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Abstract
In recent years, autonomous robots have become ubiquitous in research and daily life. Among many factors, public
datasets play an important role in the progress of this field, as they waive the tall order of initial investment in hardware
and manpower. However, for research on autonomous aerial systems, there appears to be a relative lack of public
datasets on par with those used for autonomous driving and ground robots. Thus, to fill in this gap, we conduct a data
collection exercise on an aerial platform equipped with an extensive and unique set of sensors: two 3D lidars, two
hardware-synchronized global-shutter cameras, multiple Inertial Measurement Units (IMUs), and especially, multiple
Ultra-wideband (UWB) ranging units. The comprehensive sensor suite resembles that of an autonomous driving car, but
features distinct and challenging characteristics of aerial operations. We record multiple datasets in several challenging
indoor and outdoor conditions. Calibration results and ground truth from a high-accuracy laser tracker are also included
in each package. All resources can be accessed via our webpage https://ntu-aris.github.io/ntu_viral_
dataset/.
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1 Introduction
Over the years, autonomous systems have made significant
progress. One of the most crucial factors for these
advancements can be attributed to the public data suites.
On one hand, these datasets can waive the inhibitive
requirements on budget and manpower, e.g. hardware
development, calibration, field operations, etc. for individual
researchers. Hence, researchers can easily investigate new
navigation schemes and put them to test across a variety
of scenarios and environments. On the other hand, the
benchmark tools also help streamline the verification,
evaluation and comparison between proposed methods, thus
allowing navigation methods to be fairly rated and ranked
based on a common basis.

Indeed, there are many datasets for a variety of tasks on
autonomous vehicles, e.g. object recognition, stereo depth
perception, scene understanding, traffic analysis, etc. In this
paper we only focus on the datasets that can be used to
investigate navigation capability of aerial vehicles (AVs)
in GPS-denied environments, Fig. 1 illustrates a range of
such environments where the application of autonomous AV
system is being investigated. We review some of the datasets
that are deemed most relevant to our targeted applications
above. Table 1 gives a summary of these datasets and their
features, to the best of our knowledge.

1.1 Related works: the ground-air dichotomy
From Table 1, it is clear that there exist two distinct groups
of datasets. For those collected from cars or ground robots,
a large number of sensors is often present, especially lidar.
For example, the MIT DARPA dataset is comprised of 12 2D

Figure 1. Typical inspection applications for autonomous AVs
in GPS-denied environments: (a) building complex, (b) cranes,
(c) cargo ships (d) hangar

lidars and 1 64-channel lidar, along with a significant number
of cameras. Over the years, there appears to be a decline of
interest in 2D lidar (whose role has been gradually replaced
by 3D lidar), along with a reduced number of cameras.
This reflects the trajectory of autonomous driving research in
the last decade, where in the beginning sensors had limited
capability and variety, thus quality was compensated by
quantity. As the field progresses, sensors have become much
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Table 1. Notable public datasets divided by their ground and air focuses.

Dataset
Sensor used

Ground truth
Mobile

PlatformIMU Camera Lidar UWB
MIT DARPA,
Huang et al. (2010)

N/A
4 Point Grey: 4×376×240 @10Hz
1 Point Grey: 752×480 @22.8Hz

3D Velodyne HDL-64E @15Hz
12 2D-SICK @75Hz

N/A GPS/INS Car

Ford Campus,
Pandey et al. (2011)

acc/gyr @100Hz LadyBug 3: 6×1600×600 @8Hz
3D-Velodyne HDL-64E @10Hz
2 2D-Riegl LMS

N/A GPS/INS Car

KITTI,
Geiger et al. (2013)

acc/gyr @10Hz
2 Point Grey (gray): 2×1392×512 @10Hz
2 Point Grey (color): 2×1392×512 @10Hz

3D-Velodyne HDL-64E @10Hz N/A RTK GPS/INS Car

NCLT,
Carlevaris-Bianco et al. (2016)

acc/gyr @100Hz LadyBug 3: 6×1600×1200 @5Hz
3D-Velodyne HDL-32E @10Hz
2 2D-Hokuyo @10-40Hz

N/A
RTK-GPS
LIDAR SLAM

Wheeled
Robot

Oxford RobotCar,
Maddern et al. (2017)

acc/gyr @50Hz
BumbleBee: 2×1280×960 @16Hz
3 Grasshoper2: 3×1024×1024 @11.1Hz

2 2D-SICK @50Hz
3D-SICK @12.5Hz

N/A GPS/INS Car

KAIST Urban,
Jeong et al. (2019)

acc/gyr @200Hz
FOG @1000Hz

FLIR (color): 2×1280×560 @10Hz
2 3D-Velodyne-16 @10Hz
2 2D-SICK @100Hz

N/A SLAM Car

Newer College,
Ramezani et al. (2020)

acc/gyr @650Hz D435i (Infrared): 2×848×480 @30Hz 3D-Ouster-64 @10Hz N/A 6DOF ICP Handheld

