
HARMONIC: A Multimodal Data Set of
Assistive Human-Robot Collaboration

Journal Title
XX(X):1–8
c©The Author(s) 2018

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Benjamin A. Newman*1, Reuben M. Aronson*1

Siddhartha S. Srinivasa2, Kris Kitani1, Henny Admoni1

Abstract
We present the Human And Robot Multimodal Observations of Natural Interactive Collaboration (HARMONIC) data set.
This is a large multimodal data set of human interactions with a robotic arm in a shared autonomy setting designed
to imitate assistive eating. The data set provides human, robot, and environmental data views of twenty-four different
people engaged in an assistive eating task with a 6 degree-of-freedom (DOF) robot arm. From each participant, we
recorded video of both eyes, egocentric video from a head-mounted camera, joystick commands, electromyography
from the forearm used to operate the joystick, third person stereo video, and the joint positions of the 6 DOF robot arm.
Also included are several features that come as a direct result of these recordings, such as eye gaze projected onto the
egocentric video, body pose, hand pose, and facial keypoints. These data streams were collected specifically because
they have been shown to be closely related to human mental states and intention. This data set could be of interest
to researchers studying intention prediction, human mental state modeling, and shared autonomy. Data streams are
provided in a variety of formats such as video and human-readable CSV and YAML files.
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Introduction

In human-robot collaborations, robots need to perceive,
understand, and predict the effects of their own actions as
well as the actions of their human partners. This is especially
important for assistive robots, which perform actions toward
a (sometimes implicit) human goal. To successfully produce
these assistive actions, the robot system must perceive,
understand, and predict human mental states (the human’s
goals, intentions, and future actions, often unknown to
external observers) that determine what assistance the robot
should provide.

Concretely, when people complete physical tasks, their
external behaviors—such as their eye gaze—can reveal
insights about their internal mental states. An assistance
system that can understand how these behaviors relate to the
task can predict what objects and locations of a visual scene
the human deems to be task relevant. The system can also use
these behaviors to determine whether or not interactions with
these objects or locations will take place, and qualities that
describe these interactions. This information is not known
to the system prior to completing a task, and is not relayed
to the system by the human via traditional means (e.g.
verbal or written communication). Thus understanding these
mental states in order to assist the human requires perceiving
and interpreting the human’s behavior during human-robot
collaborations.

One example of a behavior that has been well studied
in physical tasks is eye gaze. People almost exclusively
fixate their eye gaze on objects or locations involved in their
current task (Hayhoe and Ballard 2005), thereby ignoring
task irrelevant parts of a scene. Should these objects or

Figure 1. The HARMONIC data set provides multimodal
human, robot, and environmental data collected during an
assistive human-robot collaboration.

locations require a direct interaction, people fixate their
gaze on these objects and locations prior to moving their
hands to complete the interaction (Land and Hayhoe 2001a),
thus revealing the intended interaction object in advance of
any physical contact. Gaze also lingers on key points in

*Denotes equal contribution
1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
2University of Washington, Seattle, WA

Corresponding author:
Benjamin A. Newman, Robotics Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213
Email: newmanba@cmu.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

ar
X

iv
:1

80
7.

11
15

4v
2 

 [
cs

.R
O

] 
 3

1 
Ju

l 2
02

0



2 Journal Title XX(X)

the task, such as obstacles, revealing certain landmarks of
manipulation (Johansson et al. 2001). Additionally, people
gaze at objects before uttering verbal references, which
others can use to disambiguate and predict speech (Admoni
et al. 2014; Boucher et al. 2012).

Other human behaviors can also reveal current mental
states. Electromyography (EMG) signals, which record the
electrical stimulation of muscle fibers, can indicate what
action people are attempting to complete with their hands.

Additionally, pupil size has been correlated with cognitive
load (Beatty 1982; Krejtz et al. 2018; Bednarik et al. 2018),
and understanding current human body posture can both
reveal desired tasks and help to avoid potentially dangerous
collisions (Mainprice et al. 2015).

