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Abstract
Robotic Information Gathering (RIG) is a foundational research topic that answers how a robot (team) collects
informative data to efficiently build an accurate model of an unknown target function under robot embodiment
constraints. RIG has many applications, including but not limited to autonomous exploration and mapping, 3D
reconstruction or inspection, search and rescue, and environmental monitoring. A RIG system relies on a probabilistic
model’s prediction uncertainty to identify critical areas for informative data collection. Gaussian Processes (GPs) with
stationary kernels have been widely adopted for spatial modeling. However, real-world spatial data is typically non-
stationary – different locations do not have the same degree of variability. As a result, the prediction uncertainty
does not accurately reveal prediction error, limiting the success of RIG algorithms. We propose a family of non-
stationary kernels named Attentive Kernel (AK), which is simple, robust, and can extend any existing kernel to a
non-stationary one. We evaluate the new kernel in elevation mapping tasks, where AK provides better accuracy and
uncertainty quantification over the commonly used stationary kernels and the leading non-stationary kernels. The
improved uncertainty quantification guides the downstream informative planner to collect more valuable data around the
high-error area, further increasing prediction accuracy. A field experiment demonstrates that the proposed method can
guide an Autonomous Surface Vehicle (ASV) to prioritize data collection in locations with significant spatial variations,
enabling the model to characterize salient environmental features.
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1 Introduction

Collecting informative data for effective modeling of an
unknown physical process or phenomenon has been studied
in different domains, e.g., Optimal Experimental Design
in Statistics (Atkinson 1996), Optimal Sensor Placement
in Wireless Sensor Networks (Krause et al. 2008), Active
Learning (Settles 2012) and Bayesian Optimization (Snoek
et al. 2012) in Machine Learning.

In Robotics, this problem falls within the spectrum
of Robotic Information Gathering (RIG) (Thrun 2002).
RIG has recently received increasing attention due to
its wide applicability. Applications include environmental
modeling and monitoring (Dunbabin and Marques 2012),
3D reconstruction and inspection (Hollinger et al. 2013;
Schmid et al. 2020), search and rescue (Meera et al. 2019),
exploration and mapping (Jadidi et al. 2019), as well as active
System Identification (Buisson-Fenet et al. 2020).

A RIG system typically relies on a probabilistic
model’s prediction uncertainty to identify critical areas for
informative data collection. Figure 1 illustrates the workflow
of a RIG system, which shows three major forces that
drive the progress of RIG: probabilistic models, objective
functions, and informative planners.

The defining element distinguishing other active informa-
tion acquisition problems and RIG is the robot embodiment’s
physical constraints (Taylor et al. 2021). In Active Learn-
ing (Biyik et al. 2020) or Optimal Sensor Placement (Krause
et al. 2008), an agent can sample arbitrary data in a given

Figure 1. Diagram of A Robotic Information Gathering
System. The goal is to autonomously gather informative
elevation measurements of Mount St. Helens to efficiently build a
terrain map unknown a priori. The color indicates elevation, and
black dots are collected samples.

space. In RIG, however, a robot must collect data sequen-
tially along the motion trajectories. Consequently, most
existing work in RIG is dedicated to a sequential decision-
making problem called Informative (Path) Planning (Binney
et al. 2013; Hollinger and Sukhatme 2014; Lim et al. 2016;
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(a) Prediction of RBF Kernel (b) Uncertainty of RBF Kernel (c) Error of RBF Kernel

(d) Prediction of AK (e) Uncertainty of AK (f) Error of AK

Figure 2. Comparison of Gaussian Process Regression with Radial Basis Function Kernel and Attentive Kernel.

Choudhury et al. 2018; Jadidi et al. 2019; Best et al. 2019).
Specifically, Informative Planning seeks an action sequence
or a policy by optimizing an objective function that guides
the robot to collect informative data, aiming to efficiently
build an accurate model of the process under the robot’s
motion and sensing cost constraints (Chen and Liu 2019;
Popović et al. 2020b). The decisive objective function is
derived from the uncertainty of probabilistic models such
as Gaussian processes (GPs) (Ghaffari Jadidi et al. 2018),
Hilbert maps (Senanayake and Ramos 2017), occupancy
grid maps (Charrow et al. 2015a), and Gaussian mixture
models (Dhawale and Michael 2020). Since the performance
of a RIG system depends on not only planning but also
learning, as shown in the feedback loop of Figure 1, a natural
question is: how can we further boost the performance by
improving the probabilistic models? In this work, we answer
this question from the perspective of improving the modeling
flexibility and uncertainty quantification of GPs.

Gaussian Process Regression (GPR) is one of the most
prevalent methods for mapping continuous spatiotemporal
phenomena. GPR requires the specification of a kernel,
and stationary kernels, e.g., the radial basis function (RBF)
kernel and the Matérn family, are commonly adopted (Ras-
mussen and Williams 2005). However, real-world spatial
data typically does not satisfy stationary models which
assume different locations have the same degree of variabil-
ity. For instance, the environment in Figure 1 shows higher
spatial variability around the crater. Due to the mismatch
between the assumption and the ground-truth environment,
GPR with stationary kernels cannot portray the characteristic
environmental features in detail. Figure 2a shows the over-
smoothed prediction of the elevation map after training a
stationary GPR using the collected data shown in Figure 1.
The model also assigns low uncertainty to the high-error
area, c.f., the circled regions in Figure 2b and Figure 2c,
leading to degraded performance when the model is used in
RIG.

Non-stationary GPs, on the other hand, are of interest in
many applications, and the past few decades have witnessed
great advancement in this research field (Gibbs 1997;
Paciorek and Schervish 2003; Lang et al. 2007; Plagemann
et al. 2008a,b; Wilson et al. 2016; Calandra et al. 2016;
Heinonen et al. 2016; Remes et al. 2017, 2018). However,
prior work leaves room for improvement. The problem is that
many non-stationary models learn fine-grained variability at
every location, making the model too flexible to be trained
without advanced parameter initialization and regularization
techniques. We propose a family of non-stationary kernels
named Attentive Kernel (AK) to mitigate this issue. The
main idea of our AK is limiting the non-stationary model
to combine a fixed set of correlation scales, i.e., primitive
length-scales, and mask out data across discontinuous jumps
by “soft” selection of relevant data. The correlation-scale
composition and data selection mechanisms are learned from
data. Figure 2d shows the prediction of GPR with the AK on
the same dataset used in Figure 2a. As the arrows highlight,
the AK depicts the environment at a finer granularity.
Figure 2e and Figure 2f show that the AK allocates high
uncertainty to the high-error area; thus, sampling the high-
uncertainty locations can help the robot collect valuable data
to decrease the prediction error further.

1.1 Contributions
The main contribution of this paper is in designing
the Attentive Kernel (AK) and evaluating its suitability
for Robotic Information Gathering (RIG). We present an
extensive evaluation to compare the AK with existing
non-stationary kernels and a stationary baseline. The
benchmarking task is elevation mapping in several natural
environments that exhibit a range of non-stationary features.
The results reveal a significant advantage of the AK when
it is used in passive learning, active learning, and RIG. We
also conduct a field experiment to demonstrate the behavior
of the proposed method in a real-world elevation mapping
task, where the prediction uncertainty of the AK guides an
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Autonomous Surface Vehicle (ASV) to identify essential
sampling locations and collect valuable data rapidly. Last
but not least, we release the code (github.com/weizhe-
chen/attentive kernels) for reproducing all the results.

