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Abstract

For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some
buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces,
or “running buffers”, are required so that certain classes of tabletop rearrangement problems are feasible.
In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we
observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency
graph abstracted from a problem instance, and show that computing MRB is NP-hard. We then prove
that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of
required running buffers may grow unbounded as the number of objects to be rearranged increases. We
further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective
exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems,
scalable to over a hundred objects under very high object density. More importantly, our algorithms also
compute a sequence witnessing the computed MRB that can be used for solving object rearrangement
tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled
instances, which more closely mimics real-world setups, generally have fairly small MRBs. Using real
robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions
for in-place rearrangement of many objects in tight, bounded workspace.

1 Introduction

In nearly all aspects of our daily lives, be it work-related, at home, or for play, objects are to be grasped and
rearranged, e.g., tidying up a messy desk, cleaning the table after dinner, or solving a jigsaw puzzle. Similarly,
many industrial and logistics applications require repetitive rearrangements of many objects, e.g., the sorting
and packaging of products on conveyors with robots, and doing so efficiently is of critical importance to boost
the competitiveness of the stakeholders.

However, even without the challenge of grasping, deciding the object manipulation order for optimizing
a rearrangement task is non-trivial. To that end, [1] examined the problem of tabletop object rearrangement
with overhand grasps (TORO), where objects may be picked up, moved around, and then placed at poses that
are not in collision with other objects. An object that is picked up but cannot be directly placed at its goal
is temporarily stored at a buffer. For example, for the setup given in Fig. 1, using a single manipulator,
either the Coke or the Pepsi must be moved to a buffer before the task can be completed. They show that
computing a pick-n-place sequence that minimizes the use of the total number of buffers is NP-hard and
provide methods for computing that solution for low tens of objects.

Figure 1: A TORO instance where the three soda cans are to be rearranged from the left configuration to the right
configuration.
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In this study, we examine an arguably more practical objective function that minimizes the number of
running buffers (RB) in solving a TORO instance. In other words, we seek rearrangement plans that minimize
the maximum number of objects stored at buffers at any given moment, assuming that each object is moved
to a temporary location at most once. We denote this quantity as MRB (minimum # of running buffers).
The MRB objective is important because if the required MRB for solving a TORO instance exceeds the
available buffer storage, which is limited in practice, then the instance is infeasible. It is also shown that the
objective is conducive to computing high-quality solutions for solving TORO tasks. Therefore, the structural
results and the algorithms that we present may be used not only for computing feasible and high-quality
rearrangement plans but are also invaluable as a verification tool, e.g., to verify that a certain rearrangement
setup will be able to solve most tasks for which it is designed to tackle.

Surrounding the goal of studying TORO under the MRB objective, this work brings the following contri-
butions:

• We propose and carry out an initial study of solving TORO tasks with a focus on minimizing the number
of running buffers (MRB). The MRB objective is a natural alternative to minimizing the total number
of buffers [1], whereas both objectives may serve as proxies for the computation of high-quality tabletop
rearrangement plans.

• On the structural side, in terms of computational complexity, we show that computing MRB is NP-
hard on arbitrary dependency graphs, which encodes the combinatorial information of TORO instances.
We then further show that the NP-hardness of MRB computation extends to actual TORO instances.

• Continuing on the structural analysis of the MRB objective, we establish that for an n-object TORO

instance where all objects are uniform cylinders, its MRB can be lower bounded by Ω(
√
n), even when

all objects are unlabeled. This implies that the same is true for the labeled setting. We then provide a
matching algorithmic upper bound of O(

√
n) for the unlabeled setting.

• On the algorithmic side, we have developed multiple effective methods for solving various TORO tasks
optimizing MRB, including a dynamic programming method for the labeled setting, a priority queue-
based algorithm for the unlabeled setting, and a novel depth-first-search dynamic programming routine
that readily scales to instances with over a hundred objects for both settings. Furthermore, we pro-
vide methods for computing plans with the minimum number of total buffers subject to the MRB
constraints. These algorithms not only provide the optimal number of buffers but also provide a
rearrangement plan that witnesses the optimal solution.

• Through extensive numerical evaluations and experimental validations, we confirm the effectiveness
of MRB as a proper metric/proxy to optimize in computing high-quality solutions for TORO tasks.
Specifically, MRB-based methods significantly outperform the previous state-of-the-art methods in
many highly challenging TORO setups.

This paper builds on the conference version [2], with major additions; two of the most important ones
are: (1) Many additional theoretical and algorithmic results are added; for both existing and new theorems,
complete and expanded proofs are included, and (2) An application of MRB to carry out in-place tabletop
rearrangement in a bounded workspace, with real robot experiment, is added. Part of this addition is based
on [3] and with new and improved experiments (e.g., Fig. 2).

Figure 2: An in-place tabletop rearrangement instance with letter-shaped objects in a bounded workspace. The blue
dominoes work as boundaries and do not fall during the execution.
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Paper organization. The rest of the paper is organized as follows. We provide an overview of related
literature in Sec. 2. In Sec. 3, we describe the MRB focused rearrangement problems and discuss the
associated dependency graph structure. In Sec. 4, we establish some basic structural properties and show
that computing MRB is computationally intractable. We proceed to establish lower and upper bounds on
MRB for selected settings in Sec. 5 and describe our proposed algorithmic solutions in Sec. 6. In Sec. 7, we
present an application of the MRB algorithms used in the extended scenario which allows internal running
buffers. Evaluation of simulations follows in Sec. 8. In Sec. 9, we set up a hardware platform to execute the
rearrangement plans computed by our proposed algorithms. We discuss and conclude with Sec. 10.

2 Related Work

As a high utility capability, manipulation of objects in a bounded workspace has been extensively studied,
with works devoted to perception/scene understanding [4, 5, 6, 7], task/rearrangement planning [8, 9, 10, 11,
12, 1, 13], manipulation [14, 15, 16, 17, 18, 19, 20, 21], as well as integrated, holistic approaches [22, 23, 24,
25, 26]. As object rearrangement problems often embed within them multi-robot motion planning problems,
rearrangement inherits the PSPACE-hard complexity [27]. These problems remain NP-hard even without
complex geometric constraints [28]. Considering rearrangement plan quality, e.g, minimizing the number of
pick-n-places or the end-effector travel, is also computationally intractable [1].

For rearrangement tasks using mainly prehensile actions, the algorithmic studies of Navigation Among
Movable Obstacles [8, 29] result in backtracking search methods that can effectively deal with monotone
instances which restrict the robot to move each obstacle at most once. Via carefully calling monotone solvers,
difficult non-monotone cases can be solved as well [11, 30]. [1] relates tabletop rearrangement problems to the
Traveling Salesperson Problem [31] and the Feedback Vertex Set problem [32], both of which are NP-hard.
Nevertheless, integer programming models could quickly compute high-quality solutions for practical sized
(∼ 20 objects) problems. Focusing mainly on the unlabeled setting, bounds on the number of pick-n-places
are provided for disk objects in [33]. In [13], a complete algorithm is developed that reasons about object
retrieval, rearranging other objects as needed, with later work [34] considering plan optimality and sensor
occlusion. While objectives in most problems focus on the number of motions, [35] seeks to minimize the
space needed to carry out a rearrangement task for discs moving inside the workspace.

Non-prehensile rearrangement has also been extensively studied[36, 37], with object singulation as an
early focus [38, 39, 40]. In this problem, a robot is tasked to separate a target object from surrounding
obstacles with non-prehensile actions, e.g., pushing and poking, in order to provide room for performing
grasping actions. An iterative search was employed in [37] for accomplishing a multitude of rearrangement
tasks spanning singulating, separation, and sorting of identically shaped cubes. [41] combines Monte Carlo
Tree Search with a deep policy network for separating many objects into coherent clusters within a bounded
workspace, supporting non-convex objects. More recently, a bi-level planner is proposed [42], engaging both
(non-prehensile) pushing and (prehensile) overhand grasping for sorting a large number of objects. Synergies
between non-prehensile and prehensile actions have been explored for solving clutter removal tasks [43, 44]
and more challenging object retrieval tasks [45, 46] using a minimum number of pushing and grasping actions.

On the structural side, a central object that we study is the dependency graph structure. Similar de-
pendency structures were first introduced to multi-robot path planning problems to deal with path conflicts
between agents [47, 48]. Subsequently, the structure was employed for reasoning about and solving chal-
lenging rearrangement problems [11, 49, 50, 51, 52]. The full labeled dependency graph, as induced by a
rearrangement instance, is first introduced and studied in [1]. This current work introduces the unlabeled
dependency graph. We observe that, in the labeled setting, through the dependency graph, the running
buffer problems naturally connect to graph layout problems [53, 54, 55, 56, 57, 58], where an optimal linear
ordering of graph vertices is sought. Graph layout problems find a vast number of important applications
including VLSI design, scheduling [59], and so on. For the unlabeled setting, the dependency graph becomes
a planar one for uniform objects with a round base. Rearrangement can be tackled through partitioning of
the dependency graph using a vertex separator [60, 61, 62, 63]. For a survey on these topics, see [53].
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3 Preliminaries

For TORO tasks where objects assume similar geometry, there are two natural practical settings depending
on whether the objects are distinguishable, i.e., whether they are labeled or unlabeled. We describe external
buffer formulations under these two distinct settings, and discuss the important dependency graph structure
for both.

3.1 Labeled TORO with External Buffers

Consider a bounded workspaceW ⊂ R2 with a set of n objects O = {o1, . . . , on} placed inside it. All objects
are assumed to be generalized cylinders with the same height. A feasible arrangement of these objects
is a set of poses A = {x1, . . . , xn}, xi ∈ SE(2) in which no two objects collide. Let A1 = {xs1, . . . , xsn}
and A2 = {xg1, . . . , xgn} be two feasible arrangements, a tabletop object rearrangement problem [1] seeks
a plan using pick-n-place operations that move the objects from A1 to A2 (see Fig. 3(a) for an example
with 7 uniform cylinders). In each pick-n-place operation, an object is grasped by a robot arm, lifted above
all other objects, transferred to and lowered at a new pose p ∈ SE(2) where the object will not be in
collision with other objects, and then released. A pick-n-place operation can be formally represented as a
3-tuple a = (i, x′, x′′), denoting that object oi is moved from pose x′ to pose x′′. A full rearrangement plan
P = (a1, a2, . . .) is then an ordered sequence of pick-n-place operations.
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Figure 3: A 7-object labeled instance with uniform cylinders; we will use this instance as a running example. (a) The
unshaded discs (as projections of cylinders) represent the start arrangement A1 and the shaded discs represent the
goal arrangement A2. (b) The corresponding labeled dependency graph. (c) The corresponding unlabeled dependency
graph, which is bipartite and planar.

Depending on A1 and A2, it may not always be possible to directly transfer an object oi from xsi to xgi
in a single pick-n-place operation, because xgi may be occupied by other objects. This creates dependencies
between objects. If object oi at pose xgi intersects objects oj at pose xsj , we say oi depends on oj . This
suggests that object oj must be moved first before oi can be placed at its goal pose xgi .