In this paper, we present the Human And Robot Mul-
timodal Observations of Natural Interactive Collaboration
(HARMONIC) data set. The HARMONIC data set contains
human, robot, and environment data collected during the
human-robot collaborative task (Figure 1). In this task,
people control an assistive robot arm to pick up bites of
food in a simple eating scenario. The 6 degree of freedom
Kinova Mico robot arm is controlled in three dimensions
via a 2 axis joystick and manual mode-switching. In some
cases the robot provides additional assistance through shared
autonomy (Javdani et al. 2018).

Though the data were collected during an assistive eating
task, their usefulness extends beyond the specific domain of
eating. The manual condition can be used to study human
teleoperation in the general case, for example with tasks
using simplified grippers such as vacuum tooling. When
combined with the shared autonomy conditions, these data
can be used to study co-manipulation across individuals and
varying levels of robot agency. Included in the data are a wide
array of nonverbal behaviors situated in a real-world task
defined with a clear goal and thus, is relevant for a variety
of human-robot collaborations.

Human behavioral data include egocentric RGB videos,
eye gaze positions relative to these videos, infrared (IR)
videos of both eyes, stereo, third-person video of the
participant, and EMG recordings on the joystick-controlling
arm. Robot related data include joystick control inputs
from the user, the control input and belief distribution
calculated by the assistance algorithm, and the robot
position. Environmental data include the 3D locations of the
food morsels as well as the locations of fiducial markers.
Further information as well as an explanation as to how to
access these data is offered in the following sections.

Our data set will help researchers study the complex
human-robot dynamics of assistive teleoperation, which can
vary across individual and across different levels of robot
autonomy. For example, researchers could use this data
set to learn correlations between eye gaze and joystick
control, in order to improve the goal inference predictions
made by shared autonomy algorithms. Others might be
interested in modelling and forecasting the dynamics of
joystick inputs under differing amounts of robot assistance.
Previous research using similar data has proposed identifying
unexpected events (e.g., human errors or task failure) by
learning a normative gaze behavior model and identifying
anomalies (Aronson and Admoni 2018); the higher quality
data provided in this dataset could continue this line of

research as well as extend it to situations where the robot
provides variable levels of assistance within a unified
framework.

Prior Work

Human Interaction for Robotic Control
Eye gaze, EMG, and body pose have all been useful

signals for robotic control. Since eye gaze is a rich signifier
of intention during manipulation, both by hand (Hayhoe
and Ballard 2005; Land and Hayhoe 2001b; Johansson
et al. 2001) and by robot (Aronson et al. 2018), its use
has been explored through numerous robotic collaboration
settings, including anticipating which object a user will
request (Huang and Mutlu 2016), and triggering assistive
aid during autonomous driving (Braunagel et al. 2015).
Electromyography signals have been used for robot control
(Artemiadis and Kyriakopoulos 2010) and task monitoring
(DelPreto et al. 2018).

Additionally, there has been work in learning and
leveraging human policies (using keyboard input) (Reddy
et al. 2018b,a) and attention models (using keyboard input
and eye gaze) (Zhang et al. 2018) for both assisted and
shared robot control in Atari games in an arcade learning
environment (Bellemare et al. 2012). HARMONIC provides
a more realistic environment for studying such interactions.
By making this data set available, we intend to enable further
research into these control methods.

Multimodal Data Sets in Human Robot
Interaction

Multimodal data sets have garnered interest in many
different communities, such as psychology (Xu et al. 2013),
computer vision (Pirsiavash and Ramanan 2012; Sigurdsson
et al. 2018a,b; Damen et al. 2018; Fathi et al. 2012; Shu
et al. 2016), human-robot interaction (Azagra et al. 2016;
Ben-Youssef et al. 2017; Jayagopi et al. 2013; Sheikhi and
Odobez 2012; Stefanov and Beskow 2016), and natural
language processing (Bastianelli et al. 2014). These data sets,
though, can be difficult to collect at a large scale. This can be
due to the increasing engineering demand required with each
additionally desired modality, physically collocating robots
and humans, and the need to respect humans’ privacy rights.
This leads to many multimodal data sets including either few
participants or few data modalities. In addition, these data
sets are rarely designed to study direct, physical human robot
collaborations in which the human and robot act in similar
spaces. HARMONIC gives researchers the opportunity to
study direct human robot collaboration in the form of a large
scale data set in both the number of available modalities
as well as the number of participants. Here, we compare
how HARMONIC relates to other multimodal human robot
interaction in order to illustrate these distinctions and the
potential use of HARMONIC.
Robots in Conversational Settings The majority of publicly
released HRI data sets study the inclusion of robots
as conversational partners. To successfully incorporate
robots as part of a social conversation, it is necessary to
perceive human behavior, understand how this relates to the
conversation, and be able to synthesize similar behavior in
order to keep the conversation flowing smoothly. Much of
this work surrounds determining the human’s visual focus of
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attention (VFOA) (Jayagopi et al. 2013; Sheikhi and Odobez
2012). In these works, VFOA is a discrete representation of
eye gaze estimated from the user’s head position. Other data
sets are designed to capture unscripted conversations with a
robot (Ben-Youssef et al. 2017) by capturing conversations
through a robot’s third person video recorder. In all of these
works, no signal specific sensors (e.g. an eye gaze camera)
were used in order to capture specific human behaviors (e.g.
eye gaze).