This paper presents an extended and revised version
of previous work by Chen et al. (2022). The major
modifications include a comprehensive literature review on
RIG to contextualize our work, additional evaluation, results,
and discussion on the AK, and a substantially improved
Python library. Specifically, we provide the following
contributions:

• We present a broader and deeper survey on related
work to highlight how our work fits into the existing
literature on RIG.

• We add more results to the experiments and discuss
them in detail to provide further evidence for our
conclusions.

• We thoroughly evaluate the AK from various
perspectives and discuss its limitations and potential
future work.

• We release a new Python library called PyPolo
(pypolo.readthedocs.io) for learning, researching, and
benchmarking RIG algorithms. This library is a
significant improvement and restructure compared to
the one presented in Chen et al. (2022).

2 Related Work
In this section, we will first survey related work in RIG,
which mainly revolves around three pillars: probabilistic
models (Section 2.1.2), objective functions (Section 2.1.1),
and informative planning algorithms (Section 2.1.3). Also,
we discuss relevant RIG applications in Section 2.1.4.
Then, we categorize prior efforts on non-stationary GPs and
how the proposed method relates to the existing solutions
(Section 2.2). Finally, we describe the relationship between
RIG and some related research topics to locate our work
within the context of existing literature (Section 2.3)

2.1 Robotic Information Gathering
A RIG system has three essential components:

1. A model to approximate the unknown target function;
2. An objective function that can characterize the model’s

prediction error;
3. An informative planner that makes non-myopic

decisions by optimizing the objective function under
the robot’s embodiment constraints.

We discuss these three aspects in this section.

2.1.1 Objective Functions RIG can be the main goal of
some tasks, such as infrastructure inspection (Bircher et al.
2018), or serve as an auxiliary task for achieving other
goals, e.g., seeking the biological hotspots in an unknown
environment (McCammon and Hollinger 2018). In the
former cases, the objective function is purely “information-
driven” (Ferrari and Wettergren 2021; Bai et al. 2021),
while in the latter scenarios, the objective function balances
exploration and exploitation (Marchant and Ramos 2012,
2014; Bai et al. 2016). The objective function can be further

extended to multi-objective cases (Chen and Liu 2019; Ren
et al. 2022; Dang 2020).

Many objective functions have been proposed, inspired
by Information Theory and Optimal Experimental
Design (Charrow et al. 2015a; Zhang et al. 2020; Carrillo
et al. 2015). Information-theoretic objective functions
include Shannon’s and Rényi’s entropy, mutual information,
and Kullback-Leibler divergence between the prior and
posterior predictive distributions. In the case of multivariate
Gaussian distributions, these information measures are
all related to the logarithmic determinant of the posterior
covariance matrix, which can be intuitively viewed as
computing the “size” of the posterior covariance matrix.
Optimal design theory directly measures the size by
computing the matrix determinant, trace, or eigenvalues.
Computing the matrix determinant and eigenvalue is known
to be computationally expensive. Therefore, many existing
works on objective functions are dedicated to alleviating the
computational bottleneck (Charrow et al. 2015b,a; Zhang
et al. 2020; Zhang and Scaramuzza 2020; Gupta et al. 2021;
Xu et al. 2021).

Most objective functions are summary statistics of the
predictive (co)variance given by a probabilistic model. Only
when the predictive (co)variance captures modeling error
well, optimizing these objective functions can guide the
robot to collect informative data that effectively improve
the model’s accuracy. From this perspective, improving the
uncertainty-quantification capability of probabilistic models
can broadly benefit future work based on these objective
functions. This aspect is what we strive to improve in this
work. As can be seen in the next section, this problem is
understudied.

2.1.2 Probabilistic Models Many probabilistic models
have been applied to RIG, e.g., Gaussian processes (Stach-
niss et al. 2009; Marchant and Ramos 2012, 2014; Ouyang
et al. 2014; Ma et al. 2017; Luo and Sycara 2018; Jang
et al. 2020; Popović et al. 2020a; Lee et al. 2022), Hilbert
maps (Ramos and Ott 2016; Senanayake and Ramos 2017;
Guizilini and Ramos 2019), occupancy grid maps (Popović
et al. 2017, 2020b; Saroya et al. 2021), and Gaussian mixture
models (O’Meadhra et al. 2018; Tabib et al. 2019). GPs
are widely adopted due to their excellent uncertainty quan-
tification feature, which is decisive to RIG. However, the
vanilla GP models need to be more computationally efficient
to be suitable for real-time applications and multi-robot
scenarios. Therefore, related work in RIG mainly discusses
GPs in the context of improving computational efficiency
and coordinating multiple robots. Jang et al. (2020) apply the
distributed GPs (Deisenroth and Ng 2015) to decentralized
multi-robot online Active Sensing. Ma et al. (2017) and
Stachniss et al. (2009) use sparse GPs to alleviate the compu-
tational burden. The mixture of GP experts (Rasmussen and
Ghahramani 2001) has been applied to divide the workspace
into smaller parts for multiple robots to model an environ-
ment simultaneously (Luo and Sycara 2018; Ouyang et al.
2014).

The early work by Krause and Guestrin (2007) is highly
related to our work. They use a spatially varying linear
combination of localized stationary processes to model the
non-stationary pH values in a river. The weight of each
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local GP is the normalized predictive variance at the test
location. This idea is similar to the length-scale selection idea
in Section 4.1.1. The main difference is that they manually
partition the workspace while our model learns a weighting
function from data. To the best of our knowledge, our work is
the first to discuss the influence of the probabilistic models’
uncertainty quantification on RIG performance.

2.1.3 Informative Planning The problem of seeking an
action sequence or policy that yields informative data
is known as Informative Path Planning due to historical
reasons (Singh et al. 2007; Meliou et al. 2007). However,
the problem is not restricted to path planning. For
example, recent work has discussed informative motion
planning (Teng et al. 2021), informative view planning (Lauri
et al. 2020), and exploratory grasping (Danielczuk et al.
2021). Hence, we adopt the generic term Informative
Planning to unify different branches of the same problem.

Early works on Informative Planning propose various
recursive greedy algorithms that provide performance
guarantee by exploiting the submodularity property of
the objective function (Singh et al. 2007; Meliou et al.
2007; Binney et al. 2013). Note that the performance
guarantee is on uncertainty reduction rather than modeling
accuracy. Planners based on dynamic programming (Low
et al. 2009; Cao et al. 2013) and mixed integer quadratic
programming (Yu et al. 2014) lift the assumption on the
objective function at the expense of higher computational
complexity. These methods solve combinatorial optimization
problems in discrete domains, thus scaling poorly in problem
size. To develop efficient planners in continuous space
with motion constraints, Hollinger and Sukhatme (2014)
introduce sampling-based informative motion planning,
which is further developed to online variants (Schmid
et al. 2020; Jadidi et al. 2019). Monte Carlo Tree
Search (MCTS) methods are conceptually similar to
sampling-based informative planners (Kantaros et al. 2021;
Schlotfeldt et al. 2018) and have recently garnered great
attention (Arora et al. 2019; Best et al. 2019; Morere
et al. 2017; Chen and Liu 2019; Flaspohler et al. 2019).
Trajectory optimization is a solid competitor to sampling-
based planners. Bayesian Optimization (Marchant and
Ramos 2012; Bai et al. 2016; Di Caro and Yousaf 2021) and
Evolutionary Strategy (Popović et al. 2017, 2020b; Hitz et al.
2017) are the two dominating methods in this realm. New
frameworks of RIG, e.g., Imitation Learning (Choudhury
et al. 2018), are emerging. Communication constraints (Lauri
et al. 2017) and adversarial attacks (Schlotfeldt et al. 2021)
have also been discussed.