It is possible to have circular dependencies. As an example, for the instance given in Fig. 3(a), objects
3 and 5 have dependencies on each other. In such cases, some object(s) must be temporarily moved to an
intermediate pose to solve the rearrangement problem. Similar to [1], for most of this paper, we assume
that external buffers outside of the workspace are used for intermediate poses, which avoids time-consuming
geometric computations if the intermediate poses are to be placed within W. During the execution of a
rearrangement plan, there can be multiple objects that are stored at buffer locations. We call the buffers
that are currently in use running buffers (RB). With the introduction of buffers, there are three types of
pick-n-place operations: 1) pick an object at its start pose and place it at a buffer, 2) pick an object at its
start pose and place it at its goal pose, and 3) pick an object from a buffer and place it at its goal pose.
Notice that buffer poses are not important. Naturally, it is desirable to be able to solve a rearrangement
problem with the least number of running buffers, giving rise to the labeled running buffer minimization
problem.

Problem 1 (Labeled Running Buffer Minimization (LRBM)). Given feasible arrangements A1 and A2, find
a rearrangement plan P that minimizes the maximum number of running buffers in use at any given time
as the plan is executed.
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In an LRBM instance, the set of all dependencies induced by A1 and A2 can be represented using a
directed graph G ` = (V,A), where each vi ∈ V corresponds to object oi and there is an arc vi → vj for
1 ≤ i, j ≤ n, i 6= j if object oi depends on object oj . We call G ` a labeled dependency graph. The labeled
dependency graph for Fig. 3(a) is given in Fig. 3(b). Based on the dependency graph G `, we can immediately
identify multiple circular dependencies in the graph, e.g., between objects 3 and 5, or among objects 7, 2, 6
and 5. The cycles form strongly connected components of G `, which can be effectively computed [64]. Since
moving objects to external buffers does not create additional dependencies, we have

Proposition 1. G ` fully captures the information needed to solve the tabletop rearrangement problem with
external buffers moving objects from A1 to A2.

We use two examples to illustrate the relationships between TORO, its dependency graph, and external
buffer-based solutions. First, for the example given in Fig. 1, the corresponding start/goal configurations are
given in Fig. 4[top left]. The labeled dependency graph is given in Fig. 4[top right]. Because of the existence
of cyclic dependencies between Coke and Pepsi, one of these two must be temporarily moved to a buffer.
Suppose that Pepsi is moved to buffer. This changes the configuration and dependency graph as shown in
the second row of Fig. 4. The TORO instance can then be readily solved. The complete solution sequence is
〈Pepsi → b, Coke → g, Pepsi → g, Fanta → g〉, where b refers to a buffer and g refers to the goal of the
corresponding object.

𝑪𝒐𝒌𝒆𝑷𝒆𝒑𝒔𝒊 𝑭𝒂𝒏𝒕𝒂
𝑪𝒐𝒌𝒆 𝑷𝒆𝒑𝒔𝒊 𝑭𝒂𝒏𝒕𝒂

𝑷𝒆𝒑𝒔𝒊 𝑪𝒐𝒌𝒆

𝑭𝒂𝒏𝒕𝒂

𝑪𝒐𝒌𝒆𝑷𝒆𝒑𝒔𝒊 𝑭𝒂𝒏𝒕𝒂

𝑪𝒐𝒌𝒆 𝑷𝒆𝒑𝒔𝒊 𝑭𝒂𝒏𝒕𝒂

𝑷𝒆𝒑𝒔𝒊

𝑪𝒐𝒌𝒆

𝑭𝒂𝒏𝒕𝒂

Figure 4: Two configurations of the setup given in Fig. 1 and the corresponding dependency graphs.

For the example given in Fig. 3[a], its labeled dependency graph Fig. 3[b] shows two cycles (2 ↔ 7 and
3 ↔ 5). One planning sequence for solving this can be derived that moves 2 and 3 to buffer: 〈1 → g, 2 →
b, 3→ b, 7→ g, 4→ g, 5→ g, 6→ g, 2→ g, 3→ g〉.

3.2 Unlabeled TORO with External Buffers

In the unlabeled setting, objects are interchangeable. That is, it does not matter which object goes to which
goal. For example, in Fig. 3, object 5 can move to the goal for object 6. We call this version the unlabeled
running buffer minimization (URBM) problem, which is intuitively easier. The plan for the unlabeled problem
can be represented similarly as the labeled setting; we continue to use labels so that plans can be clearly
represented but do not require matching labels for start and goal poses.

For the unlabeled setting, the dependency structure remains but appears in a different form. It is now
an undirected bipartite graph. That is, Gu = (V1 ∪V2, E) where each v ∈ V1 (resp., v ∈ V2) corresponds to a
start (resp., goal) pose p ∈ A1 (resp., p ∈ A2). We denote the vertices representing the start and goal poses
as start vertices and goal vertices, respectively. There is an edge between v1 ∈ V1 and v2 ∈ V2 if the objects
at the corresponding poses overlap. The unlabeled dependency graph for Fig. 3(a) is illustrated in Fig. 3(c).

In practice, many TORO instances have objects with footprints that are uniform regular polygons (e.g.,
squares) or discs. In such settings, we can say something additional about the resulting unlabeled dependency
graphs (the proofs of the two propositions below can be found in the appendix).
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Proposition 2. For unlabeled TORO where footprints of objects are uniform regular polygons, the maximum
degree of the unlabeled dependency graph is upper bounded by 19.

Proposition 3. For unlabeled TORO where footprints of objects are uniform discs, the dependency graph is
a planar bipartite graph with a maximum degree of 5.

For either LRBM or URBM, the minimum required the number of running buffers is denoted as MRB, which
can be computed based on the corresponding dependency graph.

4 Structural Analysis and NP-Hardness

The introduction of running buffers to tabletop rearrangement problems induces unique and interesting
structures. We highlight some important structural properties of LRBM, including the comparison to mini-
mizing the total number of buffers [1], the solutions of LRBM and linear arrangement [65] or linear ordering
[66] of its dependency graph, and the hardness of computing MRB for TORO.

As will be established in this section, computing MRB solutions for TORO is intimately connected to
finding a certain optimal linear ordering of vertices in the associated dependency graph. Because finding an
optimal linear ordering is hard, it renders computing MRB solutions hard as well. This in turns limits the
algorithmic solutions that one can secure for computing MRB solutions for TORO tasks.

4.1 Running Buffer versus Total Buffer

In solving TORO, running buffers are related to but different from the total number of buffers, as studied in
[1]. It is shown the minimum number of total buffers for solving TORO is the same as the size of the minimum
feedback vertex set (FVS) of the underlying dependency graph. An FVS is a set of vertices the removal of
which leaves a graph acyclic. A TORO with an acyclic dependency graph can be solved without using any
buffer because there are no cyclic dependencies between any pairs of objects. We denote the size of the
minimum FVS as MFVS.

As a labeled TORO problem, the example from Fig. 1 has MFVS = MRB = 1. For the example from
Fig. 3(a)(b), MFVS = 2 (an FVS set is {2, 3}) and MRB = 2.

As an extreme example illustrating the difference between MRB and MFVS, consider a labeled depen-
dency graph that is formed by n copies of 2-cycles, e.g., Fig. 5. The MFVS of the instance is n because
one vertex must be removed from each of the n cycles to make the graph acyclic. On the other hand, the
MRB is just 1 because each cyclic dependency can be resolved independently from other cycles using a single
external buffer. Therefore, whereas the total number of buffers used has more bearing on global solution
optimality, MRB sheds more light on feasibility. Knowing the MRB tells us whether a certain number of
external buffers will be sufficient for solving a class of rearrangement problems. This is critical for practical
applications where the number of external buffers is generally limited to be a small constant. For example,
in solving everyday rearrangement tasks, e.g., sorting things or retrieving items in the fridge, a human may
attempt to temporarily hold multiple items, sometimes awkwardly. There is clearly a limit to the number
of items that can be held simultaneously this way.

We give an example where the MRB and MFVS cannot always be optimized simultaneously, i.e., they
form a Pareto front. For the setup in Fig. 6, the MFVS {7, 9, 10} has size 3- it can be readily checked that
deleting {7, 9, 10} leaves the dependency graph acyclic. Using our algorithms, the MRB can be computed
to be 2 with the witness sequence being 1, 10, 8, 4, 5, 3, 6, 7, 2, 9, corresponding to the plan of 〈1 → g, 10 →
b, 8 → g, 4 → b, 5 → g, 3 → g, 10 → g, 6 → b, 7 → g, 6 → g, 2 → b, 9 → g, 4 → g, 2 → g〉, where b refers to
a buffer and g refers to the goal of the corresponding object. The RB reaches the maximum 2 when 4 and
6 are moved to the buffer. However, in this case, the total number of buffers used is 4: 2, 4, 6, and 10 are
moved to buffers. This turns out to be the best we can do for this example, that is, if we are constrained by
solutions with MRB = 2, the total number of buffers that must be used is at least 4 instead of the MFVS
size of 3.

We note that it is rarely the case that MFVS will be larger when the solution space is constrained to
MRB solutions; for uniform cylinders, for example, the total number of buffers needed after first minimizing
the running buffer is almost always the same as the MFVS size.
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Figure 5: An instance with the labeled dependency graph formed by 3 copies of 2-cycles. The MFVS is 3. On the
other hand, the MRB is just 1 for the problem. The example scales to have arbitrarily large MFVS with MRB
remaining at 1.
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Figure 6: An LRBM instance with uniform thin cuboids (left) and its labeled dependency graph, where the total
number of buffers needed is more than the size of the MFVS when the number of running buffer is minimized.

4.2 Running Buffers and Linear Vertex Ordering

Given a graph with vertex set V , a linear ordering of V is a bijective function ϕ : {1, . . . , |V |} → V . Given a
labeled dependency graph G `(V,A) for an LRBM problem, and a linear ordering ϕ for V , we may turn ϕ into
a plan P for the LRBM problem by sequentially picking up objects corresponding to vertices ϕ(1), ϕ(2), . . .
For each object that is picked up, it is moved to its goal pose if it has no further dependencies; otherwise, it
is stored in the buffer. Objects already in the buffer will be moved to their goal pose at the earliest possible
opportunity.

For example, given the linear ordering 1, 5, 6, 3, 4, 2, 7 for the dependency graph from Fig. 3(b), first, 1
can be directly moved to its goal. Then, 5 is moved to the buffer because it has dependencies on 3 and 7 (but
no longer on 1). Then, 6 can be directly moved to its goal because 5 is now at a buffer location. Similarly,
3 can be moved to its goal next. Then, 4 and 2 must be moved to the buffer, after which 7 can be moved
to its goal directly. Finally, 2, 4, and 5 can be moved to their respective goals from the buffer. This leads
to a maximum running buffer size of 3. This is not optimal; an optimal sequence is 5, 6, 2, 7, 4, 3, 1, with
MRB = 2. Both sequences are illustrated in Fig. 7.

1 5 6 3 4 2 7 5 6 2 7 4 3 1

(a) (b)

Figure 7: Two linear orderings of vertices of the labeled dependency graph from Fig. 3(b) (i.e., these are different
representations of the same graph). The right one minimizes MRB.

The discussion suggests that we may effectively view the number of running buffers as a function of a
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dependency graph G ` and a linear ordering ϕ. We thus define RB(G `, ϕ) as the number of running buffers
needed for rearranging G ` following the order given by ϕ. It is straightforward to see that MRB(G `) =
minϕRB(G `, ϕ).

4.3 Intractability of Computing MRB

Since computing MFVS is NP-hard [1], one would expect that computing MRB for a labeled dependency
graph, which can be any directed graph, is also hard. We show that this is indeed the case, by examining the
interesting relationship between MRB and the vertex separation problem (VSP), which is equivalent to path
width, gate matrix layout, and search number problems as described in Theorem 3.1 in [53], resulting from a
series of studies [67, 68, 69]. Unless P = NP , there cannot be an absolute approximation algorithm for any
of these problems [58]. First, we describe the vertex separation problem. Intuitively, given an undirected
graph G = (V,E), VSP seeks a linear ordering ϕ of V such that, for a vertex with order i, the number of
vertices that come no later than i in the ordering, with edges to vertices that come after i, is minimized.

