of collision that are based on the system’s prior
knowledge of robot motion. This means that the robot does
not have to re-learn this foundational knowledge every time
it acquires a new skill.

Once the set of constraints for each skillO are determined,
a task-and-motion planner can construct a plan in the form
of a sequence of these skill instances that achieves a desired
goal condition. In order for a plan to be correct, a planner
must ensure that the accompanying sequence of parameters
and induced sequence of states satisfies the constraint χO
for each skill O. Namely, a sequence of k skills O1, ..., Ok
has an associated alternating sequence of states and
skill parameters s0, ω1, s1, ..., sk−1, ωk, sk. Each contiguous
triplet (si−1, ωi, si) must satisfy χOi(si−1, ωi, si) = 1. A
planner must search over sequences of skills as well as
parameter values that satisfy these constraints. Finding
values that satisfy these constraints is a nontrivial problem;
however, existing work in TAMP has shown that a variety of
methods can be effective (Garrett et al. 2021). In this work
we take a sampling-based approach using the PDDLStream

Prepared using sagej.cls

4 Journal Title XX(X)

TAMP planner (Garrett et al. 2020a), which we describe in
appendix B.

3 Estimating the constraint
Our primary technical problem, then, is to learn a constraint
representing the success criteria for executing a skill,
represented as a relation among fixed context parameters
α and free control parameters θ. For reasons outlined in
the introduction, we seek to characterize the entire space of
successful control parameters for any given context, using an
explicit characterization of uncertainty in the learned relation
to guarantee robust parameter selection at planning time.

3.1 Contextual super-level set estimation
We will focus on the formal problem of learning a function
from values of the context parameters α ∈ Rdα to sets
of control parameters θ ∈ B. We assume that the domain
of θ is a hyper-rectangular space B = [0, 1]dθ ⊂ Rdθ , but
generalization to other topologies is possible. We are
interested in learning a Boolean function χ : B × Rdα →
{0, 1} for a skill of interest, where χ(θ, α) = 1 if and only
if executing the skill with control parameter θ and context
parameter α results in the desired effect.

We assume that χ can be expressed in the form
of an inequality constraint χ(θ, α) = [g(θ, α) > 0], where
g : B × Rdα → R is a real-valued scoring function with
arguments θ and α. We denote the conditional super-level
set of the scoring function given α by

Aα ≡ {θ ∈ B | g(θ, α) > 0}.

For example, the scoring function g(θ, α) for pouring might
be the proportion of poured liquid that actually ends up in the
target cup, minus some target proportion. So, given any new
situation with context parameters α, we know that any value
of control parameters θ ∈ Aα will result in success with high
probability. This strategy relies on the availability of real-
valued values of this score function during training rather
than just binary labels of success or failure.

3.2 Active sampling for learning
Our objective in the learning phase is to efficiently gather
data to characterize the conditional super-level sets Aα
with high confidence. We use a Gaussian process (GP) on
the score function g to select informative queries using a
level-set estimation approach. In order to implement the
constraint sampler, we must be able to sample from the
super-level set Aα for any given context α During training,
we select α values from a distribution reflecting naturally
occurring contexts in the underlying domain, for example,
the dimensions of cups and bowls in a pouring operation.
In the event that the agent can initialize its environment,
for example by picking the objects for an experiment, some
“context parameters” can be viewed as control parameters
that can be selected in the process of active learning. Note
that learning an accurate description of the boundaries of
the level-set is a different objective from learning all of
the function values well and also different from finding
the maximum function value, and so it must be handled
differently from typical GP-based active learning.

For each α value in the training set, we apply the straddle
algorithm (Bryan et al. 2006) to actively select samples of
θ for evaluation by running the skill policy. After each new
evaluation of g(θ, α) is obtained, the data-setD is augmented
with pair 〈(θ, α), g(θ, α)〉, and used to update the GP. Given
the mean function µ(·) and the variance function σ2(·) for the
posterior GP, the straddle algorithm selects θ that maximizes
the acquisition function

ψµ,σ(θ, α) = −|µ(θ, α)|+ 1.96σ(θ, α).

It has a high value for values of θ that are near the zero
boundary for the given α or for which the score function is
highly uncertain. The parameter 1.96 is selected such that
if ψµ,σ(θ, α) is negative, θ has less than 5 percent chance
of being in the level set. In practice, this heuristic has been
observed to deliver state-of-the-art learning performance for
level set estimation (Bogunovic et al. 2016; Gotovos et al.
2013). After each new evaluation, we retrain the Gaussian
process by maximizing its marginal data-likelihood with
respect to its hyper-parameters. Algorithm 1 specifies the
algorithm; GP-PREDICT(D) computes the posterior mean
and variance, which is explained in appendix A.

Algorithm 1 Active Bayesian Level Set Estimation
1: Given initial data set D, context α, number of samples T
2: for t ∈ {1, ..., T} do
3: µ, σ← GP-PREDICT(D)
4: θ ← arg maxθ ψµ,σ(θ, α)
5: y ← g(θ, α)
6: D ← D ∪ {〈(θ, α), y〉}
7: return D

4 Planning with a new skill
We have shown how to take a controller for a new motor skill
and use active-learning strategies to estimate a constraint
representing the conditions under which executing that skill
will have a desired effect. In this section, we describe our
strategies for integrating that new skill into a TAMP system.

4.1 The need for sampling during planning
Planning for TAMP problems is difficult, because it requires
integrating aspects of motion planning through continuous
robot configuration space, AI-style planning through discrete
choices of operations and objects, and the selection of real-
valued parameters, such as object grasps and placements
as well as robot configurations that enable the execution of
manipulation operations.

In our work, we use the PDDLStream planning
framework (Garrett et al. 2020a), which is discussed in more
detail in appendix B. In this framework, a skill description
must specify the constraint on parameter values and a
sampler that can, given values of context parameters α,
produce a stream of assignments to the control parameters
θ. In this section, we focus on the construction and use of
this sampler.

The reason for sampling values of θ, rather than simply
selecting the one that maximizes the likelihood of success
given α, is that there may be other considerations that
make θ infeasible in broader planning context. For example,

Prepared using sagej.cls

Wang et al. 5

a particular grasp of the cup to be poured from might
acceptable for pouring, but unreachable for the robot given
the current placement of the object on the table.

Our objective in the planning phase is to select a diverse
set of samples {θi} for which it is likely that (α, θi) satisfy
both the learned constraint χ and the rest of the constraints
in the planner. We do this in two steps: first, we use a
novel risk-aware sampler to generate θ values that satisfy the
learned constraint with high probability; second, we integrate
this sampler with PDDLStream, where we generate samples
from this set that represent its diversity, in order to expose
the full variety of choices to the planner.

4.2 Risk-aware sampling
We can use our Bayesian estimate of the scoring function g
to select action instances for planning. Given a new context
α, which need not have occurred in the training set—the
GP will provide generalization over contexts—we would
like to sample a sequence of θ ∈ B such that with high
probability, g(θ, α) > 0. In order to guarantee this, we adopt
a concentration bound and a union bound on the predictive
scores of the samples. Notice that by construction of the GP,
the predictive scores are Gaussian random variables. Letting
φµ,σ(θ, α) be the ratio of the predicted mean and standard
deviation,

φµ,σ(θ, α) = µ(θ, α)/σ(θ, α),

the following is a direct corollary of lemma 3.2 of Wang et al.
(2016):

Corollary 1. Let g(θ, α) ∼ GP(µ, σ), and for δ ∈ (0, 1) set
β∗i =

√
2 log(πi/2δ)), where

∑T
i=1 π

−1
i ≤ 1, πi > 0.

If ∀i ∈ {1, ..., T} φµ,σ(θi, α) > β∗i ,
then Pr[g(θi, α) > 0,∀i] ≥ 1− δ.

Corollary 1 enables us to properly construct the set of
parameters that satisfy the inequality constraint g(θ, α) > 0
with high probability. Here we define the high-probability
super-level set of θ for context α as

Âα = {θ | φµ,σ(θ, α) > β∗}

where β∗ is picked according to corollary 1. If we draw T
samples from Âα, then with probability at least 1− δ, all of
the samples will satisfy the constraint g(θ, α) > 0.

In practice, however, for a given α and using the definition
of β∗ from corollary 1, the set Âα may be empty. To account
for this, we relax our criterion to include the set of θ values
whose score is within 5% of the value of the most confident
parameter, and define an alternative score threshold β =
Φ−1(0.95Φ(φµ,σ(θ∗, α)) where Φ is the cumulative density
function of a normal distribution and θ∗ is the most confident
parameter, i.e.

θ∗ = arg max
θ∈B

φµ,σ(θ, α).

Although we can obtain the derivatives of function φµ,σ(·),
we may not be able to solve the optimization problem
due to the multi-modality of this function. However, we
can approximate the solution to the global optimization
of function φµ,σ(·) over domain B by restarting gradient-
based optimization at a few locations within domain B.

Figure 4. High-probability super-level set in black.

Alternatively, we may estimate θ∗ by sampling a set of n
parameters {θ1, ..., θn} ∈ B, and returning the value θ∗ =
arg maxθi φµ,σ(θi, α).

Figure 4 illustrates the computation of Âα. The green line
is the true hidden g(θ); the blue × symbols are the training
data, gathered using the straddle algorithm in [0, 1]; the red
line is the posterior mean function µ(θ); the pink regions
show the two-standard-deviation bounds on g(θ) based on
σ(θ); and the black line segments are the high-probability
super-level set Âα for β = 2.0. We can see that sampling has
concentrated near the boundary, that Âα is a subset of the true
super-level set, and that as σ decreases through experience,
Âα will approach the true super-level set.

4.3 Efficient adaptive sampling

To sample from Âα, one simple strategy is to do rejection
sampling with a proposal distribution that is uniform on
the search bounding-box B. However, in many cases, the
feasible region of a constraint is much smaller thanB, which
means that uniform sampling will have a very low chance
of drawing samples within Âα, and so rejection sampling
will be very inefficient. We address this problem using a
novel adaptive sampler, which draws new samples from the
neighborhood of the samples that are already known to be
feasible with high probability and then re-weights these new
samples using importance weights.

The algorithm ADAPTIVESAMPLER in algorithm 2 takes
as input the posterior GP parameters µ and σ and context
vector α, and yields a stream of samples. It begins by
computing β, then sets Θinit to contain the θ that is most
likely to satisfy the constraint. It then maintains a buffer Θ
of at least m/2 samples and yields the first one each time it
is required to do so; it technically never actually returns, but
yields a sample each time it is queried.

Algorithm 2 Super-level Set Adaptive Sampling
1: function ADAPTIVESAMPLER(µ, σ, α)
2: Θ← ∅
3: β ← Φ−1(0.95Φ(maxθ∈B φµ,σ(θ, α)))
4: Θinit ← {arg maxθ∈B φµ,σ(θ, α)}
5: while True do
6: if |Θ| < m/2 then
7: Θ← SAMPLEBUFFER(µ, σ, α, β,Θinit, n,m)

8: θ ← Θ[0]
9: yield θ

10: Θ← Θ \ {θ}

Prepared using sagej.cls

6 Journal Title XX(X)

The main work is done by SAMPLEBUFFER in
algorithm 3, which constructs a mixture of truncated
Gaussian distributions (TGMM), specified by mixture
weights p, means Θ, circular variance with parameter v,
and bounds B. Parameter v indicates how far from known
good θ values it is reasonable to search; it is increased if a
large portion of the samples from the TGMM are accepted
and decreased otherwise. The algorithm iterates until it has
constructed a set of at least m samples from Âα. It samples
n elements from the TGMM and retains those that are in Âα
as Θa. Then, it computes “importance weights” pa that are
inversely related to the probability of drawing each θa ∈ Θa

from the current TGMM. This will tend to spread the mass
of the sampling distribution away from the current samples,
but still keep it concentrated in the target region. A set of
n uniform samples is drawn and filtered, again to maintain
the chance of dispersing to good regions that are far from
the initialization. The p values associated with the old Θ as
well as the newly sampled ones are concatenated and then
normalized into a distribution, the new samples added to
Θ, and the loop continues. When at least m samples have
been obtained, m elements are sampled from Θ according to
distribution p, without replacement.

