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Abstract
Collision avoidance for multirobot systems is a well studied problem. Recently, control barrier functions (CBFs) have
been proposed for synthesizing controllers that guarantee collision avoidance and goal stabilization for multiple robots.
However, it has been noted that reactive control synthesis methods (such as CBFs) are prone to deadlock, an
equilibrium of system dynamics that causes the robots to stall before reaching their goals. In this paper, we analyze the
closed-loop dynamics of robots using CBFs, to characterize controller parameters, initial conditions and goal locations
that invariably lead the system to deadlock. Using tools from duality theory, we derive geometric properties of robot
configurations of an N robot system once it is in deadlock and we justify them using the mechanics interpretation of
KKT conditions. Our key deductions are that 1) system deadlock is characterized by a force-equilibrium on robots and
2) deadlock occurs to ensure safety when safety is at the brink of being violated. These deductions allow us to interpret
deadlock as a subset of the state space, and we show that this set is non-empty and located on the boundary of the
safe set. By exploiting these properties, we analyze the number of admissible robot configurations in deadlock and
develop a provably-correct decentralized algorithm for deadlock resolution to safely deliver the robots to their goals.
This algorithm is validated in simulations as well as experimentally on Khepera-IV robots.
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1 Introduction
Multirobot systems have been studied extensively for solving
a variety of complex tasks such as target search Kantor et al.
[2003], Grover et al. [2020b], sensor coverage Cortes et al.
[2004], environmental exploration Burgard et al. [2005] and
perimeter guarding Feng and Yu [2019]. Global coordinated
behaviors result from executing local control laws on
individual robots interacting with their neighbors Ogren
et al. [2002], Olfati-Saber et al. [2007]. Typically, the local
controllers running on these robots are a combination of a
task-based controller responsible for completion of a primary
objective and a reactive collision avoidance controller for
ensuring safety. However, augmenting the primary task
based control with a hand-engineered safety control no
longer guarantees that the original task will be satisfied
Borrmann et al. [2015]. This problem becomes all the more
pronounced when the number of robots increases. Motivated
by this drawback, our paper focuses on an algorithmic
analysis of the performance-safety trade-offs that result
from augmenting a task-based controller with collision
avoidance constraints as done using CBF based quadratic
programs (QPs) Ames et al. [2017]. Although CBF-QPs
mediate between safety and performance in a rigorous way,
yet ultimately they are distributed local controllers. Such
approaches exhibit a lack of look-ahead, which causes the
robots to be trapped in deadlocks as noted in Petti and
Fraichard [2005]; O’DONNELL [1989]; Wang et al. [2017].

In deadlock, the robots stop while still being away
from their goals and persist in this state unless intervened.
This occurs because robots reach a state where conflict
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Figure 1. (lower) In the work space, two robots moving towards
each other fall in deadlock. (upper) In the state space, the system
state converges to the boundary of safe set.

becomes inevitable, i.e. a control favoring goal stabilization
will violate safety (see the red dot in Fig. 1). Hence, the
only feasible strategy is to remain static. Although small
perturbations can steer the system away from deadlock, there
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is no guarantee that deadlock will not relapse. To circumvent
these issues, this work addresses the following technical
questions:

1. What initial conditions/controller parameters invari-
ably lead a system to deadlock?

2. What are the salient geometric properties of a system
in deadlock?

3. What are all the admissible configurations of robots in
deadlock?

4. How can we leverage this information to provably exit
deadlock using decentralized controllers?

To address these questions, we first recall technical
definitions for CBF-QPs in section 3. We divide our analysis
intro three sections consistent with the chronology of
deadlock incidence.

1. Before Deadlock (section 4) In this section, we ana-
lyze the closed-loop dynamics of the multirobot sys-
tem before the incidence of deadlock to characterize
initial conditions and controller parameters that result
in deadlock. We show that geometric symmetry in ini-
tial conditions and goals locations necessarily results
in deadlock and that heterogeneity in robots’ controller
parameters is not sufficient to avoid deadlock.

2. During Deadlock (section 5) In this section, we use
duality theory to derive geometric properties of robots’
configurations once the system is in deadlock. We
propose a novel set-theoretic definition of deadlock to
interpret it as a subset of the system’s state space with
an eye towards devising mitigative controllers to exit
this set. We show that system deadlock is characterized
by a force equilibrium on robots and that the deadlock
set is non-empty and located on the boundary of
the system’s safe set. Using graph enumeration, we
show that the number of geometric configurations
of robots that are admissible in deadlock increases
combinatorially with the number of robots.

3. After Deadlock (section 6) In this section, we design
provably-correct decentralized controllers to make the
robots exit the deadlock set. We demonstrate this
strategy on two and three robots in simulation, and
experimentally on Khepera-IV robots.

Finally, we conclude in section 7 with a summary of our
work and directions for future research questions.

Remark 1: In the narrative, we follow the technical
statement of a theorem/lemma with an intuitive explanation
to convey the high-level idea. The proofs are deferred to the
appendix to sustain the flow of essential ideas in the main
body of the paper.

2 Prior Work

Several existing methods provide inspiration for the results
presented here. Among these, two are especially relevant: in
the first category, we describe prior methods for collision
avoidance and in the second, we focus on deadlock
resolution.

Prior Work on Avoidance Control
Avoidance control is a well-studied problem with immediate
applications for planning collision-free motions for multi-
robot systems. Classical avoidance control assumes a worst
case scenario with no cooperation between robots Leitmann
and Skowronski [1977, 1983] Cooperative collision avoid-
ance is explored in Stipanović et al. [2007]; Hokayem et al.
[2010] where avoidance control laws are computed using
value functions. Velocity obstacles have been proposed in
Fiorini and Shiller [1998] for motion planning in dynamic
environments. They select avoidance maneuvers outside of
robot’s velocity obstacles to avoid static and moving obsta-
cles by means of a tree-search. While this method is prone to
undesirable oscillations, the authors in Van den Berg et al.
[2008]; Van Den Berg et al. [2011]; Wilkie et al. [2009]
proposed reciprocal velocity obstacles that are immune to
such oscillations. Recent work by Douthwaite et al. [2018]
gave a comparative analysis of the variants of velocity
obstacles and empirically showed incidence of deadlock in
symmetric situations. Additionally, control barrier function
based controllers have been used in Borrmann et al. [2015];
Wang et al. [2017] to mediate between safety and perfor-
mance using QPs. Pan et al. [2020] presents a multi-robot
feedback control policy augmented with a global planner for
robust safe navigation in a complex workspace.

Prior Work on Deadlock Resolution
The importance of coordinating motions of multiple robots
while simultaneously ensuring safety, performance and
deadlock prevention has been acknowledged in works as
early as in O’DONNELL [1989]. Here, authors proposed
scheduling algorithms to asynchronously coordinate motions
of two manipulators to ensure that their trajectories
remain collision free and deadlock free. In the context of
mobile robots, Yamaguchi [1999] identified the presence
of deadlocks in a cooperative scenario using mobile robot
troops. To the best of our knowledge, Jager and Nebel
[2001] were the first to propose algorithms for deadlock
resolution specifically for multiple mobile robots. Their
strategy for collision avoidance modifies planned paths by
inserting idle times and resolves deadlocks by asking the
trajectory planners of each robot to plan an alternative
trajectory until deadlock is resolved. Duhaut et al. [2007]
show that without sharing any information on the global
situation of the multi-robot system, deadlock cannot be
avoided. Further, they proposed a random move + priority-
based rule for deadlock resolution. Authors in Li et al.
[2005] proposed coordination graphs to resolve deadlocks
in robots navigating through narrow corridors. Wang et al.
[2017]; Rodrı́guez-Seda et al. [2016] added perturbation
terms to their controllers for avoiding deadlock. Authors
in Douthwaite et al. [2019, 2018]; Douthwaite [2019]
gave empirical simulation based evidence of incidence of
deadlock in symmetric situations and prevented deadlock
occurrence by adding small perturbations, whereas our work
gives analytical proofs why those geometric arrangements
are prone to deadlock with extensions to heterogeneous
robots. Zhou et al. [2017a,b] proposed a distributed
algorithm to avoid collisions and deadlocks by stopping
robots preemptively before these events occur. Alonso-Mora

Prepared using sagej.cls



Grover, Liu and Sycara 3

et al. [2018] presents an algorithm for mission and motion
planning for small teams of robots performing a task around
moving obstacles guaranteeing safety and providing an
algorithm and conditions for deadlock resolution.

In these works, controllers for task-completion and
collision avoidance are highly coupled. However, in our
work, we assume that a nominal task based control is
already given and must be followed as much as possible
while maintaining safety using the framework of CBF-QPs.
Thus, the mediation between safety and task performance
is hierarchical with safety constraints taking precedence
over task-satisfaction. Due to this nature, our analysis
is generalizable to deadlocks resulting from an arbitrary
task-based control and not restricted to just the go-
to-goal task. Further, differently from prior work, we
characterize analytical properties of the system dynamics
to characterize the reasons behind deadlock incidence.
We demonstrate that intuitive explanations for geometric
properties of a system in deadlock are indeed recovered
using duality. Moreover, our analysis can be extended
to reveal bottlenecks of any optimization-based controller
synthesis method such as velocity obstacles since the
underlying formalism is obtained from duality theory.
Additionally, to our knowledge, we are the first to use
graph enumeration and KKT conditions to highlight the
combinatorial nature of geometric configurations admissible
in deadlock. For deadlock resolution, we do not consider
additive perturbations since they lack formal guarantees.
Instead, we exploit the derived geometric properties to guide
the design of a provably correct controller that ensures safety,
performance and deadlock resolution.

3 Avoidance Control with CBFs: Review
In this section, we review CBF based QPs used for syn-
thesizing controllers that mediate between safety (collision
avoidance) and performance (goal-stabilization) for multi-
robot systems. We refer the reader to Wang et al. [2017] for
a comprehensive treatment on this subject, since our work
builds on top of their approach. Assume we have N robots,
where each robot follows single-integrator dynamics (we
refer the reader to Grover et al. [2019] where we considered
double-integrators):

ṗi = ui. (1)

Here pi = (xi, yi) ∈ R2 is the position of robot i,
ui ∈ R2 is its velocity (i.e. control input) and i ∈
{1, 2, · · · , N} = [N]. In this paper, we ignore actuator
limit constraints |ui| ≤ αi but the reader can refer to our
related work Grover et al. [2019] where those constraints
were considered. The problem of goal stabilization with
collision-avoidance requires that each robot i must reach
a goal position pdi while avoiding collisions with every
other robot j, ∀j ∈ [N]\i. Assume that there is a user-
prescribed proportional controller ûi(pi) = −kpi(pi − pdi)
that generates movement towards goal. Here kpi is the
controller gain for robot i. For posing the collision-free
requirement, a pairwise function is formulated that maps the
joint state space of i and j to a real-valued safety index i.e.
h : R2 × R2 −→ R:

hij =
∥∥∆pij

∥∥2 −D2
s , (2)
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Figure 2. Positions and velocities of robots falling in deadlock.
Note that limt→∞ px,y 6= pdx,y yet limt→∞ vx,y = 0. Simulation
results at https://youtu.be/FShai JESII and experimental demon-
stration at https://youtu.be/e6eOeuh7Uec.

where Ds is a desired safety margin. Robots i and j are
considered to be collision-free or safe if their positions
(pi,pj) are such that hij(pi,pj) ≥ 0 (i.e. at-least Ds

distance apart). We define “pairwise safe set” as the 0-level
superset of hij i.e. Cij := {(pi,pj) ∈ R4 | hij(pi,pj) ≥ 0}.
The boundary of the pairwise safe set is

∂Cij = {(pi,pj) ∈ R2|hij(pi,pj) = 0}. (3)

In other words, the system state is on the boundary of the
safe set when the robots are grazing each other i.e. separated
by the safety margin Ds. Assuming that initial positions
of robots i, j are collision-free i.e. hij(pi(0),pj(0)) ≥
0, we would like to synthesize controls ui,uj that
ensure their future positions are also collision-free i.e.
hij(pi(t),pj(t)) ≥ 0, ∀t > 0. This can be achieved by
ensuring that (Ames et al. [2017]):

dhij
dt
≥ −γhij , (4)

where γ > 0 (a user-defined hyperparameter). Substituting
(2) in (4), we get

−∆pTij∆uij ≤
γ

2
hij . (5)

This constraint is distributed on robots i and j as:

−∆pTijui ≤
γ

4
hij and ∆pTijuj ≤

γ

4
hij (6)

Therefore, any ui and uj that satisfy (6) are guaranteed to
ensure collision free trajectories for robots i and j in the
multirobot system. Since robot i wants to avoid collisions
with N − 1 robots, there are N − 1 collision avoidance
constraints. To mediate between safety and goal stabilization
objective, a QP is posed that computes a controller closest
to the prescribed control ûi(pi) and satisfies the N − 1
constraints, as shown:

u∗i = arg min
ui

‖ui − ûi(pi)‖2

subject to aTijui ≤ bij ∀j ∈ [N]\i
(7)
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where using (6), we define

aij := −∆pij , bij :=
γ

4
hij =

γ

4
(
∥∥∆pij

∥∥2 −D2
s) (8)

Each robot i locally solves this QP to determine itsu∗i , which
guarantees collision avoidance of robot i with N − 1 robots
while encouraging motion towards its goal. While provably
safe, this approach does not guarantee that stabilizing to
goals will be accomplished because goal stabilization is
expressed as a cost function unlike safety which is expressed
as a hard constraint. As an example, Fig. 2 shows the result of
executing (7) on three robots. Notice from Fig. 2(a) that the
positions of robots have converged, but not to their respective
goals. However, the control inputs from (7) (Fig. 2(b))
have already converged to zero. An experimental realization
can be seen at https://youtu.be/e6eOeuh7Uec where three
Khepera robots fall in deadlock after using these controllers.
Manual intervention is needed to resolve deadlock. Based
on these observations, deadlock is defined as (Grover et al.
[2020a] ):

Definition 1. Robot i is in deadlock if u∗i = 0 and the
prescribed nominal control ûi 6= 0 ⇐⇒ pi 6= pdi

In simpler terms, this definition states that for a robot to
be in deadlock, the output from the QP based controller is
zero, even though the prescribed controller reports non-zero
velocity because the robot is not at its intended destination.
We do not analyze “livelock” in this paper because in our
simulations we did not observe incidence of oscillatory
behavior. Therefore, the focus is on deadlock. In the next
section, we examine the closed-loop dynamics of the system
before deadlock as a function of the robots’ initial conditions,
goal locations and controller parameters kpi to characterize
what causes deadlock.