2.1.4 Relevant Applications Mobile robots can be con-
sidered as autonomous data-gathering tools, enabling sci-
entific research in remote and hazardous environments (Li
2020; Bai et al. 2021). RIG has been successfully applied
to environmental mapping and monitoring (Dunbabin and
Marques 2012). An underwater robot with a profiling sonar
can inspect a ship hull autonomously (Hollinger et al. 2013).
In Girdhar et al. (2014), the underwater robot performs
semantic exploration with online topic modeling, which can
group corals belonging to the same species or rocks of
similar types. Flaspohler et al. (2019) deploy an ASV for
localizing and collecting samples at the most exposed coral

head. Hitz et al. (2017) monitor algal bloom using an ASV,
which can provide early warning to environmental managers
to conduct water treatment in a more appropriate time frame.
Manjanna et al. (2018) show that a robot team can help
scientists collect plankton-rich water samples via in situ
mapping of Chlorophyll density. Fernández et al. (2022)
propose delineating the sampling locations that correspond
to the quantile values of the phenomenon of interest, which
helps the scientists to collect valuable data for later analysis.
Active lakebed mapping, where the static ground truth is
available, can serve as a testbed for ocean bathymetric
mapping (Ma et al. 2018). RIG can also be applied to the
3D reconstruction of large scenes (Kompis et al. 2021) and
object surfaces (Zhu et al. 2021). In addition to geometric
mapping, semantic mapping is also explored in (Atanasov
et al. 2014), where a PR2 robot with an RGB-D camera
attached to the wrist leverages non-myopic view planning
for active object classification and pose estimation. Meera
et al. (2019) present a realistic simulation of a search-and-
rescue scenario in which informative planning maximizes
search efficiency under the Unmanned Aerial Vehicle (UAV)
flight time constraints. Fixed-wing UAVs use aerodynamics
akin to aircraft, so it has a much longer flight time than multi-
rotors. Moon et al. (2022) simulate a fixed-wing UAV with
a forward-facing camera to search for multiple objects of
interest in a large search space.

2.2 Non-Stationary Gaussian Processes
GPs suffer from two significant limitations (Rasmussen
and Ghahramani 2001). The first one is the notorious
cubic computational complexity of a vanilla implementation.
Recent years have witnessed remarkable progress in solving
this problem based on sparse GPs (Quinonero-Candela
and Rasmussen 2005; Titsias 2009; Hoang et al. 2015;
Sheth et al. 2015; Bui et al. 2017; Wei et al. 2021).
The second drawback is that the covariance function is
commonly assumed to be stationary, limiting the modeling
flexibility. Developing non-stationary GP models that are
easy to train is still an active open research problem. Ideas
of handling non-stationarity can be roughly grouped into
three categories: input-dependent length-scale (Gibbs 1997;
Paciorek and Schervish 2003; Lang et al. 2007; Plagemann
et al. 2008b,a; Heinonen et al. 2016; Remes et al. 2017),
input warping (Sampson and Guttorp 1992; Snoek et al.
2014; Calandra et al. 2016; Wilson et al. 2016; Tompkins
et al. 2020a; Salimbeni and Deisenroth 2017), and the
mixture of experts (Rasmussen and Ghahramani 2001; Trapp
et al. 2020).

Input-dependent length-scale provides excellent flexibility
to learn different correlation scales at different input
locations. Gibbs (1997) and Paciorek and Schervish (2003)
have shown how one can construct a valid kernel with input-
dependent length-scales, namely, a length-scale function.
The standard approach uses another GP to model the length-
scale function, which is then used in the kernel of a
GP, yielding a hierarchical Bayesian model. Several papers
have developed inference techniques for such models and
demonstrated their use in some applications (Lang et al.
2007; Plagemann et al. 2008b,a; Heinonen et al. 2016;
Remes et al. 2017). Recently, Remes et al. (2018) show
that modeling the length-scale function using a neural
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network improves performance. Note, however, that learning
a length-scale function is nontrivial (Wang et al. 2020).

Input warping is more widely applicable because it
endows any stationary kernel with the ability to model non-
stationarity by mapping the input locations to a distorted
space and assuming stationarity holds in the new space. This
approach has a tricky requirement: the mapping must be
injective to avoid undesirable folding of the space (Sampson
and Guttorp 1992; Snoek et al. 2014; Salimbeni and
Deisenroth 2017).

A mixture of GP experts (MoGPE) uses a gating network
to allocate each data to a local GP that learns its hyper-
parameters from the assigned data. It typically requires
Gibbs sampling (Rasmussen and Ghahramani 2001), which
can be slow. Hence, one might need to develop a faster
approximation (Nguyen-Tuong et al. 2008). We view
MoGPE as an orthogonal direction to other non-stationary
GPs or kernels because any GP model can be treated as the
expert so that one can have a mixture of non-stationary GPs.

The AK lies at the intersection of these three categories.
Section 4.1.1 presents an input-dependent length-scale idea
by weighting base kernels with different fixed length-
scales at each location. Composing base kernels reduces the
difficulty of learning a length-scale function from scratch
and makes our method compatible with any base kernel. In
Section 4.1.2, we augment the input with extra dimensions.
We can view the augmentation as warping the input space to
a higher-dimensional space, ensuring injectivity by design.
Combining these two ideas gives a conceptually similar
model to MoGPE (Rasmussen and Ghahramani 2001) in
that they both divide the space into multiple regions and
learn localized hyper-parameters. The idea of augmenting
the input dimensions has been discussed by Pfingsten et al.
(2006). However, they treat the augmented vector as a
latent variable and resort to Markov chain Monte Carlo for
inference. The AK treats the augmentation vector as the
output of a deterministic function of the input, resulting in
a more straightforward inference procedure. Also, the AK
can be used in MoGPE to build more flexible models.

In robotic mapping, another line of notable work on
probabilistic models is the family of Hilbert maps (Ramos
and Ott 2016; Senanayake and Ramos 2017; Guizilini and
Ramos 2019), which aims to alleviate the computational
bottleneck of GPs (O’Callaghan and Ramos 2012) by
projecting the data to another feature space and applying a
logistic regression classifier in the new space. Since Hilbert
maps are typically used for occupancy mapping (Doherty
et al. 2016) and reconstruction tasks (Guizilini and Ramos
2017), related work also considers non-stationarity for better
prediction (Senanayake et al. 2018; Tompkins et al. 2020b).

2.3 Relationship to Other Research Topics
RIG is a fundamental research problem seeking an answer to
the following question:

How does a robot (team) collect informative data to
efficiently build an accurate model of an unknown function
under robot embodiment constraints?

Depending on how we define data and what the
unknown target function is, RIG appears in the form
of Active Dynamics Learning, Active Mapping, Active
Localization, and Active Simultaneous Localization and

Figure 3. Research Topics Related to RIG.

Mapping (SLAM). Figure 3 shows a Venn diagram of these
topics. Although we evaluate the AK in Active Mapping
tasks, other related problems, e.g., Active Dynamics
Learning, can also benefit from the proposed method if
the target function is modeled by a GP. On top of that,
guiding the data collection process by minimizing well-
calibrated uncertainty estimates applies to all these related
topics (Rodrı́guez-Arévalo et al. 2018).