Algorithm 3 Sampling From a Truncated Gaussian Buffer
1: function SAMPLEBUFFER(µ, σ, α, β,Θinit)
2: Θ← Θinit

3: v ← [1]
dθ
d=1; p← [1]

|Θ|
i=1

4: while True do
5: Θ′ ← SAMPLETGMM(n; p,Θ, v, B)
6: Θa ← {θ ∈ Θ′ | φµ,σ(θ, α) > β}
7: pa ← 1/pTGMM(Θa; p,Θ, v, B)
8: v ← v/2 if |Θa| < |Θ′|/2 else 2v
9: Θ′′ ← SAMPLEUNIFORM(n;B)

10: Θr ← {θ ∈ Θ′′ | φµ,σ(θ, α) > β}
11: pr ← [V ol(B)]

|Θr|
i=1

12: p← NORMALIZE([p, pr, pa])
13: Θ← [Θ,Θr,Θa]
14: if |Θ| > m then
15: return SAMPLE(m; Θ, p)

It is easy to see that as n goes to infinity, by sampling from
the discrete set according to the re-weighted probability,
we are essentially sampling uniformly at random from Âα.
This is because ∀θ ∈ Θ, p(θ) ∝ 1

psample(θ)
psample(θ) = 1.

For uniform sampling, psample(θ) = 1
V ol(B) , where V ol(B)

is the volume of B; and for sampling from the truncated
mixture of Gaussians, psample(θ) is the probability density
of θ. In practice, of course, n is finite, but this method is
much more efficient than rejection sampling.

4.4 Diversity-aware sampling for planning
Now that we have a sampler that can generate approximately
uniformly random samples within the region of values that
satisfy the constraints with high probability, we can use it
inside a planning algorithm to explore continuous action
spaces. A planner may need to consider multiple different
parameterized instances of a particular action before finding
one that satisfies all the constraints in the overall context
of the planning problem. For example, some good pours
may not be kinematically reachable given the robot’s current

configuration, so sampling a single pour might be insufficient
for solving the task.

The efficiency of this planning process depends on the
order in which samples are generated. Intuitively, when
previous samples for a context parameter have failed to
contribute to a successful plan, it would be wise to try
new samples that, while still having high probability of
satisfying the constraint, are as different as possible from
those that were previously tried. We need, therefore, to
consider diversity when generating samples; but the precise
characterization of useful diversity depends on the domain in
which the method is operating. We address this problem by
adapting a kernel that is used in the sampling process, based
on experience in previous planning problems.

Diversity-aware sampling has been studied extensively
with determinantal point processes (DPPs) (Kulesza et al.
2012). We begin with similar ideas and adapt them to
our planning domain, quantifying the diversity of a set of
samples S using the determinant of a Gram matrix

D(S) = log det(ΞSζ−2 + I),

where ΞSij = ξ(θi, θj) for θi, θj ∈ S, ξ is a covariance
function, and ζ is a free parameter (we use ζ = 0.1). In DPPs,
the quantity D(S) can be interpreted as the volume spanned
by the feature space of the kernel ξ(θi, θj)ζ−2 + 1θi≡θj
assuming that θi = θj ⇐⇒ i = j. Alternatively, one can
interpret the quantity D(S) as the information gain of a GP
when the function values on S are observed (Srinivas et al.
2010). This GP has kernel ξ and observation noise N (0, ζ2).
Because of the submodularity and monotonicity of D(·), we
can maximize D(S) greedily with the promise that

D([θi]
N
i=1) ≥ (1− 1

e
) max
|S|≤N

D(S)

∀N = 1, 2, ... where θi = arg maxθD(θ ∪ {θj}i−1j=1). In
fact, maximizing D(θ ∪ S) is equivalent to maximizing

ηS(θ) = ξ(θ, θ)− ξS(θ)T(ΞS + ζ2I)−1ξS(θ)

which is exactly the same as the posterior variance for a GP.
The DIVERSESAMPLER procedure is very similar in

structure to the ADAPTIVESAMPLER procedure, but rather
than selecting an arbitrary element of Θ, the buffer of good
samples, we track the set S of samples that have already been
returned and select the element of Θ that is most diverse from
S as the sample to yield on each iteration. In addition, we
yield S to enable kernel learning as described in Algorithm 5,
to yield a kernel η.

Algorithm 4 Super-level Set Diverse Sampling
1: function DIVERSESAMPLER(µ, σ, α, η)
2: Θ← ∅; S ← ∅
3: θ ← arg maxθ∈B φµ,σ(θ, α)
4: β ← λ(φµ,σ(θ, α))
5: while planner requires samples do
6: yield θ, S
7: if |Θ| < m/2 then
8: Θ← SAMPLEBUFFER(µ, σ, α, β,Θinit)

9: S ← S ∪ {θ} . S contains samples before θ
10: θ ← arg maxθ∈Θ ηS(θ)
11: Θ← Θ \ {θ}

Prepared using sagej.cls

Wang et al. 7

It is typical to learn the kernel parameters of a GP or
DPP given supervised training examples of function values
or diverse sets, but those are not available in our setting; we
can only observe whether the set of samples is sufficient for
the planner to identify a solution. We derive our notion of
similarity by assuming that all samples that fail to lead to a
solution are similar. Under this assumption, we develop an
online learning approach that adapts the kernel parameters
to learn a good diversity metric for a sequence of planning
tasks. We use the FOCUSED algorithm (appendix B.3) as our
PDDLStream planner in order to more precisely determine
which sampled values failed to satisfy a downstream plan
constraint for a particular plan skeleton.

We use the squared exponential kernel of the form
ξ(θ, γ; l) = exp(−

∑
d r

2
d), where rd = |ld(θd − γd)| is the

rescaled “distance” between θ and γ on the d-th feature and
l is the inverse length scale. Let θ be the sample that failed
and the set of samples sampled before θ be S. We define the
importance of the d-th feature as

τθS(d) = ξ(θd, θd; ld)− ξS(θd; ld)
T(ΞS+ζ2I)−1ξS(θd; ld),

which is the conditional variance if we ignore the distance
contribution of all other features except the d-th; that is,
∀k 6= d, lk = 0. Note that we keep Ξi + ζ2I the same for
all the features so that the inverse only needs to be computed
once.

The diverse sampling procedure is analogous to the
weighted majority algorithm (Foster and Vohra 1999) in that
each feature d is seen as an expert that contributes to the
conditional variance term, which measures how diverse θ is
with respect to S. The contribution of feature d is measured
by τθS(d). If θ was rejected by the planner, we decrease the
inverse length scale ld of feature d = arg maxd∈[dθ] τ

θ
S(d) to

be (1− ε)ld, because feature d contributed the most to the
decision that θ was most different from S.

Algorithm 5 Task-level Kernel Learning
1: for task in T do
2: S ← ∅
3: α← current context
4: µ, σ← GP-PREDICT(α)
5: while plan not found do
6: if |S| > 0 then
7: d← arg maxd∈[dθ] τ

θ
S(d)

8: ld ← (1− ε)ld
9: θ, S ← DIVERSESAMPLER(µ, σ, α, ξ(·, ·; l))

10: Check if a plan exist using θ

Algorithm 5 depicts a scenario in which the kernel is
updated during interactions with a planner; it is simplified
in that it uses a single sampler, but in our experimental
applications there are many instances of action samplers
in play during a single execution of the planner. Given a
sequence of tasks presented to the planner, we can continue
to apply this kernel update, molding our diversity measure to
the demands of the distribution of tasks in the domain. This
simple strategy for kernel learning may lead to a significant
reduction in planning time, as we demonstrate in Section 7.

5 Related work

Our work draws ideas from model learning, probabilistic
modeling of functions, and task and motion planning.

There is a large amount of work on learning individual
motor primitives such as pushing (Kroemer and Sukhatme
2016a; Hermans et al. 2013), scooping (Schenck et al.
2017), and pouring (Pan et al. 2016; Tamosiunaite et al.
2011; Brandi et al. 2014; Yamaguchi and Atkeson 2016;
Schenck and Fox 2017). We focus on the task of
learning models of these primitives suitable for multi-
step planning. We extend a particular formulation of
planning-model learning (Kaelbling and Lozano-Perez
2017), where constraint-based preimage models are learned
for parameterized action primitives, by giving a probabilistic
characterization of the preimage and using these models
during planning.

There are several other approaches for learning precon-
dition and effect models of sensorimotor skills that are
suitable for planning. Konidaris et al. (2018) construct a
completely symbolic model of skills that enables purely sym-
bolic task planning. Our method, on the other hand, learns
hybrid models, involving continuous parameters. Kroemer
and Sukhatme (2016b) learn image classifiers for precon-
ditions but do not support general-purpose planning. More
recently, Wang and Kroemer (2019) learn state transition
models for sequencing low-level motor skills that perform
manipulation tasks.

We use GP-based level-set estimation (Bryan et al.
2006; Gotovos et al. 2013; Rasmussen and Williams 2006;
Bogunovic et al. 2016) to model the feasible regions
(superlevel set of the scoring function) of action parameters.
We use the straddle algorithm (Bryan et al. 2006) to
actively sample from the function threshold, in order to
estimate the superlevel set that satisfy the constraint with
high probability. Our methods can be extended to other
function approximators that give uncertainty estimates, such
as Bayesian neural networks and their variants (Gal and
Ghahramani 2016; Lakshminarayanan et al. 2017).

Alternatively, one can use GP classification methods with
active learning (Kapoor et al. 2007) to model our constraints.
Active learning of GP classifiers is often used for modeling
safety constraints to help perform safe exploration (Schreiter
et al. 2015; Englert and Toussaint 2016). The focus of this
work, however, is to present a suite of approaches to address
not only how to actively learn a model but also how to use
learned models to solve complex long-horizon manipulation
tasks. In this work, we only focus on one setting of the
active model learning problem (level set estimation with GP
regression) but other active learning approaches can certainly
be used.

Determinantal point processes (DPPs) (Kulesza et al.
2012) are typically used for diversity-aware sampling. How-
ever, both sampling from a continuous DPP (Hafiz Affandi
et al. 2013) and learning the kernel of a DPP (Affandi et al.
2014) are challenging.

Several approaches to TAMP utilize generators to
enumerate infinite sequences of values (Kaelbling and
Lozano-Pérez 2011; Srivastava et al. 2014; Garrett et al.
2017a). Our learned samplers can be incorporated into any
of these approaches. Additionally, some recent papers have

Prepared using sagej.cls

8 Journal Title XX(X)

investigated learning effective samplers within the context of
TAMP. Chitnis et al. (2016) frame learning plan parameters
as a reinforcement-learning problem and learn a randomized
policy that samples from a discrete set of robot base and
object poses. Kim et al. (2017) proposed a method for
selecting from a discrete set of samples by ranking new
samples based on their correlation with previously attempted
samples. In subsequent work, they instead train a generative
adversarial network (GAN) to directly generate a distribution
of satisfactory samples (Kim et al. 2018).

6 Experimental domains
We analyze the effectiveness and efficiency of each compo-
nent of our system independently and then demonstrate their
collective performance in the context of planning for long-
horizon tasks in a simulated high-dimensional manipulation
domain. We have carried out experiments in three settings:

• Kitchen2D: a simulated 2D kitchen domain imple-
mented in Box2D (Catto 2011); a description of the
simulation and results can be found in appendix C and
in our earlier paper (Wang et al. 2018).

• Kitchen3D: a new simulated 3D kitchen domain
implemented in PyBullet (Coumans and Bai 2016–
2019); a description of the simulation and results are
given in this section.

• KitchenPR2: a real-world experiment with a PR2
robot; a description of the implementation and results
are given in section 8.

6.1 Implementation of Kitchen3D
To investigate how well our approach scales to high-
dimensional robots interacting with 3D objects, we
implemented a simulated 3D tabletop environment with a
dual-arm PR2 robot. The 3D environment serves to bridge
the gap between our previous 2D domain and a real-
world robot operating scenario. Our 3D simulation uses the
PyBullet (Coumans and Bai 2016–2019) physics engine. An
illustration of the robot performing pouring and scooping
skills is shown in figure 5.

We experimented using objects created by randomly
adapting meshes from our real-world data set of bowls,
cups, and spoons, illustrated in figure 16. We uniformly-at-
random and independently scale the diameter and height of
each bowl and cup, but do not geometrically alter the three
spoons. We randomly sample mass, inertial, damping, and
frictional properties for all objects according to a truncated
Gaussian distribution. Finally, we randomly sample the
number, radius, and density of the spherical liquid particles.
This randomization process ensures that with probability
one, each training or testing trial is unique.

We use PyBullet not only during simulation but also
during planning for forward kinematics, collision checking,
and visualization. We plan for each of the PR2’s two
7 degree of freedom robot arms independently. We use
IKFast (Diankov and Kuffner 2008; Diankov 2010) for
inverse kinematics. We use RRT-Connect (Kuffner Jr. and
LaValle 2000) to plan free-space arm motions. Finally, we
use Randomized Gradient Descent (RBD) (Yao and Gupta
2005; Stilman 2010), a constrained motion planner for

planning robot joint motions that follow a Cartesian gripper
path.