4 Before Deadlock
In this section, we analytically investigate the solutions of
(7) ∀i ∈ {1, 2, · · · , N} because these solutions govern the
instantaneous dynamics of the robots. However, owing to
the fact that (7) is an optimization problem, the controls u∗i
are not available as explicit function of the robots’ states.
This prohibits straightforward use of tools like Lyapunov
theory to analyze long-term behavior of the robots’ motion.
To circumvent this issue, we use duality theory, specifically
KKT conditions of (7) to derive an explicit expression for
u∗i as a function of the robots’ positions. These conditions
are necessary and sufficient for a global optimum of this QP.
The Lagrangian is

L(ui,µi) = ‖ui − ûi‖22 +
∑

j∈[N]\i
µij(a

T
ijui − bij)

Let (u∗i ,µ
∗
i ) be the optimal primal-dual solution to (7). The

KKT conditions are Boyd and Vandenberghe [2004]:

1. Stationarity:∇uiL(ui,µi)|(u∗i ,µ∗i ) = 0

=⇒ u∗i = ûi −
1

2

∑
j∈[N]\i

µ∗ijaij . (9)

2. Primal Feasibility

aTiju
∗
i ≤ bij ∀j ∈ [N]\i (10)

3. Dual Feasibility

µ∗ij ≥ 0 ∀j ∈ [N]\i (11)

4. Complementary Slackness

µ∗ij · (aTiju∗i − bij) = 0 ∀j ∈ [N]\i (12)

We define the set of active and inactive constraints as

A(u∗i ) = {[N]\i | aTiju∗i = bij} (13)

IA(u∗i ) = {[N]\i | aTiju∗i < bij} (14)

These two sets define a partition of the set of non-ego robots.
As we will explain in section 5, intuitively, the active set is
those set of robots that the ego robot “worries” about for a
collision and therefore “actively” repels to stay safe. Using
complementary slackness from (12), we deduce

µ∗ij = 0 ∀j ∈ IA(u∗i ) (15)

Therefore, we can restrict the summation in (9) to only the
set of active constraints i.e.

u∗i = ûi −
1

2

∑
j∈A(u∗i )

µ∗ijaij (16)

This equation says that the overall control returned by (7)
is the sum of the task-based nominal control ûi and the
resultant of collision-avoidance velocities from the active
robots. While we state this as a fact here, we will prove
this in section 5 using a geometric argument. We will use
this representation of controls to explore scenarios in which
deadlock occurs. Our aim is to characterize the parameters
and the geometry of robot arrangements which necessarily
result in deadlock instead of characterizing every possible
geometric arrangement where deadlock will occur, since this
latter problem is combinatorially complex in the number of
robots (see section 5). Therefore, to convey the idea, we
focus on the simpler cases of two and three robots.

Closed-loop Analysis for Two Robots
Consider two robots positioned on the line connecting their
goals at t = 0 as shown in Fig. 3. We will demonstrate that
even if the prescribed control of one robot is more aggressive
than the other, (7) will necessarily result in deadlock because
of the collinearity of initial conditions and goals. Let pi(t) ∈
R2 denote the position of robot i ∈ {1, 2} at time t. At t = 0,

p1(0) = (x0, y0)

p2(0) = p1(0) +Dinitêα, (17)

where êα is a unit vector oriented at α relative toXw axis and
Dinit ∈ R+ is the initial distance between the robots (see
Fig. 3). The desired goal positions are

pd1 = p1(0) +DG1
êα

pd2 = p2(0)−DG2
êα. (18)

Here DGi is the distance of i from its goal pdi at t = 0. We
assume that DG1

, DG2
> Dinit to encourage incidence of

deadlock. We formally state the deadlock incidence result as
follows:
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Figure 3. Geometric configuration of two robots and their goals.
Notice that everything is collinear along êα.

Theorem 1. Given the initial positions of robots as in
(17) and desired goals as in (18), the controls generated
by the QP in (7) will cause the robots to fall in deadlock
∀DG1

, DG2
> Dinit. and ∀kp1 , kp2 ∈ R+.

Proof. We give the sketch of the proof to convey the overall
idea and break it down into shorter lemmas. Recall from
(16) that the control input on robot i at every time step,
depends on the collision avoidance constraints that are active.
Therefore, to begin with, we analyze the controls returned
by (7) at t = 0. In Lemma 1, we show that if the initial
distance between the robots is greater than a certain critical
distance, then the collision avoidance constraints of both
robots are inactive, and as a result u∗i (0) = ûi(0)∀i. We
then extend this analysis to future time t > 0 and show
that there exist three sequential phases of motion which are
dependent on which robot’s collision avoidance constraint is
active/inactive:

1. Phase 1 corresponds to the duration in which the
collision avoidance constraints of both robots are
inactive. We show that this phase culminates in a finite
time and the robots move closer to each other during
this phase (Lemma 2).

2. Next, phase 2 begins where one robot’s constraint
becomes active while the other’s is still inactive. This
is due to the heterogeneity kp1 6= kp2 and DG1

6=
DG2

. We show that phase 2 also culminates and the
robots move further closer to each other (Lemma 3).

3. Finally, phase 3 begins, where both constraints are
active. We show that the distance between the robots
converges to the safety margin Ds and the robots stop
moving (Lemma 4), while still away from their goals,
thus proving that they have fallen in deadlock.

For the special case of two robots, the control for robot i
can be written by adapting (16),

u∗i = ûi −
1

2
µ∗ijaij , (19)

where j 6= i and i ∈ {1, 2}. In (15), we showed that the
value of Lagrange multiplier µij depends on whether the
collision avoidance constraint aTijui − bij ≤ 0 is active (=)
or inactive (<) at ui = u∗i . Thus, we have a check flag for
evaluating the feasibility of a candidate control ũi:

fij(ũi) = aTijũi − bij , (20)

∀i ∈ {1, 2} and j 6= i. If for a candidate control ũi,
fij(ũi) > 0, then ũi violates robot i′s constraint with j

in (7). Let us check this flag for the nominal control ûi.
Suppose that fij(ûi) < 0 i.e. ûi ensures that the constraint
of i with j is feasible. Then, looking at (7), notice that its
optimum will be attained at u∗i = ûi itself with zero cost
(as long as there are only two robots in the system). This
is because ûi by itself satisfies the constraint and the cost
function penalizes deviation from ûi. Further, fij(u∗i ) =
fij(ûi) < 0 implies that the constraint of i with j is inactive.
Let us look at the robots geometrically to see when this

happens. Define critical distance for robot i as (to be derived
in Lemma 1):

βi+ =
2DGikpi

γ
+

√(
2DGikpi

γ

)2

+D2
s (21)

∀i ∈ {1, 2}. We now show that if the initial distance between
the robots i and j i.e. Dinit., is greater than i’s critical
distance βi+, then i′s constraint with j is inactive at t = 0.

Lemma 1. If at t = 0, Dinit > βi+, then u∗i (0) = ûi(0).

Intuition: This result says that if at t = 0, robot i is far from
j (specifically at-least βi+ distance away), then i can simply
use it’s prescribed nominal control ûi at t = 0, and not worry
about a collision with j at-least until the next instant.

Proof. See appendix (A.1).

Assumption 1. WLOG assume that Dinit > β1
+ > β2

+

From assumption (1), and the result of Lemma 1, it
follows that the collision avoidance constraints of both robots
are inactive at t = 0. Thus, u∗i (0) = ûi(0) for i = {1, 2}.
If we give these velocities to robots for a small time ∆t,
the distance between the robots and the critical distance will
change. So at the next instant, we will compare the updated
inter-robot distance with the updated critical distances to
decide whether u∗i (∆t) = ûi(∆t) and so on. Therefore, one
can assume that these constraints remain inactive for some
finite time, which is precisely the duration of phase 1.

Phase 1: We define phase 1 as the period in which the
constraints of both robots are inactive i.e. both their flags
are strictly negative when evaluated using their nominal
controllers. In other words,

f12(û1(t)) = aT12(t)û1(t)− b12(t) < 0 (22)

f21(û2(t)) = aT21(t)û2(t)− b21(t) < 0 (23)

Mathematically, the duration of phase 1 is given by,

t1 := sup
t>0
{t|f12(û1(t)) < 0, f21(û2(t)) < 0}, (24)

i.e. the maximum time until which the nominal controllers of
both robots remain feasible. So until t1, we have

ṗ1 = u∗1 = û1 and ṗ2 = u∗2 = û2 (25)

Now given the initial positions and desired goals as in
Fig. 3, it cannot be the case that both robots continue to use
their nominal controllers indefinitely to move to their goals
because that would result in a collision. Thus, a time will
come when using the nominal control is no longer feasible
for at-least one robot. This is precisely the time t1 defined in
Def. (24) and we prove its existence in the next lemma.
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Lemma 2. ∃ a finite time t1 as described in Def. (24), until
which the collision avoidance constraints of both robots are
simultaneously inactive.

Intuition: This result states that for sometime, both
robots may continue to use their nominal controllers and
move without “worrying” about collisions with the other.
Nevertheless, eventually at t1, the inter-robot distance will
fall below a critical threshold for one robot, at which point,
its collision avoidance constraint will get activated. For
example, in Fig. 4, the dark green curve (the inter-robot
distance) begins to fall below the blue curve (the critical
distance of robot one (26)) at t1. Thus, robot one can no
longer use its nominal control starting from t1.

Proof. See appendix A.2.

The critical distance for robot one (blue curve in Fig. 4) is
derived in the appendix A.2 and is given by:

β1
+(t) =

2DG1
kp1e

−kp1 t

γ
+

√(
2DG1

kp1e
−kp1 t

γ

)2

+D2
s

(26)

Thus, phase 1 ends at t1 marking the beginning of phase 2.

Phase 2: We define this phase as the period in which the
constraint of robot one has become active i.e. aT12u

∗
1 = b12

while that of robot two is inactive i.e. aT21u
∗
2 < b21. So for

t ≥ t1, the dynamics of the robots are

ṗ1 = u∗1 = û1 −
1

2
µ12a12 ,where µ12 = 2

aT12û1 − b12

‖a12‖2

ṗ2 = u∗2 = û2

Here we derived u∗1 using (19). With some calculation,
we can show that the components of velocities in u∗{1,2}
perpendicular to êα vanish. Now, owing to the inevitability
of a collision should robot two choose to continue using
û2 forever, eventually, the constraint of robot two will also
switch from inactive to active (A.3). Therefore, similar to the
definition of t1, we define the duration of phase 2 until the
time for which the constraint of robot two stays inactive i.e.

t2 := sup
t>t1

{t|f21(û2(t)) < 0}, (27)

Lemma 3. ∃ a finite time t2 as in Def. (27), until which the
constraint of robot two stays inactive.

Intuition: Eventually there will come a time t2 when the
inter-robot distance will fall just below the critical threshold
of robot two as well, just the way it did for robot one at t1. So
at this time, robot two’s collision avoidance constraint will
become active (see Fig. 4 where the dark green curve (the
inter-robot distance) intersects the yellow curve (the critical
distance of robot two (28)).

Proof. See appendix A.3.

The critical distance for robot two (yellow curve in Fig. 4)
is defined similar to (26) as:

β2
+(t) =

2DG2kp2e
−kp2 t

γ
+

√(
2DG2

kp2e
−kp2 t

γ

)2

+D2
s

(28)
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Figure 4. Simulation results for two-robot deadlock. Simulation
parameters shown in bottom right panel. Note at t = t1, D(t) =
β1
+(t) and µ12(t) switches on, similarly at t = t2, µ21(t) switches

on. Finally, D(t) −→ Ds.

Phase 3: This phase begins at t2 and in this phase, the
constraints of both robots are active i.e. aT12u

∗
1 = b12 and

aT21u
∗
2 = b21. So for t ≥ t2, the dynamics of the robots are

ṗ1 = u∗1 = û1 −
1

2
µ12a12 ,where µ12 = 2

aT12û1 − b12

‖a12‖2

ṗ2 = u∗2 = û2 −
1

2
µ21a21 ,where µ21 = 2

aT21û2 − b21

‖a21‖2
.