2.3.1 Active Dynamics Learning Control synthesis typi-
cally depends on the system dynamics. Due to the complex
interaction between the robot and the environment, e.g., a
quadruped running at high speed over rough terrain, mechan-
ical wear and tear, and actuator faults, it may be infeasible
to build an accurate dynamics model a priori (Cully et al.
2015). In these cases, the robot must take safe actions and
observe its dynamics to explore different behavioral regimes
sample-efficiently (Abraham and Murphey 2019). When the
robot collects dynamics information to infer the unknown
transition function, the RIG problem is known as Active
Dynamics Learning or System Identification (Taylor et al.
2021). In this context, informative data refers to the state-
action-state pairs or the full state-action trajectories that help
efficiently learn an accurate model of the unknown system
dynamics or transition function. The system dynamics can be
modeled as fixed-form equations (Jegorova et al. 2020), data-
driven models, including parametric models (Chua et al.
2018), non-parametric models (Calandra et al. 2016), and
semi-parametric models (Romeres et al. 2019), and the
combination of the analytical models and data-driven mod-
els (Heiden et al. 2021b). GPs have arguably become the de
facto standard in collecting informative data that minimizes
the predictive uncertainty of data-driven models to achieve
sample-efficient dynamics learning (Rezaei-Shoshtari et al.
2019; Buisson-Fenet et al. 2020; Capone et al. 2020; Lew
et al. 2022; Yu et al. 2021). With the rise of Automatic
Differentiation (Paszke et al. 2017), a large body of recent
work tend to estimate the physical parameters inside differ-
entiable Rigid-Body Dynamics models (Sutanto et al. 2020;
Lutter et al. 2021; de Avila Belbute-Peres et al. 2018) or
differentiable robotics simulators (Hu et al. 2019; Freeman
et al. 2021; Werling et al. 2021). The literature empha-
sizes that calibrating the simulation (Mehta et al. 2021)
is essential for both Reinforcement Learning with domain
randomization (Ramos et al. 2019; Muratore et al. 2022) or
trajectory optimization (Du et al. 2021; Heiden et al. 2021a).
In this context, we can consider RIG as Active Simulation
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Calibration since the robot collects informative trajectories
to efficiently learn an accurate model of the unknown simu-
lation parameters under the kinodynamic constraints. Active
Simulation Calibration can also directly optimize the task-
specific reward. For instance, Muratore et al. (2021) model
the policy return as a GP and use Bayesian Optimization to
tune the simulation parameters. Liang et al. (2020) learn a
task-oriented exploration policy to collect informative data
for calibrating task-relevant simulation parameters.

2.3.2 Active Perception When the robot collects data
from the environment rather than its dynamics, RIG becomes
Active Perception – an agent (e.g., camera or robot) changes
its angle of view or position to perceive the surrounding
environment better (Bajcsy 1988; Aloimonos et al. 1988;
Bajcsy et al. 2018). If the agent actively perceives the
environment to reduce the localization uncertainty, the
problem is referred to as Active Localization (Fox et al.
1998; Borghi and Caglioti 1998). If the goal is to build the
best possible representation of an environment, the problem
essentially becomes Active Mapping (Lluvia et al. 2021).

2.3.3 Active Localization Localization uncertainty can
arise from perceptual degradation (Ebadi et al. 2020), noisy
actuation (Thrun 2002), and inaccurate modeling (Roy
et al. 1999). Decision-making or planning under uncer-
tainty (LaValle 2006; Bry and Roy 2011; Preston et al.
2022) provides an elegant framework to formulate these
problems using partially observable Markov decision pro-
cesses (POMDP) (Kaelbling et al. 1998; Cai et al. 2021;
Lauri et al. 2022). A principled approach to address these
problems is to plan in the belief space (Kaelbling and
Lozano-Pérez 2013; Nishimura and Schwager 2021). Infor-
mation gathering is a natural behavior generated by Belief-
Space Planning (Platt et al. 2010). Computing optimal pol-
icy in belief space is computationally intensive, but useful
heuristics enable efficient computation of high-quality solu-
tions (Kim et al. 2019; Prentice and Roy 2009; Zheng et al.
2022). Although the localization uncertainty can come from
different sources, in perceptually degraded environments
such as subterranean, perception uncertainty outweighs the
others. A dedicated topic for this case is perception-aware
planning (Zhang 2020). Note that localization is not neces-
sarily positioning a mobile robot on a map (Chaplot et al.
2018); it can also be locating and tracking an object in the
workspace of a manipulator with force-torque sensor mea-
surements (Wirnshofer et al. 2020; Schneider et al. 2022).

2.3.4 Active Sensing and Mapping Suppose the data
refers to the robot’s observations, e.g., camera images or
LiDAR point clouds, and the unknown target function is the
ground-truth representation of the environment. In that case,
RIG can be considered an Active Mapping problem (Placed
et al. 2022). Mapping uncertainty can come from aleatoric
uncertainty inherent in measurement noise and epistemic
uncertainty due to unknown model parameters and data
scarcity (Krause and Guestrin 2007). Active Mapping
efficiently builds an accurate model of the environment by
minimizing epistemic uncertainty, which is often termed
Active Sensing when focusing on the active acquisition of
sensor measurements for better prediction rather than model
learning (Cao et al. 2013; MacDonald and Smith 2019;
Schlotfeldt et al. 2019; Rückin et al. 2022). When mapping a

Table 1. Mathematical Notations.

Meaning Example Remark

variable m lower-case
constant M upper-case
vector x bold, lower-case
matrix X bold, upper-case
set/space R blackboard
Cartesian product [a, b]D D-dim hypercube
function d(·) typewriter
special PDF N calligraphy capital
definition ≜ normal
transpose m

⊺ customized command
Euclidean norm ∥·∥2 customized command

3D environment using a sensor with a limited field-of-view,
this is known as the Next-Best View problem (Connolly
1985; Bircher et al. 2016; Palomeras et al. 2019; Lauri
et al. 2020). Autonomous Exploration is sometimes used
interchangeably with Active Mapping (Lluvia et al. 2021).
However, the nuances of the assumptions and evaluation
metrics of the two domains yield significantly different
solutions and robot behaviors. Specifically, Active Mapping
typically assumes ideal localization (Popović et al. 2020a)
and aims at building an accurate environment map using
noisy and sparse observations; thus, the performance is
evaluated by reconstruction error against the ground truth.
The robot might revisit some complex regions to collect
more data if the model prediction is not accurate enough.
For example, when performing Active Mapping of a
ship hull, the robot should collect more data around the
propeller (Hollinger et al. 2013). Autonomous Exploration
emphasizes obtaining the global structure of a vast unknown
environment, implying that the robot (team) should avoid
duplicate coverage; thus, the evaluation criterion is the
explored volume (Cao et al. 2021). In contrast to Active
Mapping, unreliable localization is one of the major
challenges in Autonomous Exploration that should be
addressed (Tranzatto et al. 2022; Papachristos et al. 2019).
In this work, our application belongs to the Active Mapping
problem, where the better uncertainty quantification of the
proposed non-stationary GPR guides the robot to collect
more informative data for rapid learning of an accurate map.

2.3.5 Active SLAM Controlling a robot performing SLAM
to reduce both the localization and mapping uncertainty is
called active SLAM (Placed et al. 2022). Active Localization
and Active Mapping are two conflicting objectives. The
former asks the robot to revisit explored areas for potential
loop closure (Stachniss et al. 2004), while the latter
guides the robot to expand frontiers for efficient map
building (Yamauchi 1997). We refer the interested reader to
the corresponding survey papers (Lluvia et al. 2021; Placed
et al. 2022).