In order to transport and dump particles from a cup or
spoon into a bowl, the robot must ensure that the cup or
spoon does not spill any of the particles during transit. To
enforce this, we impose constraints |ρ(q)| ≤ π/6, |φ(q)| ≤
π/6 that the grasped object’s orientation remain within a safe
region whenever the robot is carrying an object that contains
particles, where ρ(q), φ(q) give the roll and pitch of the tool
at configuration q. This constraint can be easily incorporated
into robot motion planning by adding an additional check
within the configuration “collision” function.

The robot executes actions by following planned
sequences of arm or gripper configurations using a position
controller. We apply a rigid attachment constraint whenever
the robot intentionally grasps an object to better model the
real world, where the robot can reliably move without the
held object deviating significantly relative to its hand.

We focus on learning conditional samplers for pouring and
scooping because they are the most challenging to learn due
to particle dynamics. Similar to our work in Kitchen2D, we
score pours and scoops relative to the filled capacity of the
involved bowl or spoon. We approximately compute the total
number of particles that successfully ended up in a bowl,
cup, or spoon by counting the number of particles contained
within the 3D axis-aligned bounding box of these objects
at the end of simulation. We use a piecewise linear scoring
function with threshold hyperparameter τ ∈ (0, 1) defined
on the fraction of particles filled x ∈ [0, 1]:

g(x; τ) =

{
−1 + x/τ 0 ≤ x ≤ τ
(x− τ)/(1− τ) τ < x ≤ 1

.

This function chosen for the following properties: g(0; τ) =
−1, g(τ ; τ) = 0, and g(1; τ) = +1. For pouring, x is the
final number of particles in the bowl over the initial number
of particles in the cup, and we used τ = 0.9. For scooping,
x is the final number of particles in the spoon relative to the
capacity of the spoon, and we used τ = 0.7.

We assume that bowls and cups are approximately
cylindrically symmetric, allowing us to parameterize
contexts and controls using radial (r) and z coordinates.
During learning, we use min-max normalization to scale each
parameter value to within the interval [−1,+1].

6.2 Parameterization
For both pouring and scooping, we derive context parameters
from the base diameter, top diameter, and height of a bowl
or cup. For scooping, we consider an additional context
parameter for the length of a spoon. As a result, pouring has
6 context parameters, and scooping has 4 context parameters.

Our control parameterization determines a sequence of
waypoints that the cup or spoon moves through. Then, we
interpolate though these waypoints to obtain the full path of
the moving object. We parameterized controls to be relative
to the center of the base of a bowl or cup. The pouring
control parameters are the initial upright r, z position of
the cup relative to the bowl, the r, z point for the cup to
rotate about relative to its initial position, and the final
pitch of the cup. The scooping control parameters are the
initial downward-facing r, z position of the spoon relative

Prepared using sagej.cls

Wang et al. 9

Figure 5. Scenes of a simulated PR2 robot solving planning tasks requiring pouring as well as stacking (left), pushing (center), and
making coffee (right).

Axis

Bowl Base
Diameter

Bow
l

H
eight

Bowl Diameter

Cup

Heig
ht

Cup

Diameter

Figure 6. A visualization of the context parameters (the bowl
and cup dimensions) and control parameters (the axis of
rotation, the cup rotation frame, and the final pitch), for a pour.
The red curve is the path of the cup base during the pour.

to the bowl, the r scoop distance, and the final r, z upright
position of the spoon. Thus, pouring and scooping both have
5 control parameters. We normalize distance-related control
parameters relative to a bowl context parameter defined on
the same coordinate in order to make the parameter space
invariant to size of the involved bowl. This ensures that
uniform exploration of the prediction space produces roughly
the same frequency of successful pours across different bowl
sizes. Figure 6 visualizes the context and control parameters
for a pour. Figure 7 demonstrates the robot executing
sampled pouring and scooping actions in simulation.

Figure 7. The simulated robot executing simulated pour (left)
and scoop (right) actions.

We specify additional constraints per skill that enforce
that execution does not knowingly cause any undesirable
consequences. In our application, we prohibit any unsafe
contact between objects; however, this function can be any
general-purpose test. For pouring, this constraint enforces
that full cup trajectory must not collide with the bowl. For
scooping, this constraint enforces that the final spoon pose
must not collide with the bowl. Satisfying the hard constraint
function does not guarantee that the planner will able to find
a full collision-free robot path to execute the path specified
by the control parameters. For example, a proposed pour
in the interior of a bowl might not collide with the bowl;
however, it might not admit any collision-free grasps of the
cup. Because this failure can be evaluated during planning,
the control parameter during training should not receive the
same negative score as a pour whose low quality can only be
deduced after execution. Thus, we weakly penalize learner
predictions for which we failed to find plans with a small
negative score, reflecting the computational time wasted by
considering that sample.

7 Experiments in simulation
We evaluated the performance of our approach in the
Kitchen3D environment. See appendix C.2 for several addi-
tional experiments performed in our Kitchen2D environ-
ment (Wang et al. 2018).

7.1 Supervised learning
To aid with training and evaluating models in Kitchen3D,
we first collected 10,000 pour and scoop trials by sampling
a context and control parameter uniformly at random.
These examples are used for training traditional (non-active)
learners, for holdout test evaluation, and for efficiently
approximating active learning (as described in section 7.2).

We first compared the performance of a GP using the
multi-layer perceptron kernel trained without active learning
with four baselines available through SKLearn (Pedregosa
et al. 2011): (1) a neural network classifier (NNc), (2)
a neural network regressor (NNr), (3) a random forest
classifier (RFc), (4) and a random forest regressor (RFr). The
following section describes two experiments per skill, which
compare the likelihood of success and classification coverage
across the decision space.

7.1.1 Success rate: First, we compared the average
success rate of the single best prediction per learner. We

Prepared using sagej.cls

10 Journal Title XX(X)

Figure 8. Pouring and scooping learning curves comparing a neural network classifier (NNc), a neural network regressor (NNr), a
random forest classifier (RFc), a random forest regressor (RFr), and a GP using the multi-layer perceptron kernel. Top row: the
success rate of the most confident control parameter produced by each learner. Bottom row: the test F1 score for each learner.

trained each learner on 5 randomly shuffled sequences of
200 training examples. We evaluated the success rate after
every 10 examples by sampling 45 contexts, optimizing
for the best control parameter per context, simulating the
control parameter, and scoring the outcome. For the SKLearn
classifiers, the best control parameter was obtained by
maximizing the probability that the parameter is successful.
For the SKLearn regressors, the best control parameter
was obtained by maximizing the predicted score for
the parameter. To optimize these scores, we randomly
sampled 1,000 control parameters, sorted them in order of
decreasing score, and returned the first control parameter
that respects the hard constraints (described in section 6.1).
Finally, we treated the high-probability parameter that
maximizes equation 4.2 as the best control parameter, which
incorporates both the predicted mean and standard deviation.

Figure 8 (top) shows the success rate learning curve*. The
random forest and GP methods greatly outperform the neural
network methods. Additionally, the GP ultimately achieves
the best average success rate, likely due to its awareness of
its own uncertainty.

7.1.2 F1 score: Second, we compared the F1† classifica-
tion score on held-out test data. We trained each model on
10 randomly shuffled train and test splits, each consisting of
400 training examples and 1000 test examples. The predicted

label for a classifier is simply the most likely class, and the
predicted label for a regressor is positive if the expected
score is positive. Figure 8 (bottom) displays the test F1 score
learning curves. The regressors outperform the classifiers,
despite the fact the models were evaluated using the F1 score,
a classification metric. This is likely because the underlying
score functions are real-valued. When near the zero level set,
small changes in score, which may be due to simulation noise
caused by latent physical properties, can change the binary
label of the example. As a result, these regions may have
high variance due to the strict thresholding. Thresholding
the score would be particularly detrimental when estimating
uncertainty using a GP, as these regions have substantial
uncertainty that is not derived from the underlying stochastic
process but rather from the nature of thresholding. An active
learner trained on thresholded score might indefinitely select
examples near the zero level set because the process noise
there is much larger than the rest of the space.

7.1.3 Kernel selection: Finally, we compared the GP
performance when trained on the three kernels described
in appendix A: the squared exponential radial basis kernel
(GP-RBF), the Matérn kernel (GP-Matern52), and the

∗This and all other Kitchen3D plots have 1/4 standard error shaded.
†The F1 score is the harmonic mean of the precision and recall of a test.

Prepared using sagej.cls

Wang et al. 11

Figure 9. The test F1 score of the GP when trained with the squared exponential, Matérn, and multi-layer perceptron kernels
(section A).

less commonly used multi-layer perceptron kernel (GP-
MLP). Figure 9, compares the F1 test performance when
experimenting with each of kernels, using the same
conditions as described in section 7.1.2. The multi-layer
perceptron kernel slightly outperforms both the squared
exponential and Matérn kernels. We hypothesize that is due
to the discontinuous nature of the pouring and scooping
scoring functions; the score of a pour or scoop can vary
dramatically when, for instance, the pour ejects particles near
an edge of the bowl.

Figure 10. A visualization of the final cup pose for 500 pour
valid control parameters. Poses are colored according to
normalized mean (µ), inverse standard deviation (1/σ), and
best probability (µ/σ) GP predictions, where red poses have the
smallest values and blue poses have the largest values.

7.1.4 Visualizing predictions: We created a geometric
visualization for the trained GP’s mean and standard
deviation score predictions across the space of legal control
parameters. Figure 10 renders a data set of pour control
parameters for a single bowl and cup pair by displaying
the final pose of the red cup. It visualizes the GP’s mean,
inverse standard deviation, and most confident predictions by
coloring small values red and large values blue. The mean
predictions (left) demonstrate that the model learns that the
z-axis of the cup must roughly intersect with the interior of
the bowl for a pour to be successful. The standard deviation
predictions (center) suggest that the more negative the cup
pitch is, the higher variance in the outcome. We hypothesize
that this is because the longer rotation ejects the particles at
larger velocities, making particles more likely to bounce out
of the bowl. The most confident prediction (right) combines
the mean and standard deviation predictions. Incorporating
the standard deviation biases the learner towards high scoring

pours that are closer to level. These results suggest that
the GP is capturing intuitively relevant information for a
successful pour.

7.2 Active learning
We also evaluated the impact of training a GP using active
learning on the success rate and F1 score learning curves in
this setting. We compare a GP trained without active learning
(GP) with two GPs trained with active learning strategies,
both of which use the straddle algorithm (GP-LSE, GP-
LSE2). Each GP uses the multi-layer perceptron kernel.

When actively training a model in the real world, the
learner can fairly quickly evaluate any control parameter.
However, this is not necessary true for context parameters
because they often involve properties of physical objects. If
we applied the straddle algorithm to perform a continuous
optimization over context parameters, we would need to
fabricate objects with the selected sizes in order to faithfully
score the trial. While this could be possible through, for
example, 3D printing, the real-world time and resource
overhead would make it prohibitive. However, given a finite
set of contexts derived from a fixed set of existing objects, it
is possible to perform a continuous optimization over control
parameters per discrete context parameter select the best
parameter pairs. Still, this assumes that the robot can select
the next context, which might not be true for a robot learning
online in the wild.

Motivated by the semantic differences between context
and control parameters, we experimented with three
partitions of parameters into those that are sampled
uniformly at random and those that are actively optimized
in some manner. Specifically, we compared sampling all
parameters (GP), actively optimizing all parameters (GP-
LSE), and sampling the context parameters but actively
optimizing the control parameters with respect to the context
parameters (GP-LSE2).

In order to faithfully train an active learner, training
must be performed in series because every new training
example modifies the learner’s posterior and thus influences
the selection of the next trial. As a result, active learning must
be performed serially while trials selected independently and

Prepared using sagej.cls

12 Journal Title XX(X)

Figure 11. Pouring and scooping learning curves comparing a GP trained without active learning (GP), a GP that actively selects
both the context and control parameters (GP-LSE), and a GP that only actively selects the control parameter (GP-LSE2). Top row:
the success rate of the most confident control parameter produced by each learner. Bottom row: the test F1 score for each learner.

randomly can be collected massively in parallel. Because
planning and simulating each trial takes at least 30 seconds,
training several active learners over hundreds of training
examples can be computationally burdensome. To expedite
experimentation, we performed discrete active learning over
the set of 10,000 training examples that we initially gathered
randomly. The active learners score each example using the
straddle acquisition function and extract the example with
maximum value without replacement.

Figure 11 (top) displays the success rate of the three
learners using the same experimental conditions as in
section 7.1.1. The active learners (GP-LSE, GP-LSE2)
outperform the non-active learner (GP). Ultimately, the
active learner that randomly samples the context (GP-
LSE2) resulted in the best success rate. Figure 11 (bottom)
displays the F1 score of the three learners using the same
experimental conditions as in section 7.1.2. Here, the active
learners (GP-LSE, GP-LSE2) more conclusively outperform
the non-active learner (GP). Achieving a high F1 score
requires making accurate predictions for most of the decision
space, not just a single point per context. As a result,
methodically exploring high-variance regions outperforms
random sampling.