Other conversational data sets have a linguistic focus
(Bastianelli et al. 2014). This work designs an interaction in
which a human commands a robot to perform a specific task,
and contains many different views of the language spoken.
Due to the focus on verbal communication, this data set does
not give researchers the ability to understand how nonverbal
behaviors may be utilized in order to understand the intent
behind the human’s command.

Finally, perhaps the most similar data set to HARMONIC
(in terms of data streams collected) again focuses on
predicting the VFOA during a conversation (Stefanov and
Beskow 2016). Unlike other works focusing on VFOA, this
data set does capture eye gaze explicitly through the use of
a Tobii eye tracker (Tobii 2017). Thus, this work studies
how gaze changes between structured and unstructured
conversation with and without the presence of a robot. This
data set is not designed, however, to study these nonverbal
behaviors in physical collaborations.

In all of these situations, the behaviors collected
for analysis are centered around non-collaborative tasks.
HARMONIC provides the opportunity to study how these
behaviors may be interpreted in order to provide better
assistance during collaborative tasks.

Robot as Student The Multimodal Human-Robot Interac-
tion Dataset (Azagra et al. 2016) is designed for interac-
tive object learning through human guidance. This data set
presents a situation in which a human uses a small number
of task specific behaviors in order to teach the robot about
object models. This data set is intended to instruct the robot
by leveraging a human’s innate teaching ability, as opposed
to studying physical human-robot collaboration.

Humans teaching robots has also been studied in
psychology (Xu et al. 2013). Here, researchers studied how
humans’ eye gaze patterns changed as a robot displayed
gaze patterns that were designed to emulate the gaze patterns
displayed by people who employ different styles of learning.
Again, this task is different from a direct collaboration such
as our shared autonomy task. Additionally, this data set does
not seem to be publicly available.

Machine Learning and Computer Vision
Surprisingly, our data set is similar to those from the

machine learning and computer vision communities. The
tasks studied in these data sets often include non-scripted,
egocentric videos of daily activities (Damen et al. 2018),
gaze prediction for egocentric videos (Fathi et al. 2012),
action recognition in third person video (Pirsiavash and
Ramanan 2012; Sigurdsson et al. 2018a), relating first and
third person videos as a proxy for theory of mind (Sigurdsson
et al. 2018b), and learning about human social affordance
from a third person view (Shu et al. 2016). These data sets
include large amounts of potentially relevant data for human

robot collaboration, but most importantly, they do not contain
interactions with a robot. While these data sets may be useful
for an initial understanding of human behavior, they do not
provide insights into how these behaviors manifest in human
robot collaborations.

Data Collection Procedure
This section presents a brief overview of the user study and

robot system in order to explain the conditions under which
the data streams were recorded.

Participants
Twenty-four participants (13 female) were recruited from

the Pittsburgh area. Seventeen were between the ages of
18–24, four between 25–30, one between 31–35, and two
between 41–45. The participant pool was screened for prior
experience using this robot arm in similar studies and, thus,
were novices at the task. The experiment took place in the
Human And Robot Partners (HARP) Lab on the Carnegie
Mellon University campus. Participants were compensated
$15 for one and a half hours of their time.