NTU VIRAL (Ours)
acc/gyr/mag
@385Hz

IDS (gray): 2×752×480@10Hz, 2 3D-Ouster-16 @10Hz
4 on UAV
3 anchors

3D Laser
Tracker

UAV

UMA-VI,
Zuñiga-Noël et al. (2020)

acc/gyr @250Hz
BumbleBee: 2×1024×768 @12.5Hz
IDS (gray): 2×752×480 @25Hz,

N/A N/A SLAM Handheld

UZH FPV,
Delmerico et al. (2019)

acc/gyr
@500/1000Hz

Fisheye stereo: 2×640×480 @30Hz
mDAVIS: 346×260 + event @50Hz

N/A N/A
3D Laser
Tracker

UAV

TUM VI,
Schubert et al. (2018)

acc/gyr @200Hz IDS (gray): 2×1024×1024 @20Hz N/A N/A 6DOF MoCap Handheld

Upenn Fast Flight,
Sun et al. (2018)

acc/gyr @200Hz FLIR (gray): 2×960×800 @40Hz N/A N/A GPS UAV

Zurich Urban MAV,
Majdik et al. (2017)

acc/gyr @10Hz GoPro (color): 1920×1080 @30Hz N/A N/A
Aerial
Photogrammetry

UAV

EuRoC,
Burri et al. (2016)

acc/gyr @200Hz 2 MT9V034: 2×752×480 @20Hz N/A N/A
6DOF MoCap /
3D Laser
Tracker

UAV

more compact and efficient, along with better software and
algorithms.

For aerial platforms, also referred to as Unmanned Aerial
Vehicles (UAVs), Micro Aerial Vehicles (MAVs), aerial robots
or drones in the literature, we can see a clear contrast to
the ground-based datasets. In this case, due to the payload
constraint, 3D lidar is often left out of consideration. Instead,
the focus is often on high frame-rate camera systems for
self-localization capability at high speed and aggressive
maneuvers, often under low lighting conditions, with the goal
of pushing the capability of Visual-Inertial Odometry (VIO)
and vision-based Simultaneous Localization and Mapping
(SLAM) systems to cover ever more extreme conditions.

It can be seen that the dataset we are presenting in
this paper falls in the middle of the two aforementioned
classes. For those datasets using cars and wheeled robots,
the vehicle’s trajectory is often close to the ground plane,
without much abrupt translation or rotation motions. This is
an advantage that has been well exploited in many navigation
systems, especially the lidar-centric ones. However, they
may no longer be effective with drastic changes in roll,
pitch and vertical motions commonly seen in a UAV
dataset. Besides, due to their long endurance, ground
vehicle datasets can be conducted over a long period of
time and a large environment, and have access to GPS.
In these cases GPS data can be used for loop closure
and/or ground truth, however it has significant error and
reduces the reliability and comparability of the analysis. In
contrast, the UAV datasets often have a shorter timespan
and cover a smaller environment, which make them less

representative of real-world scenarios. However, for semi-
controlled environment, UAV datasets can feature some
artificial landmarks, i.e. visual markers or ranging anchors,
to help reduce localization drift, which is applicable in most
targeted industry inspection applications. Moreover, we can
also employ high-accuracy laser tracking methods to provide
ground truth, which is desirable for a stringent analysis and
comparison of the localization methods.

1.2 A new dataset for autonomous drone.

Despite the aforementioned differences in the two classes of
datasets, there is no doubt on their usefulness for the intended
applications. As mentioned earlier, for the applications of
aerial vehicles in our interest (Fig. 1), there appears to be
an absence of compatible public dataset for the relevant
scenarios. This motivates us to construct a novel sensor setup
and offer a new benchmark suite for advanced autonomous
aerial systems that can be adopted by the industry in the near
future. Fig. 2 gives an overview of sensor setup.

Briefly speaking, we employ a high-frequecy IMU and
a stereo camera rig typical of UAV systems (Sec. 2.1, Sec.
2.3). Next, thanks to the current advances in lidar hardware
that have brought down its size and price, we find that it is
due time 3D lidar can be popularly used on aerial platforms,
thanks to many benefits of 3D lidar over a pure vision system.
Hence, we integrate two 3D lidars on our UAV platform.
Different from previous datasets with 3D lidar mounted on
ground vehicles, ours features a much more complex motion
in 3D space with frequent drastic rotational and translational
moves. More details on the lidars can be found in Sec. 2.2.