We can show that the velocities of both robots i.e.
u∗{1,2} have no component perpendicular to êα. Recall that
a12 = −a21 = ∆p21 is parallel to êα. Additionally, b12 =
b21 = γ

4 (‖∆p21‖ −D2
s). Using these, we can simplify the

dynamics of the robots to

ṗ1 = +γ
‖∆p21‖2 −D2

s

4 ‖∆p21‖2
∆p21 (29)

ṗ2 = −γ ‖∆p21‖2 −D2
s

4 ‖∆p21‖2
∆p21 (30)

=⇒ ∆̇p21 = −γ ‖∆p21‖2 −D2
s

2 ‖∆p21‖2
∆p21 (31)

Given this inter-robot dynamics, we show in A.4 that the
asymptotic solution of (31) proves that ‖∆p21(t)‖ i.e. the
inter-robot distance converges to Ds and additionally, both
robots come to a halt while still being away from their goals.
This establishes the incidence of deadlock.

Lemma 4. The distance between robots converges to the
safety margin Ds at which point they stop moving and fall in
deadlock.

Proof. See appendix A.4.

Takeaway: We have demonstrated that two robots fall in
deadlock given initial conditions (17) and goals (18). This
is because the geometric arrangement of initial positions
and goals prevents both û and the QP to output velocities
perpendicular to the êα direction in all the three phases.
With the control always along u‖ ‖ êα, the only way to
reach the goals would involve intersection of the robots i.e.
collisions. This is why, the QP based controller decides to
prevent collisions from happening by forcing the robots to
stall, resulting in deadlock.
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Closed-Loop Analysis for Three-Robots
We describe another scenario prone to deadlock, which
consists of three robots positioned on the vertices of
an equilateral triangle, and required to stabilize to their
respective antipodal positions. For simplicity, we assume
that all prescribed controller gains are identical, as are the
distances of the robots’ initial positions to their goals. Let
pi(t) ∈ R2 be the position of robot i ∈ {1, 2, 3} given as

p1(0) = (x0, y0)

p2(0) = p1(0) +Dinitêα

p3(0) = p2(0) +Dinitêα+ 2π
3

(32)

Assume that the goal of each robot is diametrically opposite
to its initial position i.e.

pdi = pi(0) +

√
3DG

Dinit.
(c− pi(0)) (33)

for i ∈ {1, 2, 3} where c = 1
3

∑3
i=1 pi(0) is the centroid of

the equilateral triangle formed by the initial positions and
DG is the distance of each robot from its goal. This scenario
is prone to deadlock, because of (1) the geometric symmetry
in the initial positions of robots and goals and (2) identical
controller gains.

Assumption 2.
√

3DG > Dinit.

This assumption will be needed in Lemma 8 to establish
the inevitability of deadlock. We now formally state the
deadlock incidence result as follows.

Theorem 2. Given the initial positions of robots as in (32)
and desired goals as in (33), the controls generated by (7)
will cause the robots to fall in deadlock.

Proof. Our proof draws upon the ideas from deadlock in the
two robot case. The overall sketch is as follows:

1. First, we analyze the controls returned by the QP
at t = 0. We show in Lemma 5 that if the initial
distance between robots is greater than a certain
critical distance, then at t = 0, all collision avoidance
constraints of all robots are inactive, therefore
u∗i (0) = ûi(0) ∀i ∈ {1, 2, 3}.

2. Next, we show that the future motion of robots can
be broken into two successive phases. In phase 1,
the collision avoidance constraints of all robots stay
inactive, so they use ûi(t) ∀i ∈ {1, 2, 3}. We prove in
Lemma 6 that using ûi(t), the robots move on the
vertices of an equilateral triangle. Next, in Lemma
7, we demonstrate that there exists a finite time when
phase 1 culminates (see Fig. 5). This time is identical
for all robots because of the symmetry that follows
from Lemma 6.

3. Next, phase 2 begins during which all constraints
become active. We show in Lemma 8 that the distance
between robots converges to Ds, their velocities
converge to zero while the robots are still away from
their goals, thus establishing deadlock.

Recall from (16) that the control for robot i is

u∗i = ûi −
1

2

∑
j∈{1,2,3}\i

µijaij (34)

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

Figure 5. Simulation results for three-robot deadlock. Simulation
parameters shown in bottom right panel. Note at t = t1,
Dij(t) = βi+(t) and µij(t) switches on. Finally, D(t) −→ Ds.

Here, the value of µij depends on whether the constraint
aTiju

∗
i − bij ≤ 0 is active (= 0) or inactive (< 0). So like

the two robot case, we check the value of the flag fij(ũi) =
aTijũi − bij for the nominal controller i.e. ũi = ûi. We show
that if the initial distance between any two robots is greater
than the critical distance β+ (35), then at t = 0, all robots
have all their constraints inactive. Consequently, the optimal
control returned by (7) will be ûi(0). The critical distance is
defined as (derived in A.5):

β+ =

√
3DGkp
γ

+

√(√
3DGkp
γ

)2

+D2
s (35)

Lemma 5. If Dinit. > β+, then u∗i (0) = ûi(0) ∀i
Intuition: This result states that, if at t = 0, i is away from j
by at-least β+, then i can simply use ûi(0) and not “worry”
about a collision with j at-least until the next instant. This
holds for all robots because β+ is identical for them all due
to the assumed symmetry and their identical controller gains.

Proof. See appendix A.5.

Assumption 3. WLOG assume at t = 0, Dinit. > β+.

From assumption (3) and Lemma 5, it follows that at
t = 0, all collision avoidance constraints of all robots are
inactive. Therefore, it is safe to assume that these constraints
also remain inactive for a finite duration after t = 0, which is
precisely the duration of phase 1.

Phase 1: In this phase, the robots use their nominal
controls. Thus, their dynamics are given by:

ṗi = u∗i = ûi = −kp(pi − pdi)
=⇒ pi(t) = e−kptpi(0) + (1− e−kpt)pdi (36)

Next we show that given the choice of symmetric initial and
goal positions as in (32) and (33) respectively and identical
controller gains, the robots retain this symmetry and move
along the vertices of an equilateral triangle.

Lemma 6. All robots continue to move in an equilateral
triangular configuration with centroid fixed at c(0)
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Intuition: Since the initial positions and goals were
symmetric, and since all robots have identical controller
gains, they move by the same distance per time step. So
the symmetry is preserved every time which is why they
retain the equilateral triangular configuration. https://bit.ly/
2VnDXdb conveys this idea.

Proof. See appendix A.6.

Next we show that eventually, there comes a time when it
is no longer feasible to use the nominal control ûi(t) ∀i at
which point all the constraints of all robots become active.
This again follows from the inevitability of collisions should
all three robots continue using ûi indefinitely.

Lemma 7. There exists a time tij when the collision
avoidance constraint of robot i with robot j becomes active.
Furthermore, tij is identical ∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2, 3}\i
Intuition: Eventually, the inter-robot distance (same for
any pair) falls below the common critical distance (see
Fig. 5 where the dark green curve (the inter-robot distance)
intersects the blue curve (the critical distance)). Therefore, it
is no longer feasible to use the nominal control. This occurs
simultaneously for all robots due to the geometric symmetry
and identical controller parameters. Let this common time be
t1 as shown in Fig 5.

Proof. See appendix A.7.

Phase 2: For t ≥ t1, all the constraints of all robots have
become active. Thus, the dynamics of the robots are:

ṗi = u∗i = ûi −
1

2

∑
j∈{1,2,3}\i

µijaij (37)

where the expressions for µij 6= 0 can be derived by using
the activeness of the constraints i.e. aTiju

∗
i = bij . Following

arguments in phase three for the two robot case, we can show
that the positions of the robots can be written as:

p1(t) = η(t)p1(0) + (1− η(t))pd1
p2(t) = p1(t) +D(t)êα

p3(t) = p2(t) +D(t)êα+ 2π
3

(38)

for t ≥ t1 for some function η(t) with η(t1) = e−kpt1 . Here
D(t) is the inter-robot distance which is same for any two
pairs. Using (37), (38), and the definition of aij , bij from
(8), the dynamics of robot i can be simplified to:

ṗi =
√

3γ
D2(t)−D2

s

6D(t)
êα+(4i−3)π6

(39)

=⇒ ∆̇p12 = γ
D2(t)−D2

s

2D(t)
êα (40)

Given this inter-robot dynamics, we show in A.8 that the
asymptotic solution of (40) proves that

∥∥∆pij(t)
∥∥ i.e. the

inter-robot distance converges to Ds and additionally, all
three robots come to a halt while still being away from their
goals. This establishes the incidence of deadlock.

Lemma 8. The distance between the robots converges toDs

and the robots stop moving and fall in deadlock.

Proof. See appendix A.8.

Takeaway: Deadlock happens here because each robot’s
velocity is always pointing towards its goal and not
perpendicular to it. In phase 1, this velocity is along û (which
by definition is towards the goal). Likewise, we can show that
the same holds true in phase 2. Additionally, all robots have
identical speed at any given time as well. Hence, collisions
would be inevitable at the centroid. Therefore, CBF-QPs
cause the robots to stall which results in deadlock.

5 During Deadlock
In the previous section, we analyzed cases of two and three
robots and showed that geometric symmetry in the initial
positions and goals results in deadlock. In this section, we
assume that the system is already in deadlock and infer
geometric properties of robot configurations that are valid
in deadlock. The analysis in this section is general for N
robots, and not restricted to two or three robots. Recall that
we defined deadlock as

Definition 2. Robot i is in deadlock if u∗i = 0 and pi 6= pdi

We reformulate the KKT conditions (9)-(12) using this
definition to derive geometric properties of the system in
deadlock. The aim is to show that these properties are indeed
consistent with what one would expect to intuitively hold true
when the robots are in deadlock.

Reformulating KKT Conditions for Deadlock and
their Mechanics Interpretation:
Primal Feasibility: Recall from (10) that aTiju

∗
i ≤ bij ∀j ∈

{1, 2, · · · , N}\i. Since in deadlock, u∗i = 0, this means

0 ≤ bij ∀j ∈ [N]\i (41)

From (8), bij = γ
4hij = γ

4

( ∥∥∆pij
∥∥2 −D2

s

)
which using

(41) implies

0 ≤ hij ⇐⇒ Ds ≤
∥∥∆pij

∥∥ ∀j ∈ [N]\i (42)

This means that robot i, when in deadlock, is at-least Ds

distance away from every other robot and therefore safe.

Dual Feasibility: From (11) recall that,

µ∗ij ≥ 0 ∀j ∈ [N]\i (43)

Complementary Slackness: From (12), recall that µ∗ij ·
(aTiju

∗
i − bij) = 0 ∀j ∈ [N]\i. Substituting u∗i = 0 and

bij = γ
4hij = γ

4

( ∥∥∆pij
∥∥2 −D2

s

)
, we get

µ∗ij ·
( ∥∥∆pij

∥∥2 −D2
s

)
= 0 ∀j ∈ [N]\i (44)

Thus, using (43), (44) and (13), the constraints that are active
and inactive for robot i in deadlock are

A(0) = {j ∈ [N]\i |
∥∥∆pij

∥∥ = Ds ⇐⇒ hij = 0}
IA(0) = {j ∈ [N]\i |

∥∥∆pij
∥∥ > Ds} (45)

Thus, active constraints refer to those robots that are exactly
Ds away from i. Alternatively, these are the robots j whose
positions are such that hij = 0 i.e. robot i’s safety is at the
verge of being compromised thanks to these robots. In the
next lemma, we show that if i is in deadlock, then it can
never be the case that there are no active robots.
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Figure 6. An illustration of the mechanics interpretation of KKT
conditions. The ego robot is shown in blue and its desired goal
location in green. The green arrow represents the force attracting
the ego robot towards its goal. The red robots are the ones in
the active set since they are separated by exactly Ds, therefore,
they repel the ego robot. The robots shown in gray represent the
inactive constraints.

Lemma 9. A(0) is non-empty.

Intuition: When i is in deadlock, A(0) is the set of robots
preventing it from reaching its goal. Thus, this set cannot be
empty as other wise the robot would be able to move freely
to reach its goal and hence not be in deadlock.

Proof. We prove this by contradiction. Suppose that A(0)
is empty or said another way IA(0) = [N]\i. This means
that µ∗ij = 0 ∀j ∈ [N]\i and hence ûi = u∗i from stationarity
(9). Furthermore, since i is in deadlock, from Def. (2)
we have that pi 6= pdi ⇐⇒ ûi 6= 0 since ûi = −kpi(pi −
pdi) However,u∗i = 0 in deadlock. This means thatu∗i 6= ûi
in deadlock, giving rise to the contradiction.

Furthermore, we can interpret the multipliers µ∗ij as
spring-constants of springs connecting i to A(0). This gives
rise to the force-equilibrium interpretation of stationarity:

Stationarity: Using (16) and u∗i = 0, we get

ûi −
1

2

∑
j∈A(0)

µ∗ijaij = 0

⇐⇒ −kpi(p− pdi) +
1

2

∑
j∈A(0)

µ∗ij∆pij = 0 (46)

In this equation, the first term ûi = −kpi(p− pdi)
represents an attractive force pulling the robot i towards
its goal pdi . The second term + 1

2

∑
j∈A(u∗i ) µ

∗
ij∆pij

represents the resultant repulsive force from active robots
i.e. ones that are Ds away from i. Thus, deadlock occurs
when the attractive force to the goal is balanced by the net
repulsion from active robots.