Vertex Separation (VSP)
Instance: Graph G(V,E) and an integer K.
Question: Is there a bijective function ϕ : {1, . . . , n} → V , such that for any integer 1 ≤ i ≤ n, |{u ∈ V |
∃(u, v) ∈ E and ϕ(u) ≤ i < ϕ(v)}| ≤ K?

As an example, in Fig. 8(a), with the given linear ordering, at the second vertex, both the first and the
second vertices have edges crossing the vertical separator, yielding a crossing number of 2. Given a graph G
and a linear ordering ϕ, we define VS(G,ϕ) := maxi |{u ∈ V | ∃(u, v) ∈ E and ϕ(u) ≤ i < ϕ(v)}|, VSP seeks
ϕ that minimizes VS(G,ϕ). Let MinVS(G), the vertex separation number of graph G, be the minimum K
for which a VSP instance has a yes answer, then MinVS(G) = minϕVS(G,ϕ). Now, given an undirected
graph G and a labeled dependency graph G ` obtained from G by replacing each edge of G with two directed
edges in opposite directions, we observe that there are clear similarities between VS(G,ϕ) and RB(G `, ϕ),
which is characterized by the following lemma.

Lemma 1. VS(G,ϕ) ≤ RB(G `, ϕ) ≤ VS(G,ϕ) + 1.

Proof. Fixing a linear ordering ϕ, it is clear that VS(G,ϕ) ≤ RB(G `, ϕ), since the vertices on the left side
of a separator with edges crossing the separator for G correspond to the objects that must be stored at
buffer locations. For example, in Fig. 8(a), past the second vertex from the left, both the first and the
second vertices have edges crossing the vertical “separator”. In the corresponding dependency graph shown
in Fig. 8(b), objects corresponding to both vertices must be moved to the external buffer. On the other
hand, we have RB(G `, ϕ) ≤ VS(G,ϕ) + 1 because as we move across a vertex in the linear ordering, the
corresponding object may need to be moved to a buffer location temporarily. For example, as the third
vertex from the left in Fig. 8(a) is passed, the vertex separator drops from 2 to 1, but for dealing with the
corresponding dependency graph in Fig. 8(b), the object corresponding to the third vertex from the left
must be moved to the buffer before the first and the second objects stored in the buffer can be placed at
their goals.

(a) (b)

Figure 8: (a) An undirected graph and a linear ordering of its vertices. (b) A corresponding labeled dependency
graph with the same vertex ordering.

Theorem 1. Computing MRB, even with an absolute approximation, for a labeled dependency graph is
NP-hard.
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Proof. Given an undirected graph G, we reduce from approximating VSP within a constant to approximating
MRB within a constant for a dependency graph G ` from G constructed as stated before, replacing each
edge in G as a bidirectional dependency.

Unless P = NP , VSP does not have absolute approximation in polynomial time. Henceforth, if MRB(G `, ϕ)
can be approximated within α in polynomial time, which means for graph G, we can find a ϕ∗ in polynomial
time such that RB(G `, ϕ∗) ≤ MRB(G `) + α, we then have VS(G,ϕ∗) ≤ RB(G `, ϕ∗) ≤ α + MRB(G `) ≤
MinVS(G) + α + 1, which shows vertex separation can have an absolute approximation, implying P =
NP .

With some additional effort, we can show that computing MRB solutions for certain TORO instances is
NP-hard.

Theorem 2. Computing MRB for TORO is NP-hard.

Proof. By [70], VSP remains NP-complete for planar graphs with a maximum degree of three. From Lemma 1
and Theorem 1 and the corresponding proofs, if we can show that we can convert an arbitrary planar graph
with maximum degree three into a corresponding TORO instance, then we are done. That is, all we need to
show is that, if Fig. 8(a) is a planar graph with maximum degree three, we can construct a TORO instance
for which the dependency graph is Fig. 8(b).
We proceed to show something stronger: instead of showing the above for planar graphs with a maximum de-
gree of three, we will do so for all planar graphs. By [71], all planar graphs can be drawn in the plane without
edge crossings using only straight-line edges. Given an arbitrary planar graph and one of its straight-line-edge
non-crossing embedding in the plane, we show how we can convert the embedding to a corresponding TORO in-
stance.

1
4

3

2

5 1
1

4

3

2

5

3

(a) (b) (c)

Figure 9: (a) An undirected planar graph with five vertices (b) “Object gadgets” for two of the vertices. (c) The
corresponding TORO instance.

The construction process is explained using Fig. 9 as an illustration, where Fig. 9(a) shows a straight-
line-edge non-crossing embedding of planar graph. We construct object gadgets based on the embedding’s
geometric structure as follows. For each node of the graph, we take the node and a bit more than half of
each of the edges coming out of it. For example, for nodes 1 and 3, the corresponding objects are given in
Fig. 9(b). We now construct a TORO instance with a dependency graph corresponding to replacing edges of
Fig. 9(a) with bidirectional edges. To do so, we place each object gadget as they appear in Fig. 9(a). For the
goal configuration, we rotate each object counterclockwise by some small angle ε around the center of the
corresponding node. For the start configuration, we perform a similar rotation but in the clockwise direction.
The process yields Fig. 9(c) for Fig. 9(a). It is straightforward to check that the construction converts each
edge (i, j) in the planar graph into a mutual dependency between two objects i and j. For example, there
is a cyclic dependency between object gadgets 1 and 3 in Fig. 9(c).

5 Lower and Upper Bounds on MRB

After connecting computing MRB to vertex linear ordering and proving the computational intractability,
we proceed to establish quantitative bounds on MRB, i.e., what is the lowest possible MRB for LRBM and
URBM, and what is the best that we can do to lower MRB?
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5.1 Intrinsic MRB Lower Bounds

When there is no restriction on object geometry, MRB can easily reach the maximum possible n− 1 for an
n object instance, even in the URBM case. An example of when this happens is given in Fig. 10, where n = 6
thin cuboids are aligned horizontally in A1, one above the other. The cuboids are vertically aligned in A2.
Every pair of start pose and goal pose then induce a (unique) dependency. Clearly, this yields a bidirectional
K6 labeled dependency graph in the LRBM case and a K6,6 unlabeled dependency graph in the URBM case.
For both, n − 1 = 5 objects must be moved to buffers before the problem can be resolved. The example
readily generalizes to an arbitrary number of objects.

Proposition 4. MRB lower bound is n − 1 for n objects for both LRBM and URBM, which is the maximum
possible, even for uniform convex objects.

Figure 10: An instance with 6 cuboids where horizontal and vertical sets represent start and goal poses, respectively.
An arbitrary labeling of the objects may be given in the labeled setting.

The lower bound on MRB being Ω(n) is undesirable, but it seems to depend on having objects that are
thin; everyday objects are not often like that. An ensuing question of high practical value is then: what
happens when the footprint of the objects is “fat”? Next, we establish that, the lower bound drops to Ω(

√
n)

for uniform cylinders, which approximate many real-world objects/products. Furthermore, we show that this
lower bound is tight for URBM (in Section 5.2).

For convenience, assume n is a perfect square, i.e., n = m2 for some integer m. To establish the Ω(
√
n)

lower bound, a grid-like unlabeled dependency graph is used, which we call a dependency grid, where A1

and A2 have similar patterns with A2 offset from A1 to the left (or right/above/below) by the length of
one grid edge. An illustration of a portion of such a setup is given in Fig. 11. We use D(w, h) to denote a
dependency grid with w columns and h rows.

Lemma 2. Given a URBM instance with n = m2 objects and whose dependency graph is D(m, 2m), its MRB
is lower bounded by Ω(m) = Ω(

√
n)

Because the proof has limited relevance to the delivery of the main contributions of the paper, we highlight
the main idea and refer the readers to the appendix for the complete proof. What we show is that, for certain
unlabeled TORO instance with n objects with such a dependency graph, at least Ω(

√
n) objects must be moved

to buffers simultaneous to solve the TORO instance.

Figure 11: A URBM instance (left) and its unlabeled dependency graph (right), a 4 × 3 dependency grid. Unshaded
(resp., shaded) discs/vertices indicate start poses (resp., goal poses).

Because URBM instances always have lower or equal MRB than the LRBM instances with the same objects
and goal placements, the conclusion of Lemma 2 directly applies to LRBM. Therefore, we have
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Theorem 3. For both URBM and LRBM with n uniform cylinders, MRB is lower bounded by Ω(
√
n).

For uniform cylinders, while the lower bound on URBM is tight (as shown in Section 5.2), we do not know
whether the lower bound on LRBM is tight; our conjecture is that Ω(

√
n) is not a tight lower bound for LRBM.

Indeed, the Ω(
√
n) lower bound can be realized when uniform cylinders are simply arranged on a cycle,

an illustration of which is given in Fig. 12. For a general construction, for each object oi, let oi depend
on o(i−1 mod n) and o(i+

√
n mod n), where n is the number of objects in the instance. From the labeled

dependency graph, we can construct the actual LRBM instance where start and goal arrangements both form
a cycle. It can be shown that when n/2 objects are at the goal poses, Ω(

√
n) objects are at the buffer. We

omit the proof, which is similar in spirit to that for Lemma 2.
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Figure 12: An example of a 9-object LRBM yielding Ω(
√
n) MRB (left) and the corresponding dependency graph

(right).

5.2 Upper Bounds on MRB for URBM

We now establish, regardless of how n uniform cylinders are to be rearranged, the corresponding URBM

instance admits a solution using MRB = O(
√
n). Lower and upper bounds on URBM agree; therefore, the

O(
√
n) bound is tight.

To prove the upper bound, We propose an O(n log(n))-time algorithm SepPlan for the setting based on a
vertex separator of Gu. SepPlan computes a sequence of goal vertices to be removed from the dependency
graph. Given a sequence of goal vertices to be removed, the running buffer size at each moment equals
max(0, ‖N(g,Gu)‖ − ‖g‖), where g is the set of removed goal vertices at this moment, and N(g,Gu) is the
set of neighbors of g in Gu. We prove that SepPlan can find a rearrangement plan with O(

√
n) running

buffers.