Prepared using sagej.cls
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Figure 2. The drone setup used for the data collection. A DJI
M600 Hexacopter is used to carry the payload comprising of 1
IMU, 2 lidars, 2 Cameras, 4 UWB ranging nodes, and a crystal
prism to be tracked by a total station to provide ground truth.

In addition to the aforementioned sensors, as highlighted
in Table 1, our dataset also features UWB range
measurements. Indeed, it is a consensus that drift is an
intrinsic feature of onboard self-localization. However, our
recent works have shown that by using range measurements
to some fixed landmarks in an environment, one can reduce,
or even eliminate such drift Nguyen et al. (2020b,a). For
semi-controlled environments such landmarks can be easily
deployed without much effort. More information on this
sensor is given in Sec. 2.4.

Finally, we employ a laser tracking system to provide
high-accuracy1 ground truth for the position estimate. The
experiments are conducted at various environments on
the campus of Nanyang Technological University (NTU),
including both indoor and outdoor conditions. The datasets
are also recorded in rosbag format, which can be directly
used on Robot Operation System (ROS). We also include
some codes that can be used for the analysis of the
localization information using our datasets. Several plug-
and-play examples of using state-of-the-art localization
methods with our datasets such as OpenVINS Geneva et al.
(2020), VINS-Fusion Qin et al. (2018), A-LOAM Zhang and
Singh (2018), LIO-SAM Shan et al. (2020), M-LOAM Jiao
et al. (2020) are also provided. All of these resources can be
found on our data suite’s web page https://ntu-aris.
github.io/ntu_viral_dataset/.

The rest of this paper is organized as follows: Sec.
2 presents our hardware setup and the intended purpose
for each sensor. Sec. 3 presents the description of the
environments and the flight tests. Sec. 4 describes the
organization, format, definitions and convention used in the
datasets. Sec. 5 explains the calibration procedures. Sec. 6
describes our recommendation for evaluation. Sec. 7 lists out
the known issues in our implementation.

2 Sensor setup

A DJI M600 Pro2 hexacopter is used to carry the sensor
setup (Fig. 2). Table 2 provides a summary of the sensors
and their corresponding specifications. All of the messages

are timestamped by their publish time on ROS. Below, we
provide a more detailed description of these sensors.

2.1 IMU:
A VectorNav VN1003 rugged IMU is employed as the main
inertial sensor in our system. It is also chosen to be the center
of the body frame where the extrinsics of other sensors are
referenced to. The sensor is configured to publish data at
400Hz, though the effective rate is roughly 385Hz. Note that
besides the angular velocity and acceleration measurements,
the topic /imu/imu also contains the orientation estimate
by the device’s internal Extended Kalman Filter, which also
fuses magnetometer with the aforementioned measurements.

2.2 3D lidars:
In this work, two 16-channel OS1 gen14 lidars are configured
so that the so-called horizontal lidar can scan the objects
in the front, back, left, and right sides of the UAV, while
the other so-called vertical lidar can scan the ground, front
and back sides. Thus, the two can complement each other
well to maintain good observation on the environment. Note
that each lidar has an internal IMU that outputs angular rate
and acceleration measurements at 100Hz rate. Each lidar is
loaded with the latest V2 firmware for additional fields such
as reflectivity, time, and ambient. These quantities are also
recorded in the bag files.

2.3 Stereo cameras
Two uEye 1221 LE5 monochrome-global-shutter cameras
are mounted on the drone, facing directly forward. The
two are synchronized by an external trigger to capture
and publish image at almost the same time. Typically, the
difference in the timestamps of the images triggered at the
same time is below 3 ms. This is necessary if one needs to set
a threshold to synchronize the images in the buffer for stereo
processing such as in VINS-Fusion Qin et al. (2018).

2.4 UWB ranging sensors
The UWB ranging network is setup in a similar manner with
our previous works Nguyen et al. (2020b, 2021a, 2018). Two
Humatics P440 UWB radios6, given the IDs 200 and 201 in
the network, are mounted on the UAV, each has two antennae
A and B extended to the four corners. Hence we have a total
of 4 ranging nodes on the UAV: 200.A, 200.B, 201.A, 201.B
(see Fig. 2). Another three UWB nodes with IDs 100, 101,
102 are used as anchors. As such in total we have 12 UAV-
to-anchor ranging pairs.