Because gathering real-world data is labor intensive, we
desired learning good pouring and scooping models with
only around 100 training examples. Thus, we performed

a extensively-repeated experiment over a fewer samples in
order to simulate our real-world experiments (described in
section 8.3). Instead of training on 400 examples for 10
episodes, we trained on only 100 examples but for 200
episodes. Figure 12 displays the F1 score for this experiment.
Although the variance is non-trivial, the active learner that
randomly samples the context (GP-LSE2) results in the
best average performance. Our hypothesis is that, because
control parameters are often more predictive of the score
than the context parameters, GP-LSE focuses its attention on
reducing uncertainty along the control dimensions, possibly
neglecting the context dimensions.

7.3 Adaptive and diverse sampling

Given a probabilistic estimate of a desirable set of θ values,
obtained by a method such as GP-LSE, the next step is
to sample values from that set to use in planning. We
compare simple rejection sampling using a uniform proposal
distribution (REJECTION), the basic adaptive sampler from
section 4.2, and the diversity-aware sampler from section 4.4
with a fixed kernel: the results are shown in table 1. For all
the results, we use Φ−1(0.99Φ(β∗)) to construct the high
probability super-level set.

Prepared using sagej.cls

Wang et al. 13

Figure 12. Pouring and scooping test F1-score learning curves from 50 to 100 training examples for the learners described in
figure 11. Here, the learner process was repeated 200 times per learner in order to more accurately capture the variance in
performance when using a small number of training examples.

Table 1. Effectiveness of adaptive and diverse sampling. FP:
the false positive rate of 50 samples. T50: the total sampling
time of the 50 samples. N5: number of samples required to
achieve 5 positive ones. Diversity: the diversity rate of the 5
positive samples.

REJECTION ADAPTIVE DIVERSE

Po
ur

(3
D

) FP (%) ↓ 0.03± 0.10 0.02± 0.07 0.02± 0.08
T50 (s) ↓ 143.56± 176.05 72.84± 71.26 65.93± 72.93
N5 ↓ 5.14± 0.45 5.10± 0.58 5.15± 0.71
Diversity ↑ 15.29± 3.44 15.40± 2.94 18.78± 3.07

Sc
oo

p
(3

D
) FP (%) ↓ 0.13± 0.17 0.16± 0.16 0.12± 0.10

T50 (s) ↓ 265.57± 118.24 72.84± 71.26 35.11± 18.73
N5 ↓ 5.77± 1.82 6.11± 1.77 5.66± 1.09
Diversity ↑ 10.93± 2.50 11.82± 1.63 14.57± 2.13

We report the false positive rate (FP)‡ on 50 samples, the
time to sample these 50 samples (T50), the total number
of samples required to find 5 positive samples (N5), and
the diversity of those 5 samples. The experiments are
repeated over 50 such samplers for each method. We do not
limit CPU time for gathering 50 samples for 3D simulated
experiments. The diversity term is measured by D(S) =
log det(ΞSζ−2 + I) using a squared exponential kernel with
inverse length scale l = [1, 1, ..., 1] and ζ = 0.1. We run
the sampling algorithm for an additional 50 iterations (a
maximum of 100 samples in total) until we have 5 positive
examples and use these samples to report the diversity
quantity D(S).

DIVERSE uses slightly more samples than ADAPTIVE to
achieve 5 positive ones, and its false positive rate is slightly
higher than ADAPTIVE, but the diversity of the samples is
notably higher. The FP rate of diverse can be decreased by
increasing the confidence bound on the level set.

7.4 Learning kernels for diverse sampling
In the final set of experiments, we explore the effectiveness
of the diverse sampling algorithm with task-level kernel
learning. We compare ADAPTIVE, DIVERSE-GK with a fixed
kernel and diverse sampling with learned kernel (DIVERSE-
LK), in every case using a high-probability super-level set

Table 2. Effect of distance metric learning on sampling.

WASH Runtime (s) ↓ 60s SR (%) ↑ 6s SR (%) ↑
ADAPTIVE 18.41± 8.87 42.0± 10.3 28.0± 15.4
DIVERSE-GK 18.22± 9.70 48.0± 7.5 26.0± 16.6
DIVERSE-LK 17.07± 9.72 53.0± 6.0 40.0± 11.8

UNCLOG Runtime (s) ↓ 60s SR (%) ↑ 6s SR (%) ↑
ADAPTIVE 44.20± 22.05 23.0± 12.5 5.0± 3.2
DIVERSE-GK 44.85± 23.47 21.0± 9.2 5.0± 3.2
DIVERSE-LK 42.86± 23.34 23.0± 12.1 6.0± 5.8

estimated by a GP. All the experiments are repeated 5 times
with random scene settings. In DIVERSE-LK, we use ε = 0.3.

To test the performance of kernel learning, we design two
tasks that require sophisticated manipulation to accomplish
the goals. In the first task, called WASH, the goal is to
pour (e.g. dish liquid) from a cup to a bowl while avoiding
collisions with the faucet next to the bowl. The second task,
called UNCLOG, aims to scoop (e.g. food waste) from a
bowl-shaped sink while avoiding collisions with the faucet.
We select a fixed test set with 50 task specifications and
repeat the evaluation 5 times. Different task specifications
have different faucet sizes, bowl shapes, spoon sizes, cup
sizes, faucet heights and distances between faucet and
bowl. Figure 13 shows examples for task WASH and task
UNCLOG.

We show the timing and success rate results in table 2
(after training). Our empirical results shows that, in general,
DIVERSE-LK is able to find a better solution than the
alternatives in both of these tasks. This suggests that
the kernel learning approach that we adopted is indeed
generating more suitable samples for the planner.

7.5 Integrated system
Finally, we integrated the learned sampling models for
the pour and scoop actions with 7 pre-existing robot
operations (move, pick, place, fill, push, stir) in
a domain specification for PDDLStream.

‡The proportion of samples that do not satisfy the true constraint.

Prepared using sagej.cls

14 Journal Title XX(X)

Figure 13. Examples for Task WASH and UNCLOG. Task
WASH’s goal is to pour from a cup to a bowl while avoiding the
faucet next to the bowl. Task UNCLOG is to scoop from a bowl
while avoiding the faucet next to the bowl.

As a demonstration, we give the robot a goal which is
to “prepare” a cup of coffee with cream and sugar. To
achieve this goal, the robot must pour coffee into the white
bowl, scoop sugar from the red bowl and dump it into
the white bowl, and stir the while bowl, and return to its
initial configuration. While doing this, the robot also needs
to plan its path in a way that avoids all obstacles. Figure 1
displays the robot solving a Kitchen3D (left) and real-world
(right) version of this task. See https://tinyurl.com/

lis-ltamp for a video of a real-world robot solving this
task.

These results illustrate the ability to augment the existing
competences of a robotic system (such as moving while
avoiding collisions) with new sensorimotor primitives by
learning probabilistic models of their preconditions and
effects and using a state-of-the-art domain-independent
continuous-space planning algorithm to combine them
fluidly and effectively to achieve complex goals.

8 Real-world experiments
We applied our learning and planning framework to several
real-world problems to demonstrate its sample efficiency
and ability to generalize over a diverse set of planning
scenarios. We use the same set of PyBullet primitive
implementations as in the Kitchen3D simulation. An open-
source implementation of system is available at https:

//github.com/caelan/LTAMP.

8.1 Perception
We assume that the objects rest on a single table and are
fully observable from a Kinect RGB-D camera mounted on
the robot’s head. Additionally, we assume that we have an
approximate 3D mesh model for each object on the table. We
created crude mesh models for each bowl and cup, derived
solely from rough base diameter, top diameter, and height
measurements.

We use visual data to recognize and coarsely locate objects
on the table and depth data to identify the table surface and
localize objects. We use the Faster R-CNN (Ren et al. 2015)
visual object detector (Huang et al. 2017) implemented
in TensorFlow (Abadi et al. 2016) to predict labeled 2D
bounding boxes for the table and each object model. We
pretrained the R-CNN on the COCO data set (Lin et al.

Figure 14. Left: R-CNN table and object 2D visual bounding
box detections. Right: the estimated table surface and object
poses visualized in RViz. The table surface plane normal is the
blue vector, the yellow rectangle is the axis-aligned bounding of
the surface within the plane, and the blue polygon is the convex
hull of the surface within the plane. The colored mesh of each
registered object pose is overlaid on the point cloud,
demonstrating the accuracy of the position and orientation
estimates.

2014) and then trained it on 447 hand-annotated image
arrangements of our table, blocks, cups, and bowls. An
example set of detections is displayed in figure 14 (left).

We use the detection information to isolate subsets
of the point cloud contained within the 3D view
cone corresponding to each 2D bounding box. For
each detected table, we use the Point Cloud Library’s
(PCL) (Rusu and Cousins 2011) random sample consensus
(RANSAC) (Fischler and Bolles 1981) plane estimator to
obtain the equation of its plane as well as the 2D convex
hull of its points when projected into the plane. We filter
planes with normal vectors that significantly deviate from
the global z-axis. Then, we prune detected objects that
are not supported by the estimated table plane. For the
remaining detected objects, we perform pose registration
on the point cloud contained within its cone using the
mesh model corresponding to the predicted label. We use
a pose estimator built by Glover (2014), which performs
a randomized optimization over object placements resting
normal to the plane, minimizing the distance between the
observed point cloud and a point cloud derived from the
mesh. Figure 14 (right) shows the estimated table surface
plane as well as the detected objects at their estimated poses.

Figure 15 provides a flowchart of our system. We use
the Robot Operating System (ROS) (Quigley et al. 2009) to
relay plane and pose estimates to the Python planning engine
where they are treated as the ground-truth environment. The
inputs are RGB, depth, and joint data as well as a goal
description. The perception subsystem is used to populate
an estimate of the initial state. The planning subsystem
consumes this estimate along with the goal description,
motion planning primitives, and the current Gaussian Process
models. After receiving a single observation, the planner
solves the corresponding problem and outputs a path that
specifies a sequence of robot arm joint positions. After
solving for a plan, the execution subsystem performs local
feedback control to follow the plan, scores the final world
state, and adds the result to the training data set. After
interpolation using cubic splines, the resulting trajectory is
executed in an entirely open-loop manner at the high level.

Prepared using sagej.cls

Wang et al. 15

Goal
Description

RGB Image
Data

Depth Point
Cloud Data

Visual Object
Detection

Pose
Estimation

Compile Initial
State

Robot Joint
Data

PDDLStream
Planning

Train Learners

Training
Data

Execute Plan

Score Result

Motion
Planners

Perception

Planning

Learning

Execution

LTAMP
System

Figure 15. A flowchart that decomposes our real-world system
into four components: perception, learning, planning, and
execution.

8.2 Data collection

We use small bead-like objects as the material to be poured
or scooped. Specifically, we use red wooden objects for
pouring and dried chickpeas for scooping. In our training
setup, we place bowls and cups on USB scales to estimate
the particle mass contained within each object both before
and after execution. The USB scales are directly connected to
our computer to provide automated real-time mass readings.
We subtract the mass of the bowl or cup in order to obtain
the mass of the particle contained within an object.

In simulation, the world can be directly assigned to be the
state prior to executing a skill. However, in the real world,
the robot must also act to set up a skill (e.g. grasping the
cup), act to score the skill (e.g. dumping the spoon’s contents
into a bowl), and reset the scene for its next trial. It is critical
that the robot respects kinematic, joint-limit, collision, and
spillage orientation constraints in order to ensure that these
actions are likely to be successfully executed. We use our
planner to plan paths that respect these constraints and
facilitate data collection. Thus, we are performing both
learning for planning and planning for learning.

We formulate collecting one trial as a planning problem
where the planner is restricted to use a single control
parameter that is selected either uniformly at random or by
a GP active learner. Otherwise, the planner has the freedom
to select the other plan parameters, such as the grasp used
to pick the cup. For both pouring and scoring, we enforce
that the cup finishes at its initial pose and that the robot
finishes at its initial configuration. By planning to reset the
scene, we avoid the need to teleoperate the robot or manually
extract an object from the robot’s gripper. Additionally, this
prevents the robot arm from self-occluding the table during
its next observation. As a result, the only manual actions that
a human must perform are cleaning up spilled particles and
swapping the placed objects that will be used on next trial.

Figure 16. Left: the training set of 10 bowls, 12 cups, and 3
spoons. Right: the testing set of 5 bowls, 6 cups, and the same
3 spoons.