3 Problem Statement
Consider deploying a robot to efficiently build a map of an
unknown environment using only sparse sensing measure-
ments of onboard sensors. For instance, when reconstructing
a pollution distribution map, the environmental sensors can
only measure the pollutant concentration in a point-wise
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sampling manner, yielding sparse measurements along the
trajectory. Another scenario is building a large bathymetric
map of the seabed. The depth measurements of a multi-beam
sonar can be viewed as point measurements because the
unknown target area is typically vast. Exhaustively sampling
the whole environment is prohibitive, if not impossible; thus,
one must develop adaptive planning algorithms to collect the
most informative data for building an accurate model. Table 1
introduces the notation system used in this paper. We use
column vector by default.

3.1 Minimization of Error vs. Uncertainty
Problem 1. The target environment is an unknown function
fenv(x) : RD 7→ R defined over spatial locations x ∈ RD.
Let T ≜ {t}Tt=0 be the set of decision epochs. A robot
at state st−1 ∈ S takes an action at−1 ∈ A, arrives at
the next state st following a transition function p(st |
st−1, at−1), and collects Nt ∈ N noisy measurements yt ∈
RNt at sampling locations Xt = [x1, . . . ,xNt

]⊺ ∈ RNt×D

when transitioning from st−1 to st. We assume that the
transition function is known and deterministic and that the
robot state is observable. The robot maintains a probabilistic
model built from all the training data collected so far Dt =
{(Xi,yi)}ti=1. The model provides predictive mean µt :
RD 7→ R and predictive variance νt : RD 7→ R≥0 functions.
Let x⋆ be a test or query location, and error(·) be an error
metric. At each decision epoch t ∈ T, our goal is to find
sampling locations that minimize the expected error after
updating the model with the collected data

argmin
Xt

Ex⋆ [error (fenv(x
⋆), µt(x

⋆), νt(x
⋆))] . (1)

The predictive variance is also included in Equation (1)
because it is required when computing some error metrics,
e.g., negative log predictive density. Note that the expected
error cannot be directly used as the objective function for a
planner because the ground-truth function fenv is unknown.
RIG bypasses this problem by optimizing a surrogate
objective.

Problem 2. Assuming the same conditions as Problem 1,
find informative sampling locations that minimize an
uncertainty measure info(·), e.g., entropy:

argmin
Xt

Ex⋆ [info (νt(x
⋆))] . (2)

RIG implicitly assumes that minimizing prediction
uncertainty (Problem 2) can also effectively reduce
prediction error (Problem 1). This assumption is valid when
the model uncertainty is well-calibrated. A model with
well-calibrated uncertainty gives high uncertainty when the
prediction error is significant and low uncertainty otherwise.

3.2 Gaussian Process Regression
The predictive mean and variance functions are given
by a Gaussian process regression (GPR) model in this
work. A Gaussian process (GP) is a collection of random
variables, any finite number of which have a joint Gaussian
distribution (Rasmussen and Williams 2005).

3.2.1 Model Specification We place a Gaussian process
prior over the unknown target function

fenv(x) ∼ GP(m(x), k(x,x′)), (3)

which is specified by a mean function m(x) and a covariance
function k(x,x′), a.k.a. kernel. After standardizing the
training targets y to have a near-zero mean empirically, the
mean function is typically simplified to a zero function,
rendering the specification of the covariance function
an important choice. Popular choices of the covariance
functions are stationary kernels such as the RBF kernel
and the Matérn family. We refer the interested reader
to Rasmussen and Williams (2005) for other commonly used
kernels.

This paper uses the RBF kernel to show how we transform
a stationary kernel to a non-stationary one using the proposed
method. Given two inputs x and x′, the RBF kernel measures
their correlation by computing the following kernel value

k(x,x′) = exp

(
−∥x− x′∥22

2ℓ2

)
. (4)

The correlation scale parameter ℓ is called the length-scale,
which informally indicates the distance one has to move
in the input space before the function value can change
significantly (Rasmussen and Williams 2005). A given
sample should be most correlated to itself; thus, Equation (4)
gives the largest kernel value when x = x′. Kernels are
typically normalized to ensure that the largest kernel value
is 1 and an amplitude parameter α can be used to scale the
kernel value αk(x,x′) to a larger range.

GPR assumes a Gaussian likelihood function. The target
values y are the function outputs f corrupted by an additive
Gaussian white noise

p(y|x) = N (y|f(x), σ2), (5)

where σ is the observational noise scale.

3.2.2 Prediction Since GP is a conjugate prior to the
Gaussian likelihood, given N training inputs X ∈ RN×D

and training targets y ∈ RN , the posterior predictive
distribution has a closed-form expression:

p(f⋆|y) = N (f⋆|µ, ν), (6)

µ = k
⊺
⋆K

−1
y y, (7)

ν = k⋆⋆ − k
⊺
⋆K

−1
y k⋆, (8)

where k⋆ is the vector of kernel values between all the
training inputs X and the test input x⋆, Ky is a shorthand
of Kx + σ2I, Kx is the covariance matrix given by the
kernel function evaluated at each pair of training inputs, and
k⋆⋆ ≜ k(x⋆,x⋆).

3.2.3 Learning The prediction of GPR in Equation (6) is
readily available with no need to train a model. However,
the prediction quality of GPR depends on the setting of
hyper-parameters ψ ≜ [ℓ, α, σ]. These are the parameters
of the kernel and likelihood function. Hence, optimizing
these parameters – a process known as model selection –
is a common practice to obtain a better prediction. Model
selection is typically implemented by maximizing the model
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evidence, a.k.a., log marginal likelihood,

ln p(y|ψ) = 1

2
(−y

⊺
K−1

y y

model fit

− ln det(Ky)

model complexity

−N ln(2π)

constant

),

where det(. . . ) is the matrix determinant.
When using GPR with the commonly used stationary

kernels to reconstruct a real-world environment, high
uncertainty is assigned to less sampled areas, regardless of
the prediction error (see Figures 2b and 4). However, real-
world spatial environments are typically non-stationary, and
the high prediction error is more likely to be present in the
high-variability region. In other words, the assumption of
well-calibrated uncertainty is violated when using stationary
kernels. Therefore, we aim to develop non-stationary kernels
to improve GPR’s uncertainty-quantification capability and
prediction accuracy.

4 Methodology

We propose a new kernel called Attentive Kernel to deal with
non-stationarity.

Definition 1. Attentive Kernel (AK). Given two inputs
x,x′ ∈ RD, vector-valued functions wθ(x) : RD 7→ [0, 1]M

and zϕ(x) : RD 7→ [0, 1]M parameterized by θ,ϕ, an
amplitude α, and a set of M base kernels {km(x,x′)}Mm=1,
let w̄ = wθ(x)/∥wθ(x)∥2, and z̄ = zϕ(x)/∥zϕ(x)∥2. The AK is
defined as

ak(x,x′) = αz̄
⊺
z̄′

M∑
m=1

w̄mw̄′
mkm(x,x′), (9)

where w̄m is the m-th element of w̄.

We learn the parametric functions that map each input x
to w and z. The weight w̄mw̄′

m gives similarity attention
scores to combine the set of base kernels {km(x,x′)}Mm=1.
The inner product z̄⊺z̄′ defines a visibility attention score to
mask the kernel value.

Definition 1 is generic because any existing kernel can be
the base kernel. To address non-stationarity, we choose the
base kernels to be a set of stationary kernels with the same
functional form but different length-scales. Specifically, we
use RBF kernels with M length-scales {ℓm}Mm=1 that are
evenly spaced in the interval [ℓmin, ℓmax]:

km(x,x′) ≜ kRBF(x,x
′|ℓm) = exp

(
−∥x− x′∥22

2ℓ2m

)
.

