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Abstract
In this paper we develop the analytical framework for a novel Wireless signal-based Sensing capability for Robotics
(WSR) by leveraging robots’ mobility. It allows robots to primarily measure relative direction, or Angle-of-Arrival (AOA), to
other robots, while operating in non-line-of-sight unmapped environments and without requiring external infrastructure.
We do so by capturing all of the paths that a wireless signal traverses as it travels from a transmitting to a receiving robot
in the team, which we term as an AOA profile. The key intuition behind our approach is to enable a robot to emulate
antenna arrays as it moves freely in 2D and 3D space. The small differences in the phase of the wireless signals are thus
processed with knowledge of robots’ local displacement to obtain the profile, via a method akin to Synthetic Aperture
Radar (SAR). The main contribution of this work is the development of i) a framework to accommodate arbitrary 2D and
3D motion, as well as continuous mobility of both signal transmitting and receiving robots, while computing AOA profiles
between them and ii) a Cramer-Rao Bound analysis, based on antenna array theory, that provides a lower bound on
the variance in AOA estimation as a function of the geometry of robot motion. This is a critical distinction with previous
work on SAR-based methods that restricts robot mobility to prescribed motion patterns, does not generalize to the full
3D space, and/or requires transmitting robots to be stationary during data acquisition periods. We show that allowing
robots to use their full mobility in 3D space while performing SAR, results in more accurate AOA profiles and thus better
AOA estimation. We formally characterize this observation as the informativeness of the robots’ motion; a computable
quantity for which we derive a closed form. All analytical developments are substantiated by extensive simulation and
hardware experiments on air/ground robot platforms using 5 GHz WiFi. Our experimental results bolster our analytical
findings, demonstrating that 3D motion provides enhanced and consistent accuracy, with total AOA error of less than
10◦ for 95% of trials. We also analytically characterize the impact of displacement estimation errors on the measured
AOA and validate this empirically using robot displacements obtained from off-the-shelf Intel Tracking Camera T265.
Finally, we demonstrate the performance of our system on a multi-robot task where a heterogeneous air/ground pair of
robots continuously measure AOA profiles over a WiFi link to achieve dynamic rendezvous in an unmapped, 300 m2

environment with occlusions.
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1 Introduction

Multi-robot coordination often requires robots to gather
information about neighboring robots and their shared
environment in order to collaborate effectively. Sensing
state information of other robots such as their relative
positions, proximity, or nature (friend or foe) is often
needed for coordination. This information is critical for
various multi-robot applications, ranging from coverage, to
exploration, to rendezvous and beyond (Cortes et al., 2004;
Almadhoun et al., 2019; Cunningham et al., 2012; Freda
et al., 2019; Choudhary et al., 2017a; Grisetti et al., 2010).
However, how to obtain this information in an unknown
and unmapped environment without a shared coordinate
reference frame, without line-of-sight and without GPS or
other external infrastructure, is a significant challenge. A
promising approach for locally obtaining relative position
related information locally, exploits information extracted
from exchanged wireless signals (Gil et al., 2015a). As a
wireless signal travels between robots, it physically interacts
with the environment. Its amplitude and phase are affected

by the distance it travels, the obstacles it passes through or
is reflected off of, and the relative positions and velocities of
the communicating robots in a phenomenon called multipath.
This multipath can be measured as an Angle-of-Arrival
(AOA) profile, where the arriving signal’s direction and
power along each path is measured as peaks along different
spatial angles (see Fig. 1), for a pair of communicating
robots in a team. Measuring these AOA profiles would
thus allow robots to obtain information about the relative
direction of other robots that they are able to receive any
communication from, including lightweight ping packets. We
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Angle-of-Arrival profile

Figure 1. Schematic representation of AOA profiles obtained by a
signal receiving UAV for transmitting aerial and ground robot. Green, Red
and orange lines represent the line-of-sight, direct and reflected signal
paths respectively. These multipaths are captured in the corresponding
AOA profiles as different AOA peaks. This profile can be used to obtain
relative bearing between robots, establishing adhoc robot networks or as
a fingerprint to verify uniqueness of a transmitting robot.

note that ping packets incur a very small fraction of available
bandwidth, as little as 5 KB/s; thus robots can perform AOA
estimation of one another at much longer distances, and
through occlusions, even if they are not able to communicate
other information, such as maps, typically requiring much
higher bandwidths (Schmuck and Chli, 2019). In this way,
wireless signals could inform about a distant or occluded
neighboring robot which would be difficult or impossible
to obtain using traditional on-board sensors alone such as
LiDAR or camera.

In this paper, we develop the algorithmic and analytical
framework for a Wireless signal-based Sensing capability for
Robotics (WSR). This framework is applicable to any radio
frequency wireless signal. It enables the robots to measure
full AOA profiles between robots that are i) communicating
locally by broadcasting packets over local wireless network
(e.g. WiFi), ii) using only on-board sensors native to robotic
platforms for estimating local displacement and iii) freely
mobile in 3D space. This framework would constitute a
highly amenable design for fully distributed robotic systems.
The key intuition for our approach builds off of Synthetic
Aperture Radar (SAR) to measure small phase differences
of a transmitted signal as the receiving robot moves through
space. In this way, the receiving robot effectively emulates
“antenna arrays”, (See Fig. 2) tracing out a virtual multi-
antenna array (with one “antenna element” for each received
packet). The shape or array geometry is dictated by the
path traversed by the robot. Antenna array theory indicates
that a full AOA profile can be reconstructed from an array
of minimum length of two times the signal wavelength
(about 12 cm for 5 GHz WiFi) (Orfanidis, 2016). This
allows the receiving robot to resolve the incoming signal
directions, using minimal displacements as it moves through
space. This paper shows for the first time that arbitrary
displacements on general air/ground robotic platforms
are indeed compatible with SAR-type approaches.

Previous work has shown that measuring AOA profiles is
possible, and that incorporating this information into multi-
robot systems can be used to address several important

long-standing challenges in robotics. For example: i) several
AOA profiles collected from the same transmitting source
can be used to triangulate the position of the sender,
leading to accurate positioning and tracking in GPS-denied
environments (Kumar et al., 2014a; Kotaru et al., 2015;
Xiong and Jamieson, 2013a; Adib et al., 2014; Vasisht et al.,
2016; Adib and Katabi, 2013; Karanam and Mostofi, 2017),
ii) an AOA profile can be used by robots establish ad-
hoc networks that would improve communication quality
to other robots in the team, allowing for more reliable
communication in complex and cluttered environments (Gil
et al., 2015a; Wang et al., 2019), and iii) the full AOA
profile can be used as a signal multipath signature of a
robot to verify its uniqueness, with implications for security
and authentication in multi-agent systems (Gil et al., 2015b;
Xiong and Jamieson, 2013b). However, a main limitation
of many of these approaches is that they do not extend to
general robotics platforms and full 3D mobility of multiple
robots, while maintaining the ability to collect AOA profile
information. In order to achieve true adoption of the WSR
framework, we need to resolve this important limitation.

We do not focus on a particular application domain
but rather focus on the development of their critical
primitive – AOA profile measurement capabilities and a
characterization of their accuracy – for general air/ground
multi-robot systems. Advances in accurate pose estimation
for a robot, using on-board sensors such as camera and
LiDAR (Schmuck and Chli, 2019; Choudhary et al., 2017b;
Qin et al., 2018) enable this new possibility of applying SAR
over arbitrary 2D and 3D displacement of robots. However,
key challenges must be addressed. Namely, whether SAR-
type approaches can be successfully employed over i)
arbitrary 3D motion subject to displacement estimation
error, and ii) in a scenario where both the transmitting and
receiving robot are moving simultaneously. The focus of this
paper is to address these challenges.

1.1 Key challenges and approach
We simultaneously address the challenges and opportunities
imposed by arbitrary robot motion by appealing to antenna
array theory (Vu et al., 2011). We first formulate a SAR
equation to effectively isolate the phase change in the signal
resulting from any arbitrary 2D or 3D robot displacement.
Isolation here refers to isolation of the phase change from
other sources of noise, such as Carrier Frequency Offset
(CFO), and/or simultaneous mobility at the transmitting and
receiving robots i.e “moving ends”. Thus our developed
methods allow for continuous data collection and AOA
profile estimation, between any robots that can communicate
(even at low rates of ∼ 5 KB/s).

Interestingly, the ability to perform SAR over arbitrary 3D
robot motion holds potential for improving the accuracy of
AOA profiles. It is well known that different antenna array
geometries display different sensitivity to measuring phase
differences in a received signal (Manikas, 2004). Hence, it
is intuitive to expect that different robot motions should also
impact the AOA profile and specifically the accuracy of the
AOA peak that corresponds to the direction of maximum
power path of received signal. We formalize this intuition
via a Cramer Rao Bound analysis. The Cramer Rao Bound
(CRB) captures the sensitivity of AOA peak estimation, as it
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Virtual antenna array

Figure 2. A schematic representation of our approach that enables
robots to use their mobility and received communication signals (e.g.
WiFi) for emulating an antenna array. The dotted black lines indicate
arbitrary robot displacements in 2D and 3D.

is a lower bound on its variance, resulting from a particular
array geometry. In particular, the CRB is proportional to
the inverse of the Fisher Information for a specific antenna
array geometry. We thus treat the inverse of the CRB as the
informativeness of the antenna array and seek to characterize
this value for different motion patterns. Essentially, a key
question that we address in this work is: how to relate the
informativeness of a robot’s displacement to the resulting
AOA profile? Along these lines we derive a new form of
the CRB for analyzing the effect of arbitrary displacement
geometry on the quality of the resulting AOA estimation.
Our analysis reveals that indeed the ability to compute
AOA profiles over a robot’s arbitrary 3D motion provides
a precise advantage as compared to 2D motion due to high
informativeness of the former.

Additionally, we analytically characterize the impact of
the robot’s displacement estimation error, resulting from the
use of on-board sensors, on the AOA estimation accuracy.
Our analytical development shows that drift and high
frequency noise about the estimated displacement mean
manifests itself as a shift and attenuation of maximum
magnitude AOA peak in the resulting profile. Moreover, we
show that using short robot displacement over a small time
window makes our system resilient to accumulating error in
the robots’ local pose estimation when operating for longer
duration.

Our analysis reveals several insights about the nature of how
robots’ motion influences AOA profiles, some of which are
described below:

• AOA profile reconstruction using arbitrary robot
motion:. Short local displacement of a robot can be
used to simultaneously measure AOA profiles for all
communication neighbor robots.

• Informativeness of robot displacement: Displace-
ment along a random curve in 3D space is more
informative (as determined by the CRB) than a regular
linear displacement, as might typically be prescribed
for SAR. Hardware experiments, using 5 GHz WiFi
signals, support this analysis showing an error of less
than 10◦ in AOA for 95% of trials for arbitrary 3D
displacement, whereas for planar 2D curved and linear

displacement only 50% and 7% of trials show error
below 10◦, respectively (c.f. Section 7.1).

• Influence of displacement estimation error on AOA
estimation accuracy: AOA estimation will suffer a
shift ∆ and a peak attenuation of cos(σ/2) where
∆ is linearly proportional to the drift in robots’
displacement estimation and σ is the maximum
angular variation of the displacement estimation
error about its mean (c.f. Lemma 3). Our hardware
experiments, indicate that this translates to a median
estimation error of 7.58◦ in azimuth, 3.21◦ in elevation
(use Fig. 3 schematic for reference) on average for
7% displacement error (0.2 m displacement estimation
error for a 2.8 m robot displacement).

• AOA profile estimation with moving ends: Obtain-
ing AOA estimation using a SAR-based technique is
possible even when both the transmitting and receiving
robots are mobile during the signal sampling. We show
that this is due to the translation agnostic property
of phase change in wireless signals. AOA estimation
can thus be accomplished under certain conditions
(that we define) so long as robots can share their
position estimates in their own local reference frame
(c.f. Lemma 1).

We substantiate the above observations with quantitative
bounds on errors. These analytical results are applicable to
any radio frequency (RF) signals, with practical hardware
implementation requiring access to the signals’ phase. WiFi
is easily accessible on robots today with off-the-shelf
modules capable of accessing signal phase (Halperin et al.,
2011; Gringoli et al., 2019; Xie et al., 2015). Thus, to further
validate our analytical results we use WiFi for extensive
hardware experiments, demonstrating agreement in theory
and in practice for every derived claim in the paper. Our
implementation uses an off-the-shelf Intel 5300 WiFi card
to enable packet broadcasting with no pre-installed wireless
routers and a VIO camera – thereby demonstrating how our
methods are designed for distributed implementation and
seamless integration on today’s robot platforms.

1.2 Paper contributions
1. We develop the algorithmic machinery for using

robots’ local displacement in 3D for achieving
incoming signal direction i.e., AOA profile estimation
(Fig. 3).

2. We derive the algorithmic framework for allowing
simultaneous motion of both ends (transmitting
and receiving robots) while obtaining a full and
accurate AOA profile. This accommodates continuous
motion and continuous AOA estimation during robot
operation.

3. We analytically characterize the impact of i) the
informativeness of robots’ motion on the accuracy
of the AOA estimation and ii) the displacement
estimation error on the AOA estimation error.

4. All analytical and algorithmic claims are supported
with in-depth hardware experiments using 5 GHz
WiFi signals, including a proof-of-concept application
where AOA, based on our WSR framework, is used to
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Obtaining relative direction using AOA profile

Figure 3. Schematic showing AOA profile obtained by signal receiving
UAV for transmitting ground and aerial robots. The Angle-of-Arrival (ϕ, θ)
in azimuth (top view) and elevation (side view) respectively obtained from
these profiles is highlighted in yellow.

achieve fully dynamic rendezvous between an aerial
robot and an occluded ground robot.

1.3 Paper roadmap
In the next section we provide a summary of previous work
done in the context of robotics and wireless signal. Sec. 4
formally states the problem statements and the definitions
relevant to our development and analysis. Sec. 5 details the
formulation of arbitrary 3D SAR and Sec. 6 shows how
our system can handle signal transmitting robots that are
mobile. Sec. 7 provides an analysis of the different factors
that impact AOA calculation. We show the results of our
hardware experiments for 5 GHz WiFi signal, in Sec. 8
and evaluate the capability of our system using a proof-of-
concept application in Sec. 9. Directions for future research
and concluding remarks are provided in Sec. 10 and 11
respectively.