The ranging sequence is programmed in a way such that
all 12 ranging pairs are executed equally. Each ranging
step takes 25 ms. Hence with only one UAV ranging node,

1https://github.com/ntu-aris/ntu_viral_dataset/
blob/gh-pages/docs/Leica_Nova_MS60_DS.pdf
2https://www.dji.com/sg/matrice600-pro
3https://www.vectornav.com/products/VN-100
4https://ouster.com/products/os1-lidar-sensor
5https://en.ids-imaging.com/store/ui-1221le-rev-2.
html
6https://humatics.com
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Table 2. The sensors used in this dataset and their corresponding specifications

No. Sensor Model Topic name Message Type Rate (Hz)

1
IMU
(Sec. 2.1)

VectorNav
(VN100)

/imu/imu sensor msgs/Imu 385
/imu/magnetic field sensor msgs/MagneticField 385
/imu/temperature sensor msgs/Temperature 385

2
Horizontal Lidar
(Sec. 2.2)

OS1-16 Gen1
/os1 cloud node1/imu sensor msgs/Imu 100
/os1 cloud node1/points sensor msgs/PointCloud2 10

3
Vertical Lidar
(Sec. 2.2)

OS1-16 Gen1
/os1 cloud node2/imu sensor msgs/Imu 100
/os1 cloud node2/points sensor msgs/PointCloud2 10

4
Camera 1
(Sec. 2.3)

uEye 1221 LE
(monochrome)

/left/image raw sensor msgs/Image 10

5
Camera 2
(Sec. 2.3)

uEye 1221 LE
(monochrome)

/right/image raw sensor msgs/Image 10

6
UWB Sensors
(Sec. 2.4)

Humatics P440
/uwb endorange info uwb driver/UwbRange 68.571
/uwb exorange info uwb driver/UwbEcho 5.714
/nodes pos sc nav msgs/Path 5.714

7
3D Laser Tracker
(Sec. 2.5)

MS60 Leica
TotalStation

/leica/pose/relative
geometry msgs/PoseStamped
(orientation is not set)

20

Figure 3. Illustration of the ranging scheme and the external
frame of references. Refer to Sec. 2.4 for detailed descriptions.

ideally one can expect 40 Hz of ranging measurements on
the topic /uwb endorange info. However, in our case,
there are two ranging nodes (we program node 200 to range
to one anchor while 201 ranges to another), thus we can
obtain twice the amount of range measurements, i.e. 80
Hz. Nevertheless, we reserve some steps in the sequence
to let the anchors range among themselves and broadcast
the measurements. Therefore the rate of the UAV-to-anchor
ranges, i.e. the /uwb endorange info topic is reduced
to 68.571 Hz, while the rate of anchor-to-anchor ranges,
published over the /uwb exorange info topic, is 5.714
Hz, as shown in Tab. 2. Fig. 3 gives a simple illustration
of the ranging incidents over two time steps. Note that
due to the fact that the transmission power of the UWB
depends on the relative orientation between the antennae of
the the two nodes, some ranging steps may fail to return, or
return an unreliable measurements. Thus the effective rate of
UWB measurement can vary through time, depending on the
position of the UAV relative to the anchors during flight.

The anchors are placed on tripods and they are adjusted to
have the same height from the ground. Thus, their nominal z
coordinate is 1.5m. If we select anchor 100 to be at the origin,
and anchor 101 to be on the +x direction, and +z direction is
from the ground to the anchor nodes, then we can establish

a coordinate system using the right hand rule (the frame {W}
in Fig. 3). Using this arrangement and the distances from the
topic /uwb exorange info we can easily estimate the
coordinates x∗

1, x∗
2, y∗2 . The coordinates of the anchor nodes

are published in the /nodes pos sc topic.

2.5 Ground truth
A Leica Nova MS60 MultiStation7 is used to track a crystal
prism mounted on the top of the UAV to provide ground
truth for position estimate. Note that the coordinate frame
of this ground truth system is aligned with gravity during
the startup, and its z axis points at the opposite direction
of the gravity (Fig. 3). Moreover, since there is a significant
displacement between the prism and the body frame’s origin,
the accuracy analysis needs to take this into account. Sec. 6
discusses this issue in details.

3 Dataset characteristics
The datasets are divided into three groups based on the
environments, namely the EEE, SBS and NYA sequences.
The environments include both indoor and outdoor locations
on NTU campus. Fig. 4 presents some overviews of these
environments. Tab. 3 gives a brief summary of the sequences
and their statistics.