Protocol
Participants controlled a robot arm, attempting to position

a fork above one of three marshmallows placed on a plate
(see Fig. 1). They controlled a robot with a two-axis joystick
using modal control: the joystick’s two axes moved the
end-effector of the robot in x and y, z and yaw, or pitch
and roll. A joystick button allowed participants to cycle
between control configurations when pressed for less 500
milliseconds. When the task was completed (that is, once
a participant was satisfied with the fork’s position or had
given up on the task), the participant held down the same
joystick button for longer than 500 milliseconds. This action
triggered an autonomously executed plan in which the robot
moved down to the height of the plate and speared the
marshmallow (conditional on the proper positioning of the
fork). Finally, the robot arm moved into a serving position
near the participant’s mouth. This concluded the trial, and
the robot automatically reset to the starting configuration.

Participants were given a brief introduction as to the
purpose of the study and then began a five-minute
familiarization period, in which they controlled the robot
in teleoperation mode and data were not recorded. Next,
participants were fitted with eye gaze and EMG sensors
(described below). They performed the task five times in
sequence for each of four assistance modes (described
in the next section). Assistance mode order was fully
counterbalanced among participants. After each block of
five trials, participants were given a brief survey to record
their subjective perceptions about the algorithm. Once the
final survey was completed, participants were presented
with a survey that compared all conditions through ranked
preference as well as free response.

Assistance Conditions
Participants operated the robot in each of four different

assistance conditions: fully teleoperated, two different levels
of assistance according to the shared autonomy framework
(Javdani et al. 2018), and a fully autonomous robot.

The following is a brief description of how assistance
is calculated; a full description is available in a prior
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publication (Javdani et al. 2018). The combined human-
robot system is modeled as a Partially Observable Markov
Decision Process (POMDP) (Kaelbling et al. 1998; Sondik
1978), where the participant’s goal is represented as
one unknown member of a small set of possible goals.
Participant inputs via joystick are treated as observations.
The algorithm assumes that the user is noisily optimizing
a cost function parameterized by their unknown goal.
Therefore, the Maximum Entropy Inverse Optimal Control
(MaxEntIOC) (Ziebart et al. 2008) framework can be used to
evaluate a belief distribution over the known goal set. From
this belief state, the overall POMDP is solved by applying
the QMDP (Littman et al. 1995) approximation, which has
proved reliable for similar shared control scenarios. Our
implementation changed the original formulation slightly in
order to remove the inherent living reward, which can cause
the robot to converge on a goal even in the absence of
any positive joystick actuation. The resulting robot action
consists of a computed assistive action based on the inferred
user goal distribution combined with the original applied
user action.

To provide different assistance levels, the shared
autonomy transition function was modified slightly from
prior work. In Javdani et al. (Javdani et al. 2018), the given
transition function applies both user and robot control as
determined by aapplied = u+ a.

In order to adapt the amount of user control, the applied
action was parameterized by a value γ: aapplied = (1−
γ)u+ γa, which trades off between the relative strengths
of the user command and the robot assistance. Note that the
original shared autonomy procedure would correspond to the
case γ = 0.5 and normalizing the vector aapplied.

The four conditions corresponded to four different levels
of γ:

Direct teleoperation, γ = 0. The assistance signal a was
computed but completely discarded, so the user had full
manual control over the robot.

Low assistance, γ = 0.33. The assistance signal was
combined with the direct user control, with the user signal
weighted double.

High assistance, γ = 0.67. The assistance signal was
combined with direct user control, but the assistance signal
was more highly weighted.

Autonomous robot control, γ = 1. The user control
signal was not passed through to the robot control. It was
used for goal inference only, and the robot was autonomously
controlled based on its goal inference results.