2 Related Work
In this section, we provide an overview of prior work on
applications of wireless signals, specifically in the context
of robotics. We first highlight key limitations of traditional
sensors in obtaining relative information in multi-robot
systems, as well as developments in the wireless community
that explore the use of wireless signals as a sensing modality.
Next we look at previous approaches on obtaining relative
direction information between communicating robots and the
corresponding open challenges.

Relative state estimation in multi-robot systems:
Many multi-robot coordination problems such as cover-
age (Cortes et al., 2004), mapping (Tapus and Siegwart,
2005; Schmuck and Chli, 2017; Se et al., 2001; Fenwick
et al., 2002), frontier exploration (Gautam et al., 2017;
Solanas and Garcı́a, 2004; Fox et al., 2006; Burgard et al.,
2000), and persistent surveillance (Nigam et al., 2012; Stump
and Michael, 2011) rely on knowledge of relative positions

Robots used for hardware experiments

Figure 4. Aerial and ground robots used in hardware experiments
equipped with different off-the-shelf on-board sensors. Each robot is
equipped with an UP Squared on-board compute device that has Intel
5300 WiFi card, an omnidirectional antenna, and an Intel RealSense
Tracking Camera T265 for obtaining local displacement estimates.

and other state information between collaborating robots.
Although on-board GPS devices or other sensors such as
camera and LiDAR, commonly used for such problems,
provide information about inter-agent relative positions and
the environment, they have limitations. In particular they
often don’t work in GPS-denied and communication con-
strained environments, in non-line-of-sight, over long dis-
tances, and/or when there is a lack of a shared coordinate
frame and map. Thus, for many common environments such
as those with clutter, those that require robots to operate at
far distances from one another or those that lack common
features required for fixing a shared coordinate frame, the
current sensing methods easily get disoriented (SajadSaeedi
et al., 2016; Kshirsagar et al., 2018). In comparison, our
method uses wireless signals to obtain information about
robots’ state and its environment in ways that traditional
sensors cannot easily achieve.

Sensing using wireless signals: Robotic platforms are
generally equipped with different types of wireless com-
munication hardwares (Calvo-Fullana et al., 2019). Beyond
enabling communication, wireless signals processing has
shown great promise for sensing as well. For example, it
has been shown that transmitted wireless signals between
devices can be used to extract useful information such as
device position (Kotaru et al., 2015; Xiong and Jamieson,
2013a; Kumar et al., 2014b; Wang and Katabi, 2013;
Karanam et al., 2018; Cominelli et al., 2019; Verma et al.,
2018; Cao and Dhekne, 2020). Other works have shown
the ability to sense rich information about the environment
as well, from tracking and imaging behind walls (Adib
et al., 2015; S. Depatla and Mostofi, 2017; Adib and Katabi,
2013; Gonzalez-Ruiz and Mostofi, 2013), to materials sens-
ing (Zhang et al., 2019; Ha et al., 2020; Dhekne et al.,
2018), imaging in harsh visual conditions (Guan et al.,
2020) and even shape sensing (Jin et al., 2018). While
these works undoubtedly show the promise of using wireless
signals to obtain useful information about a robots’ state and
its environment in ways that more traditional sensors like
cameras and LiDAR cannot, they are not necessarily com-
patible with general robotics applications. These methods
sometimes use specialized hardware, pre-deployed station-
ary infrastructure or even specialized wireless signals that are
not readily available on robot platforms. Often, they also do
not consider mobility (both signal transmitting and receiving
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robot), which can have a profound impact on the accuracy
of these methods. Thus, without accounting for substantial
deployment effort, they are not inherently designed to be
seamlessly integrated with robotic platforms.

For ease of deployment, some methods use Received
Signal Strength (RSS), which refers to the magnitude of the
signal (Zhu and Feng, 2013). However capturing substantial
changes in signal magnitude require large displacements of
the receiving robot and/or requires sampling along multiple
directions. This makes RSS coarse and hence ill-suited for
extracting information with accuracy and precision over
short robot displacements. A more promising approach is to
use signal phase, which is sensitive to even small amounts of
displacement. This leads to higher granularity and accuracy
of information compared to RSS (Yang et al., 2013; Ma
et al., 2019). However, this information is not easily available
for many commercial off-the-shelf wireless signal modules.

Significant attention has also been given to UWB as
sensing modalities for robotic platforms. TrackIO (Dhekne
et al., 2019) deployed UAV-UWB system to estimate first
responders’ location and velocity even in deep indoors
environment, while the autonomous Puffer project (Boroson
et al., 2020) used UWB for pose graph optimization.
However, UWB typically need to operate on wide
bandwidths resulting in significant FCC restrictions on
operating range and power (Mahfouz et al., 2009). Thus,
UWB is not yet native to current robot platforms and
commercial UWB modules require pre-calibration and
additional customization using physical antennas to obtain
AOA in both azimuth and elevation (Zhao et al., 2021).

Our method is designed to be completely native to robotic
platforms. Although our framework is applicable to any RF
signal, we use WiFi for experimental evaluation since it is
more ubiquitous to current robot platforms. The signal phase
for WiFi can be obtained from its Channel State Information
(CSI) for off-the-shelf WiFi module – Intel 5300 WiFi card.
CSI can be obtained from the PHY layer of 802.11 protocol
using the open-sourced CSI Toolbox (Halperin et al., 2010).
Our framework allows for using the virutal antennas to
measure the signal phase difference.

Synthetic Aperture Radar (SAR): Using their mobility,
robots can improve the quality of information obtained
(Twigg et al., 2019; Dhekne et al., 2019), however they
lack the ability of controlling robot motion to optimize
the measurement value (e.g. range or AOA) or capture
additional information like signal multipath. Our previous
work exploits mobility and WiFi signals, both inherent
to robotic platforms, to emulate a virtual antenna array
along the displacement of the robot, a method akin to
SAR (Fitch, 1988; Watts et al., 2016; Barrie, 2004), for
accurately measuring the change in phase of an incoming
signal. As these signals traverse between a transmitting robot
and a receiving robot, they interact with the environment
such as being absorbed, reflected, and scattered (Goldsmith,
2005) by objects in the environment. Therefore, the signals
paths can reveal directional information about the robots.
This proves useful when robots are separated by large
distances and/or are visually occluded from each other.
Indeed, exploiting this fact has led to many uses like
positioning (Kumar et al., 2014a), adaptive networking (Gil

et al., 2015a), mapping (Wang et al., 2019), and security (Gil
et al., 2015b; Wheeler et al., 2019; Gil et al., 2019). These
works use short linear or 2D circular displacements (e.g.
turn-in-place) of the signal receiving robot obtained using
IMU and require that the transmitting robot be stationary for
a few seconds when the receiving robot collects data.

However, emulating a linear or circular antenna array
leads to sensing ambiguities where the receiving robot can-
not uniquely identify a transmitting robot’s direction. This
is a well-know problem in antenna array theory (Manikas,
2004, chapter 6). Antenna array research shows a possible
solution of using 3D antenna arrays that are capable of
resolving such ambiguities (Vu et al., 2011, 2010). However,
traditional arrays are bulky (Björnson et al., 2019) and
emulating SAR with robot’s arbitrary displacement in 3D has
not been done before. Another open challenge not addressed
by previous works is the possible mobility of the transmitting
robot for the duration of SAR. The change in phase mea-
surements for even small displacements (e.g 24cm) of the
receiving robot are desirable for obtaining highly accurate
AOA profiles (Gil et al., 2015a). However, not accounting for
the simultaneous motion of the transmitting robot results in
considerable errors in these measurements. These factors are
important motivators for developing the ability for robots to
emulate 3D antenna arrays over their arbitrary paths as they
traverse the environment while both ends (i.e transmitting
and receiving robots) remain mobile at all times.

Displacement estimation: Advances in vision-based
sensing and optimization in the past couple of years have
enabled a robot to obtain its local displacement estimates
accurately. Monocular systems such as (Qin et al., 2018),
utilize one camera and one low-cost inertial measurement
unit as sensing components, achieving 0.21m ATE in a
500m real world trajectory. Pose Graph Optimization also
plays an essential role in state-of-the-art SLAM tasks as
a back-end optimizer, for example as with distributed
mapping (Choudhary et al., 2017b) and rotation estimation
(Carlone et al., 2015). Energy-efficient accelerator for
VIO in (Suleiman et al., 2018, 2019) also enables the
localization and mapping on miniaturized robots. Several
other works (Ma and Karaman, 2018; Gallego et al.,
2018; Sabzevari and Scaramuzza, 2016) provide a multitude
of techniques ranging from specialized visual sensing
capability to estimation of depth and motion in the view with
monocular system.

Antenna array theory: Traditional antenna arrays that
provide AOA information are often bulky and hence not
suitable for small agile robot platforms (Björnson et al.,
2019). To this end, we consider a SAR inspired approach
that uses robot motion and signal measurements over several
communicated packets, to obtain a full AOA profile. This
paper builds closely off of antenna array theory in order
to characterize AOA performance metrics resulting from
3D SAR applied arbitrary robot displacement in 3D space.
The Cramer Rao Bound (CRB) is a often utilized tool
for the performance analysis of different antenna array
geometries(Gazzah and Marcos, 2006; Mirkin and Sibul,
1991). Specifically, the CRB provides important lower bound
estimates on the variance of the resulting angle-of-arrival
estimates as a function of antenna array geometry (Moriya
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et al., 2012; Mohamed et al., 2019); in other words,
CRB analysis reveals the relationship between the robot
displacement and the richness of information attainable
from processing received communication signals. This key
observation opens the possibility of thinking of SAR as an
enabling technology for a new kind of sensing for robotics.

Thus, in comparison to previous work done in SAR,
our proposed system is a generalized formulation of a
direction finding capability for robots that combines local
displacement estimation methods with antenna array theory.
It enables a robot to obtain relative AOA of a wireless signal
transmitter (stationary or moving) by using arbitrary 3D
motion. However, this requires a mathematical, algorithmic,
and experimental framework for characterizing the impact of
i) displacements in 3D on the informativeness (or richness
of information) derived from processing collected signals, ii)
displacement estimation error on the resulting accuracy of
the AOA estimates, and iii) mobility at both ends meaning
mobility of both the transmitting and receiving robots, in
order to enable continuous data collection that is most
compatible with general multi-robot tasks. We address these
objectives in the current paper.

3 Background and Notation
In this section we present important notational conventions
used as well as essential background on wireless signals and
Synthetic Aperture Radar (SAR) that we will use throughout.

3.1 Coordinate system
As our system returns angular information, we formulate
our problem in a Spherical coordinate system. Fig. 5 shows
a schematic representation of a robot’s displacement over
a time window and it’s local spherical coordinate system.
φ and ξ are the azimuth and elevation angles of the
receiving robot i at a given timestep. The AOA tuple (ϕ,
θ) represents the transmitting robot’s relative azimuth and
elevation direction with respect to the initial position (at
time tk) of robot i. ϕ and φ are measured counter-clockwise
from the x-axis while θ and ξ are measured clockwise from
the z-axis. Robot i’s position at time t denoted by pi(t),
is represented as (ρi(t),φi(t),ξi(t)), ρ being the distance
from the center of the frame. In the case that the robot’s
displacement is obtained via on-board sensors or estimation
techniques, the local positions are denoted by p̂i(t). This
position measurement is subject to error which we denote
as κρ, κϕ and κθ for errors in ρ, φ, ξ respectively. We denote
estimated relative AOA (from our system) between robots
i and j as (ϕ̂, θ̂) and the true AOA (from motion capture
system) as (ϕg, θg). Our experimental evaluation uses the
Cartesian coordinates for a robot position, represented as
(xi(t), yi(t), zi(t)).*

3.2 Robot Displacement
For our experiments, robot displacement is obtained via on-
board sensors or from an external motion capture system
(groundtruth). χi(t) denotes the groundtruth displacement of
the robot i from time t ∈ [tk, . . . , tl] over which we intend to
perform AOA estimation (Fig. 5). Estimated displacement is
denoted as χ̂i(t). We assume that robot displacements are at

Coordinate System

Figure 5. Our formulation uses the Spherical coordinate system in
receiving robot i’s local frame of reference. Robot i uses M wireless
signal measurements and their corresponding position estimates p(t)
= (ρ,φ,ξ) from time tk to tl, l = k + M for each position (red antennas)
to emulate M virtual antenna array elements and obtain relative angles
ϕ (azimuth) and θ (elevation) to the signal transmitting robot j. Ground
truth AOA ,obtained from motion capture, is denoted by (ϕg , θg).

least 2λ, similar to the required minimum array length for
attaining full AOA profile as stated in antenna array theory.
For 5 GHz WiFi, it is on the order of 12cm of total robot
displacement.

χi(t) is the vector of all poses χi(t) = (Ri(t), pi(t))
where Ri(t) ∈ SO(3) is orientation and pi(t) ∈ R3 is
position, for all t ∈ [tk, . . . , tl]. k is any timestep when
the robot wants to initiate data collection for 3D SAR; i.e.
to obtain relative AOA to any transmitting robots j ∈ Ni

in its neighborhood. Ni includes all transmitting robots j
for which robot i can at least obtain ping packets (i.e.
broadcasting at 5 KB/s over 3 seconds). Note that signal
packets from all j ∈ Ni simultaneously collected over robot
displacement χi(t), can be used to compute individual AOA
profiles for all robots in parallel. An estimated pose of
robot i in χ̂i(t) at time tk is represented as χ̂i(tk) =
(Ri(tk)Rϵ(tk), pi(tk) + pϵ(tk)). Let Rϵ(t) and pϵ(t) denote
the accumulated error in estimated position and orientation
from time t0 (The very first timestep when robot start to
move) to any time tk.

We use p̂i(t) to denote robot i’s estimated position for
a pose in χ̂i(t) i.e p̂i(t) = pi(tk) + pϵ(tk). As our system
can handle the motion of transmitting robots, let χij(tk:l)
denote the relative displacement of robot i with respect to
another robot j ∈ Ni over the time window from t = tk
to t = tl, calculated as χij(tk:l) = χi(tk:l) - χj(tk:l). For
brevity we denote this relative displacement over the time
vector [tk, . . . , tl] as χij(t) in the sequel. In Sec. 6 we show
its validity even when the coordinate frames of robot are
different.