Based on these conditions, we motivate a set-theoretic
interpretation of deadlock. Let the state of the ego robot be
pi ∈ R2 and let the states of the remaining N − 1 robots be
denoted as p−i = {pj} ∀j ∈ [N]\i. Define Di as:

Di = {pi ∈ R2 | u∗i (pi,p−i) = 0,pi 6= pdi} (47)

The set Di is defined as those states of robot i which
satisfy the criteria of i being in deadlock. We restate
the u∗i (pi,p−i) = 0 criterion in this definition with the
reformulated KKT conditions described above:

Di =

{
pi ∈ R2

∣∣∣∣ ∥∥∆pij
∥∥ ≥ Ds, µ

∗
ij ≥ 0 ∀j ∈ [N]\i,

ûi(pi) =
1

2

∑
j∈A(0)

µ∗ijaij ,pi 6= pdi

}
(48)

The motivation behind stating this definition is to interpret
deadlock as a bonafide set in the state space of the ego robot
and derive a control strategy that makes the robot evade/exit
this set. Building on this definition of robot i’s deadlock set,
we motivate system deadlock to be the joint states of all
robots for which all of them are in deadlock:

Dsystem =

{
(p1, · · · ,pN ) ∈ R2N

∣∣∣∣pi ∈ Di , i ∈
{1, · · · , N}

}
=

N∏
i=1

Di (49)

In the rest of the paper, we will focus on system deadlock.
This is because the case where only a subset of robots are
in deadlock can be decomposed into subproblems where a
subset is in system deadlock and the remaining robots are free
to move. The next section focuses on complexity analysis of
system deadlock.

Graph Enumeration based Complexity Analysis
The Lagrange multipliers µ∗ij are in general, a nonlinear
function of the states of the robots. Their values depend on
which constraints are active/inactive. An active constraint
will in-turn determine the set of possible geometric
configurations that the robots can take when they are in
deadlock and this in turn will guide the design of our
deadlock resolution algorithm. Therefore, we are interested
in deriving all possible combinations of active/inactive
constraints that the robots can assume once in deadlock. But
first we derive upper and lower bounds for the number of
valid configurations in system deadlock.

We can interpret an active constraint between robots i
and j as an undirected edge between vertices i and j in
a graph formed by N labeled vertices, where each vertex
represents a robot. The following property (which follows
from symmetry) allows the edges to be undirected.

Lemma 10. If robot i and j are both in deadlock and i′s
constraint with j is active (inactive), then j′s constraint with
i is also active (inactive).

Intuition: If i and j are in deadlock and i perceives that j is
at the verge of violating i′s safety, then j also perceives that
i is at the verge of violating its safety.

Proof. Since i is in deadlock and its constraint with j is
active, we have aTiju

∗
i = bij = 0 ⇐⇒ bji = 0, since from,

(8) we have that bij = bji. Since j is in deadlock, aTjiu
∗
j =

0 =⇒ bji = aTjiu
∗
j . This means j′s constraint with i is also

active.
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Upper Bound GivenN vertices, there are NC2 distinct pairs
of edges possible. The overall system can have any subset
of those edges. Since a set with NC2 members has 2

NC2

subsets, we conclude that there are 2
NC2 possible graphs. In

other words, given N robots, the number of configurations
that are admissible in deadlock is 2

NC2 . However, this
number is an upper bound because it includes cases where
a given vertex can be disconnected from all other vertices,
which is not valid in system deadlock because A(0) cannot
be empty (Lemma 9).

Lower Bound Since A(0) is non-empty, each vertex in the
graph will have at-least one edge i.e. each robot will have
at-least one constraint active with some other robot. From
this observation, it follows that the set of graphs valid in
system deadlock is a superset of connected simple graphs that
can be formed by N labeled vertices. It is also possible that
some simply connected graphs may not be feasible due to
restrictions imposed by Euclidean geometry.

Graphs that are (a) simple and connected, (b) have N
labelled vertices (since each robot has an ID), (c) are
embedded in R2 (environment is planar), (d) have Euclidean
distance between connected vertices equal to Ds, (e) that
between unconnected vertices greater than Ds, and (f) have
one or two edges per vertex (possibly more), necessarily
represent admissible geometric configurations of robots in
system deadlock. This follows because every graph satisfying
qualifiers (a)-(f) can be mapped to a geometric arrangement
ofN robots in deadlock. A lower bound for graphs satisfying
all qualifiers (a)-(f) can be shown to be 0.5(N + 1)(N − 1)!
as follows (N ≥ 3).

Consider a cyclic graph whose each node is the vertex
of an N regular polygon with side Ds. Such a graph
necessarily satisfies (a)-(f). Re-arrangements of its vertices
gives rise to 0.5(N − 1)! graphs. Likewise, a graph with
nodes along an open chain also satisfies (a)-(f), and gives
0.5N ! rearrangements. Thus, the total is 0.5(N − 1)! +
0.5N ! = 0.5(N + 1)(N − 1)!. It is well known that factorial
overtakes exponential, thus highlighting the increase in
the number of geometric configurations. Our MATLAB
simulations show that the exact number of configurations
for N = {1, 2, 3, 4} are {1, 1, 4, 18} whereas our bound
gives {1, 1, 4, 15}. This simulation demonstrates the
explosion in possible geometric configurations that are
admissible in system deadlock with increasing number of
robots. Therefore for further analysis, we will restrict to the
case of two and three robots.

Characteristics of Two-Robot Deadlock

In this section, we give some specific properties of a two-
robot system in deadlock which we will use later to resolve
deadlocks in two robots. We show that these properties hold
true regardless of the choice of initial conditions.

In the two-robot system, an individual robot by itself
cannot be in deadlock i.e. either both robots are in deadlock
or neither. This is because the sole collision avoidance
constraint is symmetric due to Lemma 10. From Lemma
9, each robot perceives the other robot as active. Define the

 
 
 
 
 
 
 
 
 
 

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

a
1 = ��p

12

<latexit sha1_base64="aA9QXuRNY9EHCa180daiSgc2LhA=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwY0hqQTdCQRcuK9gHNCFMJtN26GQSZiZCCfkLN/6KGxeKuNWdf+OkzUJbDwxzOOde7r0nSBiVyra/jcrK6tr6RnWztrW9s7tn7h90ZZwKTDo4ZrHoB0gSRjnpKKoY6SeCoChgpBdMrgu/90CEpDG/V9OEeBEacTqkGCkt+ablBjEL5TTSX4Zy34FX8My9IUwh+NtKcj9zGrlv1m3LngEuE6ckdVCi7ZtfbhjjNCJcYYakHDh2orwMCUUxI3nNTSVJEJ6gERloylFEpJfN7srhiVZCOIyFflzBmfq7I0ORLPbTlRFSY7noFeJ/3iBVw0svozxJFeF4PmiYMqhiWIQEQyoIVmyqCcKC6l0hHiOBsNJR1nQIzuLJy6TbsJxzq3HXrLeaZRxVcASOwSlwwAVogVvQBh2AwSN4Bq/gzXgyXox342NeWjHKnkPwB8bnD9fSn64=</latexit>

� + ⇡
<latexit sha1_base64="jUaCXoLXWp5ReLQwcHUYh7j/pGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQkmqYI8FLx4r2A9pStlsN+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGSxHxJgqUvJNoTlUgeTsY38789hPXRsTRA04S3lN0GIlQMIpWevQDjvTST0S/VHYr7hxklXg5KUOORr/05Q9ilioeIZPUmK7nJtjLqEbBJJ8W/dTwhLIxHfKupRFV3PSy+cFTcm6VAQljbStCMld/T2RUGTNRge1UFEdm2ZuJ/3ndFMNaLxNRkiKP2GJRmEqCMZl9TwZCc4ZyYgllWthbCRtRTRnajIo2BG/55VXSqla8q0r1/rpcr+VxFOAUzuACPLiBOtxBA5rAQMEzvMKbo50X5935WLSuOfnMCfyB8/kDdRSQJg==</latexit>

-4 -3 -2 -1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

�
<latexit sha1_base64="5SbAXYCDLz6mp12N1T52o+MOmfY=">AAAB7HicbVBNS8NAEN3Ur1q/qoIXL8EieCpJPejBQ8GLxwqmLbShbLaTdulmE3YnSgj9DV48KCLe/EHe/AH+D7cfB219MPB4b4aZeUEiuEbH+bIKK6tr6xvFzdLW9s7uXnn/oKnjVDHwWCxi1Q6oBsEleMhRQDtRQKNAQCsYXU/81j0ozWN5h1kCfkQHkoecUTSS1w0Aaa9ccarOFPYyceekUj9qPiTZ93ujV/7s9mOWRiCRCap1x3US9HOqkDMB41I31ZBQNqID6BgqaQTaz6fHju1To/TtMFamJNpT9fdETiOtsygwnRHFoV70JuJ/XifF8NLPuUxSBMlmi8JU2Bjbk8/tPlfAUGSGUKa4udVmQ6ooQ5NPyYTgLr68TJq1qnterd2aNK7IDEVyTE7IGXHJBamTG9IgHmGEk0fyTF4saT1Zr9bbrLVgzWcOyR9YHz+KJpIu</latexit>

f31
rep

<latexit sha1_base64="RV1MeyfwH4JSDwaOM559NQkzc5U=">AAAB83icbVC7SgNBFL3rM8ZX1EawGQxCqrCbFFoGbCwjmAds1jA7mU2GzM4OM7NCWPIbaSwUsfVLrLTTr3HyKDTxwIXDOfdy7z2h5Ewb1/1y1tY3Nre2czv53b39g8PC0XFTJ6kitEESnqh2iDXlTNCGYYbTtlQUxyGnrXB4PfVbD1Rplog7M5I0iHFfsIgRbKzUie6zqjfuZorKcbdQdMvuDGiVeAtSrJ1++5PS+0e9W/js9BKSxlQYwrHWvudKE2RYGUY4Hec7qaYSkyHuU99SgWOqg2x28xhdWKWHokTZEgbN1N8TGY61HsWh7YyxGehlbyr+5/mpia6CjAmZGirIfFGUcmQSNA0A9ZiixPCRJZgoZm9FZIAVJsbGlLcheMsvr5JmpexVy5Vbm4YLc+TgDM6hBB5cQg1uoA4NICBhAk/w7KTOo/PivM5b15zFzAn8gfP2A0gklYU=</latexit>

f32
rep

<latexit sha1_base64="8ACMmvx2vkVsTQIvohHGw167qjs=">AAAB83icbVC7SgNBFL3rM8ZX1EawGQxCqrCbFFoGbCwjmAdsYpidzCZDZmeHmVkhLPsbaSwUsfVLrLTTr3HyKDTxwIXDOfdy7z2B5Ewb1/1y1tY3Nre2czv53b39g8PC0XFTx4kitEFiHqt2gDXlTNCGYYbTtlQURwGnrWB0PfVbD1RpFos7M5a0G+GBYCEj2FipE96n1UrWSxWVWa9QdMvuDGiVeAtSrJ1++5PS+0e9V/js9GOSRFQYwrHWvudK002xMoxwmuU7iaYSkxEeUN9SgSOqu+ns5gxdWKWPwljZEgbN1N8TKY60HkeB7YywGeplbyr+5/mJCa+6KRMyMVSQ+aIw4cjEaBoA6jNFieFjSzBRzN6KyBArTIyNKW9D8JZfXiXNStmrliu3Ng0X5sjBGZxDCTy4hBrcQB0aQEDCBJ7g2UmcR+fFeZ23rjmLmRP4A+ftB0mvlYY=</latexit>

f3d
att

<latexit sha1_base64="F5cyOt7G+dOoSImd3HviJ++nK1Y=">AAAB83icbVDLSsNAFJ3UV62vqEs3g1VwVZJ2oTsLblxWsQ9oY5lMJu3QySTM3Agl5DfcuFDErT/jTvAz/ACnj4W2HrhwOOde7r3HTwTX4DifVmFldW19o7hZ2tre2d2z9w9aOk4VZU0ai1h1fKKZ4JI1gYNgnUQxEvmCtf3R1cRvPzCleSzvYJwwLyIDyUNOCRipF95ntSDvZwQg79tlp+JMgZeJOyflun1yezn4/mr07Y9eENM0YhKoIFp3XScBLyMKOBUsL/VSzRJCR2TAuoZKEjHtZdObc3xqlACHsTIlAU/V3xMZibQeR77pjAgM9aI3Ef/zuimEF17GZZICk3S2KEwFhhhPAsABV4yCGBtCqOLmVkyHRBEKJqaSCcFdfHmZtKoVt1ap3pg0HDRDER2hY3SGXHSO6ugaNVATUZSgR/SMXqzUerJerbdZa8GazxyiP7DefwCxtpUP</latexit>

p3
<latexit sha1_base64="mmn5wt5Q9+RM0Sjt/ah7e/FQf5s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8VLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcDiY2d</latexit>