Algorithm 1: SepPlan

Input : Gu(V,E): unlabeled dependency graph
Output: π: goal sequence

1 π, V,E ← RemovalTrivialGoals(Gu(V,E))
2 if V is ∅ then return π ;
3 A,B,C ← Separator(Gu(V,E))
4 π ← π + g(C)
5 A′ ← A−N(g(C), Gu(V,E))
6 B′ ← B−N(g(C), Gu(V,E))
7 πA′ ← SepPlan (Gu(A′, E(A′)))
8 πB′ ← SepPlan (Gu(B′, E(B′)))
9 if δ(A′) ≥ δ(B′) then π ← π + πA′ + πB′ ;

10 else π ← π + πB′ + πA′ ;
11 return π

The algorithm is presented in Algo. 1. SepPlan consumes a graph Gu(V,E), which is a subgraph of
Gu induced by vertex set V . To start with, the isolated goal vertices or those with only one dependency
in Gu(V,E) can be removed without using buffers (Line 1). After that, V can be partitioned into three
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disjointed subsets A, B and C [60] (Line 3), such that there is no edge connecting vertices in A and B,
|A|, |B| ≤ 2|V |/3, and |C| ≤ 2

√
2|V | (Fig. 13(a)). For the start vertices in C and the neighbors of the goal

vertices in C, we remove them from Gu. Since there are at most 5 neighbors for each goal vertex, there are
at most 10

√
2|V | objects moved to the buffer in this operation. After that, we remove the goal vertices in C,

which should be isolated now (Line 4). Function g(·) obtains the goal vertices in a given vertex set. Let A′,
B′ be the remaining vertices in A and B (Line 5-6). And correspondingly, let C ′ be the removed vertices, i.e.,
C ′ := (A

⋃
B
⋃
C)\(A′⋃B′). Function N(·, ·) obtains the neighbors of a vertex set in a given dependency

subgraph. With the removal of C ′ from Gu, A′ and B′ form two independent subgraphs (Fig. 13(b)). We
can deal with the subgraphs one after the other by recursively calling SepPlan (Fig. 13(c)) (Line 7-8). Let
δ(V ′) := |g(V ′)|−|s(V ′)| where g(V ′) and s(V ′) are the goal and start vertices in a vertex set V ′ respectively.
Between vertex subsets A′ and B′, we prioritize the one with larger δ(·) value(Line 9-10). That is because,
after solving a rearrangement subproblem induced by a vertex set V ′, there is δ(V ′) fewer objects in buffers
or δ(V ′) more available goal poses.

A

V

A’ C B’A C B

... ...

B

... ...

(a) (b) (c)

Figure 13: The recursive solver SepPlan for URBM. (a) A O(
√
|V |) vertex separator for the planar dependency graph.

(b) By removing the start vertices in C and the neighbors of the goal vertices in C, the remaining graph consists
of two independent subgraphs and isolated goal poses in C. (c) The problem can be solved by recursively calling
SepPlan.

As shown in detail in the appendix, SepPlan guarantees an MRB upper bound of
20

1−
√

2/3

√
n.

Theorem 4. For URBM with n uniform cylinders, a polynomial time algorithm can compute a plan with
O(
√
n) RB, which implies that MRB is bounded by O(

√
n).

6 Algorithms

In this section, several algorithms for computing solutions for TORO tasks under various MRB objectives
are described. The hardness result (Theorem 2) suggests that the challenge in computing MRB solutions
for TORO resides with filtering through an exponential number of vertex linear orderings of the dependency
graph. This leads to our algorithms being largely search-based, which are enhanced with many effective
heuristics.

We first describe a dynamic programming-based method for LRBM (Sec. 6.1). Then, we propose a priority
queue-based method in Sec. 6.2 for URBM. Furthermore, a significantly faster depth-first modification of DP for
computing MRB is provided in Sec. 6.3. Finally, we also developed an integer programming model, denoted
TBMRB, for computing the minimum total number of buffers needed subject to the MRB constraint, which
is compared with the algorithm that computes the minimum total buffer without the MRB constraint,
denoted as TBFVS, from [1]. A brief description of TBMRB is given in Sec. 6.4.

6.1 Dynamic Programming (DP) for LRBM

As established in Sec. 4.2, a rearrangement plan in LRBM can be represented as a linear ordering of object
labels. That is, given an ordering of objects, π, we start with oπ(1). If xgπ(1) is not occupied, then oπ(1) is

directly moved there. Otherwise, it is moved to a buffer location. We then continue with the second object
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in the order, and so on. After we work with each object in the given order, we always check whether objects
in buffers can be moved to their goals, and do so if an opportunity is present. We now describe a dynamic
programming (DP) algorithm for computing such a linear ordering that yields the MRB.

The pseudo-code of the algorithm is given in Algo. 2. The algorithm maintains a search tree T , each
node of which represents an arrangement where a set of objects S have left the corresponding start poses.
We record the objects currently at the buffer (T [S].b) and the minimum running buffer from the start
arrangement A1 to the current arrangement (T [S].MRB). The DP starts with an empty T . We let the root
node represent A1 (Line 1). At this moment, there is no object in the buffer and the MRB is 0(Line 2-3).
And then we enumerate all the arrangements with |S| = 1, 2, · · · and finally n(Line 4-5). For arbitrary S,
the objects at the buffer are the objects in S whose goal poses are still occupied by other objects (Line 6),
i.e., {o ∈ S|∃o′ ∈ O\S, (o, o′) ∈ A}, where A is the set of arcs in G `. T [S].MRB, the minimum running
buffer from the root node T [∅] to T [S], depends on the last object oi added into S and can be computed by
enumerating oi (Line 7-20):

T [S].MRB = min
oi∈S

max(T [S\{oi}].MRB,

|T [S\{oi}].b| + TC(S\{oi}, S)),

where the transition cost TC is given as

TC(S\{oi}, S) =

{
1, oi ∈ T [S].b,

0, otherwise,

with xgi currently occupied (Line 10), the transition cost is due to objects dependent on oi cannot be moved
out of the buffer before moving oi to the buffer (Line 11). Specifically, T [S\{oi}].MRB is the previous
MRB and |T [S\{oi}].b| + TC(S\{oi}, S) is the running buffer size in the new transition. If T [S].MRB is
minimized with oi being the last object in S from the starts, then T [S\{oi}] is the parent node of T [S] in T
(Line 16-19). Once T [O] is added into T , T [O].MRB is the MRB of the instance (Line 23) and the path in
T from T [∅] to T [O] is the corresponding solution to the instance.

For the LRBM instance in Fig. 3, Tab. 1 shows T [S].MRB with different last-object options when S =
{o2, o5, o6}. If the last object oi is o5, then we need to move o5 into the buffer before moving o6 out of the
buffer. Therefore, even though the buffer size of the parent node and the current node are both 2, there is a
moment when all of the three objects are at the buffer. However, when we choose o2 or o6 as the last object
to add, the T [S].MRB becomes 2.

6.2 A Priority Queue-Based Method for URBM

Similar to LRBM, rearrangement plans for URBM can be represented by a linear ordering of goal vertices in Gu.
We can compute the ordering that yields MRB by maintaining a search tree as we have done in Algo. 2.
Each node T [g] in the tree represents an arrangement where a set of goal vertices g have been removed from
Gu. The remaining dependencies of T [g] is an induced graph of Gu, formed from V (Gu)\(g ∪ N(g,Gu))
where V (Gu) is the vertex set of Gu, N(g,Gu) is the neighbors of g in Gu. When the goal vertices g are
removed from Gu, the running buffer size is max(0, |N(g)| − |g|), i.e., the number of objects cleared away
minus the number of available goal poses. Specifically, when |N(g)| > |g|, some objects are in buffers; when
|N(g)| < |g|, some goal poses are available; when |N(g)| = |g|, the cleared objects happen to fill all the
available goal poses. Given an induced graph I(g), denote the goal vertices with no more than one neighbor
in I(g) as free goals. We make two observations. First, given an induced graph I(g), we can always prioritize
the removal of free goals without optimality loss. Second, multiple free goals may appear after a goal vertex
is removed. For example, in the instance shown in Fig. 3(a), when the vertex representing x5g is removed, x2g,
x3g, and x4g become free goals and can be added to the linear ordering in an arbitrary order. Denote nodes
without free goals in the induced graph as key nodes. In conclusion, the key nodes in the search tree may
be sparse and enumerating all possible nodes with DP carries much overhead.

As such, instead of exploring the search tree layer by layer like DP, we maintain a sparse tree with a
priority queue Q. While each node still represents an arrangement, each edge in the tree represents actions
to clear out the next goal pose xgi . The corresponding child node of the edge represents the arrangement
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Algorithm 2: Dynamic Programming for LRBM

Input : G `(O, A): labeled dependency graph
Output: MRB: the minimum number of running buffers

1 T.root← ∅
2 T [∅].b← ∅ % objects currently at the buffer

3 T [∅].MRB← 0 % current minimum running buffer

4 for 1 ≤ k ≤ |O| do
% enumerate cases where k objects have left the start poses

5 for S ∈ k-combinations of O do
6 T [S].b← {o ∈ S | ∃o′ ∈ O\S, (o, o′) ∈ A}

% Find the MRB from T [∅] to T [S]

7 T [S].MRB←∞
8 for oi ∈ S do
9 parent = S\{oi}

10 if oi ∈ T [S].b then
11 RB ← max(T [parent].MRB, |T [parent].b|+ 1)
12 end
13 else
14 RB ← T [parent].MRB
15 end
16 if RB< T [S].MRB then
17 T [S].MRB← RB
18 T [S].parent← parent

19 end

20 end

21 end

22 end

23 return T [O].MRB

Table 1. T [S].MRB for different last objects ([p] = [parent])

Last ob-
ject

T [p].MRB T [p].b T [S].b T [S].MRB

o2 1 {o5} {o2, o5} 2
o5 2 {o2, o6} {o2, o5} 3
o6 2 {o2, o5} {o2, o5} 2

where xgi and free goals are removed from the induced graph. Similar to A*, we always pop out the key node
with the smallest MRB in Q. We denote this priority queue-based search method PQS.

6.3 Depth-First Dynamic Programming

Both LRBM and URBM can be viewed as solving a series of decision problems, i.e., asking whether we can
find a rearrangement plan with k = 1, 2, . . . running buffers. As dynamic programming is applied to solve
such decision problems, instead of performing the more standard breadth-first exploration of the search
tree, we identified that a depth-first exploration is much more effective. We call this variation of dynamic
programming DFDP, which is a fairly straightforward alteration of a standard DP procedure. The high-
level structure of DFDP is described in Algo. 3. It consumes a dependency graph and returns the minimum
running buffer size for the corresponding instance. Essentially, DFDP fixes the running buffer size RB and
checks whether there is a plan requiring no more than RB running buffers. As the search tree (see Sec. 6.1)
is explored, depth-first exploration is used instead of breadth-first (Line 4).

The details of the depth-first exploration are shown in Algo. 4. Similar to DP, each node in the tree
represents an object state indicating whether an object is at the start pose, the goal pose, or external buffers.
And as described in Sec. 4.2, essential object states can be represented by the set of objects S that have
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Algorithm 3: Dynamic Programming with Depth-First Exploration

Input : G `: labeled dependency graph
Output: RB: the minimum number of running buffers

1 RB← 0
2 while not time exceeded do
3 T .root ← ∅
4 T ← Depth-First-Search(T ,∅, RB, G `)
5 if O ∈ T then return RB;
6 else RB+=1;

7 end

picked up from start poses. If S is O, then all the objects are at the goal poses and we find a path on the
search tree from the start state to the goal state (Line 1). Given the set of objects away from the start
poses S, we can get the sets of objects at start poses SS , goal poses SG, and external buffers SB (Line 2).
Specifically, SS = O\S, SG are the objects in S that have no dependency in SS , and SB are the objects in
S that have dependencies in SS . We further explore child nodes of the current state by moving one object
away from the start pose (Line 3). By checking the dependencies in G `(O, A), we determine whether this
object should be moved to buffers or its goal pose (Line 4). The transition from S to S

⊔{o} fails if the
external buffers are overloaded or the child node has been explored (Line 5). Otherwise, we can add S

⊔{o}
into the tree (Line 7) and explore the new node (Line 8). The algorithm returns a tree.