3.1 The EEE sequences
Three datasets are collected at the carpark in the center of the
School of EEE, NTU, hence named the EEE sequences. The
area is surrounded by tall building blocks on all side which
can be conducive for lidar-based SLAM. Also, reliable visual
features can be detected on nearby objects such as trees, road
markings, and buildings (see Fig. 4a).

7https://Leica-geosystems.com/en-sg/products/
total-stations/multistation/Leica-nova-ms60
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(a) EEE environment (b) SBS environment (c) NYA environment

Figure 4. Environments where the datasets are collected

Table 3. Some statistics of each sequence

Name Time Path
Length

Average
Vel.

Average
Ang. Vel

eee 01 398.7 s 237.07 m 0.677 m/s 0.119 rad/s
eee 02 321.1 s 171.07 m 0.585 m/s 0.101 rad/s
eee 03 181.4 s 127.83 m 0.800 m/s 0.184 rad/s
nya 01 396.3 s 160.30 m 0.463 m/s 0.150 rad/s
nya 02 428.7 s 249.10 m 0.657 m/s 0.141 rad/s
nya 03 411.2 s 315.46 m 0.821 m/s 0.125 rad/s
sbs 01 354.2 s 202.30 m 0.625 m/s 0.101 rad/s
sbs 02 373.3 s 183.57 m 0.573 m/s 0.145 rad/s
sbs 03 389.3 s 198.54 m 0.601 m/s 0.120 rad/s

3.2 The SBS sequences

The SBS sequences are collected at an open square next to the
School of Biological Sciences, NTU. This area is surrounded
by some low-rise buildings with large glass surfaces. Also,
visual features may only be detected on objects far way,
which can produce noisy depth. The drone’s trajectories in
these sequences are shown in Fig. 5.

Figure 5. Trajectories of the AV in the SBS sequences as
recorded by the Leica laser tracker.

3.3 The NYA sequences

The auditorium at NTU, shown in Figure 4c, represents a
challenging environment for visual SLAM. These datasets
feature some significant challenges. For e.g. semi-transparent
surfaces can be an issue for lidar SLAM, while flight
dynamics and low lighting conditions are difficult for visual
SLAM. Moreover, we also notice significant multi-path
effects and signal loss on the UWB measurements (Fig. 6).

4 Dataset format

4.1 Files organization
The datasets are recorded into rosbag files during the flight,
and saved on the memory of the drone’s onboard computer
(DJI Manifold 2C). The ground truth data is recorded on a
seperate computer, and is later temporally synchronized and
merged with the bag from the drone’s onboard computer,
yielding a single rosbag for each flight test.

Each rosbag file is accompanied by a set of files
containing the calibration parameters for each sensor. Fig.
7 illustrates the content of such a calibration file. These files
document the coefficients of the camera model, sensor-to-
body coordinate transforms, IMU noise, camera-IMU time
delay, and can be parsed using opencv and ROS APIs. In
addition, some accessories to utilize the pointclouds and
UWB data are also provided with links on the data suite’s
web page.

4.2 Units and timestamps
All of the measurements are reported in SI units except
the timestamps of the messages are in ros/Time8 format,
which can be found in the header.stamp field of the
messages. The timestamps are assigned by each sensor’s
driver when the message is published over ROS.

In addition, the timestamp of each lidar pointcloud
message matches with the the end-time of the scan.
Moreover, the pointcloud also contains the timestamp of each
point relative to the start-time of the scan. This will be useful
if one seeks to perform deskew operation on the pointcloud.

4.3 Message types
The message types for most sensors are standard ROS
messages, however there are some custom definitions
for UWB. Specifically, for the UWB messages of
type uwb driver/UwbRange, besides the distance
measurement, the message also contains other information
such as signal over noise ratio, line-of-sight self-diagnosis,
antenna coordinates in the body frame, and the anchor
coordinates, which are fixed by using the first messages
in /nodes pos sc. The source code that defines these
message can be found on our data suite’s web page https:
//ntu-aris.github.io/ntu_viral_dataset.

8http://wiki.ros.org/roscpp/Overview/Time
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(a) UWB ranges in sbs 03 dataset. The zoom-in plot shows a 5 cm
fluctuation in measurement when the drone was static.

(b) UWB ranges in nya 03 dataset, showing signal loss by UWB 200
mid-flight, and multi-path effect on all ranging edges

Figure 6. UWB ranges in outdoor and indoor conditions

Figure 7. Content of the calibration file camera right.yaml of
the eee 01 dataset.