∗A position (ρ,ϕ,θ) in Spherical coordinates has corresponding Cartesian
coordinates (x, y, z) as (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ).
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3.3 A primer on Synthetic Aperture Radar
(SAR)

An application of SAR over robot motion requires that a
robot travel over some small local displacement of at least
2λ, λ being the signal wavelength while taking several
measurements hij(t) of the wireless channel broadcasted
by its neighboring robots j ∈ Ni. Following the far-distance
assumption for planar waves, the ideal channel at time t is
modeled as (Tse and Viswanath, 2005) :

hij(t) =
1

dij(t)
e(

−2π
√

−1
λ dij(t)) (1)

where dij(t) is the groundtruth distance between robots i and
j at time t. During its motion, the robot i creates a history
of packet-position tuples < hij(t), pi(t) >, where each
such tuple is essentially an emulation of omnidirectional
“antenna element” in a virtual multi-antenna array. For
example, thousands of lightweight WiFi ping packets can be
transmitted at 5kB/s which is much lower than the 802.11
protocol’s lowest rate of 6Mb/s. Thus a large number of
antennas can be emulated with very little communication
overhead†. Thus using its local displacement and transmitted
signals from robot j ∈ Ni, the wireless channel at robot i can
be modeled using the multi-antenna array output observation
model from (Vu et al., 2010) as :

Yij(t) = [Y (tk), . . . , Y (tl)]
T = a(θ, ϕ)(t)hij(t) + n(t)

(2)
where Y (tk) is received signal at robot position pi(tk),
the total number of signal packets received is M , and l =
k +M . The vector a(θ, ϕ)(t) is the steering vector, which
is defined by the robot’s local displacement χi(t) and thus
dictates the geometry of arbitrary 3D antenna array. This
steering vector is a function of the geometry of the antenna
array (i.e. robot i’s positions pi(t), t ∈ [tk, tl] ) and the angle
tuple (ϕ, θ) for transmitting robot j ∈ Ni (See Fig. 5) :

a(θ, ϕ)(t) = e(
2π

√
−1

λ f(pi(t),ϕ,θ)) (3)

n(t) is a signal noise vector, assumed to be Gaussian,
circular, independent and identically distributed, with a mean
of zero and a covariance of σ2I , where I is the identity
matrix of appropriate dimension. The wireless channel
measurement at time t, hij(t) is a complex number capturing
the phase and magnitude of the received signal. In case of
5 GHz WiFi, hij(t) can be obtained using the CSI Toolbox
(Halperin et al., 2011) for the Intel 5300 WiFi card. hij(t)
= [hij(tk), . . . , hij(tl)] can thus be known at the receiving
robot.

Using direction finding algorithms like Bartlett or MUSIC
from antenna array theory (Krim and Viberg, 1996), the AOA
profile Fij(ϕ, θ) can be obtained by measuring the signal
phase difference of each array element with respect to the
first element at p(tk). We use the Bartlett estimator which is
give as:

Fij(ϕ, θ) =

∣∣∣∣∣∣
tl∑

t=tk

hij(t) a(θ, ϕ)(t)

∣∣∣∣∣∣
2

(4)

Fij(ϕ, θ) thus refers to relative paths a wireless signal
traverses between a given pair of signal transmitting robot

j and receiving robot i. Mathematically, it is a 2D matrix
calculated for all possible incoming signal directions along
azimuth and elevation (360 x 180). Henceforth we refer to
AOAmax as the strongest signal direction (ϕ̂, θ̂), or the AOA
peak corresponding to maximum magnitude path, in the full
AOA profile Fij(ϕ, θ).

A reference to all notations and terminology can be found
in Appendix section B. Next we formulate the problems that
are addressed in this paper.

4 Problem Formulation
This paper aims to enable robots in a team to infer the
Angle-of-Arrival (AOA) profile Fij(ϕ, θ) to others in its
neighborhood, based on received communication signals
between them. In doing so, we aim to develop an “inter-
robot sensor” for robots relative information about each
other by analyzing existing communication packets in the
network. We choose WiFi as the communication signal
since it is ubiquitous to robot platforms and also allows
us to empirically test our framework using off-the-shelf
components. However our analysis is application to any RF
signal and our algorithm can be deployed on actual hardware
as long as the signal phase is accessible. Of particular interest
is finding the maximum magnitude path AOAmax, between
the robots referred to as the azimuth angle ϕ and elevation
angle θ to a neighboring transmitting robot (see Fig. 5)‡. Our
system uses an approach akin to Synthetic Aperture Radar
(Sec. 3.3) for this purpose. Key challenges for applying SAR-
based methods to heterogeneous robot systems that we aim
to address in this paper are:

1. Mobility: Developing a framework to support AOA
profile generation where both the transmitting and
receiving robots are simultaneously moving in 2D
or 3D during data capture. This is a commonly
encountered scenario in multi-robot teams that must
be accounted for in order to allow for continuous AOA
sensing amongst the robots.

2. Displacement geometry: We characterize informa-
tiveness i.e the impact of the virtual antenna array’s
shape, emulated during a robot’s displacement, on
Fij(ϕ, θ) and the accuracy of the AOAmax. This is
not readily known for shapes generated by arbitrary
displacements. We thus characterize the impact of dis-
placement geometry on the sensitivity of the resulting
phase measurements and the resulting Fij(ϕ, θ).

3. Estimation Noise: Analyzing the effect of displace-
ment estimation error on Fij(ϕ, θ). It is well known
that local displacement estimates for a robot obtained
using onboard sensors such as IMU or VIO, are subject
to noise. Thus the impact of this estimation noise
on the accuracy of the resulting AOAmax estimation
must be quantified.

†The total communication overhead incurred by our system is around 15 Kb
for an AOA measurement.
‡We note that in some cases the strongest signal path may not be the direct
path which might be attenuated due to absorption or reflection of signals.
However in this case there exist many methods for inferring the direct path
(Kumar et al., 2014a; Kotaru et al., 2015). In this paper we do not address
the problem of finding the direct path from Fij(ϕ, θ) and rather refer the
reader to relevant references for the solution to this problem.
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4.1 Simultaneous robot motion
As many previous approaches that use SAR to obtain
AOAmax require transmitting robots to remain stationary
during the period of data collection (Wang et al., 2019; Wang
and Katabi, 2013; Karanam et al., 2018), they are not feasible
for applications that require continuous mobility of all the
robots. Additionally, they do not account for arbitrary motion
of robots in 2D and 3D. This necessitates that our system
account for motion of both signal transmitting and receiving
robots and we refer to this as the moving ends problem.

Problem 1. Moving ends problem: Given the local dis-
placements of the signal receiving robot i and transmitting
robot j ∈ Ni, from time tk to tl, obtain the AOA profile
Fij(θ, ϕ) using the steering vector a(ϕ, θ)(t) that charac-
terizes robot i’s relative displacement χij(t) with respect to
robot j.

In Sec. 5 we formulate the SAR based solution for obtaining
Fij(ϕ, θ) and AOAmax, to a stationary transmitting robot,
from arbitrary 3D motion of the receiving robot by applying
the concepts from antenna array theory (Fig. 6). In Sec. 6
we use this formulation of 3D SAR to solve the moving ends
problem.

4.2 Information gain from displacement
geometry

Our formulation can leverage arbitrary robot motion in
2D and 3D to emulate virtual antenna arrays of varying
geometry. It is well known that an array’s geometry affects
its sensitivity to differentiate phases of an arriving signal
from different source locations (Manikas, 2004). For the
case of interest in this paper where robots can operate
in the full 3D space (not just 2.5D), sensitivity of the
array and the ability to estimate AOAmax consistently
independent of source location, is of utmost importance.
For the purposes of characterizing the sensitivity of a
particular antenna array geometry, the Cramer Rao Bound
(CRB) is often employed (Gazzah and Marcos, 2006). The
Cramer Rao Bound is a lower bound on the variance of
the AOAmax estimation resulting from a particular antenna
array geometry and is given by (dropping t and subscript i,j
for brevity):

CRB =

[
Cθθ Cθϕ

Cϕθ Cϕϕ

]

=
σ2

2hHh

Re(∂a
H(θ,ϕ)
∂θ

∂a(θ,ϕ)
∂θ ) Re(∂a

H(θ,ϕ)
∂θ

∂a(θ,ϕ)
∂ϕ )

Re(∂a
H(θ,ϕ)
∂ϕ

∂a(θ,ϕ)
∂θ ) Re(∂a

H(θ,ϕ)
∂ϕ

∂a(θ,ϕ)
∂ϕ )


︸ ︷︷ ︸

FIM

−1

(5)

for a candidate source direction indicated by its azimuth
angle θ and elevation angle ϕ. Here hHh = ∥h∥2 is signal
magnitude, and Re stands for real number. σ2 is the variance
in noise of the wireless signal. FIM is the Fisher Information
Matrix which measures the amount of information that the
geometry of the antenna array (captured via a(θ, ϕ)(t) i.e the
steering vector) provides on Fij(ϕ, θ). Since in our problem
formulation, the geometry of the virtual antenna array is
dictated by the displacement of the receiving robot, we define

the informativeness of such displacement geometry using the
CRB as follows.

Definition 1 Informativeness: A displacement geometry is
more informative than another if it permits a smaller variance
in AOAmax as dictated by the Cramer Rao Bound (CRB).

Thus, the second problem that we wish to tackle in this paper
is the characterization of the informativeness for different
robot trajectories; i.e. the effectiveness of our AOAmax

estimation capabilities as a function of the trajectory
traversed by a robot as it is receiving communication packets
from its neighbors.

Problem 2. We wish to derive the formulation for
the Cramer-Rao Bound (cf. Eqn. (5)) in the θ and
ϕ directions for arbitrary robot displacement in 3D,
thereby characterizing the informativeness of different robot
displacement geometries.

Sec. 7.1 details the theoretical development our CRB
analysis for three types of common displacement geometries
for a robot: 3D helix, 2D planar circular and 2D linear.
Our experimental analysis further shows that the insights
garnered for these geometries generalize to overall trends in
arbitrary 2D and 3D robot motion.

4.3 Impact of displacement estimation error
Although our approach is independent of how robot
displacement estimates are obtained, in order to make our
system native to robotic platforms, our goal is to leverage
local estimates from on-board sensors (e.g. VIO camera).
Therefore, the third problem that we address in this paper
is to characterize, both analytically and experimentally, the
impact of the receiving robot’s displacement estimation error
on its generated Fij(ϕ, θ). In this paper, we use displacement
estimates of the following two types to test our system’s
performance:

• Ground truth displacement: obtained using position
estimates from motion capture system denoted by p(t)
at time t.

• Tracking camera displacement: obtained using posi-
tion estimates from Intel Realsense Tracking Camera
T265 (VIO camera). This out-of-the-box camera runs
a visual SLAM algorithm which provides pose esti-
mates at 200 Hz. We denote the estimated position at
time t as p̂(t).

Estimating displacement using the tracking camera intro-
duces error in Fij(ϕ, θ) on account of noise. As ours is a rela-
tive direction finding system that uses spherical coordinates,
we use an angular drift metric (Camposeco and Pollefeys,
2015) to quantify this error for our theoretical analysis §.

Definition 2 Angular drift: For every groundtruth position
p(t) = (ρ, φ, ξ) corresponding robot displacement, if we
get an estimated position p̂(t) = ((ρ− κρ, φ− κϕ, ξ − κθ)),
whenever κϕ, κθ are constant are non-zero constant or
varying errors, we say that the displacement has an angular
drift.

§For empirical evaluation, the corresponding ATEtrans is calculated in
Cartesian coordinates for simplicity.
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Figure 6. (a) Shows the arbitrary 3D ground truth displacement for a signal receiving robot obtained from hardware experiments, the start position
p(tk) indicated by a blue circle. (b) Corresponding AOA profile obtained using our formulation shows the AOA (strongest signal direction) which
corresponds to the relative direction of the transmitting robot (indicated by black antenna) located at true direction (ϕg , θg) = ( −90◦, 91◦) and at a
distance of 10 m in line-of-sight. Our system returns AOA ( ϕ̂, θ̂) = ( −91.5◦, 92.5◦).

For empirical evaluation we use the corresponding Absolute
Trajectory Error in translation (ATEtrans) (Sturm et al.,
2012; Choudhary et al., 2017b) given as follows in cartesian
coordinates:

ATEtrans =

 1

n

tl∑
t=tk

||p(t)− p̂(t)||2
 1

2

(6)

Since a robot’s displacement is used to generate Fij(ϕ, θ)
(cf. Eqn. 4), an error in displacement estimation will result
in an error in AOAmax calculation between two robots. We
define this error to be AOA Estimation Error.

Definition 3 AOA error: We define error in AOA as ϕg − ϕ̂

in azimuth and θg − θ̂ in elevation, where (ϕg, θg) is the
true AOA to the signal transmitting robot and (ϕ̂, θ̂) is the
estimated AOA obtained by our system.

We use L2 norm between estimated AOAmax and true AOA,
as an error metric given by the equation:

AOAError =

√
(ϕg − ϕ̂)2 + (θg − θ̂)2 (7)

Thus we can now define our problem of characterizing the
impact of displacement estimation error on AOA error as:

Problem 3. Impact of displacement estimation error: For
nonzero displacement estimation error, we wish to charac-
terize the effect of angular drift κϕ > 0, κθ > 0 on the esti-
mated AOAmax and thus the AOAError given in Eqn. (7).

We note that in practice AOA error can arise from
simultaneous impact of many factors, including insufficient
informativeness of robot displacement geometry, artifacts
from AOA estimation algorithms or errors in robot position
estimation, channel noise or unaccounted phase shifts due
to Carrier Frequency Offset (CFO) or mobility of robot
platforms (i.e. the moving ends problem). We first solve for
channel noise i.e., unaccounted phase shifts due CFO using
previous work. Then, we independently analyze the effects of
insufficient informativeness of robot displacement geometry

and errors in robot local displacement estimation, on the
AOA profile. Analyzing the impact of other estimators (Krim
and Viberg, 1996) for the 3D SAR and moving ends
formulations, is left for future work.

Finally, we aim to extensively validate our system’s
accuracy and performance on real robotic platforms in
2D and 3D space. In Sec. 9, we evaluate the utility of
our system for a dynamic rendezvous experiment between
a pair of aerial and ground robot. We evaluate different
displacement geometries generated during navigation in an
unmapped environment in presence of moving ends and
visual occlusions in the environment.

We summarize key assumptions used throughout the paper:

Assumptions .

1. Robots know the true North and true Down direction,
perhaps by using on-board sensors like magnetometer
and gyroscope/gravity sensor respectively.

2. Each robot has the same global clock on millisecond
level.

3. All relative AOA measurements to any transmitting
robot j ∈ Ni are taken with respect to the initial
position pi(tk) of the receiving robot i in its local
frame.