Algorithm 4: Depth-First-Search

Input : T : Search Tree; S: The set of objects away from start poses; RB: Running buffer size; G `(O, A):
labeled dependency graph

Output: T

1 if S is O then return T ;
2 SS , SG, SB = GetState(S)
3 for o ∈ SS do

4 ToBuffer=CollisionCheck(SS\{o},o, G `)
5 if (ToBuffer and ‖SB‖+ 1 >RB) or (S

⊔
{o} ∈ T ) then return T ;

6 else
7 AddNode(T , S, S

⊔
{o})

8 T ← Depth-First-Search(T , S
⊔
{o}, RB, G `)

9 if O ∈ T then return T ;

10 end

11 end

12 return T

The intuition is that, when there are many rearrangement plans on the search tree that do not use more
than k running buffers, a depth-first search will quickly find such a solution, whereas a standard DP must
grow the full search tree before returning a feasible solution. A similar depth-first exploration heuristic is
used in [72].

6.4 Minimizing Total Buffers Subject to MRB Constraints

We also construct a Mixed Integer Programming(MIP) model minimizing MRB or total buffers. Let binary
variables ci,j represent the dependency graph G `: ci,j = 1 if and only if (i, j) is in the arc set of G `. Let
yi,j(1 ≤ i < j ≤ n) be the binary sequential variables: yi,j = 1 if and only if oi moves out of the start
pose before oj . yi,j are used to represent the ordering of actions. We further introduce two sets of binary
variables gi,j and bi,j(1 ≤ i, j ≤ n) to indicate object positions at each moment. gi,j = 1 indicates that oj
has no dependency on other objects when moving oi from the start pose. In other words, the goal pose of oj
is available at the moment. bi,j = 1 indicates that oj stays at the buffer after moving oi away from the start
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pose. Finally, binary variables Bi = 1 if and only if oi is moved to a buffer at some point. The objective
function consists of two terms: the total buffer term and running buffer term. The total buffer term, scaled by
α, counts the number of objects that need buffer locations. MRB is represented with an integer variable K
and scaled by β. To minimize total buffers subject to MRB constraints, we set α = 1, β = n. The objective
function is adaptable to different demands on rearrangement plans. Specifically, when α = 0,β > 0, the MIP
model minimizes MRB. When α > 0, β = 0, the MIP model minimizes total buffers, i.e. total actions in the
rearrangement plan. When α/β > n − 1, the MIP model first minimizes total buffers, and then minimizes
running buffers. When β/α > n − 1, the MIP model first minimizes running buffers, and then minimizes
total buffers.

In the MIP model, Constraints 2 imply the rules for sequential variables to make sure a valid ordering of
indices 1, . . . , n can be encoded from yi,j . Constraints 3 imply that Bj = 1 if oj has been to buffers in the
plan. Constraints 4 imply that MRB K is lower bounded by the maximum number of objects concurrently
placed in buffers. With Constraints 5 and 6, gi,j = 0 if and only if oj depends on an object ok which is still
at the start pose when oi is moved. With Constraints 7-9, bi,j = 1 if and only if oj is moved before oi and
the goal pose is still unavailable when oi is moved from the start pose.

arg minα[

n∑
i=1

Bi] + βK (1)

0 ≤ yi,j + yj,k − yi,k ≤ 1 ∀1 ≤ i < j < k ≤ n (2)

Bj ≥
∑

1≤i≤n

bi,j
n

∀1 ≤ j ≤ n (3)

K ≥
∑

1≤j≤n

bi,j ∀1 ≤ i ≤ n (4)

∑
1≤k<i

cj,k(1− yk,i)
n

+
∑
i<k≤n

cj,kyi,k
n

≤ 1− gi,j

∀1 ≤ i, j ≤ n
(5)

1− gi,j ≤
∑

1≤k<i

cj,k(1− yk,i) +
∑
i<k≤n

cj,kyi,k

∀1 ≤ i, j ≤ n
(6)

gi,j + yi,j
2

≤ 1− bi,j ≤ gi,j + yi,j

∀1 ≤ i < j ≤ n
(7)

gj,i + (1− yi,j)
2

≤ 1− bj,i ≤ gj,i + (1− yi,j)
∀1 ≤ i < j ≤ n

(8)

bi,i = 1− gi,i (9)
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7 Applications to In-Place Rearrangement with Bounded Workspace

Both LRBM and URBM allow external open space for temporary object displacements, computing rearrangement
plans for TORO with external buffers (TORE). However, there are many practical rearrangement scenarios where
objects have to be displaced inside the workspace. In this section, we apply the proposed algorithms to TORO

with internal buffers (TORI). TORI seeks a feasible rearrangement plan minimizing the number of total actions.
While solving TORE only deals with inherent constraints defined by the start and goal poses, some objects
in TORI may be temporarily displaced inside the workspace and induce further acquired constraints. For
instance, to solve the problem in Fig. 1 with external buffers, we can move the Pepsi can to an external
buffer to break the cycle, move the Coke first and then Fanta to their goal locations, and finally, bring back
the Pepsi can into the workspace. In TORI, we must find a temporary location for the Pepsi can in W. If
the buffer location overlaps with the goal of the Coke can (or the Fanta can), then the coke can (or the
Fanta can) depends on the Pepsi can again. To avoid these acquired constraints, the buffer location needs to
avoid the goals of Coke and Fanta. Due to acquired constraints arising from internal buffer selection, TORI,
the problem we study in this section, is more challenging than TORE. Intuitively, selecting buffers inside the
workspace (TORI) is much more difficult and constrained than using buffers outside the workspace (TORE) to
store displaced objects. Since TORE has been shown to be computationally intractable [1], and is equivalent to
a special case of TORI where the workspace is large enough that collision-free buffer locations are guaranteed,
TORI is also NP-hard. Additionally, in TORI, it may be challenging to allocate valid buffer locations so it
is necessary to limit the running buffer size. With this observation, we compute TORI solutions based on
methods for LRBM and URBM.

In this section, We propose Tabletop Rearrangement with Lazy Buffers (TRLB), an effective framework
for solving TORI based on algorithms mentioned in Sec. 6. We first describe a rearrangement solver with
lazy buffer allocation (Sec. 7.1), where buffer allocation is delayed after DFDP computes a “rough” schedule
of object movements. Finally, a preprocessing routine based on DFDP for URBM helps with further speedups
(Sec. 7.2). To enhance scalability to larger and more cluttered instances, the TRLB framework (Sec. 7.3)
recovers from buffer allocation failures.

7.1 Lazy Buffer Allocation

When an object stays at a buffer, it should avoid blocking the upcoming manipulation actions of other
objects. Otherwise, either the object in the buffer or the manipulating object has to yield, which increases
the number of necessary actions. In other words, we need to carefully choose acquired constraints. If we
know the schedule of other objects in advance, a buffer can be selected to minimize unnecessary obstructions.
This observation motivates solving the rearrangement problem in two steps: First, compute a primitive plan,
which is an incomplete schedule ignoring acquired constraints; second, given the incomplete schedule as a
reference, generate buffers to optimize the selection of acquired constraints.

7.1.1 Primitive Plan

To compute a primitive plan, we assume enough free space is available so that no acquired constraints will
be created. This transforms the problem into a TORE problem, where each object is displaced at most once
before it moves to the goal pose. Then, an object oi ∈ O can have three primitive actions:

1. (oi, s→ g): moving from xsi to xgi ;

2. (oi, s→ b): moving from xsi to a buffer;

3. (oi, b→ g): moving from a buffer to xgi .

A primitive plan is a sequence of primitive actions; computing such a plan is similar to finding a linear vertex
ordering [66, 65] of the dependency graph. Since we need to allocate buffer locations inside the workspace
in the next phase of the algorithm, it is beneficial to limit the number of buffer positions that need to be
concurrently allocated. We use DFDP to achieve this, which minimizes the number of running buffers.
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7.1.2 Buffer Allocation

Free space inside the workspace W is scarce in cluttered spaces (e.g., Fig. 17) and acquired constraints must
be dealt with through the careful allocation of buffers inside W. We apply a greedy strategy to find feasible
buffers based on a primitive plan (Algo. 5). The general idea is to incrementally add constraints on the
buffers until we find feasible buffers for the whole primitive plan or terminate at a step where there are no
feasible buffers for the primitive plan. In Algo. 5, Os,Og, and Ob are the sets of objects currently at start
poses, goal poses and buffers respectively.

Algorithm 5: Buffer Allocation

Input : π: a primitive plan; A1 = {xs1, ..., xsn}: start arrangement; A2 = {xg1, ..., xgn}: goal arrangement
Output: B: buffers; TerminatingStep: the action step where buffer generation fails, ∞ if Success.

1 Os ← O; Og, Ob ← ∅; B ← RandomPoses(O)
2 Constraints ← InitializeConstraints();
3 for (oi,m) ∈ π do
4 if m is s → b then
5 Ob.add(oi)
6 Constraints[oi]←GetPoses(Os

⋃
Og − {oi})

7 end
8 else if m is b → g then
9 for o ∈ Ob\{oi} do Constraints[o].add( xgi ;

10 )

11 end

12 end
13 else
14 for o ∈ Ob do Constraints[o].add( xgi ;
15 )

16 end
17 Success, B′ ← BufferGeneration(Ob, Constraints, B)
18 if Success then
19 B ← B′

20 Os,Og,Ob ← UpdateState(Os,Og,Ob)

21 end
22 else return B, π.index(action) ;

23 return B, ∞

We start with A1 where all the objects are at start poses and the buffers are initialized at random poses
(Line 1). We then initialize a mapping from O to the power set of object poses, indicating the set of obstacles
to avoid when allocating buffer poses for the object (Line 2). Each action in π indicates an object oi that is
manipulated and the action m performed (Line 3). If oi is moved to a buffer (Line 4), then we add it into
Ob (Line 5). The current poses of other objects in Os

⋃
Og are seen as fixed obstacles for oi (Line 6). If oi

is leaving the buffer (Line 8), then other objects in Ob should avoid the goal pose xgi of oi (Line 9). If oi
is moving directly from xsi to xgi (Line 11, the “else” corresponds to m being s → g, i.e., directly go from
start to goal), then all buffers for objects in the current Ob need to avoid xgi (Line 12). After setting up
acquired constraints, we generate new buffers for objects in Ob to satisfy these constraints by either sampling
or solving an optimization problem (Line 14). Old buffers in B satisfying new constraints will be directly
adopted. If feasible buffers are found (Line 15), then buffers and object states will be updated (Line 16-17).
Otherwise, we return the feasible buffers computed and record the terminating step of the algorithm (Line
19). In the case of a failure, the returned buffers provide a partial plan.

Fig. 14 illustrates the buffer allocation process via an example. The unshaded discs and shaded discs
with solid line boundaries represent the current poses and goal poses respectively. The discs with dashed
line boundaries represent the allocated buffers. When we move o1 to a buffer B1 (Fig. 14(b)), it only needs
to avoid collision with xs2 and xs3. But as we move o3 to a buffer, B1 needs to avoid o3’s buffer B3 as well.
To satisfy the added constraint, B1 will be reallocated. Since the new buffers B1 and B3 (Fig. 14(c)) satisfy
the constraints added in the following steps, they need not to be relocated. Note that the buffer originally
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Figure 14: A working example with three objects defined in (a). The primitive plan is [(o1, s → b), (o3, s → b), (o2,
s → g), (o1, b → g), (o3, b → g)]. Figures (b)-(f) show the steps of Alg. 5 after each action. The unshaded discs
with dashed line boundaries (Bi) represent the buffers satisfying constraints up to each step. For each object oi, the
unshaded discs with solid line boundaries (Oi) represent the current poses and the shaded (Gi) discs represent goal
poses.

selected for o1 but then replaced will not appear in the resulting plan, i.e., o1 will move directly to the new
buffer (Fig. 14(c)-(f)). Algo. 5 works with one strongly connected component of the dependency graph at a
time, treating objects in other components as fixed obstacles.