For pouring, the robot picks up the cup, attempts
to pour its contents into the bowl using the sampled
control parameter, places the cup back at its initial
pose, and returns to the initial configuration. This
results in the following sequence of operators:
[move,pick,move,pour,move,place,move]. The
fraction of particles that were successfully poured is the
ratio of the final bowl particle mass to the initial cup particle
mass. For scooping, the spoon starts in the robot’s gripper,
at an approximate grasp. The robot scoops the contents of
the bowl using the sampled control parameter, dumps the
spoon’s contents into the measurement bowl, and returns
to the initial configuration. This results in the following
sequence of skills: [move,scoop,move,pour,move].
The fraction of particles that were successfully scooped
is the ratio of the final measurement bowl particle mass
to the mass capacity of the spoon, which is measured
offline. As a result, only one scale is required when scoring
a scoop. Finally, we use the plan constraint compilation
procedure of Garrett et al. (2020b) to enforce that each
plan exactly executes the prescribed sequence of skills,
preventing it from considering plans that, for example,
perform two scoops. Ultimately, the planner is typically
able to find a solution in less than 15 seconds. See the
“Learning to {Pour, Scoop}: Data Collection” videos at
https://tinyurl.com/lis-ltamp for demonstrations
of the robot collecting data using this pipeline.

We trained the learners on a set of training objects
and evaluated the learners on a set of unseen testing
objects. Several of the bowls and cups are from the YCB
dataset (Calli et al. 2015). The objects range in both size,
mass, and material (ceramic, plastic, and 3D printed). We
trained the learners on 10 bowls and 12 cups of varying sizes.
We tested the learners on 5 bowls and 6 cups of varying sizes.
We used the same set of 3 spoons both during training and
testing. The number of pouring contexts is the number of
bowl and cup pairs while the number of scooping contexts is
the number of bowl and spoon pairs. Figure 16 displays the
set of training and testing objects. For each trial, we sampled
the objects (and as a result the context) uniformly at random.

To quickly collect data incorporating new objects without
needing to retrain the R-CNN, we developed a user interface
(UI) that allows a user to “replace” the object detector by
manually annotating object bounding boxes online. These
labeled bounding boxes are then sent to the point-cloud pose-
estimation system as normal. The labels of each bounding
box can also be changed programmatically, enabling the

Prepared using sagej.cls

16 Journal Title XX(X)

Figure 17. Left: the manual bounding box labeling tool that
replaces the R-CNN predictions during training. Right: the
corresponding estimated table surface and object poses
visualized in RViz. See figure 14 (right) for a description of the
RViz markers.

data collection program to update their values given the next
selected cup and bowl pair. Figure 17 displays the UI tool
and visualizes the corresponding table plane, registered bowl
mesh, and registered cup mesh for a pouring trial.

8.3 Training
We compared the sample efficiency of GPs trained both with
and without active learning in this real-world setting. Both
GPs used the MLP kernel as well as the parameterization
in section 6.2. We initially seeded each learner with 50
training examples gathered by sampling context and control
parameters uniformly at random.

Figure 18. The robot executing actively selected control
parameters. The learners intentionally explore control
parameters that are near the boundary of the super-level set.
Left: the selected pour successfully produces several particles
in the bowl but also spills many particles. Right: the selected
scoop is able to scoop some particles, but the spoon still has
the capacity to hold more.

Figure 18 visualizes the robot executing pour and scoop
actions selected using active learning. Both of these trials
demonstrate borderline success, which is consistent with
the robot selecting control parameters near the zero level
set. Figure 19 visualizes selected pours and their scores
overlaid on a particular bowl in our Kitchen3D simulator.
Red cups indicate pours with negative scores and blue
cups indicate pours with positive scores. The three images
compare selections made uniformly at random, by the GP
active learner, and by the final trained GP learner on test
objects. Many of the active learner’s selections are green,
indicating that they are near the zero level set boundary.

During training, we tested how well the learners were
able to classify successful pours and scoops. This allowed
us to obtain an measure of how well the GP was learning
without needing to periodically evaluate on testing data
during training. We collected a test data set of 133 pour

Figure 19. The distribution of selected real-world pours
visualized in simulation per selection policy. The measured
score of the pour is visualized by the hue of the cup, where red
pours are the least successful, green pours are near the zero
level-set, and blue pours are most successful. Left: pours
selected uniformly at random for a single training bowl. Center:
pours selected actively for the same training bowl. Many
selected pours are green, indicating that the learner is exploring
the decision boundary. Right: the most confident pours for a
single testing bowl. Each pour is blue, which indicates that all
pours were successful.

and 81 scoop examples, sampled uniformly at random on
the test objects. Figure 20 displays the F1-score learning
curves of the GP learners without and with active learning
on this data set. The 1/4 standard deviation error bounds
result from retraining each GP 10 times on the same data,
to account for the stochastic hyper-parameter optimization
when retraining. Active learning enables the GP learner to
more quickly classify successful pours and scoops.

8.4 Most confident prediction
Recall that our ultimate objective is to sample control
parameters that the learner confidently believes to lie in the
super-level set. We compared the most confident predictions
of a GP trained on 50 training examples sampled uniformly
at random, 100 (96 for scooping) training examples sampled
uniformly at random, and 50 training examples sampled
uniformly at random followed by 50 (46 for scooping)
selected actively. We performed one trial per unique bowl-
cup and bowl-spoon test pair, resulting in 30 pours per
learner and 15 scoops per learner.

Table 3 lists the performance of each learner when making
its most confident prediction on the test objects. Valid is
the percentage of sampled control parameters for which
full motions of the robot could be found. Recall that the
learner may predict control parameters that cannot be safely
executed by the robot, such as pours in the interior of a bowl
that do not admit any collision-free grasps. Success is the
percentage of sampled control parameters that were in the
super-level set. Filled is the percentage of the cup or spoon’s
capacity was filled. The active learner outperforms the non-
active learners in each metric both for pouring and scooping.

8.5 Integration
Finally, we used our learned pouring model within
our planner to solve challenging real-world multi-step
manipulation problems. We experimented with two problems
where the robot must combine its learned pouring models
with motion planners that respect kinematic and collision
constraints. In each problem, the blue cup is initially holding
“liquid” particles, and the goal is for the brown bowl to

Prepared using sagej.cls

Wang et al. 17

Figure 20. The F1 score for a GP trained both without (GP) and with active learning (GP-LSE2) on the testing objects. Each GP was
initially trained with 50 examples collected uniformly at random on training objects.

Batch N50 Batch N100/N96 Active N100/N96

Po
ur

Valid (%) 0.867 0.833 0.933
Success (%) 0.923 0.920 1.000
Filled (%) 0.964 0.958 0.994

Sc
oo

p Valid (%) 0.600 0.933 0.933
Success (%) 0.889 0.786 0.929
Filled (%) 0.829 0.861 0.952

Table 3. When evaluating pours and scoops during testing, the
percentage of them that admitted a full robot plan (valid), the
percentage of them that were in the super-level set (successful),
and the average mass inside the scoring bowl relative to the
capacity of the involved cup or spoon. The best value of each
metric across the three learners is indicated in red.

instead contain the particles. The robot must additionally
return to its initial configuration with both grippers empty.

Figure 21 demonstrates the robot solving the first problem.
In this problem, the robot is unable to find a kinematically
feasible way of picking the blue cup without colliding with
the green block. Thus, the robot plans to pick the green
block and finds a placement for it that allows for the blue
cup to be picked. Afterwards, the robot can now safely pick
the blue cup and pour its contents into the brown bowl.
Finally, the robot places the blue cup and moves its left arm
back to its initial configuration. Critically, the robot finds
a grasp for the cup that both admits a pour path that is
predicted to be successful and admits a collision-free pick
path when the green block is moved. See https://youtu.
be/a5F1hce4o0o for a video of the robot executing this
solution.

Figure 22 demonstrates the robot solving the second
problem. In this problem, the bowl starts at one side of
the table while the blue cup starts on the other side.
Because neither arm can reach both objects, the robot must
intentionally manipulate one of the objects with one arm to
put it within reach other the other arm. There are two high-
level ways of accomplishing this. The first requires picking
up the blue cup with the robot’s left arm and deliberately
placing it near the middle of the table, within reach of the
right arm. The second requires pushing the brown bowl
with its right arm towards the middle of the table. Although
the robot’s planning model can produce both solutions, the

planner returned the second solution, likely because it uses
fewer actions. Once the brown bowl is within reach, the
robot can successfully pour the contents of the blue cup into
the bowl and return to its initial state. Because the robot
was initially kinematically unable to pour using its left arm,
it intentionally identifies a pose that it can push the bowl
to in order to be within reach. See https://youtu.be/

a5F1hce4o0o?t=43 for a video of the robot executing this
solution.

9 Conclusion
This paper addresses learning generative models for dynamic
manipulation skills for use during multi-step manipulation
planning. We learn the conditions for which a pour or scoop
manipulation skill is sufficiently successful using Gaussian
processes. This allows us to capture the uncertainty in the
learner’s model, enabling us to make risk-aware predictions
and perform active learning to methodically select training
examples that best reduce the model’s uncertainty. Through
simulated and real-world experiments, we show that active
learning reduces the number of robot trials required to learn
a skill. Additionally, we introduce methods for diversely
exploring the set of successful pours or scoops. This enables
a planner to quickly find values that admit a full robot
plan. Our integrated planner combines learned models for
pouring and scooping with conventional robotics operations,
enabling it to generalize across a large set of challenging
manipulation problems.

9.1 Future work
One important avenue for future work involves incorporating
learner predictions into the action cost of the associated
control parameter. Costs could be derived from the expected
score of the parameter or the probability that the parameter is
in the super-level set. There are several approximate methods
for performing risk-aware deterministic planning with non-
negative additive costs (Garrett et al. 2020b). This would
enable the planner to weigh the expected cost of executing
a sequence of control parameters among several candidate
plans.

Prepared using sagej.cls

18 Journal Title XX(X)

Figure 21. The goal is for the particles in the blue cup to be in the white bowl. Because the green block obstructs reachable side
grasps for the blue cup, the planner automatically plans to relocate the green block before picking the blue cup and pouring its
contents into the white bowl. From left-to-right and top-to-bottom, the robot picking the green block, the robot placing the green
block, the robot picking the blue cup, and the robot pouring the blue cup’s contents into the brown bowl.

Figure 22. The goal is for the particles in the blue cup to be in the brown bowl. Because the robot cannot reach the brown bowl
with its left arm, the planner automatically plans to push the bowl towards the center of the table, so it can then pour the blue cup’s
contents into the brown bowl. From left-to-right and top-to-bottom, the state before the robot pushes the brown bowl, the resulting
state after the push, the robot picking the blue cup, and the robot pouring the blue cup’s contents into the brown bowl.

Although we consider both learning in simulation and the
real world, we have not addressed sim-to-real transfer; which
may be useful in settings where a high-fidelity simulator is
available. In our preliminary investigation, we found that

it was challenging to benefit from active learning when
training real-world models on simulated data. Intuitively, if
simulation and the real-world mismatch, particularly with
respect to which dimensions are most informative, the

Prepared using sagej.cls

Wang et al. 19

active learner may explore training examples that do not
effectively decrease uncertainty in the model. Ultimately our
goal is to develop methods that can learn effectively from
a few real-world samples, without the need to develop a
simulation. However, in settings where a simulator exists,
further investigation of the effective integration of active
learning and sim-to-real transfer is desirable.

Finally, this paper addresses deterministic planning and
open-loop execution; however, the real-world is stochastic
and partially observable. Our current and future work
involves learning models for stochastic manipulation
actions and observation actions for use during belief-space
planning (Garrett et al. 2020b; Kaelbling and Lozano-Pérez
2013).

Acknowledgements

We gratefully acknowledge support from NSF grants 1523767 and
1723381; from AFOSR grant FA9550-17-1-0165; from ONR grant
N00014-18-1-2847; from the Honda Research Institute; and from
SUTD Temasek Laboratories. Caelan Garrett is supported by an
NSF GRFP fellowship with primary award number 1122374. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of our sponsors.

We thank Kevin Chen, Nishad Gothoskar, Ivan Jutamulia, Alex
LaGrassa, Jiayuan Mao, Skye Thompson, and Jingxi Xu for their
help with developing the infrastructure for the simulated and real-
world experiments.