In the next section we derive our general formulation
SAR. Following that, we show how our formulation can be
extended to address the full mobility case, i.e. the moving
ends problem.

5 SAR for Arbitrary Robot Motion
In this section, we show for the first time how a mobile
receiving robot with arbitrary displacement in 3D can
compute the AOA profile and thus obtain relative AOA to
a stationary transmitting robot using our formulation.

Local pose estimation methods generally result in
substantial orientation and position errors Rϵ(t) and
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Cancelling CFO

Figure 7. Schematic representation of forward channel (from robot i
to robot j) and reverse channel (from robot j to robot i). The product
of these channels enables our system to cancel the Carrier Frequency
Offset (CFO).

pϵ(t) when robots travel long distances without loop
closures (Nobre et al., 2017). We use short local
displacement χ̂i(t) for receiving robot i over M robot
positions pi(tk), . . . , pi(tl), l = k +M , in order to obtain
the AOA profile Fij(ϕ, θ) (e.g. Fig. 6) for arbitrary motion
in 2D and 3D. In practice, M can be about ∼400 packets
collected over a few seconds and with robot displacement
being at least ≥ 2λ. This comes from the known result
in antenna array theory stating that a full AOA profile is
attainable over a minimum array length of 2λ. We define the
residual error ϵ(t) for any pose in χ̂i(t) as follows:

Definition 4 Residual Error: Given error pϵ(tk) in position
p(tk) for the first pose ˆχi(tk) in χ̂i(t), for any time t ∈
[tk, . . . , tl], the residual error is given as ϵ(t) = pϵ(t) - pϵ(tk).

As stated in our assumptions all measurements are with
respect to the initial position pi(tk) of robot i in its local
frame. Thus, a position pi(tu) at timestep tu becomes:

p(tuk) + ϵ(tu) = p(tu)− p(tk) + pϵ(tu)− pϵ(tk)

where pi(tuk) is position pi(tu) relative to the position at
time pi(tk) and ϵ(tu) is the residual error. Note that our
system is not impacted by orientation errors since it uses
an omnidirectional antenna. In other words, our system is
only impacted by the accumulation of residual errors (and
displacement geometry as discussed in Sec. 7). For the rest
of the paper, any position pi(tu) for a robot i is implicitly
assumed to be pi(tuk) for brevity.

Given a perfect displacement estimation χi(t), the error
terms can be set to zero as in the case of using a motion
capture system. We redefine the steering vector a(θ, ϕ)(t)
from Eqn. 3 in spherical coordinates as follows: (dropping
the notation t and subscript i for brevity)

a(θ, ϕ) =


e(

2πρk
√

−1

λ sin θ sin ξkcos(ϕ−φk)+cos ξk cos θ)

...

e(
2πρl

√
−1

λ sin θ sin ξlcos(ϕ−φl)+cos ξl cos θ)

 (8)

As hij(t) is a vector of signal measurements at each
position in χi(t), the steering vector enables calculating the
phase difference between antenna positions in the virtual
antenna array. Using this with AOA calculation algorithms

like Bartlett we obtain Fij(ϕ, θ) for pair of communicating
robots i,j. We note that the use of this steering vector
formulation (Eqn. 8) enables a robot to use its arbitrary 2D or
3D displacement to compute Fij(ϕ, θ). This is in contrast to
formulations from previous work that only allow for strictly
linear or curved 2D robot displacements (Gil et al., 2015a;
Kumar et al., 2014a).

However, since the wireless signal transmitter and receiver
are separate WiFi devices (i.e. different robots in a team), the
signal oscillators in those devices have different frequencies
with offset ∆f . This leads to time-varying phase offset in the
signal phase called Carrier Frequency Offset (CFO), leading
to erroneous measurements. Following the development
from previous work (Vasisht et al., 2016), we use channel
reciprocity to rectify this. Channel reciprocity states that i)
ratio of forward and reverse channel is constant over time
i.e hij(t)/h

r
ij(t) = κh, where κh is constant because the

forward and backward channel would be received almost
simultaneously and ii) The frequency offset for the reverse
channel is the negative of the offset for the forward channel
i.e - ∆f . Hence, the observed forward and reverse channels,
ĥij(t) and ĥr

ij(t) respectively, that are affected by frequency
offset ∆f (and -∆f ), are given as follows for any position
pi(t) during robot displacement:

ĥij(t) = hij(t)e
−2π∆f (t−tk) (9)

ĥr
ij(t) = hr

ij(t)e
2π∆f (t−tk) (10)

The product of the forward and reverse channels can cancel
out the phase offsets. Thus, rewriting Eqn. 4 and dropping
κh as it is a constant scaling factor, we get the AOA profile
of transmitting robot j for a receiving robot i as follows:

Fij(ϕ, θ) =

∣∣∣∣∣∣
tl∑

t=tk

ĥij(t) ĥrij(t) a(θ, ϕ)(t)

∣∣∣∣∣∣
2

(11)

This formulation provides the solution to the problem of
measuring Fij(ϕ, θ) over arbitrary robot displacement in 3D
space for the stationary transmitting robot case. Thus by
allowing robots to emulate an antenna array in full 3D space,
we obtain maximum magnitude signal path AOAmax to the
neighboring robot.

Next we address the more general problem of simultane-
ous mobility of both the transmitting and receiving robot, the
moving ends problem, in the subsequent section.

6 Moving Ends Formulation
In this section we generalize our framework from Sec. 5 to
accommodate the case where both receiving and transmitting
robots are moving simultaneously during the data collection
phase. This case is particularly challenging since not
accounting for relative displacements between robots can
greatly impact the resulting signal phase measurements –
leading to errors in the generated AOA profile Fij(ϕ, θ).
Here, we show that a receiving robot i can calculate
Fij(ϕ, θ) to a moving transmitting robot j by using the
relative displacement obtained from its own and robot j’s
local displacement estimates – namely, by using χij(t)
as the steering vector (Fig. 8). One clear difficulty in
computing χij(t) is that robot i and robot j do not share
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Moving Ends

Figure 8. Schematic showing relative displacement χij (t) of the UAV
with respect to a moving transmitting robot j. χi(t) and χj (t) denote the
actual displacement of the robot i (emulating the virtual antenna array)
and robot j.

a common coordinate reference frame in the most general
case. However, we begin the development of this section
assuming the availability of a shared reference frame and
then generalize to the case of different local coordinate
frames between robots.

For the time being, let us assume that the robots have a
common frame of reference (an assumption that we later
relax). Thus, any position pij(t) for pose χij(t) for robot i’s
relative displacement χij(t) for t ∈ [tk, . . . , tl] is given as:

pij(t) = (pi(t)− pj(t))− (pi(tk)− pj(tk)) (12)

This is because all poses during local displacement χi(t) are
relative to the pose χi(tk) for any robot i. Essentially, as our
method uses displacement starting at time tk for any given
robot, the relative poses obtained as per Eqn. (12) can thus
be used to obtain the steering vector. Fij(ϕ, θ) can then be
calculated from the 3D SAR formulation developed in Sec. 5.

In reality though, we do not have access to a global frame
of reference and the local coordinate frames of the robots
will have a rotation and translation drifting offset compared
to global frame, thus making the computation of a relative
displacement difficult to obtain. We introduce the following
lemma which shows how a robot can obtain Fij(ϕ, θ) in the
presence of these offsets. We first define the concept of a null
vector which captures the translation independent character
of wireless signal phase measurements.

Definition 5 Null Vector: We define the Null Vector of a
receiving robot i as a vector along a specific angle-of-arrival
from it’s start position pi(tk). A transmitting robot j at any
position on this Null Vector and performing a specific motion
will lead to same change in phase of the wireless signal
intercepted by robot i (see Fig. 9).

This is due to the fact that channel phase measurements
are independent of the distance between a signal transmitter
and receiver (for a detailed discussion, refer Ioannides and
Balanis (2005)). Thus, using the concept of a Null vector
we show that robots sharing a common North vector and
gravity vector is sufficient to compute χij(t) as needed by
our steering vector in Eqn. (8).

Null Vector

Figure 9. Schematic representation of the Null vector (green) of robot
i (emulating the virtual antenna array) for Angle-of-Arrival (ϕ,θ). Rotation
offset between any robot j ∈ Ni and robot i’s local coordinate frames
can be removed by aligning the robots to true NORTH and DOWN
direction, perhaps, using on-board sensors like magnetometer and
gyroscope/gravity sensor. At any position on Null vector (e.g position A
and B), robot j will lead to same phase change in wireless signal, if the
displacement geometry is same (dotted red line).

AOA using relative displacement in 3D

Figure 10. (a) Hardware experiment showing the 3D displacement
χi(t) for the UAV and the corresponding relative displacement χij (t)
due to displacement χj (t) of transmitting robot j. Our approach for
moving ends gives similar profile results for 3D motion as seen in Fig. 6.
(b) AOA profile showing true Angle-Of-Arrival (ϕg , θg) = (90◦, 91◦),
denoted by red ’x’ in the profiles.

Lemma 1. Given displacement of two robots i and j ∈ Ni,
each in their own local frame of reference with rotation offset
R̃i, R̃j with respect to a shared North vector, and a shared
gravity vector and translation offset t̃ij with respect to each
other, robot i can calculate relative AOAmax to robot j by
correcting for rotation offset and ignoring translation offset.

Proof: As stated in Sec. 4, we assume that on-board sensors
like magnetometer and gyroscope/gravity sensor can be used
to rotate χi(t) of a robot i towards true North and Down by
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applying a rotation matrix, i.e χ̃i(t) = R̃iχi(t). Similarly, any
robot j ∈ Ni can align its coordinate frame such that χ̃j(t) =
R̃jχj(t). Following def. (5), a robot j along true AOA (ϕ,θ)
relative to robot i will give similar AOA using our approach
as long as it’s anywhere on the Null Vector and performing
the same motion (Fig. 9). The relative displacement χij(t)
thus becomes χij(t) = χ̃i(t) - χ̃j(t), since the presence of
a translation offset t̃ij does not impact AOAmax calculation
and one can use Eqn. (12) to compute the steering vector.

We validate our approach in hardware experiment (Fig.
10), demonstrating our ability to compute Fij(ϕ, θ) for this
moving ends problem in the Results Section of this paper
(Sec. 8). As stated in our assumptions, the relative AOA is
always computed with respect to position pi(tk) of receiving
robot i. Therefore we assume that robots are far enough
away from each other such that local motions (which could
be as small as 12 cm when 5 GHz WiFi is used) will not
significantly change their true relative AOA.

In the next section we analyze the impact of different
displacement geometries on Fij(ϕ, θ), i.e. characterizing
informativeness and the effect of errors in displacement
estimation on AOAmax.

7 Analyzing the Impact of Robot
Displacement on AOA Estimation

We establish theoretical performance bounds of our system
as they relate to the AOA profile, Fij(ϕ, θ), accuracy. We do
so by characterizing the effect of robot displacement on the
resulting accuracy of the obtained AOAmax that corresponds
to the strongest signal direction, which is the direct signal
path in our case. The two major factors that we analyze are:

1. Displacement geometry (2D, 3D): To analyze the
system performance due to variations in a robot’s
displacement geometry under ideal conditions, we
formulate the Cramer-Rao bound for a 3D helix as well
as the two special cases of Planar Curve and Linear
displacement in Sec. 7.1. Our analysis shows that 3D
displacement generally lead to lower variance (higher
informativeness) in AOA estimation compared to 2D
displacement.

2. Displacement estimation errors: We analyze the
performance of our system in the presence of
both constant and varying displacement estimation
error. We derive the mathematical relation between
displacement estimation error and AOA estimation
error in Sec. 7.2.

Although we analyze these factors separately, in reality
they will act simultaneously to impact the accuracy of the
resulting Fij(ϕ, θ) and AOAmax estimation. However, our
extensive empirical analyses from hardware experiments
demonstrate good agreement with all analytical results
presented in this section, despite the simultaneous impact of
these factors.

7.1 Cramer-Rao Bound for different
displacement geometries

Here, we consider the impact of the shape of the virtual
antenna array, emulated during robot displacement, on

AOA estimation. Our main tool of analysis here will be
the Cramer-Rao Bound (CRB) which provides a lower
bound on the variance of the AOAmax estimation for a
given displacement geometry as captured by the steering
vector a(ϕ, θ)(t) (cf. Eqn. (8)). This variance is inversely
proportional to the informativeness of the robots’ motion
such that a lower variance indicates higher informativeness
for a given displacement geometry (cf. Defn. 1).

We note that the CRB is a function of source location at
a given (ϕ, θ). In other words, the variance of the resulting
AOAmax estimate is a function of the different relative
directions between the transmitting and receiving robots.
Intuitively, depending on the shape of the virtual antenna
array, the phase differences in the received signal from a
specific direction will be easier or harder to discern. In this
section we analyze this discerning capability of different
displacement geometries via CRB. Specifically, we develop
a closed-form expression for the CRB as a function of robot
displacement, represented by a(ϕ, θ)(t), and a candidate
relative direction of the transmitting robot i.e (ϕ, θ).