ê�
<latexit sha1_base64="gCdXGSES8icp12Aphsp5s09cQpM=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiRVsMuCG5cV7APaEiaT23boJBNmboQSsnHjr7hxoYhb/8Gdf+P0sdDWA8MczrmXe+8JEsE1uu63VVhb39jcKm6Xdnb39g/sw6OWlqli0GRSSNUJqAbBY2giRwGdRAGNAgHtYHwz9dsPoDSX8T1OEuhHdBjzAWcUjeTbp70RxawXSBHqSWS+DPLcNwIgzX277FbcGZxV4i1ImSzQ8O2vXihZGkGMTFCtu56bYD+jCjkTkJd6qYaEsjEdQtfQmEag+9nsitw5N0roDKQyL0Znpv7uyGikpzuayojiSC97U/E/r5vioNbPeJykCDGbDxqkwkHpTCNxQq6AoZgYQpniZleHjaiiDE1wJROCt3zyKmlVK95lpXp3Va7XFnEUyQk5IxfEI9ekTm5JgzQJI4/kmbySN+vJerHerY95acFa9ByTP7A+fwAVGJmN</latexit>

frep
<latexit sha1_base64="fnyG6bfGksDBQcm9d9vhQs/XvL8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckIcxOepMhs7PDzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXqAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmSTVDJssEYnuhNSg4BKblluBHaWRxqHAdji5m/vtJ9SGJ/LRThX2YzqSPOKMWie1o0GmUc0G5Ypf9Rcg6yTISQVyNAblr94wYWmM0jJBjekGvrL9jGrLmcBZqZcaVJRN6Ai7jkoao+lni3Nn5MIpQxIl2pW0ZKH+nshobMw0Dl1nTO3YrHpz8T+vm9rotp9xqVKLki0XRakgNiHz38mQa2RWTB2hTHN3K2FjqimzLqGSCyFYfXmdtGrV4Kpae7iu1P08jiKcwTlcQgA3UId7aEATGEzgGV7hzVPei/fufSxbC14+cwp/4H3+AKTJj7Y=</latexit>

frep
<latexit sha1_base64="fnyG6bfGksDBQcm9d9vhQs/XvL8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckIcxOepMhs7PDzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXqAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmSTVDJssEYnuhNSg4BKblluBHaWRxqHAdji5m/vtJ9SGJ/LRThX2YzqSPOKMWie1o0GmUc0G5Ypf9Rcg6yTISQVyNAblr94wYWmM0jJBjekGvrL9jGrLmcBZqZcaVJRN6Ai7jkoao+lni3Nn5MIpQxIl2pW0ZKH+nshobMw0Dl1nTO3YrHpz8T+vm9rotp9xqVKLki0XRakgNiHz38mQa2RWTB2hTHN3K2FjqimzLqGSCyFYfXmdtGrV4Kpae7iu1P08jiKcwTlcQgA3UId7aEATGEzgGV7hzVPei/fufSxbC14+cwp/4H3+AKTJj7Y=</latexit>

fatt
<latexit sha1_base64="wIXDzMFbYJKsZRpPXJZ2FMASVeo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbjjMKGI+rNbcursAWSdeQWpQoDWsfg1GMUsjrpBJakzfcxP0M6pRMMnzyiA1PKFsSse8b6miETd+tjg3JxdWGZEw1rYUkoX6eyKjkTGzKLCdEcWJWfXm4n9eP8Xw1s+ESlLkii0XhakkGJP572QkNGcoZ5ZQpoW9lbAJ1ZShTahiQ/BWX14nnUbdu6o3Hq5rTbeIowxncA6X4MENNOEeWtAGBlN4hld4cxLnxXl3PpatJaeYOYU/cD5/AKfAj7g=</latexit>

fatt
<latexit sha1_base64="wIXDzMFbYJKsZRpPXJZ2FMASVeo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Ae0oWy2m3bpZhN2J0IJ+RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pmDjVjLdZLGPdC6jhUijeRoGS9xLNaRRI3g2md3O/+8S1EbF6xFnC/YiOlQgFo2ilbjjMKGI+rNbcursAWSdeQWpQoDWsfg1GMUsjrpBJakzfcxP0M6pRMMnzyiA1PKFsSse8b6miETd+tjg3JxdWGZEw1rYUkoX6eyKjkTGzKLCdEcWJWfXm4n9eP8Xw1s+ESlLkii0XhakkGJP572QkNGcoZ5ZQpoW9lbAJ1ZShTahiQ/BWX14nnUbdu6o3Hq5rTbeIowxncA6X4MENNOEeWtAGBlN4hld4cxLnxXl3PpatJaeYOYU/cD5/AKfAj7g=</latexit>

Ds
<latexit sha1_base64="kd2F4Qg7/dtYFWs4c99n+gU4M/w=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6LGgB48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1iJOE+xEdKhEKRtFKD7d90y+V3Yo7B1klXk7KkKPRL331BjFLI66QSWpM13MT9DOqUTDJp8VeanhC2ZgOeddSRSNu/Gx+6pScW2VAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uw2s/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadog3BW355lbSqFe+yUr2vleu1PI4CnMIZXIAHV1CHO2hAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AEdmI2k</latexit>

ê✓(t)
<latexit sha1_base64="Zot5QIGzIEVMv3w9AldKasf5BNQ=">AAACCXicbVA9SwNBEN2LXzF+RS1tFoMQm3AXBVMGbCwjmETIHWFvM0mW7H2wOyeE41ob/4qNhSK2/gM7/42b5ApNfLDs470ZZub5sRQabfvbKqytb2xuFbdLO7t7+wflw6OOjhLFoc0jGal7n2mQIoQ2CpRwHytggS+h60+uZ373AZQWUXiH0xi8gI1CMRScoZH6ZeqOGaauH8mBngbmSyHL+qmLY0BWxfOsX67YNXsOukqcnFRIjla//OUOIp4EECKXTOueY8fopUyh4BKykptoiBmfsBH0DA1ZANpL55dk9MwoAzqMlHkh0rn6uyNlgZ7taSoDhmO97M3E/7xegsOGl4owThBCvhg0TCTFiM5ioQOhgKOcGsK4EmZXysdMMY4mvJIJwVk+eZV06jXnola/vaw0G3kcRXJCTkmVOOSKNMkNaZE24eSRPJNX8mY9WS/Wu/WxKC1Yec8x+QPr8we+pZr0</latexit>

✓(t)
<latexit sha1_base64="q/j84qCeYurHXHKzyv1mbANBrUE=">AAAB8HicbVDLSgNBEJyNrxhfUY9eFoMQL2E3CuYY8OIxgnlIsoTZSW8yZGZ2mekVQshXePGgiFc/x5t/4yTZgyYWNBRV3XR3hYngBj3v28ltbG5t7+R3C3v7B4dHxeOTlolTzaDJYhHrTkgNCK6giRwFdBINVIYC2uH4du63n0AbHqsHnCQQSDpUPOKMopUeezgCpGW87BdLXsVbwF0nfkZKJEOjX/zqDWKWSlDIBDWm63sJBlOqkTMBs0IvNZBQNqZD6FqqqAQTTBcHz9wLqwzcKNa2FLoL9ffElEpjJjK0nZLiyKx6c/E/r5tiVAumXCUpgmLLRVEqXIzd+ffugGtgKCaWUKa5vdVlI6opQ5tRwYbgr768TlrVin9Vqd5fl+q1LI48OSPnpEx8ckPq5I40SJMwIskzeSVvjnZenHfnY9mac7KZU/IHzucPQ9+QBQ==</latexit>

a
2 = ��p

12

<latexit sha1_base64="vWTU2fiPpwwWz9Qi+4Fau3xhTnI=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwY0iiYDdCQRcuK9gHNCFMJpN26OTBzEQoIX/hxl9x40IRt7rzb5y0WWjrgWEO59zLvff4KaNCmua3VltZXVvfqG82trZ3dvf0/YOeSDKOSRcnLOEDHwnCaEy6kkpGBiknKPIZ6fuT69LvPxAuaBLfy2lK3AiNYhpSjKSSPN1w/IQFYhqpL0eFZ8MreObcECYR/G2lhZdbduHpTdMwZ4DLxKpIE1ToePqXEyQ4i0gsMUNCDC0zlW6OuKSYkaLhZIKkCE/QiAwVjVFEhJvP7irgiVICGCZcvVjCmfq7I0eRKPdTlRGSY7HoleJ/3jCTYcvNaZxmksR4PijMGJQJLEOCAeUESzZVBGFO1a4QjxFHWKooGyoEa/HkZdKzDevcsO8umu1WFUcdHIFjcAoscAna4BZ0QBdg8AiewSt40560F+1d+5iX1rSq5xD8gfb5A9qon7M=</latexit>

(a) Two Robot Equilibrium
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12

<latexit sha1_base64="aA9QXuRNY9EHCa180daiSgc2LhA=">AAACF3icbVDLSsNAFJ3UV62vqEs3g0VwY0hqQTdCQRcuK9gHNCFMJtN26GQSZiZCCfkLN/6KGxeKuNWdf+OkzUJbDwxzOOde7r0nSBiVyra/jcrK6tr6RnWztrW9s7tn7h90ZZwKTDo4ZrHoB0gSRjnpKKoY6SeCoChgpBdMrgu/90CEpDG/V9OEeBEacTqkGCkt+ablBjEL5TTSX4Zy34FX8My9IUwh+NtKcj9zGrlv1m3LngEuE6ckdVCi7ZtfbhjjNCJcYYakHDh2orwMCUUxI3nNTSVJEJ6gERloylFEpJfN7srhiVZCOIyFflzBmfq7I0ORLPbTlRFSY7noFeJ/3iBVw0svozxJFeF4PmiYMqhiWIQEQyoIVmyqCcKC6l0hHiOBsNJR1nQIzuLJy6TbsJxzq3HXrLeaZRxVcASOwSlwwAVogVvQBh2AwSN4Bq/gzXgyXox342NeWjHKnkPwB8bnD9fSn64=</latexit>

� + ⇡
<latexit sha1_base64="jUaCXoLXWp5ReLQwcHUYh7j/pGE=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSIIQkmqYI8FLx4r2A9pStlsN+3S3STsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O2vrG5tb24Wd4u7e/sFh6ei4ZeJUM95ksYx1J6CGSxHxJgqUvJNoTlUgeTsY38789hPXRsTRA04S3lN0GIlQMIpWevQDjvTST0S/VHYr7hxklXg5KUOORr/05Q9ilioeIZPUmK7nJtjLqEbBJJ8W/dTwhLIxHfKupRFV3PSy+cFTcm6VAQljbStCMld/T2RUGTNRge1UFEdm2ZuJ/3ndFMNaLxNRkiKP2GJRmEqCMZl9TwZCc4ZyYgllWthbCRtRTRnajIo2BG/55VXSqla8q0r1/rpcr+VxFOAUzuACPLiBOtxBA5rAQMEzvMKbo50X5935WLSuOfnMCfyB8/kDdRSQJg==</latexit>
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�
<latexit sha1_base64="5SbAXYCDLz6mp12N1T52o+MOmfY=">AAAB7HicbVBNS8NAEN3Ur1q/qoIXL8EieCpJPejBQ8GLxwqmLbShbLaTdulmE3YnSgj9DV48KCLe/EHe/AH+D7cfB219MPB4b4aZeUEiuEbH+bIKK6tr6xvFzdLW9s7uXnn/oKnjVDHwWCxi1Q6oBsEleMhRQDtRQKNAQCsYXU/81j0ozWN5h1kCfkQHkoecUTSS1w0Aaa9ccarOFPYyceekUj9qPiTZ93ujV/7s9mOWRiCRCap1x3US9HOqkDMB41I31ZBQNqID6BgqaQTaz6fHju1To/TtMFamJNpT9fdETiOtsygwnRHFoV70JuJ/XifF8NLPuUxSBMlmi8JU2Bjbk8/tPlfAUGSGUKa4udVmQ6ooQ5NPyYTgLr68TJq1qnterd2aNK7IDEVyTE7IGXHJBamTG9IgHmGEk0fyTF4saT1Zr9bbrLVgzWcOyR9YHz+KJpIu</latexit>

f31
rep

<latexit sha1_base64="RV1MeyfwH4JSDwaOM559NQkzc5U=">AAAB83icbVC7SgNBFL3rM8ZX1EawGQxCqrCbFFoGbCwjmAds1jA7mU2GzM4OM7NCWPIbaSwUsfVLrLTTr3HyKDTxwIXDOfdy7z2h5Ewb1/1y1tY3Nre2czv53b39g8PC0XFTJ6kitEESnqh2iDXlTNCGYYbTtlQUxyGnrXB4PfVbD1Rplog7M5I0iHFfsIgRbKzUie6zqjfuZorKcbdQdMvuDGiVeAtSrJ1++5PS+0e9W/js9BKSxlQYwrHWvudKE2RYGUY4Hec7qaYSkyHuU99SgWOqg2x28xhdWKWHokTZEgbN1N8TGY61HsWh7YyxGehlbyr+5/mpia6CjAmZGirIfFGUcmQSNA0A9ZiixPCRJZgoZm9FZIAVJsbGlLcheMsvr5JmpexVy5Vbm4YLc+TgDM6hBB5cQg1uoA4NICBhAk/w7KTOo/PivM5b15zFzAn8gfP2A0gklYU=</latexit>