Note that the length-scales {ℓm}Mm=1 are prefixed constants
rather than trainable variables. When applying the AK to a
GPR, we optimize all the hyper-parameters {α,θ,ϕ, σ} by
maximizing the marginal likelihood and make prediction as
in GPR.

At first glance, the AK looks like a heuristic composite
kernel. However, the following sections explain how we
design this kernel from the first principles. In short, the
kernel is distilled from a generative model called AKGPR
that can naturally model non-stationary processes.

1

2

3

4

5

(a) Wiggly Prediction

(b) Over-Smoothed Prediction

Figure 4. Learning A Non-Stationary Function using GPR
with RBF Kernel. The target function in red color consists of
five partitions separated by vertical dashed lines. The black
dots around the function are data points. The function changes
drastically in partition#3 and smoothly in the remaining partitions.
The transitions between neighboring partitions are sharp. This
simple function is challenging for a stationary kernel with a
single length-scale. GPR with a stationary RBF kernel produces
either the wiggly prediction shown in (a) or the over-smoothed
prediction in (b). Note that, in (a), the prediction in the smooth
regions is rugged, and the uncertainty is over-conservative when
the training data is sparse. The prediction in (b) only captures the
general trend, and every input location seems equally uncertain.

4.1 A Generative Derivation of AK

The example in Figure 4 motivates us to consider using
different length-scales at different input locations. Ideally,
we need a smaller length-scale for partition#3 and larger
length-scales for the others. In addition, we need to break
the correlations among data points in different partitions. An
ideal non-stationary model should handle these two types
of non-stationarity. Many existing works model the input-
dependent length-scale as a length-scale function (Lang
et al. 2007; Plagemann et al. 2008a; Heinonen et al. 2016).
However, parameter optimization of such models is sensitive
to data distribution and parameter initialization. We propose
a new approach to address this issue that avoids learning an
explicit length-scale function. Instead, every input location
can select among a set of GPs with different predefined
primitive length-scales and select which training samples
are used when making a prediction. This idea – selecting
instead of inferring an input-independent length-scale –
avoids optimization difficulties in prior work. These ideas are
developed in the following sections.

4.1.1 Length-Scale Selection Consider a set of M
independent GPs with a set of base kernels km(x,x′) using
predefined primitive length-scales {ℓm}Mm=1. Intuitively, if
every input location can select a GP with an appropriate
length-scale, the non-stationarity can be characterized well.
We can achieve this by an input-dependent weighted sum

f(x) =

M∑
m

wm(x)gm(x), where (10)

gm(x) ∼ GP(0, km(x,x′)). (11)
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Figure 5. Learning f(x) = x sin(40x4) with Soft Length-
Scale Selection. The w-plot visualizes the associated weighting
vector wθ(x) of each input location. The more vertical length a
color occupies, the higher weight we assign to the GP with the
corresponding length-scale. The set of predefined length-scales
is color-labeled at the bottom. The learned weighting function
gradually shifts its weight from smooth GPs to bumpy ones.

Here, wm(x) is the m-th output of a vector-valued weighting
function wθ(x) which is parameterized by θ. We denote
w = [w1(x), . . . , wM (x)]⊺.

Consider an extreme case where w is a “one-hot” vector
– a binary vector with only one element being one and
all other elements being zeros. In this case, w selects a
single appropriate GP depending on the input location.
Typically, inference techniques such as Gibbs sampling or
Expectation Maximization are required for learning such
discrete “assignment” parameters. We lift this requirement
by continuous relaxation:

wθ(x) = softmax(w̃θ(x)), (12)

where w̃θ(x) is an arbitrary M -dimensional function
parameterized by θ. Moreover, using such continuous
weights has an advantage in modeling gradually changing
non-stationarity, as shown in Figure 5.

Figure 6 shows that length-scale selection gives better
prediction after learning from the same dataset as in Figure 4.
However, when facing abrupt changes, as shown in the
circled area, the model can only select a very small length-
scale to accommodate the loose correlations among data. If
samples near the abrupt changes are not dense enough, a
small length-scale might result in a high prediction error.
The following section explains how to handle abrupt changes
using instance selection.

4.1.2 Instance Selection Intuitively, an input-dependent
length-scale specifies each data point’s neighborhood radius
that it can impact. Simply varying the radius cannot handle
abrupt changes, for example, in a step function, because data
sampled before and after an abrupt change should break their
correlations even when they are close in input locations. We
need to control the visibility among samples: each sample
learns only from other samples in the same subgroup. To
this end, we associate each input with a membership vector
z ≜ zϕ(x) and use a dot product between two membership
vectors to control visibility. Two inputs are visible to each
other when they hold similar memberships. Otherwise, their

Figure 6. Prediction of Length-Scale Selection.

correlation will be masked out:

km(x,x′) = z
⊺
z′kRBF(x,x

′|ℓm). (13)

We can view this operation as input dimension augmentation
where we append z to x but use a structured kernel in the
joint space of [x, z].

Discussing one-hot vectors also helps understand the
effect of z. In this case, the dot product is equal to 1 if and
only if z and z′ are the same one-hot vector. Otherwise, the
dot product in Equation (13) masks out the correlation. This
way, we only use the subset of data points in the same group.
To make the model more flexible and simplify the parameter
optimization, we again use soft memberships:

zϕ(x) = softmax(z̃ϕ(x)). (14)

Here, z̃ϕ(x) is an arbitrary M -dimensional function
parameterized by ϕ.

4.1.3 The AKGPR Model Combining the two ideas,
we get a new probabilistic generative model developed
for non-stationary environments called Attentive Kernel
Gaussian Process Regression (AKGPR). Given N inputs
X ∈ RN×D and targets y ∈ RN , the model describes the
generative process as follows. We use some shorthands
for compact notation: gm ≜ [gm(x1), . . . , gm(xN )]⊺, f ≜
[f(x1), . . . , f(xN )]⊺,wm ≜ [wm(x1), . . . , wm(xN )]⊺. Here
wm(x) is the m-output of Equation (12).

• We compute the membership vector zn for each input
using Equation (14). Plugging zn and the predefined
length-scales ℓm into Equation (13), we then compute
M covariance matrices Km evaluated at every pair of
inputs.

• The vector gm follows a multivariate Gaussian
distribution N (0,Km) according to the definition
of GPs and Equation (11). From Equation (10),
we can see that f is the summation of M vectors
that follows affine-transformed multivariate Gaussian
distributions, thus f also follows Gaussian distribution:

f =

M∑
m=1

Wmgm ∼ N (0,

M∑
m=1

WmKmW
⊺
m), (15)

where Wm is a diagonal matrix with wm being the N
diagonal elements.
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Figure 7. Plate Notation of AKGPR.

• Finally, we can generate the targets y using the
Gaussian likelihood in Equation (5).

The plate diagram of this generative process is shown in
Figure 7. From Equation (15) we observe that the generative
process of AKGPR is equivalent to that of a GPR with a new
kernel:

k(x,x′) =

M∑
m=1

wm z
⊺
z′kRBF(x,x

′|ℓm)

hidden in Km

w′
m. (16)

Since z⊺z′ is independent of m, we can move it outside the
summation to avoid duplicate computation.