We start by deriving the general form of CRB for
arbitrary robot motion. Given that hij(t) is complex,
deterministic, and known at the receiver robot, it is clear
from Eqn. 2 that output model Y(t) satisfies the Conditional
observation model; i.e. it is multivariate Gaussian with mean
a(θ, ϕ)(t) hij(t) and variance σ2I (Vu et al., 2011). The CRB
expression for an arbitrary 3D geometry array as given in
Eqn. 5 (dropping the notation t and subscript i, j for brevity):

CRB =
σ2

2hHh
×

Re(
∂aH(θ, ϕ)

∂θ

∂a(θ, ϕ)
∂θ

)︸ ︷︷ ︸
A

Re(
∂aH(θ, ϕ)

∂θ

∂a(θ, ϕ)
∂ϕ

)︸ ︷︷ ︸
C

Re(
∂aH(θ, ϕ)

∂ϕ

∂a(θ, ϕ)
∂θ

)︸ ︷︷ ︸
C

Re(
∂aH(θ, ϕ)

∂ϕ

∂a(θ, ϕ)
∂ϕ

)︸ ︷︷ ︸
B


︸ ︷︷ ︸

FIM

−1

It is also inversely proportional to the FIM as indicated
above. Following the development in (Vu et al., 2010, Sec.
6), derivatives of the uth element of the steering vector with
M total elements are given as:

∂au(θ, ϕ)

∂θ
=

2πρuΥu

√
−1

λ
(cos θ sin ξu cos(ϕ− φu)− cos ξu sin θ)

∂au(θ, ϕ)

∂ϕ
= −2πρuΥu

√
−1

λ
(sin θ sin ξu sin(ϕ− φu)

where

Υu = e
2πρu

√
−1

λ (sin θ sin ξu cos(ϕ−φu)+cos ξu cos θ)

After some simplification the partial derivative terms in the
FIM become:

A =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂θ∂θ
=

M∑
u=1

4π2ρ2u
λ2

(cos θ sin ξu cos(ϕ− φu)− cos ξu sin θ)
2
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and:

B =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂ϕ∂ϕ
=

M∑
u=1

4π2ρ2u
λ2

(sin θ sin ξu sin(ϕ− φu))
2

and finally:

C =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂ϕ∂θ
=

M∑
u=1

4π2ρ2u
λ2

(cos θ sin ξu cos(ϕ− φu)− cos ξu sin θ)

×(sin θ sin ξu sin(ϕ− φu))

Taking the determinant of the FIM, we arrive at the general
form for the CRB in each the θ and ϕ directions:

CRBθ =
σ2

2∥h∥2 Det(FIM)A

CRBϕ =
σ2

2∥h∥2 Det(FIM)B
(13)

where σ2 is the variance of our noise and ∥h∥ is the
magnitude of our signal, that is, σ2

2∥h∥2 = 1
SNR , where SNR

is the signal to noise ratio.

7.1.1 Analysis of special geometries. In this section,
we include specific forms of the CRBs for three types of
symmetrical displacement geometries that can be obtained
on robot platforms - 2D linear, 2D curved and a 3D helix,
to obtain in-depth insights on how their corresponding CRB
values impact relative AOA. In section 8.3 we show that
these insights generalize well for arbitrarily shaped 2D and
3D displacement. Additional details of the derivations of
CRB for these geometries can be found in the Appendix
section.

(a) 3D spherical helix displacement. We begin by con-
sidering the case of displacement along a 3D spherical helix
to build intuition on the impact of 3D motion on the CRB.
For such motion, the spherical coordinates (dropping t and
subscript i in the notations for brevity) are given by:

ξu = τ, φu = cτ, ρu = r

for a spherical helix of radius r, spiral climb rate of c, and
parameterization τ ∈ [0, 2π). We assume that each antenna
element u is uniformly spaced along the helix so that
τ = {0,∆, 2∆, . . . , (M − 1)∆} where ∆ = 2π

M . Further, we
assume a climb rate c = 1 for a simplification of our closed
form, though any constant can be similarly substituted before
integration. So, the CRB terms for displacement along the 3D
spherical helix become (derivation in Appendix A (I)):

A = −
π2r2

(
cos2(θ) cos(2ϕ) + cos(2θ)− 3

)
λ2

,

B =
π3r2 sin2(θ)(cos(2ϕ) + 2)

λ2
,

C =
2π3r2 sin(θ) cos(θ) sin(ϕ) cos(ϕ)

λ2
.

Cramer-Rao Bound
for simulated robot motion

Figure 11. CDF plot showing the effect of displacement geometry on
Cramer-Rao Bound in the ϕ direction (top) and θ direction (bottom) for
a receiving robot’s simulated motion of fixed displacement, from 64800
simulated locations of transmitting robot that are uniformly distributed in
3D space. We see that 3D motion (helix) has a lower bound compared to
2D motion (circle and line). Cumulative result from hardware experiments
(Fig. 12) demonstrates that indeed the informativeness (inverse of the
CRB) calculated for each motion successfully captures the improved
performance in AOA estimation for displacement in 3D versus that in
2D.

The Fisher Information for θ and ϕ are given by 2∥h∥2

σ2 A
and 2∥h∥2

σ2 B respectively (Vu et al., 2011). We calculate the
determinant of FIM as follows:

Det(FIM) =

π5r4

8λ4
sin2(θ)(8 cos(2(θ − ϕ)) + 8 cos(2(θ + ϕ))

+ π cos(2(θ + 2ϕ)) + cos(2(θ + 2ϕ))

+ (1 + π) cos(2(θ − 2ϕ))

− 2(π − 9) cos(2θ)− 16 cos(2ϕ) + 2π cos(4ϕ)

+ 2 cos(4ϕ)− 2π + 50)

Substituting A, B, and Det(FIM) into Eqn. 13 thus gives
the corresponding closed form equation of the CRB for a
spherical helix.

(b) Planar circular displacement. For z = 0 the helix is a
circle of radius r and the CRB equations should be the same
as a circular planar curve. For this case we have (dropping t
and subscript i for brevity):

ξu = τ, ρu = r, φu = cos−1(0) = π/2

The CRB equations reduce to (derivation in Appendix A
(II)):

A =
2π2r2

λ2
cos2 θ
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Informativeness of displacement geometries

Figure 12. Aggregate results comparing 2D and 3D ground truth
displacement geometries obtained from hardware experiments in terms
of AOAError (Eqn. 7) and Cramer-Rao Bound. A low value of
CRB indicates that the corresponding displacement geometry has high
informativeness. From the distribution of CRB and AOA error for 3D
and 2D displacement, the former has a lower AOAError on account
of being more informative than the latter.

B =
2π2r2

λ2
sin2 θ

C = 0.

Substituting the values A and B in Eqn. 13 gives the
corresponding closed form equation of the CRB for the
planar circular motion.

(c) Planar linear displacement. A line can be obtained
by setting r → ∞. For simplicity, we consider a line segment
of length 2πr at angle (a, b). This is parameterized in
spherical coordinates as follows (dropping t and subscript
i for brevity):

ξu = a, φu = b, ρu = rτ

Thus, our CRB terms are:

A =

M∑
u=1

4π2(r(u− 1)∆)2

λ2

(cos θ sin(r(u− 1)∆) cos(ϕ− b)− cos(a) sin θ)2

B =

M∑
u=1

4π2(r(u− 1)∆)2

λ2
(sin θ sin(a) sin(ϕ− b))2

C =

M∑
u=1

4π2(r(u− 1)∆)2

λ2

∗ (cos θ sin(a) cos(ϕ− b)− cos(a) sin θ)

∗ (sin θ sin(a) sin(ϕ− b))

We do not show a closed form for the CRB for a line, as the
‘u’ term is not inside a trigonometric function and the CRB
quickly inflates to infinity, except in certain directions where
the trigonometric terms go to zero. That is, depending on the
direction, linear displacements are largely uninformative.

Error in AOA for displacement geometries

Figure 13. Aggregate benchmark results for hardware experiments
using ground truth displacement of the receiving robot that show AOA
error in azimuth angle ϕ and elevation angle θ (def. 3). The AOA profiles
are generated for 101 hardware experiment trials each for the three
displacement geometries (2D linear, 2D curved and arbitrary 3D). 3D
displacement (green) has higher AOA accuracy in both azimuth (ϕ).
elevation (θ) directions. 2D Curved displacement shows high error in
θ. Moreover 2D linear displacement have additional errors in ϕ as well.

7.1.2 Observations: We note a few observations from
our analysis by comparing the 2D circle to the 3D helix. The
off-diagonal terms of our CRB matrix (Eqn. 5), are always
zero for the case of 2D circle. This results in a decoupling
of the CRB in the θ and ϕ directions. When the transmitting
robot is located in the x-y plane i.e θ = π

2 , CRBθ for the
planar circular case tends to infinity (as the A term becomes
0) while it remains finite for the 3D geometry case, thus
the variance of estimated AOA for the 2D displacement
increases (i.e. its informativeness decreases) as compared
with the 3D displacement case for some relative angles
between receiving and transmitting robots. Further, we note
the B term for a helix is always higher than for the planar
circle by a factor of at least π, resulting in a lower bound for
ϕ for the helix.

We also note some observations on the CRB from
simulated motion of the receiving robot. This data was
collected by simulating motion of a fixed displacement in
each of the aforementioned shapes: a circle, a line, and a
spherical helix. Then, the CRB (cf. Eqn. 13) was calculated
for a candidate transmitting robot direction along each
angular position between [1, 360] degrees in ϕ and [1, 180]
degrees in θ, for a total of 64800 possible directions. The
CDF of the CRBs across all directions Fig. (11) show that the
lowest bound is achieved by the helix, followed by the circle
and then the line, thus ranking these common displacement
geometries in terms of informativeness.

Aggregate results in Fig. (12) for actual hardware
experiments also demonstrate that the informativeness
calculated for each displacement geometry successfully
captures the behavior of AOAError for 3D versus 2D
displacement. The corresponding the AOA error along
both ϕ and θ directions for 3D displacement geometries
is lower compared to that for 2D linear and 2D curved
displacement geometries (Fig. (13)). Additional results
for the hardware experiment pertaining to the impact of
displacement geometry on AOA error are presented in
Sec. 8.3.
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Figure 14. Shows the AOA profile Fij(ϕ, θ), obtained during a hardware experiment, using ground truth displacement and estimated displacement
(from Intel Realsense Tracking Camera T265). The peak AOAmax in the in Fij(ϕ, θ) corresponds to the strongest signal direction of transmitting
robot. Error in the estimated displacement increases the error in AOAmax estimation and results in a more noisy profile (top right). The groundtruth
AOA angles are marked by red ’x’ in the Top View of the Fij(ϕ, θ). We see that there is a clear attenuation of the AOAmax and a slight shift when
using displacement from T265 camera compared to the peak obtained from ground truth displacement. Aggregate results comparing the AOA using
displacement from ground truth and T265 camera are shown in Fig. 22 and 23.

7.2 Characterizing the impact of displacement
estimation error on Angle-of-Arrival
estimation

As an implementation of SAR requires knowledge of local
robot displacements (see Section 5), one must rely on local
estimation techniques for robots operating in the wild. Most
often, robot displacements can be estimated using onboard
sensors such as inertial measurement units (IMU), cameras,
or LiDAR. However the error in a local displacement χ̂i(t)
due to different estimation approaches translates into error
in steering vector (incorrect antenna positions) when used
for SAR. Thus, it is necessary to analyze our system’s
performance under cases where the measured displacement
is different from ground truth displacement.

Since, our method requires only local displacement
information, it is not impacted by large accumulations
of errors over the entire robot trajectory. Specifically, to
obtain an AOA profile, a robot uses its displacements over
a small time window from t = [tk, . . . , tl] to emulate a
virtual antenna array (See Fig. 5). This means that at any
specific instance of 3D SAR, robot positions at timesteps
not between tk, . . . , tl are irrelevant for AOA estimation.
Thus, our development here focuses on impact of χ̂i(t) and
the residual errors (def. 4) accumulated over χ̂i(t), on AOA.
Comparing the results for ground truth and displacement
using on-board sensor during hardware experiments (Fig. 14)
we see that higher error in the latter impacts the estimated
AOA profile. Our goal in this section is to mathematically
model and analyze this impact as a function of displacement
estimation error.

We use the angular drift metric (def. 2) to quantify the
residual error in displacement estimation for our analysis

Comparison of robot displacements

Figure 15. Hardware experiment showing the drift in estimated
displacement, from Intel Realsense Tracking Camera T265, compared
to ground truth displacement. The end positions points (red) are much
further away from each other than the start points (green) indicating drift
accumulation.

since our system is based in Spherical coordinate system.
We introduce two lemmas to show the impact of constant
and varying angular drift on AOA estimation. To simplify
our analysis, we use displacement along an ideal circular arc
in 3D and show that results for arbitrary 3D displacement
from hardware experiments closely follow our theoretical
findings.

7.2.1 Constant offset: We first analyze the case of a
constant offset; for example, as would occur in the case of a
bias or drift in the estimated displacement. We use a circular
3D motion of radius R to simplify the analysis.
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Lemma 2. If the estimated displacement in spherical
coordinates is incorrect by a constant azimuth (ϕ) offset κϕ

and a constant elevation (θ) offset κθ, the observed AOA peak
will occur at a shifted angle of ϕ− κϕ, θ − κθ.

Proof: Assume that the transmitting robot j at a point
(D,ϕ, θ) is very far from the receiving robot i moving
along the arc of a circle of radius R. The distance from
robot j to the first position of the arc is given by D −
R cosϕ cos θ. By rotating our coordinate system, we get
D −R cos(ϕ− φ(tu)) cos(θ − ξ(tu)) as the distance from
robot j to an arbitrary point on our arc, given robot j’s
(ϕ, θ) and virtual antenna element location (φ(tu), ξ(tu))
along robot i’s displacement. Thus, applying the general
model of the wireless channel (Eqn. 1) for a circular motion
based on distance D and radius R of the receiving robot’s
displacement, our forward-reverse channel product at a given
(φ(tu), ξ(tu)) is the following (dropping notation t for
brevity):

hij(tu) =
1

D2
e

−4π
√

−1 D
λ ∗ e

−4π
√

−1 ρ cos(ϕ−φu)cos(θ−ξu)
λ

(14)

Due to some constant drift κϕ, κθ, however, we instead
measure a peak at some angle ϕ̂ rather than at ϕ, and some
angle angle θ̂ rather than at θ, defined from the AOA profile
(cf. Eqn. (11)) as follows:

Fij(ϕ, θ) =
1

D2

M∑
u=1

e
−4π

√
−1 D

λ ∗

e
−4π

√
−1 ρ[cos(ϕ−φu)cos(θ−ξu)−cos(ϕ̂−φu+κϕ)cos(θ̂−ξu+κθ)]

λ

(15)

This takes the form of the well-known Bessel function, which
is maximized at ϕ̂ = ϕ− κϕ and θ̂ = θ − κθ Mathews and
Zoltowski (2020).

7.2.2 Varying offset Beyond constant offsets such as
drift or bias, other errors that may complicate our analysis
include the vibrations of drones and time-varying drifts
in displacement across narrow data-capture windows. Our
following analysis considers the effect of this varying offset
(Fig. 14).

Lemma 3. For an estimated robot displacement incorrect
by some average offset κϕ with a max deviation of δ around
κϕ in the azimuth direction, and some average offset κθ

with a max deviation of µ around κθ, there will exist
a peak located at angle (ϕ− κϕ, θ − κθ), in line-of-sight
conditions. This peak will attenuate by a factor no more than
cos( δ+µ

2 ), relative to the peak in absence of such offsets.