Once the feasible buffers are found, all the primitive actions can be transformed into feasible pick-n-place
actions inside the workspace. And therefore, the primitive plan can be transformed into a rearrangement
plan moving objects from A1 to A2. The function BufferGeneration is implemented by either sampling or
solving an optimization problem, both of which are discussed below.

Sampling Given the object poses that buffers need to avoid so far, feasible buffers can be generated by
sampling poses inside the free space. When objects stay in buffers at the same time, we sample buffers one
by one and previously sampled buffers will be seen as obstacles for the latter ones.

Optimization For cylindrical objects oi at (xi, yi) with radius ri, and oj at (xj , yj) with radius rj , they
are collision-free when (xi − xj)2 + (yi − yj)2 ≥ (ri + rj)

2 holds. By further restricting the range of buffer
centroids to assure they are in the workspace, the buffer allocation problem can be transformed into a
quadratic optimization problem. For objects with general shapes, collision avoidance cannot be presented by
inequalities of object centroids. We can construct the optimization problem with φ functions of the objects
[73] and solve the problem with gradients.

7.2 Preprocessing

In dense environments, allocating buffers is hard, motivating minimizing the number of running buffers,
which is generally low even in high-density settings in URBM. Based on this, for each component of the
dependency graph that is not isolated vertex or simple cycle, we first solve it as if it is an unlabeled instance.
After this preprocessing step, all the components in the resulting labeled instance are either simple cycles
(MRB = 1) or isolated vertices(MRB = 0). Fig. 15 shows an example of preprocessing. o1, o2, and o3
form a complete graph, where at least two objects need to be placed at buffers simultaneously. We conduct
preprocessing of the three-vertex component by moving o2 to a buffer position, o1 to xg3 and o3 to xg2. o2
will not move to xg1 since it does not occupy other goal poses. The preprocessing step needs one buffer and
the resulting rearrangement problem is monotone.
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Figure 15: A four-object example of preprocessing. The unshaded and shaded discs represent current and goal
arrangements respectively. Before preprocessing (left), two buffers need to be allocated synchronously. After prepro-
cessing (right), the problem becomes monotone.

7.3 Solving TORI with Lazy Buffers (TRLB)

The TRLB framework builds on the insight that a new TORI instance is generated when lazy buffer allocation
fails. The new instance has the same goal A2 as the original one but some progress has been made in solving
the TORI task. There are two straightforward implementations of TRLB: forward search and bidirectional
search. In the first case, by accepting partial solutions, a rearrangement plan can be computed by developing
a search tree T rooted at A1. In the search tree T , nodes are feasible arrangements and edges are partial
plans containing a sequence of collision-free actions. When buffer allocation fails, we add the resulting
arrangement into the tree and resume the rearrangement task from a random node in T . This randomness
and the randomness in primitive plan computation and buffer allocation allows TRLB to recover from
failures.

Algorithm 6: TRLB with Bidirectional Search

Input : A1, A2, max time
Output: Search trees: T1, T2

1 T1.root, T2.root← A1, A2

2 while not exceeding max time do
3 Arand ← RandomNode(T1)
4 Anew1 ← LazyBufferAllocation(Arand, T2.root)
5 T1.add(Anew1)
6 if Anew1 is T2.root then return T1, T2;
7 Anear ← NearestNode(Anew1, T2)
8 Anew2 ← LazyBufferAllocation(Anear, Anew1)
9 T2.add(Anew2)

10 if Anew2 is Anew1 then return T1, T2;
11 T1, T2 ← T2, T1

12 end

In bidirectional search, two search trees rooted at A1 and A2 are developed. This more involved procedure
is shown in Algo. 6, which computes two search trees that connect A1 and A2. In Line 1, the trees are
initialized. For each iteration, we first rearrange between a random node Arand on T1 to the root node of
T2 (Line 3-5). The function LazyBufferAllocation refers to the overall algorithm developed in Sec. 7.1. A
found path yields a feasible plan for TORI (Line 6). Otherwise, we rearrange between the new arrangement
Anew1 and its nearest neighbor in T2 (Line 7-9). If a path is found, then we find a feasible rearrangement
plan for TORI (Line 10). Otherwise, we switch the trees and attempt rearrangement from the opposite side
(Line 11).

8 Performance Evaluation of Simulations

Our evaluation focuses on uniform cylinders, given their prevalence in practical applications. For simulation
studies, instances with different object densities are created, as measured by density level ρ := nπr2/(h∗w),
where n is the number of objects and r is the base radius. h and w are the height and width of the workspace.
In other words, ρ is the proportion of the tabletop surface occupied by objects.
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The evaluation is conducted on both random object placements and manually constructed difficult setups
(e.g., dependency grids with MRB = Ω(

√
n)). For generating test cases with high ρ value, we invented a

physic engine (we used Gazebo [74]) based approach for doing so. Within a rectangular box, we sample
placements of cylinders at lower density and then also sample locations for some smaller “filler” objects (see
Fig. 16, left). From here, one side of the box is pushed to reach a high density setting (Fig. 16, right), which is
very difficult to generate via random sampling. By controlling the ratio of the two types of objects, different
density levels can be readily obtained. Fig. 17 shows three random object placements for ρ = 0.2, 0.4 and
0.6.

Figure 16: Generating dense instances using a physics-engine based simulator through compression of the left scene
to the right scene.

Figure 17: Unlabeled arrangements with ρ = 0.2, 0.4, 0.6 respectively.

From two randomly generated object placements with the same ρ and n values, a URBM instance can be
readily created by superimposing one over the other. LRBM instances can be generated from URBM instances
by assigning each object a random label in [n] for both start and goal configurations.

For tabletop object rearrangement with external buffers (TORE), evaluated methods in different scenar-
ios(labeled or unlabeled) are presented in Tab. 2. For tabletop object rearrangement with internal buffers
(TORI), we present experiments comparing lazy buffer generation algorithms given different options(Tab. 3),
including: (1) Primitive plan computation: running buffer minimization with DFDP (RBM), total buffer
minimization with DP (TBM), random order (RO); (2) Buffer allocation methods: optimization (OPT),
sampling (SP); (3) High-level planners: one-shot (OS), forward search tree (ST), bidirectional search tree
(BST); and (4) With or without preprocessing (PP). Here, the one-shot (OS) planner is using primitive
plans and buffer allocation (Sec. 7.1) without tree search (Sec. 7.3). In OS, we attempt to compute a feasible
rearrangement plan up to 30|O| times before announcing a failure. A full TRLB algorithm is a combina-
tion of components, e.g., RBM-SP-BST stands for using the primitive plans that minimize running buffer
size, performing buffer allocation by sampling, maintaining a bidirectional search tree, and doing so without
preprocessing.

To highlight the application of RBM in TORI, we only compare methods in primitive plan computation
and evaluate the effect of our preprocessing routine. A complete ablation study is presented in [3].

Table 2. Evaluated methods for TORE.

Problems Methods
LRBM DFDP, DP, TBFVS, TBMRB

URBM DFDP, PQS

The proposed algorithms are implemented in Python and all experiments are executed on an Intelr

Xeonr CPU at 3.00GHz. For solving MIP, Gurobi 9.16.0 [75] is used.
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Table 3. Evaluated methods for TORI.

Components Methods
Primitive plan computation RBM, TBM, RO
Buffer allocation methods OPT, SP
High level planners OS, ST, BST
Preprocessing PP

8.1 LRBM over Random Instances

In Fig. 18, we compare the effectiveness of DP and DFDP, in terms of computation time and success rate,
for different densities. Each data point is the average of 30 test cases minus the unfinished ones, if any,
subject to a time limit of 300 seconds per test case. For LRBM, we are able to push to ρ = 0.4, which is fairly
dense. The results clearly demonstrate that DFDP significantly outperforms the baseline DP. Based on the
evaluation, both methods can be used to tackle practical-sized problems (e.g., tens of objects), with DFDP
demonstrating superior efficiency and robustness.
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Figure 18: Performance of DFDP and DP over LRBM. The top row shows the average computation time (s) and the
bottom row the success rate, for density levels ρ = 0.2, 0.3, 0.4, from left to right. The x-axis denotes the number of
objects involved in a test case.

The actual MRB sizes for the same test cases from Fig. 18 are shown in Fig. 19 on the left. We observe
that MRB is rarely very large even for fairly large LRBM instances. The size of MRB appears correlated to
the size of the largest connected component of the underlying dependency graph, shown in Fig. 19 on the
right.
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Figure 19: For LRBM instances with ρ = 0.2-0.4 and n = 20-100, the left figure shows average MRB size and range.
The right figure shows the size of the largest connected component of the dependency graph.

For LRBM with ρ = 0.3 and n up to 50, we computed the MFVS sizes using TBFVS (which does not
scale to higher ρ and n) and compared that with the MRB sizes, as shown in Fig. 20 (a). We observe that
the MFVS is about twice as large as MRB, suggesting that MRB provides more reliable information for
estimating the design parameters of pick-n-place systems. For these instances, we also computed the total
number of buffers needed subject to the MRB constraint using TBMRB. Out of about 150 instances, only
1 showed a difference as compared with MFVS (therefore, this information is not shown in the figure). In
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Fig. 20 (b), we provided computation time comparison between TBFVS and TBMRB, showing that TBMRB

is practical, if it is desirable to minimize the total buffers after guaranteeing the minimum number of running
buffers.
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Figure 20: (a) Comparison between size of MRB and MFVS. (b) Computation time comparison between TBFVS and
TBMRB.

Considering our theoretical findings and the evaluation results, an important conclusion can be drawn
here is that MRB is effectively a small constant for random instances, even when the instances are very
large. Also, minimizing the total number of buffers used subject to MRB constraint can be done quickly for
practical-sized problems.

8.2 URBM over Random Instances

For URBM, we carry out a similar performance evaluation as we have done for LRBM. Here, PQS and DFDP
are compared. For each combination of ρ and n, 100 random test cases are evaluated. Notably, we can reach
ρ = 0.6 with relative ease. From Fig. 21, we observe that DFDP is more efficient than PQS, especially for
large-scale dense settings. In terms of the MRB size, all instances tested have an average MRB size between
0 and 0.7, which is fairly small (Fig. 22). Interestingly, we witness a decrease of MRB as the number of
objects increases, which could be due to the lessening “border effect” of the larger instances. That is, for
instances with fewer objects, the bounding square puts more restriction on the placement of the objects
inside. For larger instances, such restricting effects become smaller. We mention that the total number of
buffers for random URBM cases subject to MRB constraints are generally very small.
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Figure 21: Performance of DFDP and PQS over URBM. The top row shows the average computation time and the
bottom row shows the success rate, for density levels ρ = 0.4, 0.5, 0.6, from left to right.

8.3 Manually Constructed Difficult Cases of TORE

In the random scenario, the running buffer size is limited. In particular, for LRBM, the dependency graph tends
to consist of multiple strongly connected components that can be dealt with independently. We further show
the performance of DFDP on the instances with MRB = Θ(

√
n). We evaluate three kinds of instances: (1)

UG: m2-object URBM instances whose Gu are dependency grid D(m, 2m) (e.g., Fig. 11); (2) LG: m2-object
LRBM instances whose start and goal arrangements are the same as the instances in (1). (3) LC: m2-object
LRBM instances with objects placed on a cycle (Fig. 12). The computation time and the corresponding MRB
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Figure 22: Average MRB size for URBM instances with ρ = 0.4− 0.6 and n = 20− 100. For ρ = 0.4 and 0.5, the MRB
sizes are near zero as the number of objects goes beyond 20.

are shown in Fig. 23. For LG instances, the labels are randomly assigned. We try 30 test cases and then
plot out the average. We observe that the MRB is much larger for these handcrafted instances as compared
with random instances with similar density and number of objects.
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Figure 23: For handcrafted cases and different numbers of objects, the left figure shows the computation time by
DFDP and the right figure the resulting MRB size.