A Gaussian processes
Gaussian processes (GPs) represent distributions over
functions and serve as a useful representation for Bayesian
regression. In a GP, any finite set of function values has
a multivariate Gaussian distribution. We use GP (µ, k) to
denote a GP with mean function µ(x) and kernel function
k(x,x′). Two frequently used stationary covariance kernel
functions are the squared exponential and Matérn kernels.
Let r = (x− x′)>(x− x′). Then the squared exponential
kernel is

kf (x,x′) = σ2
fe
− 1

2`2
f

r
,

with a variance σ2
f and length scale hyper-parameter `f . The

Matérn kernel is given by

km(x,x′) = σ2
m

21−ξ

Γ(ξ)
(

√
2ξr

h
)ξBξ(

√
2ξr

h
),

where Γ is the gamma function, Bξ is a modified Bessel
function. Its hyper-parameters are σ2

m, lm and a roughness
parameter ξ. Additionally, we consider the non-stationary
multi-layer perceptron kernel (also called the neural network
kernel) (Neal 2012; Rasmussen and Williams 2006), which
often better models discontinuous functions such as the score
functions in Section 6.1 (Vasudevan et al. 2009; O’Callaghan
and Ramos 2012),

kn(x,x′) =
2σ2

n

π
sin−1

x̃>Σ2x̃′√
x̃>Σ2x̃+ 1

√
x̃′>Σ2x̃′ + 1

,

where x̃ = [1,x]. Its hyper-parameters are a diagonal
covariance matrix Σ2 and variance σ2

n.

Let f be a true underlying function sampled from
GP(0, k). Given a set of observations D = {(xt, yt)}|D|t=1,
where yt is an evaluation of f at xt corrupted by i.i.d additive
Gaussian noise N (0, ζ2), we obtain a posterior GP, with
mean

µ(x) = kD(x)T(KD + ζ2I)−1yD

and covariance

σ2(x,x′) = k(x,x′)− kD(x)T(KD + ζ2I)−1kD(x′)

where the kernel matrix KD = [k(xi,xj)]xi,xj∈D and
kD(x) = [k(xi,x)]xi∈D (Rasmussen and Williams 2006).
With slight abuse of notation, we denote the posterior
variance by σ2(x) = σ2(x,x), and the posterior GP by
GP(µ, σ). We use GPy (2012) for GP training with Auto
Relevance Determination (ARD) (Wipf and Nagarajan 2008)
to optimize for kernel hyper-parameters that maximize the
likelihood of the data.

B PDDLStream for TAMP
PDDLStream (Garrett et al. 2020a) is a framework for
planning in the presence of sampling procedures. The use
of sampling procedures enables PDDLStream to address
hybrid discrete-continuous planning domains, such as TAMP
domains. PDDLStream extends Planning Domain Definition
Language (PDDL) (McDermott et al. 1998) by adding
streams, declarative specifications of conditional samplers.
Streams have previously been implemented by a human
engineer through leveraging collision checkers, inverse
kinematic solvers, and off-the-shelf motion planners. In this
work, we learn new conditional samplers for dynamic skills,
such as pouring and scooping skills, which are difficult for a
human to correctly specify. An open-source implementation
of PDDLStream is available at: https://github.com/
caelan/pddlstream.

B.1 PDDL
In PDDL, states consist of a set of true facts, which
are equivalent to parameterized Boolean variables. Actions
(:action) are defined by a set of free parameters
(:param), a precondition logical formula of facts (:pre)
that must hold in a state in order to apply the action, and
an effect logical conjunction of facts (:eff) that specifies
which facts are set to true or false after applying the action.

Figure 23 gives the PDDL description of two of the
actions that we consider: pour and scoop. These actions
use the parameters ?arm, ?bowl, ?cup, ?spoon, and
?particles to refer to a robot arm, bowl, cup, spoon,
and set of “liquid” particles. Additionally, departing from
typical PDDL models, several of our parameters are multi-
dimensional continuous values: ?pose is a stable object
placement in SE(3); ?grasp is a rigid gripper grasp of an
object in SE(3); ?conf is a robot arm configuration (set of d
joint angles) inRd; ?obj-path is an object path consisting
of a sequence of poses; and ?arm-path is a robot arm path
consisting of a sequence of configurations.

The pour action can be applied if ?cup initially
contains ?particles. After execution, ?bowl now
contains ?particles instead of ?cup as successful
pours transfer the full contents of ?cup into ?bowl.

Prepared using sagej.cls

20 Journal Title XX(X)

The ?scoop action can be applied if ?bowl initially
contains ?particles. After execution, ?spoon now
also contains ?particles. Critically, pour and scoop
have GoodPour, GoodScoop, and Motion preconditions
defined on their parameter values. The GoodPour and
GoodScoop conditions enforce that the action parameter
values correspond to pours and scoops that are likely-to-be
successful. The objective for sampling and thus learning is
to produce parameter values that satisfy these constraints.
The Motion fact relates the path of the robot arm to the
path of a grasped cup or spoon. See Garrett et al. (2020a)
for descriptions of move, pick, and place actions that are
representative of the similar actions used in this work.

B.2 Streams
Streams are the key extension of PDDL that enable planning
for high-dimensional, continuous systems. Streams have a
procedural and a declarative component. The procedural
component is a function from a set of input values to a
sampler that generates a sequence of output values. This
procedure is implemented using a programming language,
such as Python. The declarative component specifies
conditions on legal input values as well as properties that any
generated output values are guaranteed to satisfy. Its syntax
similar to that of actions: the input parameters (:inp) and
the output parameters (:out) specify the number and names
of streams inputs and outputs. The domain keyword (:dom)
specifies a logical formula of “typing” facts that :inp values
must satisfy in order to be legal inputs to the sampler. The
certified keyword (:cert) asserts a logical conjunction of
facts that pairs of :inp and :out values always satisfy.

Figure 24 gives the PDDLStream description of
the sample-pour-path, sample-scoop-path, and
follow-obj-path streams, which sample values that
serve as inputs to the pour and scoop actions.
The sample-pour-path and sample-scoop-path
streams take in as inputs a ?bowl at a specific ?pose as
well as a ?cup or ?spoon. They output ?cup or ?spoon
paths sampled from the set of paths that are predicted to
be within the super-level set of pours or scoops. These
streams plan for a manipulated object before considering
the robot at all. The sample-obj-path stream takes
in as inputs an ?arm, object ?obj held at ?grasp, and
a desired path the object should follow. It outputs robot
arm paths such that ?obj follows ?obj-path when at
grasp. The specification these three streams modularly
separates primitive sampling operations that are solvable
using traditional model-based algorithms, such as motion
planning, from those that are better addressed using learning.
As a result, our planning approach retains the generalization
and theoretical benefits of model-based approaches while
also exhibiting the flexibility of learning methods when
primitive models are not known. See Garrett et al. (2020a)
for descriptions of streams that sample object placements,
object grasps, and robot transit motions.

Figure 25 demonstrates how the sample-pour-path
and follow-obj-path streams compose to ultimately
produce robot pouring paths for control parameters val-
ues sampled by the pour GP. The sample-pour-path
stream takes in the model of a bowl and cup and

featurizes the models using their dimensions, produc-
ing a context parameter for the GP learner. The GP
samples a control parameter, which specifies waypoints
for the cup. We linearly interpolate through these way-
points to produce a full path for the cup, which is
the output of the sample-pour-path stream. The
follow-obj-path stream takes in the model of the static
environment, a model of the robot, and tool paths produced
by sample-pour-path, sample-scoop-path, or
another stream. Using Cartesian trajectory tracking, it solves
for a robot path that follows the tool path for a particu-
lar grasp. The PDDLStream planner instantiates the pour
action using these paths and solves for a plan that uses these
and other actions to achieve the goal.

B.3 Algorithms
PDDLStream problems consist of an initial state, goal state,
set of actions, and set of streams. PDDLStream algorithms
are domain-independent, meaning that they are able to solve
PDDLStream problems without any additional problem
information. The simplest PDDLStream algorithm, the
INCREMENTAL algorithm (Garrett et al. 2017a,b), iteratively
alternates between a sampling and a searching phase. During
its sampling phase, it passes all legal combinations of
input values to each stream and attempts to sample new
output values. During its searching phase, it performs
a discrete search, such as a breadth-first search, on the
discretized state space resulting from the finite set of
currently sampled values. If the discrete search finds a
solution, INCREMENTAL terminates. Otherwise, this process
repeats. More advanced algorithms can also be applied
using the exact same PDDLStream problem description. For
example, the FOCUSED algorithm (Garrett et al. 2017a,b)
first searches over plan skeletons, plans with free parameters,
before attempting to sample values for the parameters.
This allows FOCUSED to more intelligently identify which
samplers are relevant for solving the task.

C Simulated Kitchen2D domain
In the earlier version of this work (Wang et al. 2018), we built
a simulated 2D kitchen environment, Kitchen2D, based on
the physics engine Box2D (Catto 2011). For completeness,
we include descriptions of Kitchen2D and its corresponding
empirical results for the algorithms in section 3 and section 4.

In Kitchen2D, we build in the policies for different skills,
e.g. pouring, scooping, pushing, and demonstrate that it is
sample-efficient to learn models of additional skills. Once
we obtain those learned models, sampling-based task and
motion planners like PDDLStream can make use of them in
an effective way to plan efficiently.

C.1 Implementation of Kitchen2D
Figure 26 shows several scenes indicating the variability of
arrangements of objects in the domain. The parameterized
actions are: moving the robot (a simple “free-flying” hand),
picking up an object, placing an object, pushing an object,
filling a cup from a faucet, pouring a material out of a
cup, scooping material into a spoon, and dumping material
from a spoon. The gripper has 3 general movement degrees

Prepared using sagej.cls

Wang et al. 21

(:action pour
:param (?arm ?bowl ?pose ?cup ?cup-path ?particles ?grasp ?conf1 ?conf2 ?arm-path)
:pre (and (GoodPour ?bowl ?pose ?cup ?cup-path)

(Motion ?arm ?cup ?grasp ?cup-path ?conf1 ?conf2 ?arm-path)
(Particles ?particles) (HasParticles ?cup ?particles)
(AtPose ?bowl ?pose) (AtGrasp ?arm ?cup ?grasp) (AtConf ?arm ?conf1)
(not (UnsafePath ?arm ?arm-path)))

:eff (and (AtConf ?arm ?conf2) (HasParticles ?bowl ?particles)
(not (AtConf ?arm ?conf1)) (not (HasParticles ?cup ?particles))))

(:action scoop
:param (?arm ?bowl ?pose ?spoon ?spoon-path ?particles ?grasp ?conf1 ?conf2 ?control)
:pre (and (GoodScoop ?bowl ?pose ?spoon ?spoon-path)

(Motion ?arm ?spoon ?grasp ?spoon-path ?conf1 ?conf2 ?arm-path)
(Particles ?particles) (HasParticles ?bowl ?particles)
(AtPose ?bowl ?pose) (AtGrasp ?arm ?spoon ?grasp) (AtConf ?arm ?conf1)
(not (UnsafeControl ?arm ?control)))

:eff (and (AtConf ?arm ?conf2) (HasParticles ?spoon ?particles)
(not (AtConf ?arm ?conf1))))

Figure 23. The description of the pour and scoop actions. The underlined preconditions highlight facts that are certified by the
GP learners.

(:stream sample-pour-path
:inp (?bowl ?pose ?cup)
:dom (and (Bowl ?bowl) (Pose ?bowl ?pose) (Cup ?cup))
:out (?cup-path)
:cert (and (GoodPour ?bowl ?pose ?cup ?cup-path) (ObjPath ?cup ?cup-path)))

(:stream sample-scoop-path
:inp (?bowl ?pose ?spoon)
:dom (and (Bowl ?bowl) (Pose ?bowl ?pose) (Spoon ?spoon))
:out (?spoon-path)
:cert (and (GoodScoop ?bowl ?pose ?spoon ?spoon-path) (ObjPath ?spoon ?spoon-path)))

(:stream follow-obj-path
:inp (?arm ?obj ?grasp ?obj-path)
:dom (and (Arm ?arm) (Grasp ?obj ?grasp) (ObjPath ?obj ?obj-path))
:out (?conf1 ?conf2 ?arm-path)
:cert (and (Motion ?arm ?obj ?grasp ?obj-path ?conf1 ?conf2 ?arm-path)

(Conf ?arm ?conf1) (Conf ?arm ?conf2) (ArmPath ?arm ?arm-path))

Figure 24. The descriptions of the sample-pour-path, sample-scoop-path, and follow-obj-path streams, which
certify the GoodPour predicate, GoodScoop predicate, and Motion predicates respectively.

Planning
Context

Pour Gaussian
Process

Motion
Planner

Bowl/Cup
Dimensions

Robot, Bowl Pose,
Cup Grasp, Obstacles

Cup
Pour Path

Robot
Pour Path

PDDLStream
Planner Robot

Plan

Return
Solution

Interpolation

Cup Control
Parameters

sample-pour-path

follow-obj-path

Pour Stream
Composition

Figure 25. A flowchart that visualizes how the GPs connect to the sample-pour-path and follow-obj-path streams, which
certify facts present in pour and move action preconditions.

of freedom (2D position and rotation) and can also open
and close its fingers. The material to be poured or scooped

is simulated as small circular particles. We use RRT-
Connect (Kuffner Jr. and LaValle 2000) to plan motions for
the gripper.