Proof: We consider the phase component ∠F (ϕ, θ) of
Equation 15 (in the exponent) from the previous lemma,
substitute a= ϕ− φu and b= θ − ξu and modify it for a
varying κϕ and κθ, indicated by subtracting deviations from
the mean for each position, δu, µu:

∠F(ϕ, θ) =

−4ρπ
√
−1

λ
[cos(a)cos(b)− cos(a− δu)cos(b− µu)]

(16)

Assuming δu and µu are relatively small, we can simplify
our equation using trigonometric identities to the following:

∠F(ϕ, θ) =

−4ρπ
√
−1

λ
[δu sin(a)cos(b) + µu sin(b)cos(a)]

(17)

Consider the worst-case scenario, where δ = δmax and µ =
µmax, and δ = −δmax and µ = −µmax, alternately. For
brevity, we represent the quantity 1

D2 e
−4Dπ

√
−1

λ with α, and
group these alternate phases together (thus changing the
bounds of our summation). We can rewrite our profile as
follows:

Fij(ϕ, θ) ≥ α

M/2∑
u=1

e
√

−1 (δmax+µmax)
2 + e

−
√

−1 (δmax−µmax)
2

i.e. Fij(ϕ, θ) ≥ αMcos
δmax + µmax

2
(18)

Thus, our peak at ϕ− κϕ, θ − κθ from Lemma 1 is
attenuated by a factor that is at most cos δmax+µmax

2 vs. the
peak in the absence of drift.

Our hardware experiment results bolster these theoretical
findings. A representative experiment sample comparing the
robot displacements obtained from motion capture versus
an on-board sensor as well as the corresponding AOA
profile, are show in Fig. 14. The side view for the profiles
indicates an attenuation of the maximum AOA peak as
expected from the analysis of this section. From a top view
the predicted peak shift can also be seen for the noisy
estimated displacement versus the case where ground truth
displacement is used.

We note that to directly apply these analytical results
for robot motion in Spherical coordinate system to that in
Cartesian coordinates, the corresponding ATEtrans error
from Eqn. 6, which is commonly used metric (Sturm et al.,
2012), needs to be converted to angular error. However,
results with ATEtrans error demonstrate an increasing
linear trend for the AOA error. Figure 21 demonstrates
this for different values of simulated ATEtrans error
and corresponding AOA error in ϕ and θ for an actual
robot displacement obtained from hardware experiments.
Section 8.4 also includes aggregate results showing the
impact of error in displacement estimation on AOA error on
average, where robot displacements are estimated using an
Intel RealSense Tracking Camera T265.

8 Results
This section presents the results of extensive simulation
and hardware experiments that demonstrate an agreement
of practical implementation with our analytical results. As
clarified in Sec. 1, our WSR framework can be deployed on
actual hardware with any RF signal as long as the signal
phase is accessible. For experimental evaluation, we use
WiFi since it is ubiquitous to current robot platforms and
its signal phase for off-the-shelf Intel 5300 WiFi card can
be readily accessed by deploying the CSI Toolbox (Halperin
et al., 2011) on the robots’ on-board computer. Using this
WiFi card, we show 1) the feasibility of attaining accurate
AOA profiles Fij(ϕ, θ) using relative displacement of a
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AOA using relative displacement in 2D

Figure 16. (a) Hardware experiment showing linear 2D displacement
χi(t) for signal receiving robot i and the corresponding curved relative
displacement χij (t) due to the displacement χj (t) of transmitting robot
j. Using the relative displacement, our approach for moving ends (Sec.
6) gives similar profile results for 2D curved displacement (Fig. 6) with
ambiguity only along elevation angle. (b) AOA profile showing (ϕ̂, θ̂) =
(−90◦, 73◦) while true AOA (ϕg , θg) = (−90◦, 90◦), denoted by red ’x’
in the profiles. Relative displacement χij (t) (curved 2D) thus has a more
informative geometry than actual displacement χi(t) (linear 2D).

receiving robot with respect to the transmitting robot to solve
the moving ends problem, 2) the informativeness of different
displacement geometries in 2D and 3D, and 3) the impact
of displacement estimation errors on attainable AOAmax

accuracy. We find that:

• Our developed framework from Sec. 6 solves the
moving ends problem where Fij(ϕ, θ) is attainable
even when both the transmitting and receiving
robots are simultaneously moving. Furthermore, we
observe that relative displacement geometries can have
more informativeness, resulting in higher AOAmax

accuracy.
• Experiments using ground truth displacement show

that arbitrary 3D displacement geometries generate
highly accurate Fij(ϕ, θ) (less than 10◦ error in
AOAmax for 95% of trials). In contrast, for planar 2D
curved and linear displacement of a robot, only 50%
and 7% of trials show error below 10◦ respectively.

• For robot displacement estimates using on-board VIO
sensor, with an average of 7% estimation error (0.2
m error in position over 2.8 m distance), attainable
AOAmax median estimation accuracy was shown to
be 7.58◦ in azimuth, 3.21◦ in elevation.

We subsequently describe our experimental setup in section
8.1. The results for moving ends experiments are detailed
in section 8.2. Section 8.3 and 8.4 show the results for
displacement geometry informativeness and the impact of
displacement estimation respectively.

8.1 Experimental setup
Testbed and hardware setup: We use an off-the-shelf
Turtlebot3 Waffle as the ground robot and a NXP KIT-
HGDRONEK66 drone as the aerial robot (Fig. 4). Each robot
is mounted with a lightweight 2 or 5 dBi omnidirectional
WiFi antenna, UP Squared board with Intel 5300 WiFi
module and a VIO sensor - Intel Realsense Tracking Camera
T265 - which gives local pose estimates at 200 Hz. We
evaluate our system in a 300 m2 indoor environment covered
with the Optitrack motion capture system that enables
obtaining ground truth measurements for robot displacement
and AOA. We first evaluate our system using ground truth
displacement to obtain AOA accuracy baseline. We then
evaluate how Fij(ϕ, θ) and AOAmax are impacted when
noisy displacement estimation, obtained from on-board T265
VIO camera, are used instead of ground truth displacements.

For experiments with ground truth displacement, the
center of the rigid body model, generated by the motion
capture system, is aligned with the physical placement of
the WiFi antenna on the robots’ chassis. For experiments
with the T265 VIO camera, the antenna and the camera
are aligned on the robots’ chassis, and their offset, if any,
is accounted for. The robots use minimal communication
(broadcasting ping packets) over the center frequency
channel of the 802.11 5 GHz bands. Our system’s total
data transmission overhead amounts to a maximum of
15 KB in 3 seconds when a receiving robot performs 3D
SAR. Note that the frequency of such transmission would
highly depend on the application. For dynamic rendezvous
demonstration using real hardware (Sec. 9), as the receiving
robot continuously requires AOAmax for navigation, this
leads to an average 5 KB/s transmission overhead. This
includes CSI of the transmitted signals between robots and
local position estimates from neighboring robots (in their
coordinate frame), collected on the on-board computer in real
time. The current nature of our code-base requires processing
this data on an off-board computer, but the computation
requirements for our system are satisfied by the onboard
computer as well. The AOA profile Fij(ϕ, θ) is generated
using the Bartlett estimator (Eqn. 11).

Software setup: We use Ubuntu 16.04 with kernel 4.15
as the OS for the on-board computer. It runs the following:
control code for the robots that uses ROS and MAVROS,
pose estimation for the T265 VIO camera using realsense
libraries1 and a modified WiFi driver with 802.11 CSI
toolbox (Halperin et al., 2011) that collects CSI data which
is used to calculate the signal phase. The AOA profile is
calculated off-board using Matlab. As per our assumption,
global clock synchronization among the robots is achieved
by using NTP on the on-board computers.

8.2 Moving ends
In this section, we show results for hardware experiments
that demonstrate the solution to the moving ends problem
(Sec. 6). Essentially, we show the accuracy of the AOA
profile Fij(ϕ, θ) obtained using relative displacement χij(t)
of the receiving robot i with respect to a moving transmitting
robot j ∈ Ni. Relative displacement can be obtained using
different on-board sensors, however for proof-of-concept
purposes of our developed framework, we use estimates of
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CDF of error in AOA for robot displacement geometries

Figure 17. Benchmark results obtained using ground truth displacement for a receiving robot in hardware experiments. The transmitting robot is at
a distance of 10m. (a) CDF plot for AOAError error for 101 trials of each motion type (linear, curved and arbitrary 3D). 3D displacement have the
lowest AOAError (def. 3) which is less than 10◦ for 95% of trials. For planar 2D curved and linear displacement only 50% and 7% of trials show
error below 10◦ respectively. (b) and (c) show the individual CDF plots for absolute error in AOA for ϕ and θ respectively. 2D linear displacement
have the highest error overall. We note that even ground truth displacement incur AOA error due to factors mentioned in Sec. 4.3.

local robot displacement obtained using the external motion
capture system. The following scenarios are evaluated:

1. Robot i performs a helix motion at 0.5 m/s (Fig. 10)
2. Robot i performs a linear motion at 0.1 m/s (Fig. 16)

The transmitting ground robot j moves along a linear
trajectory with varying speed (max speed of 0.1 m/s), and
is at a distance of 10 m from robot i. A sample result for
these scenarios shows that Fij(ϕ, θ) obtained using relative
displacement of robot i for a moving robot j is similar
(Fig. 10) or better (Fig. 16) than that obtained for a stationary
robot j (Fig. 14).

We make interesting observations with respect to the use
of relative displacement. For example, when the robot i
and j are moving linearly along different directions and
with different speeds, the relative displacement χij(t) has
a curved geometry thus eliminating ambiguities along ϕ
(Fig. 16). We postulate that depending on the direction
and variation in speed of the moving robots, displacement
geometries with more informativeness and thus less
ambiguity can be naturally obtained. Further investigation of
this observation, namely, exploiting relative displacement for
obtaining higher informativeness, is an interesting avenue for
further research. Results pertaining to the informativeness
of different displacement geometries are discussed in the
following section.

8.3 Informativeness of 2D and 3D
displacement geometry

In this set of experiments, our objective is to study the impact
of displacement geometry on AOAmax estimation. To
analyze this impact without presence of other noise inducing
factors, the results of this section use the robots’ ground
truth displacement obtained from motion capture (the impact
of displacement estimation errors on AOAmax is presented
subsequently in Sec. 8.4). In these experiments, the relative
AOAmax is computed between a stationary transmitting
robot and the receiving robot having the following motions -
a) 2D linear, b) 2D curved, and c) arbitrary 3D displacement
(See Fig. 18). The robots are separated by a distance of 10m

and are in the line-of-sight of each other. A ground robot is
used to obtain 2D displacement samples while an aerial robot
is used for 3D displacement. The application of our system
to non-line-of-sight scenarios is presented subsequently in
Section 9.

Fig. 17 shows the aggregate performance over 101 trials
for each robot motion. Overall, the AOAError (Fig. 17 (a))
is significantly lower for 3D displacement as compared to its
2D counterparts. Specifically, 3D displacement geometries
demonstrate less than 10 degrees AOAError for 95% trials,
where as only 50% of 2D curved displacement and 7% of
2D linear displacement show similar accuracy. This trend is
again shown empirically in our application scenario results
in Section 9.

Hardware results also reveal important intuition behind
the informativeness of different displacement geometries
(Fig. 18). For motion with lower informativeness such as
the linear 2D displacement, ambiguities are observed in
Fij(ϕ, θ) for relative direction (ϕ̂, θ̂) of the transmitting
robot. This is due to the inability of the linear antenna array
geometry traced by receiving robot to uniquely distinguish
a transmitting robot’s location for certain direction tuples
(ϕ, θ) using phase differences. It aligns with the behavior
of physical antenna arrays; planar arrays cannot distinguish
between directions which are symmetric with respect to the
array plane (Manikas, 2004). This problem is thus greatly
alleviated by using displacement geometries with higher
informativeness.

In conclusion, our results indicate that 3D displacement
leads to the highest informativeness amongst all displace-
ment geometries studied, resulting in a more accurate estima-
tion of AOAmax in both azimuth and elevation as predicted
by the analysis from Section 7.

8.4 Effect of displacement estimation error on
AOA

Computing AOA profiles Fij(ϕ, θ) requires knowing a
robot’s local displacement. Since most robots in the wild
rely on on-board sensors to estimate their position, in this
section, we experimentally study the impact of error in
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Ambiguity in AOA profile for displacement geometries

Figure 18. Shows different robot motions evaluated during hardware experiments and ambiguities in the AOA profile Fij(ϕ, θ) (right). True AOA (
ϕg , θg) = ( −90◦, 91◦) to the signal transmitting robot is denoted by red ’x’ in the profiles. 3D displacement geometries have higher informativeness
and have no ambiguities in the AOA profile.

Displacement estimation error for
Intel Tracking Camera T265

Figure 19. Estimation error (ATEtrans, Eqn. 7) in robot displacement
when using Intel Realsense Tracking Camera T265 from 57 hardware
trials. The cumulative length of robot displacement for the trails is 2.8 m
on average. (Left): ATEtranserror (Cartesian coordinates) across all
trials, the mean error being 0.2m. (Right): Corresponding mean angular
drift (See def. 2) along Spherical coordinates. A higher drift is observed
along φ compared to ξ.

local displacement estimation on Fij(ϕ, θ); specifically on
the accuracy of AOAmax (maximum magnitude path in
Fij(ϕ, θ)).

Our empirical analysis includes both a simulation and a
hardware component. The simulation provides a controlled
study in which noise can be added systematically to reveal
error trends and in the absence of other impacting factors
like varying displacement geometry or noisy signal phase
and multipaths. The hardware component provides aggregate
results showing the impact of displacement estimation error
on AOAmax accuracy in an actual all on-board sensing robot
system. For the hardware experiments, we use displacement
estimates provided “out-of-the-box” from the T265 VIO
camera. No additional optimization techniques were used
to improve displacement estimation though we do note
that it is possible to do so using state-of-the-art methods

Simulated displacement geometries

Figure 20. Simulated idealized robot displacement geometries in 2D
and 3D. The cumulative length for each of them is 3.14 m.

ATEtrans 3D displacement 2D displacement
(meters) ϕ error θ error ϕ error θ error

0.1 m 2.5◦ 7.8◦ 5.7◦ N/A
0.15 m 3.75◦ 10.9◦ 8.24◦ N/A
0.2 m 5◦ 14◦ 10.8◦ N/A

Table 1. Shows ATEtrans error for the noisy displacement
geometries obtained after adding simulated angular noise to ideal robot
motion (Fig 20), as per the noise model explained in Sec. 8.4.1). The
cumulative length for each of them is 3.14 m. The corresponding Angle-
Of-Arrival estimation error (degree) in azimuth(ϕ) and elevation (θ)
directions, is shown for varying levels of displacement estimation error.