f32
rep

<latexit sha1_base64="8ACMmvx2vkVsTQIvohHGw167qjs=">AAAB83icbVC7SgNBFL3rM8ZX1EawGQxCqrCbFFoGbCwjmAdsYpidzCZDZmeHmVkhLPsbaSwUsfVLrLTTr3HyKDTxwIXDOfdy7z2B5Ewb1/1y1tY3Nre2czv53b39g8PC0XFTx4kitEFiHqt2gDXlTNCGYYbTtlQURwGnrWB0PfVbD1RpFos7M5a0G+GBYCEj2FipE96n1UrWSxWVWa9QdMvuDGiVeAtSrJ1++5PS+0e9V/js9GOSRFQYwrHWvudK002xMoxwmuU7iaYSkxEeUN9SgSOqu+ns5gxdWKWPwljZEgbN1N8TKY60HkeB7YywGeplbyr+5/mJCa+6KRMyMVSQ+aIw4cjEaBoA6jNFieFjSzBRzN6KyBArTIyNKW9D8JZfXiXNStmrliu3Ng0X5sjBGZxDCTy4hBrcQB0aQEDCBJ7g2UmcR+fFeZ23rjmLmRP4A+ftB0mvlYY=</latexit>

f3d
att

<latexit sha1_base64="F5cyOt7G+dOoSImd3HviJ++nK1Y=">AAAB83icbVDLSsNAFJ3UV62vqEs3g1VwVZJ2oTsLblxWsQ9oY5lMJu3QySTM3Agl5DfcuFDErT/jTvAz/ACnj4W2HrhwOOde7r3HTwTX4DifVmFldW19o7hZ2tre2d2z9w9aOk4VZU0ai1h1fKKZ4JI1gYNgnUQxEvmCtf3R1cRvPzCleSzvYJwwLyIDyUNOCRipF95ntSDvZwQg79tlp+JMgZeJOyflun1yezn4/mr07Y9eENM0YhKoIFp3XScBLyMKOBUsL/VSzRJCR2TAuoZKEjHtZdObc3xqlACHsTIlAU/V3xMZibQeR77pjAgM9aI3Ef/zuimEF17GZZICk3S2KEwFhhhPAsABV4yCGBtCqOLmVkyHRBEKJqaSCcFdfHmZtKoVt1ap3pg0HDRDER2hY3SGXHSO6ugaNVATUZSgR/SMXqzUerJerbdZa8GazxyiP7DefwCxtpUP</latexit>

p3
<latexit sha1_base64="mmn5wt5Q9+RM0Sjt/ah7e/FQf5s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8VLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+6Rf75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb16tXZ3UWlc53EU4QRO4Rw8uIQG3EITWsBgCM/wCm+OcF6cd+dj0Vpw8plj+APn8wcDiY2d</latexit>

ê�
<latexit sha1_base64="gCdXGSES8icp12Aphsp5s09cQpM=">AAACBXicbVDLSsNAFJ3UV62vqEtdBIvgqiRVsMuCG5cV7APaEiaT23boJBNmboQSsnHjr7hxoYhb/8Gdf+P0sdDWA8MczrmXe+8JEsE1uu63VVhb39jcKm6Xdnb39g/sw6OWlqli0GRSSNUJqAbBY2giRwGdRAGNAgHtYHwz9dsPoDSX8T1OEuhHdBjzAWcUjeTbp70RxawXSBHqSWS+DPLcNwIgzX277FbcGZxV4i1ImSzQ8O2vXihZGkGMTFCtu56bYD+jCjkTkJd6qYaEsjEdQtfQmEag+9nsitw5N0roDKQyL0Znpv7uyGikpzuayojiSC97U/E/r5vioNbPeJykCDGbDxqkwkHpTCNxQq6AoZgYQpniZleHjaiiDE1wJROCt3zyKmlVK95lpXp3Va7XFnEUyQk5IxfEI9ekTm5JgzQJI4/kmbySN+vJerHerY95acFa9ByTP7A+fwAVGJmN</latexit>

frep
<latexit sha1_base64="fnyG6bfGksDBQcm9d9vhQs/XvL8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckIcxOepMhs7PDzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXqAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmSTVDJssEYnuhNSg4BKblluBHaWRxqHAdji5m/vtJ9SGJ/LRThX2YzqSPOKMWie1o0GmUc0G5Ypf9Rcg6yTISQVyNAblr94wYWmM0jJBjekGvrL9jGrLmcBZqZcaVJRN6Ai7jkoao+lni3Nn5MIpQxIl2pW0ZKH+nshobMw0Dl1nTO3YrHpz8T+vm9rotp9xqVKLki0XRakgNiHz38mQa2RWTB2hTHN3K2FjqimzLqGSCyFYfXmdtGrV4Kpae7iu1P08jiKcwTlcQgA3UId7aEATGEzgGV7hzVPei/fufSxbC14+cwp/4H3+AKTJj7Y=</latexit>

frep
<latexit sha1_base64="fnyG6bfGksDBQcm9d9vhQs/XvL8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY8BLx4jmAckIcxOepMhs7PDzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXqAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmSTVDJssEYnuhNSg4BKblluBHaWRxqHAdji5m/vtJ9SGJ/LRThX2YzqSPOKMWie1o0GmUc0G5Ypf9Rcg6yTISQVyNAblr94wYWmM0jJBjekGvrL9jGrLmcBZqZcaVJRN6Ai7jkoao+lni3Nn5MIpQxIl2pW0ZKH+nshobMw0Dl1nTO3YrHpz8T+vm9rotp9xqVKLki0XRakgNiHz38mQa2RWTB2hTHN3K2FjqimzLqGSCyFYfXmdtGrV4Kpae7iu1P08jiKcwTlcQgA3UId7aEATGEzgGV7hzVPei/fufSxbC14+cwp/4H3+AKTJj7Y=</latexit>
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(b) Three Robot Equilibrium

Figure 7. Force Equilibrium in Deadlock

system deadlock set Dsystem using (48) and (49):

Dsystem =

{
(p1,p2) ∈ R4

∣∣∣∣ ‖∆p12‖ ≥ Ds, µ
∗
12, µ

∗
21 ≥ 0,

û1(p1) =
1

2
µ∗12a12, û2(p2) =

1

2
µ∗21a21,

p1 6= pd1 ,p2 6= pd2

}
. (50)

where a12 = −a21 = −(p1 − p2). From (46), we have that
ûi = 1

2µ
∗
ijaij . This gives

µ∗ij = 2
aTijûi

‖aij‖2
(51)

Theorem 3. Safety Margin Apart. In deadlock, the two
robots are separated by the safety distance and the robots
are on the verge of violating safety (Fig. 7(a))

Proof. Since both robots are in deadlock, each perceives the
other as active i.e. Ai(0) = {1, 2}\i for i = {1, 2}. Then,
straightforward application of (45) gives this result.

Theorem 4. Dsystem is Non-Empty. ∀ kp, Ds > 0,∃ a
family of states (p∗1,p

∗
2) ∈ Dsystem. These states are such

that the robots and their goals are all collinear.

Proof. To prove this theorem, we propose a set of candidate
states (p∗1,p

∗
2) and show that they satisfy the definition of

deadlock (50). See Fig. 7(a) for an illustration of geometric
quantities referred to in this proof.

Let p∗1 = αpd1 + (1− α)pd2 and p∗2 = p∗1 −Dsêβ

where β = tan−1(
yd2−yd1
xd2−xd1

) and α ∈ (0, 1). Note that
p∗1,p

∗
2,pd1 ,pd2 are collinear by construction. Then we will

show that (p∗1,p
∗
2) ∈ Dsystem. Note that

a12 = −(p∗1 − p∗2) = −Dsêβ

û1 = −kp1(p∗1 − pd1) (52)

From definition, êβ = 1
DG

(xd2 − xd1 , yd2 − yd1) where
DG =

∥∥pd2 − pd1∥∥ is the distance between the goals.
Therefore, we have

p∗1 − pd1 = −(1− α)pd1 + (1− α)pd2
= (1− α)DGêβ (53)
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Substituting (53) in (52) gives

û1 = −kp1(1− α)DGêβ (54)

From (51), (52) and (54), we deduce that µ∗12

µ∗12 = 2
aT12û1

‖a12‖22
= 2kp1(1− α)

DG

Ds
> 0 ∀α ∈ (0, 1) (55)

In (55) we have shown that the Lagrange multiplier µ∗12 is
positive, which is one condition in (50). We can similarly
show that µ∗21 > 0. Further, û1 = 1

2µ
∗
12a12 is trivially

satisfied because of the way we computed the multiplier in
(51). Likewise, û2 = 1

2µ
∗
21a21 will be satisfied. Restricting

α ∈ (0, 1) ensures that p∗i 6= pdi . Hence, the proposed states
are always in deadlock as all conditions in (50) are met.

Theorem 5. Dsystem is zero-measure. The system deadlock
set is measure zero.

Proof. Following the definition of p∗1 and p∗2 from theorem 3
and theorem 4, we can show that when two robots are in
deadlock, their positions satisfy∥∥(p1 − pd1

)∥∥+
∥∥(p2 − pd2

)∥∥ = Ds +DG

This can be verified by straightforward substitution.

Characteristics of Three Robot Deadlock
Following the results shown in two robot deadlock, we
now describe the three robot case. We will demonstrate
that properties such as robots being on the verge of safety
violation (theorem 6) and non-emptiness (theorem 7) are
retained in this case as well. We are interested in analyzing
system deadlock, which occurs when u∗i = 0 and ûi 6= 0
∀i ∈ {1, 2, 3}. Since we are studying system deadlock, each
robot has at-least one active constraint (each robot has two
constraints in total). The system deadlock set Dsystem for
three robots is defined analogously to (50).

Theorem 6. Safety Margin Apart In system deadlock,
either all three robots or exactly two pairs of robots are
separated by the safety margin.

Proof. The proof is kept brief because it is similar to the
proof of theorem 3. Based on the number of constraints
that are allowed to be active per robot, all geometric
configurations can be clubbed in two categories :
Category A - This arises when all constraints of each robot
are active i.e. aTiju

∗
i = b̂ij = 0 ⇐⇒

∥∥∆pij
∥∥ = Ds ∀j ∈

{1, 2, 3}\i ∀i ∈ {1, 2, 3}. As a result, each robot is separated
by Ds from every other robot (Fig. 8(a)).
Category B - This arises when there is exactly one robot
with both its constraints active (robot i in Fig. 8(b)), and the
remaining robots (j and k) have exactly one constraint active
each. Hence, robot i is separated by Ds from the others.

Theorem 7. Non-emptiness ∀ kp, Ds, R > 0 and pdi =
Rê2π(i−1)/3 where i = {1, 2, 3}, ∃ (p∗1,p

∗
2,p
∗
3) ∈ Dsystem

where p∗i are
Category A: p∗i = Ds√

3
ê 2π(i−1)

3 +π
where i = {1, 2, 3}

Category B: p∗1 = Dsêπ , p∗2 = 0, p∗3 = Dsêπ3 if robot 2 has
both constraints active.

(a) Category A (b) Category B

Figure 8. Geometric configurations in three robot deadlock

Proof. This proof is similar to theorem 4 so it is skipped.

Note that in the statement of this theorem, we have
predefined the desired goal positions unlike the statement
of theorem 4. The candidate positions of the robots that
we propose are in Dsystem are valid with respect to these
given goals. Additionally, for category B, we proposed one
set of positions that is valid in deadlock, however there is
continuous family of positions that can be valid in category
B which can be found in the appendix of Grover et al. [2019].

6 After Deadlock: Deadlock Resolution
We now use the properties of geometric configurations
derived in section 5 to synthesize a strategy that (1) gets
the robots out of deadlock, (2) ensures their safety and
(3) makes them converge to their goals. One approach to
achieve these objectives is to detect the incidence of deadlock
while the CBF-QP controller is running on the robots and
once detected, any small non-zero perturbation to the control
will instantaneously give a non-zero velocity to the robots.
Thereafter, CBF-QPs can take charge again and we can hope
that using this controller the system state will come out
of deadlock at-least for a short time. However, there is no
guarantee that deadlock will not relapse because it was the
CBF-QP controller that led to deadlock in the first place.
Secondly, perturbations can violate safety and even lead to
degraded performance. Therefore, given these limitations,
we propose a controller which ensures that goal stabilization,
safety and deadlock resolution are met with guarantees.
We demonstrate this algorithm for the two and three robot
cases. Refer to Fig. 9 for a schematic of our approach. This
algorithm is described here:

1. The algorithm starts by executing controls derived
from CBF-QP in Phase 1. This ensures movement
of robots to the goals and safety by construction.
To detect the incidence of deadlock, we continuously
compare ‖u∗‖ , ‖p− pd‖ against small thresholds.
Once these thresholds are small enough, we declare
deadlock detected and switch control to Phase 2.

2. In this phase, we rotate the robots around each other
to swap positions while maintaining the safe distance.
Refer to the appendix of Grover et al. [2019] for the
controller derivation.

(a) For the two-robot case, we calculate u1
fl(t) and

u2
fl(t) using feedback linearization to ensure

that ‖∆p12‖ = Ds and rotation (θ̇ = −kp(θ −
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ûi = �kp(pi � pdi
)

i = {1, 2}

Deadlock 
Detected 

Feasibility 
Detected 

Phase 1: CBF-QP Phase 2: FL Phase 3: P Control 
<latexit sha1_base64="tWOz4TAPjUhRxRSjRalm8pOxGKU="></latexit>

u⇤ = arg min
u

||u � û(p)||2
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(b) Deadlock resolution for three robots

Figure 9. Deadlock Resolution Algorithm Schematic

β) =⇒ ∆pT12∆v12 = 0) (See Fig. 7(a) for
θ, β). This rotation and distance invariance
guarantees safety i.e. h12 = 0. Adding an extra
constraint u1

fl + u2
fl = 0 still ensures that the

problem is well posed and additionally makes the
centroid static.