Prepared using sagej.cls

22 Journal Title XX(X)

SUGARCREAM

GRIPPER
MUG

STIRRER SPOON

COFFEE FAUCET

COASTER

Figure 26. Four arrangements of objects in 2D kitchen, including: green coaster, coffee faucet, yellow robot grippers, sugar scoop,
stirrer, coffee mug, small cup with cream, and larger container with pink sugar.

GRIPPER

Figure 27. Examples of a gripper executing a pouring primitive
in Kitchen2D for several contexts (cup dimensions) and control
parameters (relative cup poses).

We learn models and samplers for three of these action
primitives: pouring (4 context parameters, 4 predicted
parameters, scooping (2 context parameters, 7 predicted
parameters), and pushing (2 context parameters, 6 predicted
parameters). The robot executes trajectories consisting of
sequences of waypoints for the gripper, relative to the object
it is interacting with.

As an example, figure 27 illustrates several instances of a
parameterized sensorimotor policy for pouring in Kitchen2D.
The skill has control parameters θ that govern the rate at
which the cup is tipped and target velocity of the poured
material. In addition, several properties of the situation in
which the pouring occurs are very relevant for its success:
robot configuration cR, pouring cup pose and size pA, sA,
and target cup pose and size pB , sB . To model the effects
of the action we need to specify c′R and p′A, the resulting
robot configuration and pose of the pouring cup A. Only for
some settings of the parameters is the action feasible (i.e.
χ(cR, pA, sA, pB , sB , θ, c

′
R, p

′
A) = 1): the objective of our

work is to efficiently learn a representation of the feasible
region χ so as to enable a TAMP planner to use the skill, in
conjunction with other skills, to solve novel problems.

For pouring, we use the scoring function gpour (x) =
exp(2(10x− 9.5))− 1, where x is the proportion of the
liquid particles that are poured into the target cup. The
constraint gpour (x) > 0 means at least 95% of the particles
are poured correctly to the target cup. The context of pouring
includes the sizes of the cups, with widths ranging from 3

to 8 (units in Box2D), and heights ranging from 3 to 5. For
scooping, we use the proportion of the capacity of the scoop
that is filled with liquid particles, and the scoring function is
gscoop(x) = x− 0.5, where x is the proportion of the spoon
filled with particles. We fix the size of the spoon and learn
the action parameters for different cup sizes, with width
ranging from 5 to 10 and height ranging from 4 to 8. For
pushing, the scoring function is gpush(x) = 2− ‖x− xgoal‖
where x is the position of the pushed object after the pushing
action and xgoal is the goal position; here the goal position
is the context. The pushing action learned in section C.2
has the same setting as Kaelbling and Lozano-Perez (2017),
viewing the gripper and object with a bird-eye view. The
code for the simulation and learning methods is public at
https://ziw.mit.edu/projects/kitchen2d/.

C.2 Experiments in Kitchen2D
Similar to our experiments in Kitchen3D, we show the
effectiveness and efficiency of each component of our
method independently, and then demonstrate their collective
performance in the context of planning for long-horizon
tasks in a high-dimensional continuous domain.

C.2.1 Active learning: We first demonstrate the perfor-
mance of using a GP with the straddle algorithm (GP-LSE)
to estimate the level set of the constraints on parameters
for pushing, pouring and scooping in Kitchen2D. For com-
parison, we also implemented a simple method (Kaelbling
and Lozano-Perez 2017), which uses a neural network to
map (θ, α) pairs to predict the probability of success using
a logistic output. Given a partially trained network and
a context α, the θ∗ = arg maxθ NN(α, θ) which has the
highest probability of success with α is chosen for execution.
Its success or failure is observed, and then the network is
retrained with this added data point. This method is called
NNc in the results. In addition, we implemented a regression-
based variation that predicts g(θ, α) with a linear output
layer, but given an α value still chooses the maximizing θ.
This method is called NNr. We also compare to random
sampling of θ values, without any training.

GP-LSE is able to learn much more efficiently than
the other methods. Figure 28 shows the success rate of
the first action parameter vector θ (value 1 if the action

Prepared using sagej.cls

Wang et al. 23

50 100 150 200

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c

Random NN NN GP-LSE

10 20 30 40 50

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c

Random NN NN GP-LSE

10 20 30 40 50

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c

Random NN NN GP-LSE

(b) (c)(a)

c r c cr r

Figure 28. Mean success rate (with 1/2 standard deviation on mean shaded) of the first action recommended by random selection
(Random), regression-based neural network (NNr), classification-based neural network (NNc) and Gaussian process using
level-set estimation (GP-LSE) on (a) a pouring task with 8 parameters (4 are context parameters); (b) a scooping task with 9
parameters (2 are context parameters) , and (c) a pushing task with 6 parameters (2 are context parameters).

Figure 29. Comparing the first 5 samples generated by
DIVERSE (left) and ADAPTIVE (right) on one of the experiments
for pouring. The more transparent the pose, the later it gets
sampled.

with parameters θ is actually successful and 0 otherwise)
recommended by each of these methods as a function of
the number of actively gathered training examples. The
results are evaluated through simulation in Kitchen2D. GP-
LSE recommends its first θ by maximizing the probability
that g(θ, α) > 0. The neural-network methods recommend
their first θ by maximizing the output value, while RANDOM
always selects uniformly randomly from the domain of θ.

In every case, the GP-based method achieves high accu-
racy well before the others, demonstrating the effectiveness
of uncertainty-driven active sampling methods.

C.2.2 Adaptive and diverse sampling: Given a proba-
bilistic estimate of good θ values, obtained by GP-LSE, the
next step is to sample values from that set for planning. We
compare simple rejection sampling using a uniform proposal
distribution (REJECTION), the basic adaptive sampler from
section 4.2, and the diversity-aware sampler from section 4.4
with a fixed kernel: the results are shown in Table. 4. The
setting for these experiments is exactly as described in
section!7.3

In these experiments, as in the ones in section 7.3,
DIVERSE uses more samples than ADAPTIVE to achieve
5 positive ones, and its false positive rate is slightly
higher than ADAPTIVE, but the diversity of the samples is
notably higher. The FP rate of DIVERSE can be decreased
by increasing the confidence bound on the level set. We
illustrate the ending poses of the 5 pouring actions generated
by adaptive sampling with DIVERSE and ADAPTIVE in
Figure 29 illustrating that DIVERSE is able to generate more
diverse action parameters, which may facilitate planning.

Table 4. Effectiveness of adaptive and diverse sampling.

REJECTION ADAPTIVE DIVERSE

Po
ur

FP (%) 6.45± 8.06* 4.04± 6.57 5.12± 6.94

T50 (s) 3.10± 1.70* 0.49± 0.10 0.53± 0.09

N5 5.51± 1.18* 5.30± 0.92 5.44± 0.67
Diversity 17.01± 2.90* 16.24± 3.49 18.80± 3.38

Sc
oo

p

FP (%) 0.00† 2.64± 6.24 3.52± 6.53

T50 (s) 9.89± 0.88† 0.74± 0.10 0.81± 0.11
N5 5.00† 5.00± 0.00 5.10± 0.41

Diversity 21.1† 20.89± 1.19 21.90± 1.04

Pu
sh

FP (%) 68.63± 46.27‡ 21.36± 34.18 38.56± 37.60
T50 (s) 7.50± 3.98‡ 3.58± 0.99 3.49± 0.81

N5 5.00± 0.00‡ 5.56± 1.514 6.44± 2.11♣

Diversity 23.06± 0.02‡ 10.74± 4.924 13.89± 5.39♣

*1 out of 50 experiments failed (to generate 50 samples
within 10 seconds); †49 out of 50 failed; ‡34 out of 50 failed;
5 out of 16 experiments failed (to generate 5 positive samples
within 100 samples); 47 out of 50 failed; ♣11 out of 50
failed.
Table 5. Effect of distance metric learning on sampling.

Task I Runtime (ms) 0.2s SR (%) 0.02s SR (%)

ADAPTIVE 8.16± 12.16 100.0± 0.0 87.1± 0.8
DIVERSE-GK 9.63± 9.69 100.0± 0.0 82.2± 1.2

DIVERSE-LK 5.87± 4.63 100.0± 0.0 99.9± 0.1

Task II Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 3.22± 6.51 91.0± 2.7 82.4± 5.6

DIVERSE-GK 2.06± 1.76 95.0± 1.8 93.6± 2.2
DIVERSE-LK 1.71± 1.23 95.0± 1.8 94.0± 1.5

Task III Runtime (s) 60s SR (%) 6s SR (%)

ADAPTIVE 5.79± 11.04 51.4± 3.3 40.9± 4.1
DIVERSE-GK 3.90± 5.02 56.3± 2.0 46.3± 2.0

DIVERSE-LK 4.30± 6.89 59.1± 2.6 49.1± 2.6

C.2.3 Learning kernels for diverse sampling: Finally we
explore the effectiveness of the diverse sampling algorithm
with task-level kernel learning; the setting is analogous to
the one in section 7.4. We compare ADAPTIVE, DIVERSE-
GK with a fixed kernel, and diverse sampling with learned
kernel (DIVERSE-LK), in every case using a high-probability
super-level-set estimated by a GP. In DIVERSE-LK, we use
ε = 0.3. We define the planning reward of a sampler to
be Jk(φ) =

∑∞
n=1 s(φ, n)γn, where s(φ, n) is the indicator

Prepared using sagej.cls

24 Journal Title XX(X)

0 10 20 30 40 50

Number of Training Tasks

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

0 10 20 30 40 50

Number of Training Tasks

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

0 10 20 30 40 50

Number of Training Tasks

0.40

0.42

0.44

0.46

0.48

P
la

n
n
in

g
 R

e
w

a
rd

Adaptive Diverse-GK Diverse-LK

(a) (b) (c)

Figure 30. The mean learning curve of reward J(φ) (with 1.96 standard deviation) as a function of the number of training tasks in
three domains: (a) pushing an object off the table (b) pouring into a cup next to a wall (c) picking up a cup in a holder and pour into
a cup next to a wall.

variable that the n-th sample from φ helped the planner to
generate the final plan for a particular task instance k. The
reward is discounted by γn with 0 < γ < 1, so that earlier
samples get higher rewards (we use γ = 0.6). We average
the rewards on tasks drawn from a predefined distribution,
and effectively report a lower bound on J(φ), by setting a
time limit on the planner.

The first set of tasks (Task I) we consider is a simple
controlled example where the goal is to push an object off
a 2D table with the presence of an obstacle on either one side
of the table or the other (both possible situations are equally
likely). The presence of these obstacles is not represented
in the context of the sampler, but the planner will reject
sample action instances that generate a collision with an
object in the world and request a new sample. We use a fixed
range of feasible actions sampled from two rectangles in 2D
of unequal sizes. The optimal strategy is to first randomly
sample from one side of the table and if no plan is found,
sample from the other side.

We show the learning curve of DIVERSE-LK with respect
to the planning reward metric J(φ) in figure 30 (a). 1000
initial arrangements of obstacles were drawn randomly for
testing. We also repeat the experiments 5 times to obtain
the 95% confidence interval. For DIVERSE-GK, the kernel
inverse is initialized as [1, 1] and if, for example, it sampled
on the left side of the object (pushing to the right) and the
obstacle is on the right, it may not choose to sample on the
right side because the kernel indicates that the other feature is
has more diversity. However, after a few planning instances,
DIVERSE-LK is able to figure out the right configuration of
the kernel and its sampling strategy becomes the optimal one.

We also tested these three sampling algorithms on two
more complicated tasks. We select a fixed test set with 50
task specifications and repeat the evaluation 5 times. The first
one (Task II) involves picking up cup A, getting water from
a faucet, move to a pouring position, pour water into cup B,
and finally placing cup A back in its initial position. Cup
B is placed randomly either next to the wall on the left or
right. The second task is a harder version of Task II, with the
additional constraint that cup A has a holder and the sampler
also has to figure out that the grasp location must be close to
the top of the cup (Task III).

We show the learning results in figure 30 (b) and (c) and
timing results in table 5 (after training). We conjecture that
the sharp turning points in the learning curves of Tasks II

and III are a result of high penalty on the kernel length scales
and the limited size (50) of the test tasks, and we plan to
investigate more in the future work. Nevertheless, DIVERSE-
LK is still able to find a better solution than the alternatives in
Tasks II and III. Moreover, the two diverse sampling methods
achieve lower variance on the success rate and perform more
stably after training.