Equation (16) is almost the same as the AK in Definition 1,
except that this kernel is not normalized yet. When x =
x′, the kernel value k(x,x′) might be greater than 1. As
mentioned in Section 3.2.1, using an amplitude parameter α
to adjust the scale of the kernel value is a common practice
in GPR. Introducing the amplitude hyper-parameter requires
the kernel to be normalized; otherwise, the interplay between
the amplitude and the scaling effect of a kernel before
normalization makes the optimization difficult because more
local optima are introduced due to the symmetries of the
parameter space. We normalize w and z with ℓ2 - norm to
ensure that the maximum kernel value (when x = x′) is 1,
and α is the only parameter that controls the scale of kernel
value. After normalization, we now have the final version of
the proposed AK in Definition 1, which can be used in any
GP model. From the discussion above we have:

Proposition 1. The AKGPR generative model is equivalent
to a GPR model with the AK defined in Definition 1.

4.2 Applying AK to GPR
We use the AK with a GPR model and optimize all
the parameters by maximizing the log marginal likelihood
ln p(y|σ, α,θ,ϕ). Figure 8 shows the prediction results
on the example from Figure 4. Now we can accurately
model the highly varying part, the smooth parts, and the
abrupt changes. Compared to Figure 4, where the uncertainty
mainly depends on the proximity to training samples,
the AKGPR assigns higher uncertainty to the high-error
locations. The better uncertainty quantification is achieved
by putting more weight on the GPs with small length-
scales in partition#3 and those with large length-scales in
the other partitions. Note that the AKGPR switches the
membership vector z in the circled area to mask the inter-
partition correlations, which cannot be realized by length-
scale selection in Figure 6. Due to this modeling advantage,
the results in Figure 8 are qualitatively better than in Figure 6.

Figure 8. Learning the Same Function as in Figure 4 using
AKGPR. A weight or membership vector is visualized as a
stack of bar plots produced by its elements. Different colors
represent different length-scales or dimensions of the weight or
membership vector.

4.3 Remark on The Attentive Kernel
In this section, we discuss how to parameterize the weighting
and membership functions in the AK, the computational
complexity of the proposed kernel, and some details on
hyper-parameter optimization of non-stationary kernels.

4.3.1 Parameterization To instantiate an AK, we must
specify the weighting function wθ(x) and the membership
function zϕ(x). In the experiments, we find that sharing
a single neural network for length-scale selection and
instance selection does not affect the performance but
reduces the number of trainable parameters and sometimes
helps the training of the instance selection mechanism (see
Section 5.2.2). Therefore, we use the same set of parameters
θ = ϕ for the two attention mechanisms and choose a simple
neural network with two hidden layers (see Section 5.1.3
for more details). Using a simple neural network is an
arbitrary choice for simplicity and modeling flexibility. Other
parametric functions can also be used, and we leave the study
of alternative parameterization to future work.

4.3.2 Computational Complexity Kernel matrix compu-
tations are typically performed in a batch manner to take
advantage of the parallelism in linear algebra libraries.
Figure 9 shows the computational diagram of the self-
covariance matrix of an input matrix X ∈ RN×D for the case
where the same function parameterizes wθ(x) and zϕ(x).
The computation of a cross-covariance matrix and the case

where wθ(x) and zϕ(x) are parameterized separately are
handled similarly. We first pass X to a neural network
with two hidden layers to get W ∈ RN×M and Z ∈ RN×M .
The computational complexity of this step is O(NDH +
NH2 +NHM). Then, we compute a visibility masking
matrix O = ZZ⊺, which takes O(N2M). After getting the
pairwise distance matrix

(
O(N2D)

)
, we can compute the

base kernel matrices using different length-scales
(
O(N2)

)
.
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Figure 9. Computational Diagram of the AK.

The m-th kernel matrix is scaled by the outer-product matrix
of the m-th column of W, which takes O(N2M). Finally,
we sum up the scaled kernel matrices and multiply the
result with the visibility masking matrix to get the AK
matrix

(
O(N2M)

)
. We defer the discussion of the choices

of network size H and number of base kernels M to the
sensitivity analysis in Section 5.2.1. In short, these will
be relatively small numbers, so the overall computational
complexity is still O(N2D). In practice, we find that the
runtime of the AK experiments is around three times slower
than that of the RBF kernel.

4.3.3 Optimization We note that the model complexity
term discussed in Section 3.2.3 is insufficient for preventing
over-fitting when training non-stationary kernels for many
iterations, a point also mentioned in Tompkins et al. (2020a)
in their over-fitting analysis. Although the AK is more
robust to over-fitting (see Section 5.2.3), we implement an
incremental training scheme to improve the computational
efficiency and optimization robustness when using non-
stationary kernels in RIG. Specifically, we train the model
on all the collected data for Nt iterations after collecting
Nt samples at the t-th decision epoch, which corresponds
to line 7 to line 10 in Algorithm 1.

This training scheme can be considered a rule-of-thumb
early-stopping regularization. We also find that, when using a
neural network in a non-stationary kernel, the initial learning
rate of the network parameters should be smaller than that
of other hyper-parameters. For example, when using the AK,
the initial learning rates of θ or ϕ should be smaller than that
of {α, σ}.

Another important aspect is when to start optimizing the
hyper-parameters. Optimizing the parameters when the data
is too sparse and not representative can lead to wrong length-
scale prediction, which can bias the informative planning.
In RIG, exploring the environment and sampling data at
different locations is necessary before optimizing the hyper-
parameters. In our experiments, this is done by following
a predefined Bézier curve that explores the environment.
An alternative way to achieve this behavior is by fixing the
hyper-parameters to some appropriate values and training the
model only after collecting a certain amount of samples. This
approach does not require a pilot survey of the environment.
However, the user should have some prior knowledge of

Algorithm 1 Active Mapping with the AK.
Arguments: Nmax, α, σ, {km(x,x′)}Mm=1

wθ(x), zϕ(x), strategy

1: compute normalization and standardization statistics
2: kernel← AK(α, {km(x,x′)}Mm=1, wθ(x), zϕ(x))

3: model← GPR(kernel, σ)

4: t← 0

5: while model.Ntrain < Nmax do ▷ sampling budget
6: xinfo ← strategy(model) ▷ informative waypoint
7: Xt,yt ← tracking and sampling(xinfo) ▷ Nt samples
8: X̄t, ȳt ← normalize and standardize(Xt,yt)

9: model.add data(X̄t, ȳt)

10: model.optimize(Nt) ▷ maximize marginal likelihood
11: t← t+ 1

12: return model

the target environment in order to set the initial hyper-
parameters.

This training setup works well empirically, but we
acknowledge that developing more principled ways to learn
non-stationary GPs is an essential future direction, which
is still an open research problem and has recently received
increasing attention (Ober et al. 2021; van Amersfoort et al.
2021; Lotfi et al. 2022).

4.4 Active Mapping with The Attentive Kernel

Algorithm 1 shows how the AK can be used for
active mapping. The system requires the following input
arguments: the maximum number of training data Nmax, the
initial kernel amplitude α, the initial noise scale σ, a set of M
base kernels {km(x,x′)}Mm=1, functions wθ(x), zϕ(x), and
a sampling strategy. First, we need to compute the statistics
to normalize the inputs X roughly to the range [−1, 1]
and standardize the targets y to nearly have zero mean
and unit variance (line 1). We can get these statistics from
prior knowledge of the environment. The workspace extent
is typically known, allowing the normalization statistics
to be readily calculated. The target-value statistics can be
rough estimates or computed from a pilot environment
survey (Kemna et al. 2018). Then, we instantiate an AK
and a GPR with the given parameters (lines 2-3). At
each decision epoch t, the sampling strategy proposes
informative waypoints by optimizing an objective function
derived from the predictive uncertainty of the GPR (line 6).
The robot tracks the informative waypoints and collects
Nt samples along the trajectory (line 7). Note that the
number of collected samples is typically larger than the
number of informative waypoints. The new samples are
normalized and standardized and then appended to the
model’s training set (lines 8-9). Finally, we maximize the
log marginal likelihood for Nt iterations (line 10). The robot
repeats predicting (hidden in line 6), planning, sampling, and
optimizing until the sampling budget is exceeded (line 5).