(See Sec. 2). Finally, the AOAmax estimates obtained are
compared against benchmark results from using ground truth
displacement.

8.4.1 Simulation study: We firstly simulate multiple
noisy displacement estimates χ̂i(t). We do so by adding
accumulating Gaussian noise to idealized robot displacement
geometry shown in Fig. 20. Fij(ϕ, θ) is then generated for
these χ̂i(t) to obtain an AOAmax estimate (ϕ̂, θ̂) which
is then compared with the true simulated AOA direction
(ϕg, θg) to compute AOA error (cf. def. 3).
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Impact of displacement estimation for arbitrary 3D displacement

Figure 21. Results showing Angle-Of-Arrival estimation error vs ATEtrans: Eqn. 6) for an actual ground truth 3D displacement of the receiving
robot obtained during hardware experiments (leftmost plot). Error is added using simulated noise to the ground truth displacement as per the method
detailed in Sec. 8.4.1. The maximum range of ATEtrans on X-axis reflects the observed median error in Intel Realsense Tracking Camera T265
displacement estimation (Fig. 19). This result shows an agreement with our analytical results from Sec. 7.2 about the linear relationship between
displacement error and AOA error.

In order to generate an Fij(ϕ, θ) (cf. Eqn. (11)) using
simulated noisy displacements as described above, we first
simulate the wireless channel hij(t), from a stationary
transmitting robot j, received over χ̂i(t). We do so by
fixing the true virtual location pj(tk) of robot j at 100m
from position pi(tk) in χi(t). For any position pi(t), t ∈
[tk, . . . , tl] where k=0, l=500 and dij(t) is the distance
between pi(t) and pj(tk), the channel measurements hij(t)
can thus be simulated from Eqn. 1 to obtain hij(t). We then
simulate noise in χi(t) by applying increasing cumulative
error in position (xi(t), yi(t), zi(t) for each pi(t) in χi(t).

χ̂i(t) are simulated in such a way that their ATEtrans

error (cf. Eqn. (6)) are representative of those characteristic
from using on-board sensors. This is based on our
observations of estimation error using T265 VIO camera
(see Fig. 19). In particular, for each position pi(t) in χi(t),
we sample position error along xi(t), yi(t), and zi(t)
from a zero-mean Gaussian distribution and add it to each
pose cumulatively. This generates χ̂i(t) from χi(t) with an
accumulating ATEtrans error. To generate additional noisy
displacement estimates, we increase the sampled position
error for each successive simulated robot displacement
steadily so that the ATEtrans error ranges from 0.0 m to
0.2 m. The corresponding angular drift (See Def 2) in φ and
ξ , for robot pose in spherical coordinates, ranges from 0◦

to 10◦. A total of 50 such samples are generated for any
displacement geometry that is evaluated.

Our empirical results support our analytical development
from Lemma 2 and 3 (Sec. 7.2). Table 1 shows results
of simulation for idealized robot displacement geometries
in 2D and 3D (Fig. 20). As shown by our analysis in
Sec. 7.2, higher ATEtrans leads to an increase in angular
drift that is reflected in the AOA estimation for ϕ and θ.
It also shows an AOA estimation error 5◦ in ϕ and 14◦

in θ corresponding to ATEtrans 0.2 m in the absence of
other factors that impact Fij(ϕ, θ), for perfectly symmetric
displacement geometries. We note that given equal error
accumulation in xi(t), yi(t), and zi(t), higher error angular
drift in corresponding Spherical coordinate ξ is expected
compared to that in φ, thus resulting in higher AOA error
in θ compared to ϕ.

To validate the relationship between displacement
estimation error and AOA error further, we add simulated
noise to a sample 3D ground truth displacement χi(t) of
the receiving robot i obtained from hardware experiments.
The AOA error shows an increasing linear relationship to the
corresponding ATEtrans error for the robot displacement
(Fig. 21). These results can be used as indicators of the
expected degradation of AOA estimation from our system
given the displacement estimation error in robot’s motion.
We note that the scale of AOA error in ϕ and θ directions
slightly varies due to the use of asymmetric displacement
geometries that impact how error in xi(t), yi(t), and zi(t)
(i.e., ATEtrans error in Cartesian coordinates) translates to
angular drift in φ and ξ (in spherical coordinates).

8.4.2 Hardware experiments: We compare AOAmax

estimation using 3D robot displacement estimates obtained
from T265 VIO camera against benchmark AOAmax

estimates obtained using ground truth. Displacements for
the receiving robot are collected simultaneously using
the T265 VIO camera (mounted on the aerial receiving
robot) and the external motion capture system. Experiments
are conducted in realtime, while keeping the transmitting
robot stationary (results involving a mobile transmitting
robot are presented in Section 8.2 and Section 9). The
average cumulative displacement of the receiving robot
is 2.8 m per AOA profile generated, so as to obtain a
sufficiently informative displacement geometry similar to a
3D helix. We run 59 such trials for this experiment. Two
trials were discarded due to loss of pose tracking for the
T265 VIO camera during the experiments. The CDF plots
for AOA estimation error (Fig. 22) show a low median
AOAError as well lower errors in ϕ and θ using the ground
truth displacement compared to that using the estimated
displacement. Figure 23 shows the corresponding kernel
density estimation distribution plot comparing AOAmax

estimation error in azimuth angle ϕ and elevation angle θ.
The mean, std dev of the error in ϕ is −2.13◦, 33.23◦

respectively for ground truth displacement and 4.86◦, 58.45◦

respectively for the estimated displacement from the T265
VIO camera. The mean, std dev of the error in θ is −0.65◦,
10.63◦ respectively for the ground truth displacement and
−0.28◦, 25.22◦ respectively for the estimated displacement.
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CDF of AOA error error for hardware experiments

Figure 22. Aggregate results showing CDF of AOA estimation error for hardware experiments consisting of 57 trials using UAV. Each experiment
records the 3D displacement for the receiving robot (UAV) using the Intel Realsense Tracking Camera T265 camera and motion capture (ground
truth), along with their respective Fij(ϕ, θ). The median error for each sub-plot shows higher accuracy for ground truth displacement compared to
estimated displacement from T265 camera. AOAError is obtained using Eqn. 7. The corresponding distribution of error along azimuth and elevation
directions is shown in Fig. 23.

AOA error distribution comparison for hardware experiments

Figure 23. Aggregate results for hardware experiments consisting of 57 trials showing error distribution for AOA estimation for hardware
experiments. Ground truth AOA (ϕg , θg) = ( 0◦, 91◦). Sub-plot on the left shows error in ϕ with mean, std dev of -2.13 ◦, 33.23 ◦ for ground
truth displacement and 4.86 ◦, 58.45 ◦ for T265 camera displacement. Sub-plot on the right shows error in θ with mean, std dev -0.65 ◦, 10.63 ◦ for
ground truth displacement and -0.28 ◦, 25.22 ◦ for T265 camera displacement. Thus, with high error in estimated displacement, the corresponding
AOA accuracy is low, compared to that obtained from ground truth displacement. These AOA errors can be also be approximated using a Gaussian
distribution as evident from the aggregate plots. A higher error is observed in ϕ compared to that in θ on account of higher angular drift (def. 2) in φ
than in ξ (See Fig. 19).

The mean ATEtrans error in estimated displacement
is 0.2 m for 2.8 m long cumulative displacement of the
receiving robot on average (Fig. 19). Thus, the results shown
in Fig. 23 represent AOAmax estimation error given ∼ 7.0%
average displacement estimation error. Higher error along ϕ
than θ is due to asymmetric angular drift in displacement
(See Fig. 19). We also note that given these are the results
for actual hardware experiment using only the robot’s local
sensors, other factors such as real wireless signal phase,
UAV vibrations and small variations in the shape of the
displacement geometry also contribute the observed error in
AOA estimation. On the other hand, results corresponding
to ground truth displacement represent an empirical lower
bound for AOAmax error that could be attainable using
improved position estimation accuracy while accounting for
other factors that impact Fij(ϕ, θ).

9 Application Study

Dynamic rendezvous between ground/air robots
In this section, we demonstrate the performance of our
system for a complete experiment of multi-robot rendezvous

task between a UAV (signal receiving) and a ground robot
(signal transmitting). The goal is to evaluate the utility of
our system for a multi-robot coordination application that
involves a heterogeneous team of robots. Our evaluation is
based on the following three criteria:

• System performance in the presence of occlusions:
The UAV should navigate towards the ground robot
using the AOA profile Fij(ϕ, θ) despite of any visual
occlusions.

• Performance of our system in the presence of moving
ends: The UAV should be able to navigate towards a
moving ground robot using its relative displacement
and our 3D SAR formulation, while also maintaining
continuous mobility.

• Impact of displacement geometry: Following the
development in Sec. 7.1, verify that the informative-
ness of displacement geometry can be used to predict
AOA estimation performance.

Experimental setup: We consider an environment of size
300 m2 with one UAV and one ground robot separated
by distance of 15 m and occlusions (Fig. 24 (a)). We
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Dynamic rendezvous experiment between UAV and ground robot

(a) Initial setup (b) UAV starts navigating towards static ground robot

(c) Ground robot starts to move and gets occluded (d) UAV achieves rendezvous with ground robot

Figure 24. Shows different stages of dynamic rendezvous hardware experiment between signal transmitting ground robot and receiving UAV.
Starting from top-left : a) The initial setup to test rendezvous of UAV with the ground robot in presence of occlusions. b) The UAV begins to navigate
towards the stationary ground robot, using relative AOA information obtained from continuously generating AOA profiles using our arbitrary 3D SAR
system which leverages the UAV’s local displacement obtained from its natural motion. c) The ground robot starts to move and gets occluded (UAV
loses visual of the ground robot as seen in the fisheye view image). d) The UAV continues its navigation towards the ground robot despite of occlusion
until it is within 2 meters proximity, at which point rendezvous is declared successful.

note that these occlusions block visual line-of-sight but
are penetrable by WiFi signals. Motion capture is used to
provide displacement information for the UAV (robot i).
The ground robot j’s position is not known to robot i. True
AOA is obtained between robot i and j using their respective
positions obtained from the motion capture system.

The UAV, after take-off, starts to successfully navigate
towards the stationary ground robot using relative AOAmax

obtained from Fij(ϕ, θ) and a simple motion controller
(Fig. 24 (b)). The ground robot then starts to move and gets
visually occluded by obstacles (Fig. 24 (c)), but the UAV
continues to successfully navigate towards it. We consider
the rendezvous successful when the UAV is within a 2 m
radius of the ground robot (Fig. 24 (d)).

Evaluation: For evaluation of our system performance,
we use AOAError (Eqn. 7) to measure the accuracy
of our AOAmax estimation against ground truth AOA.
Our evaluation focuses on the following: 1) evaluating
AOAError over time, 2) evaluating AOAError for the
moving ends case where both the transmitting and receiving
robots are moving, and 3) experimental characterization of
the robot displacement geometry’s informativeness versus

AOAError. During the experiment, the UAV’s average
cumulative displacement is 1.2 m to measure a complete
Fij(ϕ, θ). We refer to this as a SAR iteration. For each
SAR iteration, the UAV uses its relative displacement
and received signals to calculate Fij(ϕ, θ) and updates
its waypoint to navigate towards the ground robot using
estimated AOAmax.

Fig. 25 shows the resulting accuracy of the AOAmax

estimation for each iteration. Throughout the experiment, the
mean AOAError between robots is 10.17 degrees except for
two outlier points at iteration 4 and 9. Note that AOAError is
not affected by the motion of the ground robot, which begins
at iteration 7. A closer look at iteration 9 and 4 reveals that
the Fij(ϕ, θ) contains ambiguous AOA directions owing to
displacement geometries of low informativeness (high CRB)
at these iterations (see Fig. 25, Profile (b)). Intuitively, this
occurs when the motion of the UAV is in 2D with little
displacement along the z-axis and is predicted by a high
CRB value at these points in the experiment (see Fig. 26). In
contrast, all other iterations where the UAV’s displacement
geometry has high informativeness, result in more accurate
AOAmax and less ambiguous Fij(ϕ, θ) (e.g., Fig. 25 AOA
profile (a)).
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Error in AOA during Dynamic rendezvous experiment

Figure 25. Plot showing AOAError (Eqn.7) for signal receiving UAV during the dynamic rendezvous hardware experiment. Our approach
considers the motion of the transmitting robot (start indicated by vertical dotted line) while the UAV continues to navigate towards it. During each SAR
iteration, the UAV travels a distance of 1.2 m on average. AOA profiles and the UAV displacement are shown for iteration 7 (point A) and iteration
9 (point B). High error at point B is due to low informativeness of the corresponding displacement geometry (show on the right) and an ambiguous
Fij(ϕ, θ) (shown at the top). Similar behavior is observed for iteration 4. Conversely, the UAV displacement geometry at point A is highly informative
and has almost no ambiguity leading to low AOAError . High AOA error for the first two iterations is due to sudden jerk and high UAV chassis
vibrations during take-off.

Observations: We make the following important observa-
tions during this experiment:

• Tracking through visual occlusions: Our system
enables the UAV to sense the ground robot’s spatial
direction corresponding to AOAmax obtained by
continuously generating AOA profiles Fij(ϕ, θ) in
realtime.

• Accurate AOAmax estimation with moving ends:
Despite the presence of a moving transmitting ground
robot, our 3D SAR formulation allows the signal
receiving UAV to use it’s relative displacement with
respect to the ground robot and achieve rendezvous.

• Informativeness as a predictor of AOA accuracy:
Iterations 4 and 9, which have high error in
AOAmax (Eqn. 7), have corresponding high CRB
values indicating that the corresponding displacement
geometries have low informativeness (Fig. 26). By
contrast, low CRB values correctly predict low
AOAError.

Thus our experimental results support our theoretical
developments with regards to addressing the moving ends
problem, and characterizing the accuracy of measured
AOAmax as a function of the informativeness of a robot’s
displacement geometry which is computable using Eqn. (13).