C.2.4 Integration Finally, we integrate the learned action
sampling models for pour and scoop with 7 pre-existing
robot operations (move, push, pick, place, fill, dump, stir)
in a domain specification for PDDLStream. The robot’s
goal is to “serve” a cup of coffee with cream and sugar
by placing it on the green coaster near the edge of the
table. Accomplishing this requires general-purpose planning,
including picking where to grasp the objects, where to place
them back down on the table, and what the pre-operation
poses of the cups and spoon should be before initiating the
sensorimotor primitives for pouring and scooping should
be. Significant perturbations of the object arrangements are
handled without difficulty. For example, We use the focused
algorithm within PDDLStream, and it solves the task in 20-
40 seconds for a range of different arrangements of objects.
Some resulting plans and execution sequences can be found
at https://ziw.mit.edu/projects/kitchen2d/.

In summary, our experiments in Kitchen2D illustrate a
critical ability: to augment the existing competences of
a robotic system (such as picking and placing objects)
with new sensorimotor primitives by learning probabilistic
models of their preconditions and effects and using a state-
of-the-art domain-independent continuous-space planning
algorithm to combine them fluidly and effectively to achieve
complex goals.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M,
Ghemawat S, Irving G, Isard M and others (2016) Tensorflow:
A system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16). pp. 265–283.

Affandi RH, Fox E, Adams R and Taskar B (2014) Learning
the parameters of determinantal point process kernels. In:
International Conference on Machine Learning (ICML).

Prepared using sagej.cls

Wang et al. 25

Bogunovic I, Scarlett J, Krause A and Cevher V (2016)
Truncated variance reduction: A unified approach to Bayesian
optimization and level-set estimation. In: Advances in Neural
Information Processing Systems (NeurIPS).

Brandi S, Kroemer O and Peters J (2014) Generalizing pouring
actions between objects using warped parameters. In:
Humanoids.

Bryan B, Nichol RC, Genovese CR, Schneider J, Miller CJ and
Wasserman L (2006) Active learning for identifying function
threshold boundaries. In: Advances in Neural Information
Processing Systems (NeurIPS).

Calli B, Singh A, Walsman A, Srinivasa S, Abbeel P and Dollar
AM (2015) The YCB object and model set: Towards common
benchmarks for manipulation research. In: IEEE International
Conference on Advanced Robotics (ICAR).

Catto E (2011) Box2D, A 2D Physics Engine for Games. http:
//box2d.org.

Chitnis R, Hadfield-Menell D, Gupta A, Srivastava S, Groshev
E, Lin C and Abbeel P (2016) Guided Search for Task and
Motion Plans Using Learned Heuristics. IEEE International
Conference on Robotics and Automation (ICRA) .

Coumans E and Bai Y (2016–2019) Pybullet, a python module for
physics simulation for games, robotics and machine learning.
http://pybullet.org.

Diankov R (2010) Automated construction of robotic manipulation
programs. PhD Thesis, Robotics Institute, Carnegie Mellon
University.

Diankov R and Kuffner J (2008) OpenRAVE: A Planning
Architecture for Autonomous Robotics. Technical Report
CMU-RI-TR-08-34, Robotics Institute, Carnegie Mellon
University.

Englert P and Toussaint M (2016) Combined optimization and
reinforcement learning for manipulation skills. In: Robotics:
Science and Systems Conference (RSS).

Fischler MA and Bolles RC (1981) Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM
24(6): 381–395.

Foster DP and Vohra R (1999) Regret in the on-line decision
problem. Games and Economic Behavior 29(1-2).

Gal Y and Ghahramani Z (2016) Dropout as a Bayesian
approximation: Representing model uncertainty in deep
learning. In: International Conference on Machine Learning
(ICML).

Garrett CR, Chitnis R, Holladay R, Kim B, Silver T, Kaelbling
LP and Lozano-Pérez T (2021) Integrated Task and Motion
Planning. Annual Review of Control, Robotics, and
Autonomous Systems 4.

Garrett CR, Lozano-Pérez T and Kaelbling LP (2017a) Sample-
Based Methods for Factored Task and Motion Planning. In:
Robotics: Science and Systems Conference (RSS).

Garrett CR, Lozano-Pérez T and Kaelbling LP (2020a) PDDL-
Stream: Integrating Symbolic Planners and Blackbox Sam-
plers. In: International Conference on Automated Planning and
Scheduling (ICAPS).

Garrett CR, Lozano-Pérez T and Kaelbling LPL (2017b) Sampling-
based methods for factored task and motion planning. In: The
International Journal of Robotics Research.

Garrett CR, Paxton C, Lozano-Pérez T, Kaelbling LP and Fox
D (2020b) Online Replanning in Belief Space for Partially
Observable Task and Motion Problems. In: IEEE International
Conference on Robotics and Automation (ICRA).

Glover J (2014) The quaternion Bingham distribution, 3D
object detection, and dynamic manipulation. PhD Thesis,
Massachusetts Institute of Technology.

Gotovos A, Casati N, Hitz G and Krause A (2013) Active learning
for level set estimation. In: International Conference on
Artificial Intelligence (IJCAI).

GPy (2012) GPy: A Gaussian process framework in python. http:
//github.com/SheffieldML/GPy.

Hafiz Affandi R, Fox EB and Taskar B (2013) Approximate
Inference in Continuous Determinantal Point Processes.
In: Advances in Neural Information Processing Systems
(NeurIPS).

Hermans T, Li F, Rehg JM and Bobick AF (2013) Learning contact
locations for pushing and orienting unknown objects. In:
Humanoids.

Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A,
Fischer I, Wojna Z, Song Y, Guadarrama S and others (2017)
Speed/accuracy trade-offs for modern convolutional object
detectors. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Kaelbling LP and Lozano-Pérez T (2011) Hierarchical task and
motion planning in the now. In: IEEE International Conference
on Robotics and Automation (ICRA).

Kaelbling LP and Lozano-Pérez T (2013) Integrated task and
motion planning in belief space. International Journal of
Robotics Research (IJRR) .

Kaelbling LP and Lozano-Perez T (2017) Learning composable
models of parameterized skills. In: IEEE International
Conference on Robotics and Automation (ICRA).

Kapoor A, Grauman K, Urtasun R and Darrell T (2007) Active
learning with gaussian processes for object categorization. In:
International Conference on Computer Vision (ICCV). IEEE.

Kim B, Kaelbling LP and Lozano-Perez T (2017) Learning to guide
task and motion planning using score-space representation. In:
IEEE International Conference on Robotics and Automation
(ICRA).

Kim B, Kaelbling LP and Lozano-Perez T (2018) Guiding Search
in Continuous State-action Spaces by Learning an Action
Sampler from Off-target Search Experience. In: AAAI
Conference on Artificial Intelligence.

Konidaris G, Kaelbling LP and Lozano-Perez T (2018) From Skills
to Symbols: Learning Symbolic Representations for Abstract
High-Level Planning. Journal or Artificial Intelligence
Research 61.

Kroemer O and Sukhatme G (2016a) Meta-level priors for learning
manipulation skills with sparse features. In: International
Symposium on Experimental Robotics (ISER).

Kroemer O and Sukhatme GS (2016b) Learning spatial precon-
ditions of manipulation skills using random forests. In:
Humanoids.

Kuffner Jr JJ and LaValle SM (2000) {RRT-Connect}: An efficient
approach to single-query path planning. In: IEEE International
Conference on Robotics and Automation (ICRA).

Kulesza A, Taskar B and others (2012) Determinantal point
processes for machine learning. Foundations and Trends in

Prepared using sagej.cls

26 Journal Title XX(X)

Machine Learning 5(2–3).
Lakshminarayanan B, Pritzel A and Blundell C (2017) Simple

and scalable predictive uncertainty estimation using deep
ensembles. In: Advances in Neural Information Processing
Systems (NeurIPS).

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár
P and Zitnick CL (2014) Microsoft COCO: Common objects in
context. In: Europ. Conference on Computer Vision (ECCV).

McDermott D, Ghallab M, Howe A, Knoblock C, Ram A, Veloso
M, Weld D and Wilkins D (1998) PDDL: The Planning
Domain Definition Language. Technical report, Yale Center
for Computational Vision and Control.

Neal RM (2012) Bayesian learning for neural networks, volume
118. Springer Science & Business Media.

O’Callaghan ST and Ramos FT (2012) Gaussian process occupancy
maps. The International Journal of Robotics Research .

OpenAI, Akkaya I, Andrychowicz M, Chociej M, Litwin M,
McGrew B, Petron A, Paino A, Plappert M, Powell G, Ribas
R, Schneider J, Tezak N, Tworek J, Welinder P, Weng L, Yuan
Q, Zaremba W and Zhang L (2019) Solving Rubik’s cube with
a robot hand. arXiv preprint arXiv:1910.07113 .

Pan Z, Park C and Manocha D (2016) Robot Motion Planning for
Pouring Liquids. In: International Conference on Automated
Planning and Scheduling (ICAPS).

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel
O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas
J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E and others (2011) Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12(Oct): 2825–2830.

Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger
E, Wheeler R and Ng AY (2009) {ROS}: an open-source Robot
Operating System. In: IEEE International Conference on
Robotics and Automation (ICRA) Workshop on Open-Source
Software.

Rasmussen CE and Williams CKI (2006) Gaussian processes for
machine learning. The MIT Press .

Ren S, He K, Girshick R and Sun J (2015) Faster r-cnn: Towards
real-time object detection with region proposal networks.
In: Advances in Neural Information Processing Systems
(NeurIPS). pp. 91–99.

Rusu RB and Cousins S (2011) 3D is here: Point Cloud Library
(PCL). In: IEEE International Conference on Robotics and
Automation (ICRA).

Schenck C and Fox D (2017) Visual closed-loop control for pouring
liquids. In: IEEE International Conference on Robotics and
Automation (ICRA).

Schenck C, Tompson J, Fox D and Levine S (2017) Learning
Robotic Manipulation of Granular Media. In: Conference on
Robot Learning (CoRL).

Schreiter J, Nguyen-Tuong D, Eberts M, Bischoff B, Markert H and
Toussaint M (2015) Safe exploration for active learning with
gaussian processes. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases.

Srinivas N, Krause A, Kakade SM and Seeger M (2010) Gaussian
process optimization in the bandit setting: No regret and
experimental design. In: International Conference on Machine
Learning (ICML).

Srivastava S, Fang E, Riano L, Chitnis R, Russell S and Abbeel
P (2014) Combined Task and Motion Planning Through an

Extensible Planner-Independent Interface Layer. In: IEEE
International Conference on Robotics and Automation (ICRA).

Stilman M (2010) Global manipulation planning in robot joint space
with task constraints. IEEE Transactions on Robotics 26(3):
576–584. DOI:10.1109/TRO.2010.2044949.

Sutton RS, Precup D and Singh S (1999) Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence 112(1-2): 181–211.

Tamosiunaite M, Nemec B, Ude A and Wörgötter F (2011)
Learning to pour with a robot arm combining goal and shape
learning for dynamic movement primitives. Robotics and
Autonomous Systems 59(11).

Vasudevan S, Ramos F, Nettleton E, Durrant-Whyte H and Blair A
(2009) Gaussian process modeling of large scale terrain. In:
IEEE International Conference on Robotics and Automation
(ICRA).

Wang AS and Kroemer O (2019) Learning robust manipulation
strategies with multimodal state transition models and recovery
heuristics. In: IEEE International Conference on Robotics and
Automation (ICRA).

Wang Z, Garrett C, Kaelbling L and Lozano-Perez T (2018) Active
Model Learning and Diverse Action Sampling for Task and
Motion Planning. In: The IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Wang Z, Zhou B and Jegelka S (2016) Optimization as estimation
with Gaussian processes in Bandit settings. In: International
Conference on Artificial Intelligence and Statistics (AISTATS).

Wipf DP and Nagarajan SS (2008) A new view of automatic
relevance determination. In: Advances in Neural Information
Processing Systems (NeurIPS).

Xia V, Wang Z, Allen K, Silver T and Kaelbling LP (2019)
Learning sparse relational transition models. In: International
Conference on Learning Representations (ICLR).

Yamaguchi A and Atkeson CG (2016) Differential dynamic pro-
gramming for graph-structured dynamical systems: Gener-
alization of pouring behavior with different skills. In:
Humanoids.

Yamaguchi A, Atkeson CG, Niekum S and Ogasawara T (2014)
Learning pouring skills from demonstration and practice. In:
IEEE-RAS International Conference on Humanoid Robots.

Yao Z and Gupta K (2005) Path planning with general end-
effector constraints: Using task space to guide configuration
space search. In: The IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Prepared using sagej.cls