Sensors
Eye gaze Participant eye gaze direction was captured by a
Pupil Labs Pupil (Pupil Labs, Inc. 2017; Kassner et al. 2014)
sensor. This sensor consists of a glasses-like frame with
two infrared cameras with infrared illumination mounted
below each eye for dark pupil tracking, plus a third RGB
camera oriented outward to capture egocentric video. The
eye cameras capture video at 120 Hz, and pupil labs software
detects the pupil pixel center. Before data were captured, the
pupil locations and world camera videos were calibrated by
asking the participant to look at the center of the marker
held in front of them by the researcher (“manual marker

calibration”). This calibration routine was recorded for most
participants and is made available in the calib folder.
The calibration is verified between each condition by asking
participants to look at particular places in the scene. These
checks are recorded and made available in the check
folders.
EMG Participant muscle activation while controlling the
joystick was captured using a Myo sensor (Thalmic
Labs, Inc. 2018). Due to initialization failures, these
data are only available for about 20% of the runs (see
Table 1 for full details). It consists of the EMG message,
denoting the activation of eight individual EMG sensors,
the ORI message, denoting the orientation of the arm in
roll/pitch/yaw, and the IMU message, denoting the readings
of the IMU attached to the armband.
External video Participant behavior was captured using a
Stereolabs (Stereolabs Inc. 2018) ZED camera. Left and right
videos are stored as separate MP4 files. The ZED camera
was placed on a tripod at approximately the same (marked)
location for each trial in order to capture a full-on view of the
participant and occasional views of the scene. ZED videos
are available for the 10 participants who consented to their
images being released. In all cases, offline skeleton and face
tracking information is available.

Descriptive Statistics
This data set consists of 480 trials, comprising of 20 trials

for 24 participants. The data represent about five hours of
continuous instrumented robot control. A summary of the
data available appears in Table 1.

Data Streams
The data are organized first by participant (p100-p123

reflecting the twenty-four participants). Each participant
folder contains folders for three types of recordings: calib
contains calibration passes, check contains intermediate
gaze accuracy checks, and run contains data collection
runs. These folders contain numbered subfolders indicating
the run sequence. A visual representation of selected data
streams can be seen in Fig. 2.

A single trial capture (a numbered folder) has the
following subfolders:

• text data contains exported CSV files containing
the raw data. The particular raw data streams available
are detailed in the following subsections. Additional
to the raw data, this directory contains the body
skeleton, facial, and hand keypoints generated by
running OpenPose (Cao et al. 2017; Simon et al.
2017; Wei et al. 2016) on the left and right streams
of the third person ZED videos. The outputs from
OpenPose are compiled into face, right and left hand,
and pose files for each stream of the depth camera.
For full descriptions, please refer to the OpenPose
documentation.

• stats contains a number of YAML files detailing
statistical information about the trial and overall data
stream, including the number of records, approximate
time distances between individual records, and
estimates of the times when data points may have been
dropped based on the nominal data collection frame
rate.
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Left Eye Right Eye Egocentric Video ZED Camera

Total duration (h:m:s) 5:19:26 5:10:45 5:33:44 4:44:45
Total frames 2299877 2237380 600728 512569
Nominal frequency (Hz) 120 120 30 30
Frames dropped 133301 195860 7459 94431
Coverage (%) 94.52 91.95 98.77 84.44
Present (%) 100.00 100.00 100.00 87.25
Coverage if present (%) 94.52 91.95 98.77 94.83

Joystick Robot position Myo EMG Myo IMU Myo ORI

Total duration (h:m:s) 4:56:00 5:48:05 1:10:49 1:10:53 1:10:53
Total frames 2131160 1670798 212465 212664 212659
Nominal frequency (Hz) 120 80 50 50 50
Frames dropped 114250 1680 802368 802204 802206
Coverage (%) 94.91 99.90 20.94 20.95 20.95
Present (%) 100.00 100.00 21.48 21.48 21.48
Coverage if present (%) 94.91 99.90 99.75 99.83 99.83

Table 1. Descriptive statistics of each data stream in the data set. Total duration and Total frames refer to the collective amount of
data of that signal over all trials and participants. Total duration is extracted by dividing the total frames by the nominal frequency.
Frames dropped are based on interpolating from the nominal frame rate and detecting missing data. Coverage is computed by
dividing the number of data frames by the expected number of data frames from the nominal frequency over the whole data set,
Present indicates the fraction of trials that have at least one datum of that type, and Coverage if present is the total number of data
frames divided by the expected number evaluated only if at least one datum is present in the trial.

Figure 2. A visualization of several streams from the HARMONIC data set. The top row displays the ZED video with OpenPose
skeletons overlaid, then the egocentric video captured from the Pupil camera, left eye video, one second of the calculated gaze dot,
the trajectory of the joystick, and finally the Myo activations. For the gaze dot and the joystick, lighter colors represent more recent
points in time. Each of these plots represents one second of data, sampled at 30 FPS.