(b) For the three-robot case, we calculate
u1
fl(t),u

3
fl(t),u

3
fl(t) to ensure that ‖∆p12‖ =

‖∆p23‖ = ‖∆p31‖ = Ds and rotation
(θ̇ = −kp(θ − β) =⇒ ∆pT12∆v12 = 0) (See
Fig. 7(b) for θ, β). This guarantees safety i.e.
h12 = h23 = h31 = 0. Similarly, we impose
u1
fl + u2

fl + u3
fl = 0 to make the centroid

static. Note that both in simulations and
experiments, we observed incidence of only
Category A deadlock so our resolution algorithm
is specific for this category.

3. Once the robots swap their positions, their new
positions will ensure that prescribed proportional
controllers will be feasible in the future. Thus, after
convergence of Phase 2, control switches to Phase
3, which simply uses the prescribed controllers. This
phase guarantees that the distance between robots is
non-decreasing and safety is maintained as we prove
in theorem 8.

Fig. 10 shows simulation results from running this strategy
on two robots. We also conducted an experimental validation
of this algorithm using Khepera 4 nonholonomic robots. The
videos for experimental results can be found at https://bit.
ly/3hBJIew. Note that for nonholnomic robots, we noticed
from experiments and simulations (in two robot case) that
deadlock only occurs if the body frames of both robots
are perfectly aligned with one another at t = 0. Since this
alignment is difficult to establish in experiments due to
sensor noise, we simulated a virtual deadlock at t = 0 i.e.
assumed that the initial position of robots are in deadlock.

Figs. 11 show the simulation results from running this
strategy on three robots. Fig. 12 shows snapshots of this
video during different phases of the execution of the
deadlock resolution algorithm. In three robots, we did
observe deadlock experimentally as can be seen here https:

(a) Robot 1 Position (b) Robot 2 Position

Figure 10. Positions of robots from deadlock resolution
algorithm for two robots. The vertical bars separate the three
phases. In all figures, final positions converge to desired
positions in Phase 3. Simulation video at https://youtu.be/
nrWXdn 3nI4 and experimental at https://bit.ly/3hBJIew

Figure 11. Positions of robots from deadlock resolution
algorithm for three robots. The vertical bars separate the
three phases. Final positions converge to desired positions in
Phase 3. Simulation video at https://youtu.be/5xbx4mk27xc and
experimental validation at https://youtu.be/IqYmkQUjrBI

//youtu.be/e6eOeuh7Uec. We only observed incidence of
Category A deadlock in both simulations and experiments
so our resolution algorithm is designed for this category.
The videos for experimental results for validation of
the resolution algorithm can be found at https://youtu.be/
IqYmkQUjrBI. The video demonstrates that our resolution
algorithm was able to safely deliver the robots to their
goals. We next prove that this strategy ensures resolution
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(a) t = 0s, Phase 1 (b) t = 0.5s, Phase 1 (c) t = 1.0s, Phase 1 (d) t = 2.5s, Phase 1

(e) t = 4.0s, Phase 2 (f) t = 5.0s, Phase 2 (g) t = 6.0s, Phase 2 (h) t = 7.5s, Phase 2

(i) t = 15s, Phase 3 (j) t = 16s, Phase 3 (k) t = 18s, Phase 3 (l) t = 19.5s, Phase 3

Figure 12. Snapshots from running the deadlock resolution algorithm on three robots. The top row corresponds to Phase 1 where
we use CBF-QPs. The middle row corresponds to Phase 2 that uses feedback linearization for rotating the robots and the last row
corresponds to Phase 3 that uses proportional controls. The simulation video can be watched at https://youtu.be/5xbx4mk27xc

of deadlock and convergence of robots to their goals by
exploiting the properties we derived in theorem 3 and
theorem 4. We prove this theorem for N = 2 since N = 3
is a trivial extension of N = 2.

Theorem 8. The three phase strategy ensures that the
robots will not fall back in deadlock and will converge to
their goals.

Proof. See appendix 9.

7 Conclusions
In this paper, we analyzed the characteristic properties
of deadlock that results from using CBF based QPs for
avoidance control in multirobot systems. We broke our
analysis into three phases consistent with the chronology of
deadlock incidence. For before deadlock, we demonstrated
that symmetry in initial and goal positions leads to
deadlocks and heterogeneity in controller parameters may
not be enough to evade deadlock. The key lesson that we

learned from the examples we considered is that symmetry
will always lead to deadlock resulting in robots grazing
each other asymptotically. Thus a symmetry breaking
controller with some random noise can potentially prevent
such configurations from being attained. However even
with randomness, deadlock avoidance cannot be taken for
granted. Thus, a guaranteed way to resolve deadlock is
to allow it to occur and then correct it using a reactive
mechanism. However, devising this corrective strategy
necessitates knowing the geometric characteristics of the
robot configurations when the system is in deadlock.

In that spirit, we used the KKT conditions of the
CBF-QPs and analyzed the geometric properties of an N
robot arrangement when it has fallen in deadlock. We
demonstrated how to interpret deadlock as a subset of the
state space and proved that in deadlock, the robots are on the
verge of violating safety. Additionally, we showed that this
set is non-empty and bounded. We also demonstrated that
the number of valid geometric configurations in deadlock
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increases approximately exponentially with the number of
robots which makes the analysis and resolution for N ≥
4 complex. Finally, by using these properties, we devised
a corrective control algorithm to force the robots out of
deadlock and ensure task completion.

There are several directions we would like to explore
in future. Firstly, we want to extend this to N ≥ 4
case. In the N = 4 case, we determined a large number
of admissible geometric configurations. We found that
there exist bijections among some of these configurations
depending on the number of total active constraints. We
believe this property can be exploited to reduce the
complexity down to the equivalence classes of these
bijections. We will exploit this line of approach to simplify
analysis for N ≥ 4 cases. Secondly, while in this work we
focused on CBF-QPs for analysis, our developed theory
can be used to analyze properties of deadlock resulting
from other optimization based such as velocity obstacles
and the safe-set method. So in future, we will evaluate
the generalizabilty of our derived results specifically the
geometric properties of robot arrangements across the
spectrum of reactive optimization based controllers, and
explore properties that make a particular algorithm immune
to deadlock.

A Appendix

Two Robot Deadlock Results
Lemma A.1. If at t = 0, Dinit > βi+, then u∗i (0) = ûi(0),
i.e. the collision avoidance constraint of robot i is inactive.

Proof. To determine the control returned by the optimization
for robot one at t = 0, we compute the value of the flag
f12(û1(0)). This flag evaluates whether û1(0) is a feasible
controller i.e. it prevents collision of robot 1 with 2. Based
on the initial positions and goals from (17)-(18), we have

f12(û1(0)) = aT12(0)û1(0)− b12(0)

= kp1(p1(0)− p2(0))T (p1(0)− pd1)

− γ

4
(D2

init. −D2
s)

= −γ
4
D2
init +DG1

kp1Dinit +
γ

4
D2
s

:= g12(Dinit.) (56)

Define g12(Dinit.) := f12(û1(0)) to emphasize dependence
on Dinit., the initial distance between the robots. (56) is a
quadratic polynomial in Dinit and has two zeros at

β1
± =

2DG1
kp1

γ
±
√(

2DG1
kp1

γ

)2

+D2
s (57)

where the subscript of β indicates the sign of β. Now, since
the graph of g12(Dinit) is a downward facing parabola,
we know that g12(Dinit) < 0 ∀ Dinit ∈ (−∞, β1

−) ∪
(β1

+,∞) =⇒ g12(Dinit) < 0 ∀ Dinit ∈ (β1
+,∞). We call

β1
+ to be the critical distance for robot 1. If at t = 0,

the distance between the robots is such that Dinit > β1
+,

then at t = 0, g12(Dinit.) < 0 ⇐⇒ f12(û1(0)) < 0 =⇒
u∗1(0) = û1(0). Similarly, we can compute g21(Dinit.) :=
f21(û2(0)) which has roots at β2

±. Hence, if at t = 0,
Dinit > β2

+, then u∗2(0) = û2(0).

Lemma A.2. ∃ a finite time t1 as described in Def. (24),
until which the collision avoidance constraints of both robots
are simultaneously inactive.

Proof. Since at t = 0, both robots use their prescribed
controls ûi, let us assume that they continue to do so for the
interim. Therefore, the dynamics of the robots are

ṗi = ûi = −kpi(pi − pdi). (58)

(58) can be integrated analytically using the initial and
desired positions of the two robots from (17) and (18) to give

p1(t) = pd1 −DG1
e−kp1 têα

p2(t) = pd2 +DG2
e−kp2 têα (59)

We can compute the relative position between 1 and 2 as:

∆p21(t) = (DG1
e−kp1 t +DG2

e−kp2 t −K)êα

= D(t)êα (60)

where K := DG1 +DG2 −Dinit. D(t) denotes the inter-
robot distance as a function of time for the duration in which
both robots continue to use their proportional controllers.
From (60), it is given by

D(t) := (DG1e
−kp1 t +DG2e

−kp2 t)−K, (61)

The nominal controls can are given by

û1(t) = −kp1(p1(t)− pd1) = +kp1DG1
e−kp1 têα (62)

û2(t) = −kp2(p2(t)− pd2) = −kp2DG2
e−kp2 têα (63)

Now, we use (61)-(63) to compute the feasibility flag for
robot 1 using (22)

f12(û1(t)) = aT12(t)û1(t)− b12(t)

= −γ
4
D2(t) + kp1DG1

e−kp1 tD(t) +
γ

4
D2
s

(64)

which is a downwards facing parabola in D(t). Thus,
f12(û1(t)) < 0 for D(t) > β1

+(t) where

β1
+(t) =

2DG1
kp1e

−kp1 t

γ
+

√(
2DG1

kp1e
−kp1 t

γ

)2

+D2
s

(65)

and likewise we can define β2
+(t) for robot two by

replacing kp1 , DG1
with kp2 , DG2

in (65). Note that D(t),
β1

+(t) and β2
+(t) are monotonically decreasing with time.

Additionally, recall from (17) that D(0) = Dinit and from
Assumption 1 that Dinit. > β1

+. However, while D(t)
converges to −(DG1 +DG2 −Dinit) < 0, β1

+(t), β2
+(t)

converge to Ds > 0. Therefore, there exists a time ta at
which D(ta) = β1

+(ta) =⇒ f12(û1(ta)) = 0 and a time
tb at which D(tb) = β2

+(tb) =⇒ f21(û2(tb)) = 0. We
assume WLOG that β1

+(ta) > β2
+(ta) =⇒ ta < tb and

hence we define:

t1 := min{ta, tb} = ta (66)

ta is the time at which the collision avoidance constraint
of robot one becomes active i.e. aT12(ta)u∗1(ta) = b12(ta)
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while the collision avoidance constraint of robot two is
still inactive i.e. aT21(ta)û2(ta) < b21(ta). Thus ta is the
time in Def. 24, i.e. the maximum time until which
both robots’ constraints are inactive. See Fig. 4 for
an illustration of phase 1 which ends at t = t1 when
D(t) = β1

+(t). Finally, D(t) is monotonically decreasing
∀t in (60) and D(0) = Dinit > 0, D(t1) = β1

+(t1) > 0,
therefore, D(t) > 0 ∀t ∈ [0, t1). From (60), note that the
distance between the robots is ‖∆p21(t)‖ := |D(t)| = D(t)
∀t ∈ [0, t1). Therefore, ‖∆p21(t)‖ is also monotonically
decreasing until t1.

Lemma A.3. ∃ a finite time t2 as in Def. (27), until which
the constraint of robot two stays inactive.