4.4 Coordinate transformations

For common objects such as vectors, quaternions, rotation
matrices recorded in the rosbag files, the ROS conventions
are followed. Here we shall explain the extrinsics defined in
the calibration files.

Let us take an instance to explain the convention used
throughout the datasets. In reference to Fig. 7, notice
that the transform B

CT ∈ SE(3) ⊂ R4×4 is declared via the
parameter T Body Cam (the ”body-cam” suffix follows a
parent-child order between the two frames of reference,
following the convention of ROS and the EuRoC dataset).
This transform consists of the rotation B

CR ∈ SO(3) ⊂ R3×3

on the upper left corner and the translation B
Ct ∈ R3×1 on the

upper right corner, i.e. BCT =

[
B
CR

B
Ct

0 1

]
.

For an object A observed in the camera frame {C} with
position C

Ap and orientation C
AR, its corresponding position

and orientation in the body frame B, denoted as B
Ap and B

AR,
can be obtained by:

B
Ap = B

CR
C
Ap+ B

Ct,
B
AR = B

CR
C
AR. (1)

The object A in this case can be a 3D feature or an object
that is being tracked by the camera or the lidar, which
in a typical SLAM algorithm needs to be coupled with
the extrinsics in the estimation process. Moreover, A can
be another coordinate system that we need to convert the
coordinates from other frames of references to.

5 Sensor calibration
Sensor fusion often requires prior knowledge of the spatial
configuration of multiple sensors. This section introduces
our calibration pipelines, which is divided into two parts,
namely the rigid systems and flexible systems. The cameras
and IMU are mounted on the same rigid titanium-alloy-based
3D-printed parts. Thus, their spatial relation has very small
dynamic variance. The other sensors are flexibly mounted as
they are connected via some carbon fiber tubes or dampers.
These flexible parts will have large dynamic variance.

We first calibrate the rigid body system. The stereo
cameras are calibrated both intrinsically and extrinsically.
We then find the IMU to camera transform based on visual-
inertial alignment. For the more flexible parts, the transform
may come with more considerable variance in the spatial
relation. Therefore, we mostly use the VICON system to
calibrate between those sensors with some help from other
priors such as recognizable planes in the lab. All of the
calibration results can be verified using localization or
mapping packages.

5.1 Stereo calibration
Our first goal is to find the intrinsic and extrinsic parameters
of the stereo cameras using an approach similar to Zhang
(2000). We collect N well-synchronized stereo images in
front of a static calibration chessboard to minimize the
motion blur. Using pinhole camera and radial-tangential
distortion models, the intrinsics are calibrated using all of
the image sequences on the MATLAB calibration toolbox.
We set a threshold for the reprojection error and only use

Prepared using sagej.cls
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the smaller subset of images for the extrinsics. We find
that a large roll of chessboard pattern will enlarge the
reprojection error for this 120-degree FOV lens. Therefore,
we keep a small roll factor in calibration sequences. Finally,
we verify the calibration result by comparing the stereo-
matching reprojected depth to lidar measurement. The result
can be well aligned with the lidar. The stereo calibration
image sequence is provided in the dataset portal.

5.2 Visual inertial calibration
We calibrate and refine the intrinsic and extrinsic parameters
of IMU and cameras by using the camera-IMU calibration
procedure9 of the Kalibr package Furgale et al. (2013). In this
procedure, the initial guess of the camera intrinsic parameters
is required and we obtain them from the stereo calibration
process in the previous part. The intrinsics (biases) of
IMU are calibrated beforehand using the manufacturer’s
software10, and the correction is applied to the raw
inertial measurement. At last, we collect the visual-inertial
sequence with full 6 DOF excitation and perform the visual-
inertial calibration. We have test the calibration result using
VINS-Mono, VINS-Fusion, OpenVINS, and we can obtain
meaningful trajectories using the calibrated parameters. A
20-ms time offset between IMU and camera timestamps
is found by the Kalibr package, which is also reported in
the accompanying yaml file (Fig. 9). However this value is
just for reference, and we do not make any modification on
sensor’s timestamps. The rosbag files used for calibration can
also be found at the website.