• videos contains the Pupil video files (eye0.mp4,
eye1.mp4 and world.mp4) exported as MP4 files
using the H.264 video codec (Richardson 2010).
Additionally included are the timestamps of each
frame as either numpy (*.npy) files, raw text
(*.txt), or CSV (*.csv).

• processed contains a number of new formats of
data extrapolated from the underlying data (e.g. a

video of the egocentric recording with a dot overlaid
at the gaze point).

Timing and synchronization

All data points were timestamped on collection and stored
as either 32 or 64-bit floating point values in number
of nanoseconds from the Unix epoch. The CSV files in
text data provide these data in several columns.
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For ease of use, two common indices are pro-
vided for all data streams. The world index field
gives the egocentric video frame number correspond-
ing to each data point. A second common index,
world index corrected, provides a second index into
the egocentric video, with a correction for dropped video
frames. The world index corrected value approxi-
mates a common 30Hz clock running throughout the trial.
For more sophisticated data alignment, please use the pro-
vided timestamps.

Eye Gaze
Eye gaze videos were recorded at 120 Hz and located

in the videos folder as eye0.mp4 and eye1.mp4,
encoded using the H.264 video codec (Richardson 2010).
Frame level timestamps are available in correspond-
ing NumPy binary files, eye0 timestamps.npy and
eye1 timestamps.npy. The automated pupil detection
results for each eye are in the text data folder, under
pupil eye0.csv and pupil eye1.csv. Field names
correspond to the output of the 3D pupil detection process in
Pupil Labs, as described in their documentation.

Egocentric video is available in the videos folder
as world.mp4 (encoded using the H.264 codec
(Richardson 2010)), with frame level timestamps located in
world timestamps.npy. Calculated gaze position
within the corresponding video frame is given in
text data/gaze positions.csv. See the pupil
labs documentation for a full description of fields. The fields
norm pos x and norm pos y correspond to the (x, y)
pixel in coordinates normalized to the egocentric video
frame size, with the origin point in the top left.

Data used to calibrate between pupil data
and gaze point are stored in the text files
pupil cal eye0.csv, pupil cal eye1.csv,
and world cal positions.csv. These data are the
same between runs of the same participant and is provided as
a convenience to recalculate a calibration if desired. Details
of the current calibration method can be found in the Pupil
Labs software documentation.

Third Person Video
ZED videos were recorded using the Stereolabs ZED

software, version 1.1.0. Data were initially stored as
a Stereolabs SVO file, including separate left and
right videos and a common timestamp. Videos were
extracted to the videos directory as zed left.mp4
and zed right.mp4 encoded using H.264 (Richardson
2010). The timestamps were rescaled to the Unix epoch and
stored as an integer number of nanoseconds from the epoch
in zed ts.txt, as well as floating-point NumPy format
in zed timestamps.npy. The zed corrs.csv stores
the correlations to a common index, as previously explained.

Additional sensor data
The following data streams are available in the

text data directory, having been extracted or calculated
from the original binary.

• control mode.txt contains one character refer-
ring to that trial’s assistance condition. Zero represents
direct teleoperation and 3 represents robot control.

• morsel.yaml is a YAML file with the transforms for
each detected morsel positions in the robot base frame.

• ada joy.csv stores raw joystick input provided by
the user. Joystick input is only provided when changed
from the previous message leading to inconsistent
timing in the raw data. To rectify this, joystick
data have been resampled to a common 120 Hz
frequency and missing data filled by the previous
value. Duplicate data are noted by unchanged headers.

• input info.csv contains the user input to the
robot. The robot mode field denotes which control
mode the robot is in (x/y, z/yaw, or pitch/roll),
and the rest of the fields denote the applied twist
corresponding to the user’s joystick input.

• assistance info.csv contains the outcome of
the shared autonomy algorithm. It stores the current
probability inferred for each goal and the resultant
twist applied to the robot at that timestep.

• joint states.csv contains the information for
each joint of the robot.

• robot position.csv contains the cartesian posi-
tion of each of the robot links, as calculated
from the forward kinematics using the data from
joint states.csv.