8.4 Evaluation on TORI Instances

8.4.1 Ablation Study for Cylindrical Objects.

For evaluation, we present experiments with cylindrical objects to compare lazy buffer generation algorithms.
A more detailed version of the ablation study is presented in [3]. We first compare the primitive plan
computation options, using sampling-based buffer allocation (SP) and bidirectional tree search (BST). The
results are shown in Fig. 24. Even though plans generated by TBM-SP-BST are slightly shorter than RBM-
SP-BST, TBM is less scalable as either the density level or the number of objects in the workspace increases.
Compared to RBM plans, individual RO plans can be generated almost instantaneously but we don’t see
much benefit in computation time for the overall algorithm. The results indicate that minimizing MRB in
primitive plan computation is beneficial as it results in efficient and high-quality TORI solutions.
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Figure 24: Comparison of primitive planners with 10-40 cylinders and density levels ρ = 0.3 (top), 0.5 (bottom) (left:
computation time in seconds; middle: success rate; right: number of actions as multiples of |O|).
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We also integrate the urbm-based preprocessing routine into the bi-directional search tree framework
(RBM-SP-BST-PP) and compare it with RBM-SP-BST. The results (Fig. 25) suggest that preprocessing
is effective in increasing the success rate in dense environments. In addition, preprocessing significantly
speeds up computation in large-scale dense cases at the price of extra actions to execute preprocessing. By
simplifying the dependency graph with preprocessing, less time is needed to compute a primitive plan.
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Figure 25: Comparison between lazy buffer allocation algorithms with and without preprocessing. There are 10-40
cylinders in the workspace at density levels ρ = 0.3 (top), 0.5 (bottom) (left: computation time in seconds; middle:
success rate; right: number of actions as multiples of |O|).

8.4.2 Comparison with Alternatives for Cylindrical Objects.

We compare the proposed method RBM-SP-BST with BiRRT(fmRS) [49] and an MCTS planner [76], which,
to the best of our knowledge, are state-of-the-art planners for TORI. The MCTS planner is a C++ solver, while
the other two methods are implemented in Python. Besides success rate, solution quality, and computation
time, we also compare the number of collision checks which are time-consuming in most planning tasks.
In Fig. 26, we compare the methods in large-scale problems with ρ = 0.3. The success rate is 100% for
all. Our method, RBM-SP-BST, avoids repeated collision checks due to the use of the dependency graph.
BiRRT(fmRS), which only uses dependency graphs locally, spends a lot of time and conducts a lot of collision
checks to generate random arrangements. MCTS generates solutions with similar optimality but does so also
with a lot of collision checking, which slows down the computation. We note that a value of 1 in the right
figure (number of actions) is the minimum possible, so both RBM-SP-BST and MCTS compute high-quality
solutions, while RBM-SP-BST does slightly better. To sum up, in sparse large-scale instances, RBM-SP-BST
is two magnitudes faster and conducts much fewer collision checks than the alternatives.
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Figure 26: Comparison of algorithms with 20-100 cylinders at density level ρ = 0.3 (left: computation time in seconds;
middle: number of collision checks; right: number of actions as multiples of |O|).

Next, in Fig. 27, we compare the methods in “dense-small” instances, where a few objects are packed
densely (Fig. 29[Left]). Here, RBM-SP-BST is the only method that maintains a high success rate in these
difficult cases.

We further compare the performance of RBM-SP-BST and MCTS in lattice rearrangement problems,
which are recently studied in the literature [77]. An example with 15 objects is shown in Fig. 28[left]. In
the start and goal arrangements, gaps between adjacent objects are set to be 0.01 object radius, and thus
buffer allocation is challenging for sampling-based methods. While MCTS tries all the actions on each node,
RBM-SP-BST is able to detect the embedded combinatorial object relationship via the dependency graph
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Figure 27: Comparison of methods on “dense-small” instances where 5-8 objects are packed in an environment with
ρ = 0.5 (left: computation time in seconds; middle: number of collisions; right: success rate).

and therefore needs fewer buffer allocation calls. As shown in Fig. 28[right], RBM-SP-BST has a much
higher success rate in lattice rearrangement tasks.
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Figure 28: Comparison among methods in lattice instances with 3-35 objects. [left] lattice example; [right] success
rate
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Figure 29: [Left] “dense-small” instances where 5-8 cylinders packed in the environment and density level ρ = 0.5.
[Right] 10 cuboids with ρ = 0.4.

8.4.3 Cuboid Objects

Because the MCTS solver only supports cylindrical objects, we only compare RBM-SP-BST and BiRRT(fmRS)
in the cuboid setup (Fig. 29[right]). When ρ = 0.3, RBM-SP-BST computes high-quality solutions efficiently,
while BiRRT(fmRS) can only solve instances with up to 20 cuboids. We mention that, when ρ = 0.4,
BiRRT(fmRS) cannot solve any instance, but RBM-SP-BST can solve 50-object rearrangement problems in
28.6 secs on average.
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Figure 30: Comparison between methods in cuboid instances with 10-30 cuboids and ρ = 0.3 (left: computation time
in seconds; middle: success rate; right: number of actions as multiples of |O|).
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9 Physical Experiments

In this section, we demonstrate that the plans computed by proposed algorithms can be readily executed on
real robots in a complete vision-planning-control pipeline. We first introduce the hardware setup and the
pipeline during the execution of the rearrangement plans. After that, we present experimental results based
on the execution of computed rearrangement plans.

9.1 Hardware Setup

In our hardware setup (Fig.31), we use a UR-5e robot arm with an OnRobot VGC 10 vacuum gripper to
execute pick-n-places. An Intel RealSense D435 RGB-D camera is set up above the environment to provide
an overview of the entire workspace. The camera calibration is done with four 2D fiducial markers at the
corners of the environment using a C++ cross-platform software library Chilitags [78]. In the real robot
evaluation, we attempt three scenarios, which are presented in Fig. 32. For both cylindrical objects and
cuboid objects, pose estimation is conducted with the aid of Chilitags. For letter objects, the poses are
estimated with a deep learning model Mask R-CNN [79]: Given an overview image of the workspace, a
pre-trained Mask R-CNN model provides masks of the workspace objects. The 2d pose of each object is
obtained by computing a rigid transformation between the detected 2d point cloud and the model point
cloud of the object.

Figure 31: Our hardware setup for executing rearrangement plans computed by proposed algorithms.

Figure 32: Three attempted scenarios in the hardware platform: cylindrical scenario (Left), cuboid scenario (Middle),
letters (Right)

The rearrangement pipeline is shown in Algo. 7. The system first estimates the current poses of workspace
objects Ac (Line 1). Given the current arrangement Ac and goal arrangement Ag, the rearrangement solver
computes a rearrangement plan π (Line 2). Each action in π consists of three components: manipulating
object o, current pose pc, and target pose pt (Line 3). To improve the accuracy of pick-n-places, we update
the grasping pose before each grasp (Line 4-5).
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Algorithm 7: Rearrangement Pipeline

Input : Ag: goal arrangement

1 Ac ← PoseEstimation()
2 π ← RearrangementSolver(Ac, Ag)
3 for (o, pc, pt) in π do
4 pc ← UpdatePose(o)
5 ExecuteAction((o, pc, pt))

6 end

Figure 33: An example instance of our experiment. The right side of the pad works as an external space for buffer
placements.

9.2 Experimental Validation

We conduct hardware experiments on TORE, comparing the execution time of RBM plans and TBM plans.
With the same notations as those in Sec. 8, RBM plans minimize running buffer size and TBM plans minimize
total buffer size. In TORE, minimizing the total buffer size is equivalent to minimizing the number of total
actions. An example instance of our experiment is shown in Fig. 33. The right side of the pad works as
an external space for buffer placements. We tried 10 instances with 12 cylindrical objects. The results are
shown in Tab. 4. While minimizing running buffer size, RBM plans are only 5% longer than TBM plans on
average.

Table 4. Comparison between RBM plans and TBM plans in execution time and the number of actions.

instance
RBM TBM
execution
time (secs)

# actions
execution
time (secs)

# actions

1 211.35 15 194.52 14
2 197.76 14 197.66 14
3 184.49 13 185.82 13
4 201.32 14 205.96 14
5 227.03 16 195.44 14
6 193.84 14 192.61 14
7 216.49 15 198.90 14
8 250.13 17 211.15 15
9 176.75 13 179.83 13
10 179.07 12 160.96 12
Average 203.82 14.3 192.28 13.7

Besides the comparison in TORE, we also compare TORI algorithms in the hardware system. As shown
in the accompanying video, TRLB solves all attempted instances, which involve concave objects, in an
apparently natural and efficient manner.
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10 Conclusions

In this work, we investigate the problem of minimizing the number of running buffers (MRB) for solving
labeled and unlabeled tabletop rearrangement problems with overhand grasps (TORO), which translates to
finding a best linear ordering of vertices of the associated underlying dependency graph. For TORO, MRB is
an important quantity to understand as it determines the problem’s feasibility if only external buffers are
to be used, which is the case in some real-world applications [1]. Despite the provably high computational
complexity that is involved, we provide effective dynamic programming-based algorithms capable of quickly
computing MRB for large and dense labeled/unlabeled TORO instances. In addition, we also provide methods
for minimizing the total number of buffers subject to MRB constraints. Whereas we prove that MRB can
grow unbounded for both labeled and unlabeled settings for special cases for uniform cylinders, empirical
evaluations suggest that real-world random TORO instances are likely to have much smaller MRB values. We
demonstrate MRB’s high utility in solving real tabletop rearrangement problems in a bounded, constrained
workspace.

We conclude by leaving the readers with some interesting open problems. On the structural side, while
LRBM, in general, is proven to be NP-Hard, the computational the intractability of either LRBM with uniform
cylinders or URBM in general remains unresolved. As for bounds, the lower and upper bounds of MRB for
LRBM for uniform cylinders do not yet agree; can the bound gap be narrowed further? Objects may have
different sizes. An interesting question here is if we can move a large object to buffer or a small object to
buffer, which is more beneficial? Moving larger objects are more challenging but we may need to do this
fewer times.
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Appendix

Properties of Unlabeled Dependency Graphs for Special TORO Settings

Proof of Proposition 2. The maximum degree of the dependency graph is equal to the maximum number of
disjoint objects that one object can overlap with. In this proof, we evaluate the upper bound of the maximum
overlaps with a disc packing problem. We first discuss the range of distance between two overlapping regular
polygons when they are overlapping and disjoint. After that, we relate the problem to a disc packing problem
and derive the upper bound. Without loss of generality, we assume the radius of the regular polygons to be 1.
When two d-sided regular polygons overlap, the distance between the polygon centers is upper bounded by
two times the radius of their circumscribed circles, i.e. 2. When two d-sided regular polygons are disjoint, the
distance between the polygon centers is lower bounded by two times the radius of their inscribed circles, i.e.