Proof. Let us assume that there is a time t2 until which the
collision avoidance constraint of robot two remains inactive.
Therefore, the dynamics of robot two are governed by the
prescribed nominal control. Thus,

ṗ2 = û2 = −kp2(p2 − pd2)

=⇒ p2(t) = pd2 +DG2
e−kp2 têα (67)

On the other hand, the control input to robot one is

u∗1 = û1 −
1

2
µ12a12, (68)

where µ12 6= 0 because the collision avoidance constraint of
robot one became active at t1 i.e. aT12(t)u∗1(t) = b12(t) ∀
t ≥ t1. It’s expression is given as follows

µ12 = 2
aT12û1 − b12

‖a12‖2
(69)

Therefore, the dynamics of robot one ∀t ≥ t1 are

ṗ1 = û1 −
aT12û1 − b12

‖a12‖2
a12

= û1 −
aT12û1

‖a12‖2
a12︸ ︷︷ ︸

u⊥

+
b12

‖a12‖2
a12︸ ︷︷ ︸

u‖

(70)

On closer inspection, note that u⊥ ⊥ a12 ⇐⇒ u⊥ ⊥
−∆p12. We want to derive an analytical expression of p1(t)
just like we did for robot 2 in (67). However, it is difficult
to analytically integrate (70). Instead, we will show via
recursion that the p1(t) can be expressed as

p1(t) = pd1 −DG1
η(t)êα (71)

for some function η(t) ∀t ≥ t1. This expression is valid
at t = t1 for η(t1) = e−kp1 t1 as shown in (59). This
representation highlights that the position of robot one is
confined along êα. We will show that this property is
maintained throughout phase 2 because the component of
velocity input to robot one perpendicular to êα will vanish
(which will become the cause of deadlock). Recall at t = t1

a12(t1) = ∆p21(t1) = D(t1)êα (72)

Therefore, u⊥(t1) = û1 −
aT12û1

‖a12‖2
a12

= kp1DG1
η(t1)êα

− D(t1)êTα
(
kp1DG1

η(t1)êα
)

D2(t1)
(D(t1)êα)

= 0

u‖(t1) =
b12

‖a12‖2
a12

= γ
D2(t1)−D2

s

4D(t1)
êα (73)

Thus, integrating the velocity for a small time step gives

p1(t1 + ∆t) = p1(t1) + ∆t
(
u⊥(t1) + u‖(t1)

)
= pd1 −DG1

(
η(t1)−∆tγ

D2(t1)−D2
s

4DG1D(t1)

)
êα

= pd1 −DG1
η(t1 + ∆t)êα (74)

Through (74), we have demonstrated that the updated
position of robot one admits the general form given
by (71) because the perpendicular component of the
velocity vanishes. As a result, the robot never acquires any
displacement along the perpendicular component. Hence, the
dynamics of robot one are always

ṗ1 = u‖ = γ
‖∆p21‖2 −D2

s

4 ‖∆p21‖2
∆p21, (75)

∀t ≥ t1. The relative dynamics are

˙∆p21 = −γ ‖∆p21‖2 −D2
s

4 ‖∆p21‖2
∆p21 − kp2(p2 − pd2) (76)

Let ∆p21(t) = D(t)êα, then we get for t ≥ t1

Ḋ(t) = −γD
2(t)−D2

s

4D(t)
− kp2DG2

e−kp2 t (77)

where D(t1) = β1
+(t1) > Ds. Note that for D(t) > Ds,

Ḋ(t) < 0 =⇒ D(t) is monotonically decreasing at least
until tc where tc := {t|D(t) = Ds}. Recall from phase 1 that
the collision avoidance constraint of robot two is inactive
i.e. f21(û2(t)) < 0 as long as D(t) > β2

+(t). Additionally,
recall that β2

+(t) is monotonically decreasing with respect to
time and converges to Ds. Moreover, from phase 1, recall
that D(t1) = β1

+(t1) > β2
+(t1). Hence, there exists a time

t2 ≤ tc at which D(t) = β2
+(t). This time t2 is precisely the

time in (27). See Fig. 4 for an illustration of phase 2 which
ends at t = t2 when D(t) = β2

+(t). This concludes phase 2
and marks the start of phase 3.

Lemma A.4. The distance between robots converges to the
safety margin Ds at which point they stop moving and fall in
deadlock.

Proof. Letting ∆p21(t) = D(t)êα in (31)

Ḋ(t) = −γD
2(t)−D2

s

2D(t)
(78)
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where D(t2) = β2
+(t2) > Ds. The solution to this is

D(t) =
√

(D2(t2)−D2
s)e
−γ(t−t2) +D2

s (79)

Therefore D(t) −→ Ds and so ‖∆p12(t)‖ −→ Ds. There-
fore, the robots will be just at the verge of colliding. More-
over, note from (29) that as ‖∆p12(t)‖ −→ Ds, ṗ1 −→ 0,
ṗ2 −→ 0, i.e. the robots stop moving. However, once they
stop, note that limt−→∞∆p21(t) = Dsêα, yet ∆pd21 =
−(DG1 +DG2 −Dinit.)êα. Therefore, the robots are not
at their goals (because the goal vector is anti-parallel to the
vector connecting the robots). Hence, we conclude that the
robots have fallen in deadlock.

Three Robot Deadlock Results
Lemma A.5. If Dinit. > β+, then u∗i (0) = ûi(0) ∀i

Proof. To keep calculations brief, we compute the flag
fij(ûi(0)) for i = 1, j = 2. Using (32)-(33), we have

f12(û1(0))) = aT12(0)û1(0)− b12(0)

= −γ
4
D2
init +

√
3DGkp

2
Dinit +

γ

4
D2
s

:= g(Dinit.) (80)

We can show that fij(ûi) = g(Dinit.) ∀i ∈ {1, 2, 3}, j 6= i
because of the equilateral configuration at t = 0. g(Dinit.) is
a quadratic polynomial in Dinit. with a zero at β+:

β+ =

√
3DGkp
γ

+

√(√
3DGkp
γ

)2

+D2
s (81)

Therefore, Dinit > β+ =⇒ g(Dinit.) < 0 ⇐⇒
fij(ûi(0)) < 0 ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i, ⇐⇒
u∗i (0) = ûi(0) ∀ i ∈ {1, 2, 3}.

Lemma A.6. All robots continue to move in an equilateral
triangular configuration with centroid fixed at c(0)

Proof. Using (36), the centroid’s position is given by

c(t) =
1

3

3∑
i=1

(pi(0)− pdi)︸ ︷︷ ︸
0

e−kpt +
1

3

3∑
i=1

pdi︸ ︷︷ ︸
c(0)

= c(0) (82)

Here the two terms are zero because of the way we defined
the initial position and goal locations in (32)-(33). Next, to
show that the three robots move along the vertices of an
equilateral triangle, we compute the distance between robots
i and j and show that it identical for every pair. From (36),

∥∥∆pij(t)
∥∥ =

√√√√√∥∥∆pij(0)
∥∥2︸ ︷︷ ︸

term 1

e−2kpt +
∥∥∥∆pdij

∥∥∥2

︸ ︷︷ ︸
term 2

(1− e−kpt)2

+ 2 ∆pTij(0)∆pdij︸ ︷︷ ︸
term 3

(e−kpt − e−2kpt) (83)

One can show that term 1, term 2 and term 3 are identical
for all i, j ∈ {1, 2, 3}, j 6= i using (32), (33). Therefore, the

distance of robot i from robot j 6= i is same for all i ∈
{1, 2, 3}, hence the robots move along the vertices of an
equilateral triangle. A second invariant is the angle made by
the vector connecting robots i, j with the Xw axis of the
world. This can be shown by demonstrating that ∆pij(t)
remains parallel to ∆pij(0) as follows

∆pij(t)×∆pij(0) =
(
∆pij(0)×∆pij(0)

)︸ ︷︷ ︸
0

e−kpt

+
(
∆pdij ×∆pij(0)

)︸ ︷︷ ︸
Term 1

(1− e−kpt)

= 0 (84)

Term 1 vanishes because ∆pdij is anti-parallel to ∆pij(0)
using (32), (33). Since now we have shown that the three
robots move along the vertices of an equilateral triangle, the
positions of the robots can still be written in the form similar
to the way we defined their initial positions in (32):

p1(t) = e−kptp1(0) + (1− e−kpt)pd1
p2(t) = p1(t) + D̃(t)êα

p3(t) = p2(t) + D̃(t)êα+ 2π
3
, (85)

where D̃(0) = Dinit.. D̃(t) denotes the inter-robot distance
between any pair of robots. Here, the angle between ∆p21

and Xw is still α as in (32) because of (84). Thus, the robots
move along the vertices of an equliateral triangle using
ûi(t) ∀i ∈ {1, 2, 3}. This symmetry is because (1) ûi(t) has
identical gains (i.e. kp) ∀i and (2) the distance of initial
position to goal is identical for all robots (DG).

Note that in (85), D̃(t) is

D̃(t) = êTα∆p21(t)

= êTα

(
∆p21(0)e−kpt + ∆pd21(1− e−kpt)

)
= (Dinit. −

√
3DG) +

√
3DGe

−kpt (86)

Using this definition of D̃(t), we now demonstrate that there
exists a time when all the collision avoidance constraints will
inevitably become active.

Lemma A.7. There exists a time tij when fij(ûi(t)) =
aTij(t)ûi(t)− bij(t) = 0 i.e. when the collision avoidance
constraint of robot i with robot j becomes active.
Furthermore, tij is identical ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i
Proof. Using (36), we can find that fij(ûi(t)) (as a function
of time) is identical for ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i. This
is again due to the symmetry in the positions at time t. Now,
we evaluate fij(ûi) as a function of D̃. For brevity, we
evaluate this for i = 1, j = 2:

g(D̃) := f12(û1) = aT12û1 − b12

= −γ
4
D̃2(t) +

√
3

2
kpDGe

−kptD̃(t) +
γ

4
D2
s (87)

Note that g(D̃) is quadratic in D̃ with a zero at

β+(t) =

√
3DGkpe

−kpt

γ
+

√(√
3DGkpe−kpt

γ

)2

+D2
s

(88)
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Therefore, if D̃(t) ≤ β+(t) =⇒ f12(û1(t)) ≥ 0 . Now,
note from (86) that D̃(t) is monotonically decreas-
ing with t, D̃(0) = Dinit. > β+ (from Assumption (3)).
Also, note that limt−→∞ D̃(t) = Dinit. −

√
3DG < 0 from

Assumption (2). Similarly, β+(t) is monotonically decreas-
ing. β+(0) < Dinit. and limt−→∞ β+(t) = Ds > 0. There-
fore, there exists a time when D̃(t) intersects β+(t)
i.e. t1 = {t|D̃(t) = β+(t)}. This is equivalent to t1 =
{t|fij(ûi(t)) = 0 ∀i ∈ {1, 2, 3}, j ∈ {1, 2, 3}\i}. This is
precisely when constraints of all robots become active.

Lemma A.8. The distance between the robots converges to
the safety margin Ds and the robots stop moving and fall in
deadlock.

Proof. Noting from (38) that ∆p12(t) = −D(t)êα and
combining with (40), we deduce that

Ḋ(t) = −γD
2(t)−D2

s

2D(t)
∀t ≥ t1

=⇒ D(t) =
√

(D2(t1)−D2
s)e
−γ(t−t1) +D2

s

=⇒ lim
t−→∞

D(t) = Ds (89)

Hence, it follows from (39) that ṗi −→ 0 ∀i ∈ {1, 2, 3}.
Moreover, note that limt−→∞∆p12(t) = −Dsêα yet
∆pd12 = (

√
3DG −Dinit.)êα 6= −Dsêα (from (33) and

Assumption 2). Therefore, the robots are not at their goals,
and static, thus they have fallen in deadlock.

Deadlock Resolution Algorithm Proof
Theorem 9. The three phase strategy ensures that the
robots will not fall back in deadlock and will converge to
their goals.

Proof. We would like to show that once phase three control
begins, the robots will never fall back in deadlock. We will
do this by showing that the distance between the robots is
non-decreasing, once phase three control starts. We make one
assumption which is needed for a technicality in the proof but
is easily achieved in practice.

Assumption 4. DG > Ds i.e. the inter-goal distance is
greater than the safety margin.

This is required because otherwise, the robots will never
be at-least Ds apart while at their goals which will result
in safety violation. We break this proof into three parts
consistent with the three phases shown in Fig. 9(a):

Phase 1 → Phase 2: Let t = t1 be the time at which
phase 1 ends (and phase 2 starts) i.e. when robots fall
in deadlock. In theorem 3 we showed that in deadlock
‖∆p21‖ = Ds, and in theorem 4 we showed that the
positions of robots and their goals are collinear. So at the
end of phase 1, ∆p21(t1) = Dsêβ+π . The goal vector
∆pd21(t) := pd2 − pd1 = DGêβ ∀t > 0.

Phase 2 −→ Phase 3: The initial condition of phase two is
the final condition of phase one i.e. ∆p21(t1) = Dsêβ+π .
In phase two, we use feedback linearization to rotate
the assembly of robots making sure that the distance
between them stays at Ds, until the orientation of the

vector ∆p21(t) = Dsêθ(t) aligns with ∆pd21 = DGêβ .
(Such a controller is guaranteed to exist (see Grover et al.
[2019]). Once done, ∃ a time t2 at which θ(t2) = β.
Moreover, at t = t2, the robots are no longer moving and
∆p21(t2) = Dsêβ . These states are the final condition for
phase 2 and initial condition for phase 3.

Phase 3 −→∞ : In this phase, the initial condition is
∆p21(t2) = Dsêβ . Also, note that the dynamics of phase
3 control are specified by a proportional controller. The
dynamics of relative positions and velocities are:

∆ṗ21 = −kp(∆p21 −∆pd21) (90)

where ∆pd21 = DGêβ . Now, we will do a coordinate
change as described next. Let ∆p̃21 := R−β∆p21. The
initial conditions in these coordinates are ∆p̃21(t2) =
R−βDsêβ = (Ds, 0) i.e. ∆p̃x21(t2) = Ds,∆p̃

y
21(t2) = 0.

The dynamics in new coordinates are:

∆˙̃p21 = −kp(∆p̃21 −R−β∆pd21) (91)

Using these coordinates, note that R−β∆pd21 = (DG, 0).
Note from the dynamics and the initial conditions for the
y components of relative position that the only solution
is the zero solution i.e. ∆p̃y21(t) ≡ 0 ∀ t ≥ t2. As for
the x component, we can compute the solution to be
∆p̃x21(t) = DG + (Ds −DG)e−kp(t−t2). Finally, note
that d‖∆p12(t)‖

dt = −kp(Ds −DG)e−kp(t−t2) > 0 (from
Assumption 4). Hence, the distance between the robots
is non-decreasing i.e. the robots never fall in deadlock.
Additionally, since the robots use a proportional controller,
their positions exponentially stabilize to their goals.
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