• myo emg.csv contains EMG output of the Myo.
• myo imu.csv contains IMU output of the Myo.
• myo ori.csv contains orientation data received

from the Myo sensor.

Known Issues

Missing Data
Due to computational load, certain data streams may

have periodic dropouts. The stats directory contains
some info on when and how often these occur, and
overall statistics are given in Table 1. The missing data
are particularly exacerbated for the Myo signal due to
the data recording software failing to start. Finally, due
to permissions restrictions, unedited ZED video capture is
available for 10 participants, de-identified video (video with
faces blurred) is available for 13 participants, and video for
1 participant is unavailable for release. Within the released
participants, some initialization failure means that videos of
certain trials are occasionally missing.

Accessing the Data
The data will be hosted on the HARP Lab website:

http://harp.ri.cmu.edu/harmonic. Several files
are provided for download: harmonic data.tar.gz,
a compilation of all of the data, (∼ 68 Gb),
harmonic minimal.tar.gz, consisting of the
text data, videos, and stats directories, (∼
15 Gb), harmonic text.tar.gz, consisting of
the text data directory, (∼ 4 Gb), and finally
harmonic sample.tar.gz, consisting of all of
the data for a single participant, (∼ 303 Mb). The data
sets will be versioned using semantic versioning, and that
page will maintain a log of all changes that may be made
to the data set after release. Furthermore, our GitHub
contains a repository for basic processing tools located here:
https://github.com/HARPLab/harmonic_cpp.
Finally, for the original robot control code, follow this
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link to a fork of the publicly available implementation
of the shared autonomy code we used: https:
//github.com/HARPLab/ada_meal_scenario
(Javdani et al. 2015). Our robot control code is on the
branch: “adjustable”.

Conclusion
We presented a data set of humans who performed a

food acquisition task by controlling a robot manipulator.
During this task, a variety of types of participant data were
collected, including eye gaze information, electrymyography
of the controlling arm, stereo video, and robot controller
information. This data set enables research into human-robot
collaboration and multimodal human behavior analysis.

Acknowledgements
This work was supported by the National Science

Foundation (IIS-1755823) and the Paralyzed Veterans of
America. The first author is supported by a National Science
Foundation Graduate Research Fellowship (DGE 1745016).

Conflicts of Interest
Siddhartha Srinivasa is a Multimedia Editor at the

International Journal of Robotics Research (IJRR). The
authors declare no other conflicts of interest.

References

Admoni H, Datsikas C and Scassellati B (2014) Speech and gaze
conflicts in collaborative human-robot interactions. In: Annual
Conference of the Cognitive Science Society (CogSci). pp. 104–
109.

Aronson RM and Admoni H (2018) Gaze for error detection during
human-robot shared manipulation. In: RSS Workshop: Towards
a Framework for Joint Action.

Aronson RM, Santini T, Kubler TC, Kasneci E, Srinivasa SS and
Admoni H (2018) Eye-hand behavior in human-robot shared
manipulation. In: ACM/IEEE International Conference on
Human-Robot Interaction (HRI).

Artemiadis PK and Kyriakopoulos KJ (2010) Emg-based control
of a robot arm using low-dimensional embeddings. IEEE
Transactions on Robotics 26(2): 393–398. DOI:10.1109/TRO.
2009.2039378.

Azagra P, Mollard Y, Golemo F, Murillo AC, Lopes M and Civera J
(2016) A Multimodal Human-Robot Interaction Dataset. NIPS
2016, workshop Future of Interactive Learning Machines. URL
https://hal.inria.fr/hal-01402479. Poster.

Bastianelli E, Castellucci G, Croce D, Iocchi L, Basili R and
Nardi D (2014) Huric: a human robot interaction corpus.
In: Chair) NCC, Choukri K, Declerck T, Loftsson H,
Maegaard B, Mariani J, Moreno A, Odijk J and Piperidis S
(eds.) Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14). Reykjavik,
Iceland: European Language Resources Association (ELRA).
ISBN 978-2-9517408-8-4.

Beatty J (1982) Task-evoked pupillary responses, processing load,
and the structure of processing resources. Psychological
Bulletin 91(2): 276.

Bednarik R, Bartczak P, Vrzakova H, Koskinen J, Elomaa
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