2 cos(
π

d
). Due to the mentioned upper bound, the number of disjoint d-sided regular polygons that overlap

with one d-sided regular polygon is upper bounded by that whose centers are inside a 2-circle (Fig. 34(a)).
Additionally, due to the mentioned distance lower bound, this number is upper bounded by the number

of disjoint cos(
π

d
)-circles whose centers are inside a 2-circle (Fig. 34(b)), which is equal to the number of

cos(
π

d
)-circles packed inside a (2 + cos(

π

d
))-circle (Fig. 34(c)). Since the radius ratio of circles

2 + cos(
π

d
)

cos(
π

d
)

is

upper bounded by 5 when d ≥ 3, there are at most 19 small circles packed in the large circle [80]. Therefore,
the maximum degree of the unlabeled dependency graph is upper bounded by 19.

Proof of Proposition 3. Constructing the dependency graph based on the start and goal positions in the
workspace, the planarity can be proven if no two edges cross each other. Assuming the contrary, there are
two edges crossing each other, e.g. AD and BC in Fig. 35[Left]. Since each edge comes from a pair of
intersecting start and goal objects, without loss of generality, we can assume C, D are start positions and
A, B are goal positions. Therefore, we have |AB|, |CD| ≥ 2r, where r is the base radius of the cylinders.
Since AD and BC are both connected in the dependency graph, we have |AD|, |BC| < 2r, which leads to
the conclusion that |AD| + |BC| < 4r ≤ |AB| + |CD|, and contradicts the triangle inequality. Therefore,
the planarity is proven with contradiction.

Since uniform cylinders have uniform disc bases, one cylinder may only touch six non-overlapping cylinders
and non-trivially intersect at most five non-overlapping cylinders. Therefore, the maximum degree of the
unlabeled dependency graph is upper bounded by 5.

Remark. As shown in Fig. 35[Right], the proof of the planarity in Proposition 3 does not hold for objects
with regular polygon bases.

Ω(
√
n) Lower Bound for URBM

Let (x, y) be the coordinate of a vertex vx,y on D(w, h) with the top left being (1, 1). The parity of x + y
determines the partite set of the vertex (recall that unlabeled dependency graph for uniform cylinders is
always a planar bipartite graph, by Proposition 3), which may correspond to a start pose or a goal pose.
With this in mind, we simply call vertices of D(w, h) start and goal vertices; without loss of generality, let
v1,1 be a start vertex.

We use D(m, 2m) for establishing the lower bound on MRB. We use a vertex pair pi,j to refer to two
adjacent vertices vi,2j−1 and vi,2j in D(m, 2m). It is clear that a vertex pair contains a start and a goal
vertex. We say that a goal vertex is filled if an object is placed at the corresponding goal pose. We say that
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1

(a) (b) (c)

Figure 34: (a) The number of disjoint d-sided regular polygons that overlap with one d-sided regular polygon is
upper bounded by that whose centers are inside a 2-circle. (b) The number of disjoint d-sided regular polygons

whose centers are inside a 2-circle is upper bounded by the number of disjoint cos(
π

d
)-circles whose centers are inside

a 2-circle. (c) The number of disjoint cos(
π

d
)-circles whose centers are inside a 2-circle is equal to the number of

cos(
π

d
)-circles packed inside a (2 + cos(

π

d
))-circle.

A

B

C

D

A

B

C

D

Figure 35: [Left] A case discussed in Prop.3 [Right] A counterexample of the proof of Prop.3 when the base of
workspace objects is square.

a start vertex (which belongs to a vertex pair) is cleared if the corresponding object at the vertex is picked
(either put at a goal or at a buffer) but the corresponding goal in the vertex pair is unfilled. At any moment
when the robot is not holding an object, the number of objects in the buffer is the same as the number of
cleared vertices. For each column i, 1 ≤ i ≤ m, let fi (resp., ci) be the number of goals (resp., start) vertices
in the column that are filled (resp., cleared). Notice that a goal cannot be filled until the object at the
corresponding start vertex is removed.

Lemma 3. On a dependency grid D(m, 2m), for two adjacent columns i and i+1, 1 ≤ i < m, if fi+fi+1 6= 0
or 2m, then ci + ci+1 ≥ 1. In other words, there is at least one cleared vertex in the two adjacent columns
unless fi = fi+1 = 0 or fi = fi+1 = m.

Proof. If there is a j, 1 ≤ j ≤ m, such that only one of the goal vertices in vertex pairs pi,j and pi+1,j is
filled (Fig. 36(a)), then the start vertex in the other vertex pair must be cleared. Therefore, ci + ci+1 ≥ 1.

On the other hand, if, for each j, 1 ≤ j ≤ m, both or neither of the goal vertices in pi,j and pi+1,j is
filled, then there is a j, 1 ≤ j ≤ m − 1, such that both goal vertices in pi,j and pi+1,j are filled but neither
of those in pi,j+1 and pi+1,j+1 is filled (Fig. 36(b)) or the opposite (Fig. 36(c)). Then, for the vertex pairs
whose goal vertices are not filled, say pi,j+1 and pi+1,j+1, one of their start vertices is a neighbor of the filled
goal in pi,j and pi,j+1. Therefore, at least one of the start vertices in pi,j+1 and pi+1,j+1 is a cleared vertex.
And thus, ci + ci+1 ≥ 1.

Proof of Lemma 2. We show that there are Ω(m) cleared vertices when bn/3c goal vertices are filled. Suppose
there are q columns in D with 1 ≤ fi ≤ m− 1. According to the definition of fi, for each of these q columns,
there is at least one goal vertex that is filled and at least one goal vertex that is not.

If q <
bn/3c

3(m− 1)
, then there are two columns i and j, such that fi = m and fj = 0. That is because∑

1≤i≤m fi = bn/3c and 0 ≤ fi ≤ m for all 1 ≤ i ≤ m. Therefore, for the vertex pairs in each row j, at

35



pi,j pi+1,j

pi,j pi+1,j

pi,j+1

pi+1,j

pi,j+1 pi+1,j+1

(a) (b) (c)

Figure 36: Some cases discussed in the lemma 3. The unshaded and shaded nodes represent the start and goal
vertices in the dependency graph. Specifically, the shaded nodes with a dot inside represent the filled vertices and the
unshaded nodes with a cross inside represent the cleared vertices. (a) When only one goal vertex in pi,j and pi+1,j is
filled up, the start vertex in the other vertex pair is a cleared vertex. (b) When both goal vertices in pi,j and pi+1,j

are filled but neither of those in pi,j+1 and pi+1,j+1 is filled, one of the start vertices pi,j+1 and pi+1,j+1 is a cleared
vertex. (c) The opposite case of (b).

least one goal vertex is filled but at least one is not. And thus, for each j, there are two adjacent columns
i, i+ 1, 1 ≤ i < m, such that in vertex pairs pi,j and pi+1,j , one goal vertex is filled while the start vertex in
the other vertex pair is cleared (Fig. 36(a)). Therefore, there are at least m cleared vertices in this case.

If q ≥ bn/3c
3(m− 1)

, then we partition all the columns in D into bm/2c disjoint pairs: (1,2), (3,4), ... The

q columns belong to at least bq/2c pairs of adjacent columns. Therefore, according to Lemma 3, we have
Θ(m) cleared vertices.

In conclusion, there are Ω(m) cleared vertices when there are bn/3c filled goal. Therefore, the minimum
MRB of this instance is Ω(m).

O(
√
n) Algorithmic Upper Bound for URBM

To investigate the running buffer size of the plan computed by SepPlan, we construct a binary tree T
based on SepPlan (Fig. 13(c)). Each node represents a recursive call consuming a subgraph Gu(V,E) and
the left and right children of the node are induced from subgraphs Gu(A′, E(A′)) and Gu(B′, E(B′)) of
Gu(V,E). SepPlan computes the plan by visiting the binary tree in a depth-first manner. For each node
on T , given the input dependency graph Gu(V,E), denote the sequence before we deal with Gu(V,E) as
π0. Denote the vertices pruned in RemovalTrivialGoals( Gu(V,E)) as P . Without loss of generality, assume
that SepPlan recurses into A′ before B′. Let πP , πC′ , πA′ , and πB′ be the goal removal sequence after
we remove vertices in P , C ′, A′ and B′ from Gu(V,E) respectively. We define function RB(π) to represent
“generalized” current running buffer size of a removal sequence π: When vertices in π are removed from the
dependency graph, RB(π) equals either the number of running buffers; or the negation of the number of
empty goal poses. In the depth-first recursion, each node on the binary tree T is visited at most three times:

1. Before exploring child nodes. The peak may be reached during the removal of C ′. Let πC∗ be the
sequence when the running buffer size reaches the peak. RB(πC∗) ≤ RB(π0) + 10

√
2
√
|V |.

2. After we deal with A′ and before we deal with B′. RB(πA′) = RB(π0)−δ(C ′)− δ(A′).

3. After we deal with B′. RB(πB′) = RB(π0)−δ(V ).

Lemma 4. RB(πA′) ≤ (RB(πC∗) +RB(πB′))/2.
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Proof.

RB(πA′)

= RB(π0)− δP − δC ′ − δA′
= RB(π0)− δ(P )− δ(C ′)−max[δ(A′), δ(B′)]

≤ RB(π0)− δ(P )− δ(C ′) +
1

2
[−δ(V ) + δ(P ) + δ(C ′)]

=
1

2
{[RB(π0)− δ(V )] + [RB(π0)− δ(P )− δ(C ′)]}

=
1

2
[RB(πB′) +RB(πC′)]

≤ 1

2
[RB(πB′) +RB(πC∗)]

Lemma 4 establishes the relationship among πC∗ , πA′ , and πB′ of a node on T . With this lemma, we
obtain an upper bound for each node:

Lemma 5. Given a node N with depth d in the binary tree T , let πC∗(N), πA′(N), and πB′(N) be πC∗ ,
πA′ , and πB′ of N respectively. RB(πC∗(N)), RB(πA′(N)), and RB(πB′(N)) are all upper bounded by

[1− (

√
2

3
)d+1]

1−
√

2

3

20
√
n (10)

where n is the number of objects in the instance.

Proof. The conclusion can be proven by induction.

When d = 0, the dependency graph at the root node r has n start vertices and n goal vertices. We have
RB(πC∗) ≤ 20

√
n,RB(πB′) = 0. According to Lemma 4, RB(πA′) ≤ 10

√
n. The conclusion holds.

Assume that the conclusion holds for all the nodes with depth less than or equal to k. Given an arbitrary
node N in the depth k, let the left and right children of N be L and R, which are the nodes with depth
k + 1. The corresponding dependency graphs have at most (2/3)k+1 · 2n vertices respectively.

RB(πC∗(L)) ≤ RB(πC∗(N)) +
√

(2/3)k+1 · 2n · 10
√

2

RB(πC∗(R)) ≤ RB(πA′(N)) +
√

(2/3)k+1 · 2n · 10
√

2

Since πB′(L) = πA′(N) and πB′(R) = πB′(N), upper bound for nodes with depth k holds for πB′(L) and
πB′(R). Therefore, the running buffer size for the depth k + 1 nodes has an upper bound

[1− (
√

2/3)k+1]

1−
√

2/3
20
√
n+

√
(2/3)k+1 · 2n · 10

√
2

=
[1− (

√
2/3)k+2]

1−
√

2/3
20
√
n

(11)

Therefore, the upper bound holds for all the nodes of depth k+ 1. With induction, the lemma holds.

With Lemma 5, it is straightforward to establish that MRB is bounded by
20

1−
√

2/3

√
n, yielding

Theorem 4.
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