5.3 Other flexible parts compensation and
ground truth

The dataset is captured from a payload bay mounted on
our custom DJI M600 Pro drone. Therefore, the triple GPS,
compass, and prism on top of the drone are not rigidly
connected to the payload bay, i.e. their spatial relation
can change during flight. However, this is a necessary
compromise to reduce vibration effect on the quality of
the lidar scan, camera image, and IMU. In light of these
conditions, we first use VICON to verify most of the other
extrinsic parameters by putting the VICON reflective ball
at each sensor while the drone is at rest on the floor. Then
we exert some force on the dampened payload bay to tilt it
up to some maximum angle. The maximum displacement
of the prism between static configuration and maximum
tilting angle is around 2cm. Based on our study, the drone
only exhibits small control angles with a minimized jerk
during the flight tests. Therefore, the prism measurement is
relatively accurate to represent the ground truth. Note that
we use hand-eye calibration to align the ground truth with
onboard altitude estimate obtained from the drone’s internal
barometer and IMU, which are independent from the sensors
on the payload.

To obtain a bound of the error in the temporal alignment
between ground truth and onboard sensors, we conduct
several experiments with several state-of-the-art localization
methods and calculate their Absolute Trajectory Error (ATE)
with multiple versions of ground truth that are time-shifted
by -0.5, -0.49, -0.48,. . . 0.5 seconds. The results are reported
in Fig. 8. We can see that despite using different sensor

Table 4. ATE of state-of-the-art localization methods over NTU
VIRAL datasets. The best odometry result is highlighted in
bold, and the second best is underlined. All values are in meter.

Dataset VINS-
Fusion

LIO-
SAM

MLOAM
VIRAL-
SLAM

eee 01 0.608 0.075 0.249 0.060
eee 02 0.506 0.069 0.166 0.058
eee 03 0.494 0.101 0.232 0.037
nya 01 0.397 0.076 0.123 0.051
nya 02 0.424 0.090 0.191 0.043
nya 03 0.787 0.137 0.226 0.032
sbs 01 0.508 0.089 0.173 0.048
sbs 02 0.564 0.083 0.147 0.062
sbs 03 0.878 0.140 0.153 0.054

combinations and methods, i.e. stereo camera-IMU (VINS),
lidar-IMU (LIO-SAM), and stereo camera-IMU-lidar-UWB
(VIRAL SLAM), all methods can achieve minimal ATE
within the [-0.1, 0.1] interval. Thus, we are confident that
the temporal alignment error between ground truth and
the onboard sensors is within 0.1s in the current datasets.
Table 4 presents the ATE of the SLAM frameworks without
time shift. A more comprehensive analysis can be found in
Nguyen et al. (2021b). Fig. 9 demonstrates a result of VIRAL
SLAM on one sequence.

6 Evaluation recommendations
From our experiments of state-of-the-art SLAM methods
on NTU VIRAL, we believe some issues regarding the
evaluation process merit a detailed discussion. In most cases,
after applying a navigation method on our dataset, the user
can obtain a trajectory consisting of N + 1 position estimates
of the body frame, denoted as {WBp̂tn}Nn=0, and a trajectory of
M ground truth samples of the crystal prism {LPptm}Mm=0.
From these samples, the user would like to calculate the
estimation accuracy of the method based on some metrics.
To facilitate the use of our dataset, MATLAB scripts for
this purpose are also included in the suite. We note that
some previous works such as Sturm et al. (2012); Zhang and
Scaramuzza (2018) might have briefly addressed some of the
issues discussed below. However, we think a more formal
description can be of interest to some readers.

6.1 Are we tracking the same point?
Since the crystal prism has a displacement of almost 0.4 m
from the body frame’s origin, if we naively calculate the error
between the body-centered trajectory with the ground truth,
there can be a bias of 0.4 m in the estimate in the worst case
scenario. Thus it is recommended that the user use the pose
estimate to calculate the estimated trajectory of the crystal
prism, denoted as {WPp̂tn}Nn=0, for comparison with ground
truth. Specifically, using (1), we can obtain:

W
Pp̂tn = W

Bp̂tn + W
BR̂tn

B
Pttn , ∀n ∈ {0, 1, . . . N}, (2)

9https://github.com/ethz-asl/kalibr/wiki/
camera-imu-calibration
10https://www.vectornav.com/resources/software

Prepared using sagej.cls

https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
https://github.com/ethz-asl/kalibr/wiki/camera-imu-calibration
https://www.vectornav.com/resources/software


8 Journal Title XX(X)

Figure 8. The changes in ATE of different methods with respect to time shifts of the ground truth. Note that except A-LOAM the
selected methods all feature loop closure and global optimization to eliminate the influence of drift. The minimum of each curve is
marked by a circle, and the time shift that minimizes the ATE for each method is reported in the legend. It can be seen that all
visual-inertial, lidar-inertial, and visual-inertial-lidar-ranging methods can achieve minimum error within the [-0.1, 0.1] interval.