We note a few things about this experiment. As per the
assumption in Sec. 4 and Sec. 6, the relative AOAmax to the
robot j is calculated with respect to the initial position pi(tk)

CRB for UAV displacement geometry

Figure 26. Shows that CRB can be used to presage AOA accuracy
that would result from low informative displacement geometries. The high
CRB values at timesteps 4 and 9 indicate lower informativeness and
higher ambiguity in Fij(ϕ, θ) (see Fig. 25). Correspondingly, they have
high AOAError . We note that despite the CRB being low for the first
two iterations, the AOAError is high, generally due sudden jerk and
high vibrations of the UAV chassis.

of the robot i. Thus if the true AOA with respect to this initial
position undergoes a substantial change over a SAR iteration,
as could happen when robots are at short distances to one
another or when robots are moving very fast relative to each
other, then the AOAmax estimation will be outdated. Hence,
for our experiments we limit the UAV and ground robot
speeds to 0.5 m/s and 0.1 m/s respectively. Additionally,
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once the robots are close enough to each other, we end
the experiment. At this point we assume that the UAV is
equipped with an on-board camera that can detect the ground
robot and maintain tracking. For example, at 2 m distance
between robots, April tags can be used to obtain relative
position estimates with very high accuracy (Wang and Olson,
2016). Additionally, the CRB is obtained via post-processing
the collected data and using the true AOA direction of the
ground robot in Eqn. (13). Future implementations could
consider online CRB computation using a worst-case source
direction which could then be used to optimize robot motion
for improved AOAmax estimation. We do not consider such
optimizations here and rather leave this as an interesting
direction of future work.

This proof-of-concept application study demonstrates the
applicability of our developed framework to multi-robot
tasks (e.g coverage or exploration) that require robots
to maintain continuous mobility in an environment with
obstacles and visual occlusions. Moreover, use of 3D robot
motion during the task improves the information quality
obtainable by our system. We note that if only ground robots
are used instead of a heterogeneous robot team, then it
would be sufficient to rely only on AOA estimation along
the azimuth direction as long as the robots are operating in
the same 2D plane. On the other had, a ground robot can
use AOA estimation to an aerial robots along the elevation
direction in the range [0◦, 90◦] while trading-off some
accuracy.

10 Discussion
In this discussion section we address some practical
considerations that need to be taken into account when
integrating this system with robot platforms in its current
form as well as avenues of improvement and future work.

Practical considerations
We consider how our system can be used by a
team comprising of only ground robots as well as
additional factors that can impact AOA estimation during
implementation of our proposed framework.

Discretization: We note that substantial discretization of
the virtual antenna array elements resulting from a combined
effect of displacement estimation errors and significant
WiFi packet loss during transmission, is possible in some
implementations. We leave this analysis as an avenue for
investigation in future work and in this paper assume that the
loss in packet transmission is not severe. For implementation
scenarios, a future version of the work could include control
of packet transmission as well as optimization of robot
motion to diminish the occurrence and potential impact of
discretization effects.

Impact of packet detection delay and channel sampling
time offsets (STO): For actual implementation, we make a
similar assumption as that in (Gil et al., 2015a) about the
static nature of the channel, i.e coherence time of the phase
is negligible compared to the time delay between the packet.
Although in practice there is small delay (in microseconds)
in packet transmission for the forward and reverse channel
using the WiFi card, we found that the impact on final phase

(after cancelling CFO) is not substantial. Since the impact
of STO is more of an implementation challenge, we do not
address it in this paper which focuses more on developing
the analytical framework. It is one of the design challenges
for the software toolbox release of our framework as part of
future work and can be addressed by interpolating the phase
from channel subcarriers (30 that are accessible in Intel 5300
WiFi card) to calculate the phase corresponding to true center
frequency of the channel. In this paper, we use the phase
corresponding to the subcarrier 15 of the WiFi channel. We
also plan to relax the time synchronization requirement for
cancelling CFO in future work.

Future work
Here, we summarize a few directions of interesting future
work that could build upon our developed framework and
accompanying analysis.

Optimizing informativeness: This paper develops the
concept of informativeness of different displacement
geometries for the purpose of obtaining AOA profiles
Fij(ϕ, θ) between robots. Interesting avenues of future
investigation could include studying the trade-offs between
different levels of informativeness and the modification
of the robot’s natural motion, i.e. co-optimizing AOA
estimation with robot motion to improve informativeness
as the robots achieve their primary coordination task.
Additionally using relative displacement could naturally lead
to more informativeness as seen in Sec. 8.2.

Localization and SLAM: As our proposed method allows
for co-optimizing the AOA estimation with the robot’s
motion in order to improve AOA accuracy, it shows
a promising potential for active perception capability.
Our method also returns the AOA profile Fij(ϕ, θ),
which captures the physical interactions of the transmitted
signals with the environment. This is in contrast to
commonly used commercial range-only technologies (e.g.,
UWB) that provide only bearing or range measurements.
Interesting avenues for future research include using the
full AOA profile for improving robustness of multi-
robot localization/SLAM methods to adversarial action.
For example this profile has been shown to be a unique
fingerprint for each mobile robot (Gil et al., 2015b) or
can potentially be used as a trust metric when robots are
exchanging information with each other (Mallmann-Trenn
et al., 2020). Another potential application would be to
use a single AOA profile measured at some location for
loop closures as opposed to other wireless signal based
approaches that use multiple RSS measurements from
stationary signal access points (Yen et al., 2020; Liu et al.,
2020).

Multi-robot perception: The developed framework can
improve multi-robot perception where sensed AOA profiles
can be shared with neighboring robots. This could enable
several interesting capabilities such as positioning for the
entire team, multi-robot mapping without the need for a
common reference frame, and/or performing sensor fusion of
this information with other more traditional on board sensors
such as cameras or LiDARs to learn about the environment.
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Arbitrary motion of manipulator arm

Figure 27. A proof-of-concept hardware experiment where an AOA
profile is obtained from arbitrary 3D motion of a manipulator arm using
the methodologies presented in this paper. Here, a WiFi patch antenna
was adhered to the manipulator at the end of the robot arm and ping
packets from a second manipulator arm were collected for AOA profile
generation.

Robot manipulation: One perhaps surprising outcome of
our work on generalizing SAR capabilities to arbitrary robot
displacement in 3D, is the applicability of this method
to robot manipulator arms, that also traverse 3D space.
Additionally for these systems, the arbitrary 3D SAR
development from this paper can be applied fruitfully, taking
advantage of the fact that the manipulator displacements
in 3D space can be estimated with very high precision
using inverse kinematics. The analysis on informativeness
of displacement geometries can also be used to co-optimize
manipulator arm motion for enhancing attainable Fij(ϕ, θ),
as the manipulator achieves its primary task, such as
approaching or manipulating an object. Fig. 27 shows a
proof-of-concept where we measured Fij(ϕ, θ) information
between two manipulator arms working in unison at the
Stanford Robotics Lab in Palo Alto, California.

11 Conclusion

This paper develops a system that enables robots to use
their local information to obtain signal multipaths i.e AOA
profiles for other robots on their team with which they can
exchange ping packets. This has implications for positioning,
adhoc robot networks and security, among others. Our
key idea is to exploit estimated robot displacement to
trace virtual 3D antenna arrays for attaining AOA profiles,
even in the presence of robot motion at both ends
(receiving and transmitting robots). We provide complete
theoretical analysis, supported by in-depth experiments,
for understanding the informativeness of different robot
motions, as well as the impact of displacement estimation
error on AOA accuracy. To our knowledge, this is the
most general implementation of such a capability to date.
Specifically, our framework is compatible with multi-
robot systems that are mobile in 2D and 3D space, are
heterogeneous, and must coordinate in potentially cluttered

environments with large inter-robot distances as shown by
our experimental results and application study.
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Notes

1. Code samples used for T265 VIO camera to get posi-
tion estimates can be found in their github repository :
https://github.com/IntelRealSense/librealsense
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APPENDIX

A Cramer Rao Bound Development

I. 3D Spherical Helix Displacement: We parameterize a
spherical helix in spherical coordinates as given by:

ξu = τ, φu = cτ, ρu = r

for a spherical helix of radius r, spiral climb rate of
c, and parameterization τ ∈ [0, 2π). We assume that each
antenna element u is uniformly spaced along the helix
so that τ = u = {0,∆, 2∆, . . . , (M − 1)∆} where ∆ = 2π

M .
Further, we assume a climb rate c = 1 for a simplification
of our closed form, though any constant can be similarly
substituted before integration. We set M approaching infinity
(i.e. assume a very large number of packets received) to
simplify analysis. So for a robot’s 3D spherical helical
displacement, the CRB terms are:

A =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂θ∂θ
=

M∑
u=1

4π2r2

λ2
(cos θ sin((u− 1)∆) cos(ϕ− c(u− 1)∆)

− cos((u− 1)∆)sin(θ))2

Setting M −→ ∞, c = 1 we get

A = −
π2r2

(
cos2(θ) cos(2ϕ) + cos(2θ)− 3

)
λ2
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B =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂ϕ∂ϕ
=

M∑
u=1

4π2r2

λ2
(sin θ sin((u− 1)∆) sin(ϕ− c(u− 1)∆)))2

Setting M −→ ∞, c = 1 we get

B =
π3r2 sin2(θ)(cos(2ϕ) + 2)

λ2

C =
∂aH(θ, ϕ)∂a(θ, ϕ)

∂ϕ∂θ
=

M∑
u=1

4π2r2

λ2
(cos θ sin((u− 1)∆) cos(ϕ− c(u− 1)∆))

− cos((u− 1)∆) sin θ)(sin θ sin((u− 1)∆)

∗ sin(ϕ− c(u− 1)∆))

Setting M −→ ∞, c = 1 we get

C =
2π3r2 sin(θ) cos(θ) sin(ϕ) cos(ϕ)

λ2
.

II. Planar Circular Displacement: We parameterize a
planar circle as follows:

ξu = τ, ρu = r, φu = cos−1(0) = π/2

The CRB equations reduce to

A =

M∑
u=1

4π2r2

λ2
cos2 θ cos2(ϕ− (u− 1)∆)

=
4π2r2

λ2
cos2 θ

M∑
u=1

(
1

2
+

cos(2ϕ− 2(u− 1)∆)

2
)

Setting M −→ ∞,we get

A =
2π2r2

λ2
cos2 θ

and

B =

M∑
u=1

4π2r2

λ2
sin2 θ sin2(ϕ− (u− 1)∆)

=
4π2r2

λ2
sin2 θ

M∑
u=1

(
1

2
− cos(2ϕ− 2(u− 1)∆)

2
)

Setting M −→ ∞,we get

B =
2π2r2

λ2
sin2 θ

and finally,

C =

M∑
u=1

−4π2r2

λ2
cos θ cos(ϕ− (u− 1)∆)

× (sin θ sin(ϕ− (u− 1)∆))

= −4π2r2

λ2
cos θ sin θ

M∑
u=1

sin(2ϕ− 2(u− 1)∆)

Setting M −→ ∞,we get
C = 0.

B Notations and Terminology

Coordinate System

t time

(ρi(t), φi(t), ξi(t)) spherical coordinates of receiving
robot’s position denoting displacement, azimuth
and elevation angles wrt. the first position along its
displacement χi(t)

(ϕ, θ) signal transmitting robot’s relative azimuth and
elevation direction wrt. the initial position of the
receiving robot

(ϕ̂, θ̂) Estimated relative AOA to the transmitting robot
(AOA peak in Fij(ϕ, θ))

(ϕg, θg) True AOA (obtained from motion capture system)
between transmitting and receiving robot

pi(t) groundtruth position of the robot i at time t

(κρ, κϕ, κθ) position estimation error in ρ, ϕ, θ accordingly
in polar coordinates

δ deviation around κϕ in azimuth

µ deviation around κθ in elevation

δmax max deviation around κϕ in azimuth

µmax max deviation around κθ in elevation

δu deviation around κϕ in azimuth at position pi(tu)

µu deviation around κθ in elevation at position pi(tu)

p̂i(tk) Estimated position estimate of robot i at time t

Robot Trajectory

χi(tk) Ground truth pose of robot i at time tk

χ̂i(tk) Estimated pose of robot i at time tk

χi(t) Local ground truth displacement of robot i for t ∈
[tk, . . . , tl] which is a vector of positions χi(t)

χ̂i(t) Local estimated displacement of robot i for t ∈
[tk, . . . , tl] which is a vector of positions χ̂i(t)

Ni all transmitting robots for which robot i can hear
ping packets from

Ri(t) Orientation of the robot i at time t

Rϵ(t) Accumulated error in robot orientation Ri(t) at time
t

pϵ(tk) Accumulated error in robot position pi(t) at time t

(xi(t), yi(t), zi(t)) Robot position pi(t) in cartesian coordi-
nates

SO(3) Special Orthogonal group in 3D

R3 Euclidean space in 3D

ϵ(t) Residual error
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χij(t) Relative displacement of robot i wrt. robot j

χ̃i(t) Displacement aligned with respect to true NORTH
and DOWN direction

R̃i Rotation offset of robot i’s coordinate frame with
respect to true NORTH and true DOWN direction

t̃ij Translation offset between robot i and robot j

Synthetic Aperture Radar

λ Wireless signal wavelength

hij(t) Wireless signal measurements between signal
transmitting robot j and receiving robot i

dij(t) Ground truth distance between robot positions pi(t)
and pj(t)

Yij(t) Multi-antenna array output observation model

Y (tk) Received signal at robot position pi(tk)

a(θ, ϕ)(t) Steering Vector

n(t) Received signal noise vector

M Number of received signal packets

hij(t) Wireless channel

Fij(ϕ, θ) AOA profile, refers to relative paths a wireless
signal traverses between a given pair of signal
transmitting robot j and receiving robot i It is thus
a 2D matrix calculated for all possible incoming
signal directions along azimuth and elevation (360
x 180).

σ2 Variance in signal noise

I Identity matrix

∥h∥ Magnitude of wireless signal

a(θ, ϕ)(t) Element of steering vector a(θ, ϕ)(t) at time t

AOAmax Strongest signal direction i.e maximum magni-
tude path, in the full AOA profile Fij(ϕ, θ)

∆f Frequency offset

hr
ij(t) Reverse wireless signal channel between robot i and

robot j

ĥij(t) Observed forward wireless channel

ĥr
ij(t) Observed reverse wireless channel

A, B, C Partial derivative terms in Cramer Rao Bound
formulation for informativeness of a displacement
geometry.

FIM Fisher Information Matrix

SNR Signal To Noise Ration

∆ 2π
M

τ Uniform spacing between antenna elements used for
CRB analysis of special geometries.

c climb rate for simulated robot motion

Det Determinant

∠F(ϕ, θ) Phase component of the AOA profile Fij(ϕ, θ)
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