Figure 9. VIRAL SLAM result using the eee 01 dataset.
Ground truth is maked in red, the trajectory estimate in blue.
The 3D map of the environment is visualized in blue and yellow
points in the 3D visualisation below. Key frames are highlighted
by green boxes. The ground truth and trajectory estimate are
aligned using the 6DoF transformation calculated in (3).

where W
BR̂tn is the orientation estimate, and B

Pttn is the
translation from the body origin to the prism reported in the
dataset’s calibration files. Hence, we can drop the subscript P
as it is implied in later parts.

6.2 Resampling
The goal of this task is to resample {Wp̂tn}Nn=0 and
{Lptm}Mm=0 to obtain the sequences {Wp̂tk}Kk=0 and
{Lptk}Kk=0 of the same length. Specifically {tk}Kk=0 is a
subset of {tn}Nn=0 that satisfies the following

∃ ts ∈ {tm}Mm=1 : ts ≤ tk ≤ ts+1, |ts − ts+1| < 0.1,∀tk.

Given the time ts above, the ground truth sample at time
tk can be linearly interpolated as Lptk = tk−ts

ts+1−ts
Lpts +

ts+1−tk
ts+1−ts

Lpts+1
. We can further simplify the notation by

denoting the trajectories as {Wp̂k}Kk=0 and {Lpk}Kk=0.

6.3 Coordinates transform
At the final stage, we can see that {Wp̂k}Kk=0 and {Lpk}Kk=0

are still w.r.t. different coordinate frames. Hence they
cannot be directly compared. Following the common public
benchmarking tools by Sturm et al. (2012) and Zhang
and Scaramuzza (2018), we adopt the following coordinate
transform (LWR, LWt) to bring the two trajectories to a common
frame of reference:

(LWR, L
Wt) = argmin

(R, t)

(
K∑

k=0

∥∥RWp̂k + t− pk

∥∥2) . (3)
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The above was shown to have a closed-form solution in
Umeyama (1991), and the value of the summation is referred
to as ATE of the algorithm’s estimate over the dataset. A
MATLAB script is also provided in this data suite to perform
this task.

7 Known issues and limitations
Despite careful design and execution of the data collection
experiments, we are aware of several practical issues which
pose some challenges and limit the achievable accuracy. The
specifics are given below

7.1 Camera exposure setting
Stereo camera exposure setting is a challenging topic for any
global-shutter stereo camera. Since the incoming photons to
the CMOS sensor can be vastly different at different poses,
the obtained image quality can also vary quite dramatically.
However, stereo matching needs a set of images with
consistent brightness. This dataset uses a set of fixed global
shutter exposure settings for various indoor and outdoor
locations, but each camera master gain is set to be automatic.
Our exposure setting is usually one-third of the default auto-
exposure setting for reducing the glare effect. This shorter
exposure time improves the image’s sharpness and reduces
the motion blur at the cost of a slightly darker appearance.
The darker appearance can be a challenge for any direct
visual SLAM system. We think it is a necessary cost to get a
sharp accurate measurement of the environment.

7.2 Partial loss of information
In the SBS experiments, the Leica station lost track of the
prism for some short periods of time, due to its vantage
point being much lower than that in other environments. The
evaluation method provided by us already takes this into
account in Sec. 6.2.

Besides, there was significant loss of UWB in some
experiments due to low received signal strength (RSS) at
certain relative position between the ranging node and the
anchor. This in turn is due to the shape of the radiation pattern
(see Chen et al. (2018) for this pattern). This is not the ideal
case for a dataset, but it is a real-scenario that the researcher
has to address when developing new algorithms.

8 Conclusion and future works
In this paper we present the datasets collected from a sensor
suite typical of autonomous driving car, but equipped on a
drone. The datasets are aimed at boosting the investigations
into autonomous navigation of UAVs using the up-to-
date technologies, which can facilitate progress in many
important industries.

Despite our best efforts, there remain some issues in the
development of the datasets. However, we do plan to keep
our work continuously updated, and these issues will be
addressed in the future. For example, the loss of UWB can
be remedied by updating the UWB hardware, the tracking
of ground truth can be improved with a better vantage point.
Moreover, temporal alignment can be further improved by
batch optimization methods. The camera hardware can also
be made up-to-date with other more popular RGBD-type

sensors. Finally, more datasets will be added to the suite in
the future.

Dataset access

The dataset can be accessed at our web page https:
//ntu-aris.github.io/ntu_viral_dataset/ .
Other details on calibration, evaluation and updates are also
presented at this site to facilitate the use of our dataset on
individual’s research.
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