5 Experiments

We design our experiments to address the following
questions.
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(a) N17E073 3D Perspective (b) N17E073 Bird’s-Eye View

(c) N43W080 3D Perspective (d) N43W080 Bird’s-Eye View

(e) N45W123 3D Perspective (f) N45W123 Bird’s-Eye View

(g) N47W124 3D Perspective (h) N47W124 Bird’s-Eye View

Figure 10. The Four Environments Used in the Elevation Mapping Tasks. Note that the 3D perspectives are rotated and rescaled
to highlight the visual features of the environments.

Q1 How does the AK compare to its stationary
counterpart and other non-stationary kernels in
prediction accuracy and uncertainty quantification?

Q2 If non-stationary kernels have better uncertainty
quantification capability, can we use the uncertainty
for active data collection and to further improve the
prediction accuracy?
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Figure 11. Pilot Survey Path. The red stars are control points
to generate the Bézier curve.

Q3 Some parameters in the AK need to be determined,
i.e., the number and range of the primitive length-
scales and the network hyper-parameters. Are these
parameters hard to tune? Is the performance of AK
sensitive to its parameter settings?

Q4 The AK consists of two ideas: length-scale selection
and instance selection. Which one contributes more to
the performance in the experiments?

Q5 How does the AK compare to the other non-stationary
kernels in over-fitting?

To answer Q1, we use random sampling experiments in
Section 5.1.6 to evaluate the AK and the compared kernels.
We run the random sampling experiments first because the
performance of a RIG system depends on not only the
model’s prediction and uncertainty but also the informative
planner. Sampling data uniformly at random (without an
informative planner) provides controlled experiments to
understand the effects of using different kernels. For Q2,
we conduct both active learning (Section 5.1.7) and RIG
experiments (Section 5.1.8) to disentangle the influence of
the model’s uncertainty and the planner. RIG considers the
physical constraints of the robot embodiment, while active
learning can sample arbitrary locations. We assess the AK via
sensitivity analysis, ablation study, and over-fitting analysis
to address the remaining questions.

5.1 Simulated Experiments
We have conducted extensive simulations in four
representative environments that exhibit various non-
stationary features. The elevation maps are downloaded
from the NASA Shuttle Radar Topography Mission
(dwtkns.com/srtm30m). Supplemental materials can be
found at weizhe-chen.github.io/attentive kernels.

5.1.1 Environments Figure 10 shows the 3D perspectives
of all the environments and the corresponding bird’s-
eye views. Note that the 3D plots are rotated for better
visualization. When comparing to the model prediction,
we use the bird’s-eye map as the ground truth, and we
will describe the environmental features in the 3D plots.
Looking at environment N17E073 from left to right, it
consists of a flat part, a mountainous area, and a rocky region
with many ridges. A good non-stationary GP model should
use decreasing length-scales from left to right. Also, note

that the most complex area (i.e., the red region) occupies
roughly one-third of the whole environment. N43W080
presents sharp elevation changes indicated by the arrows
while the lakebed is virtually flat. Using a large length-
scale can model most of the areas well, albeit better
prediction can be achieved by sampling densely around
the high-variability spots indicated by the arrows. It is
worth noting that better predictions will be more evident
in the visualization compared to the evaluation metrics that
average across the whole environment since the important
area only occupies a small portion of the environment, and
the improvements might be negligible in the metrics. In
N45W123, the environment has a narrow complex upper
part and a smoother lower part. The size of the complex
region is smaller than one-third of the environment. There
is also a “river” passing through the middle. The right part of
N47W124 varies drastically, while its left part is relatively
flat. Loosely speaking, N47W124 has the most significant
change in spatial variability, followed by N17E073 and then
N45W123, so the possible improvement margins of non-
stationary models in these environments should also decrease
in this order. Only after discovering and sampling the two
arrow-indicated spots can non-stationary models show an
advantage over a stationary one in predicting environment
N43W080.

5.1.2 Robot We set the extent of the environment
to 20× 20 meters and simulate a planar robot that
has a simple Dubins’ car model [ẋ1, ẋ2, v̇, ω̇] =
[v cos(ω), v sin(ω), a1, a2]. Here, xb ≜ [x1, x2]

⊺ is the
position, ω ∈ [−π, π) is the orientation, and a ≜ [a1, a2]

⊺

is the action that represents the change in the linear velocity
and angular velocity. The maximum linear velocity is set to
1 m/s, and the control frequency is 10 Hz. Although we
assume perfect localization in the simulated experiments,
to keep the same interface with the field experiments, we
consider that the robot has achieved a goal if it is within a
0.1-meter radius. This radius is an arbitrary choice within
the dimension of the robot. The robot has a single-beam
range sensor that collects one noisy elevation measurement
per second with a unit Gaussian observational noise. In
the random and active sampling experiments, the robot
can “jump” to an arbitrary sampling location to collect
data, so it does not follow Dubins’ car model. In the RIG
experiment, the robot tracks some informative locations
under the Dubins’ car kinematic constraint and collects
elevation measurements along its trajectory.

5.1.3 Models The GPR takes two-dimensional sampling
locations as inputs and predicts the elevation. We only allow
the robot to collect 700 samples, among which the first
50 data points are collected along a pilot survey path pre-
computed for the environment. As shown in Figure 11,
the path is generated from a Bézier curve with 18 control
points. The positions of the control points adapt to the
extent of the workspace accordingly. These 50 samples are
used to initialize the GPR and compute the statistics to
normalize the inputs and standardize the target values. If
the statistics are known in advanced, the pilot survey is not
necessary. One can also use a relatively large length-scale
and fix the hyper-parameters of the GPR in the early stage
so that the robot can explore the environment and collect
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Algorithm 2 A Myopic Informative Planning Strategy.
Notation
workspace: bounding box of the workspace
Nc: number of candidate locations
model: Gaussian process regression model
xb: robot’s position

1: procedure rig(workspace, Nc, model, pose)
2: Xc ∼ U(workspace, Nc) ▷ generate candidate locations

uniformly at random in the workspace
3: µ, ν ← model.predict(Xc) ▷ predictive mean and

variance
4: ε← entropy(ν) ▷ compute predictive entropy
5: d← distance(Xc,xb) ▷ pairwise Euclidean distances
6: ε̄← [ε−min(ε)]/[max(ε)−min(ε)]

7: d̄← [d−min(d)]/[max(d)−min(d)]

8: score← ε− d ▷ informativeness score
9: i← argmax(score)

10: return the i-th candidate in Xc

diverse data for hyper-parameter optimization and statistics
calculation. After normalization and standardization, we
initialize the hyper-parameters to ℓ = 0.5, α = 1.0, σ =
1.0, ℓmin = 0.01, ℓmax = 0.5. We use the default PyTorch
settings for initializing the network parameters. These hyper-
parameters and the neural network parameters in the non-
stationary kernels are jointly optimized by two Adam
optimizers (Kingma and Ba 2014) with initial learning
rates 0.01 and 0.001, respectively. We first run an initial
optimization of all the parameters for 50 steps. The
model’s prediction is evaluated on a 50× 50 linearly spaced
evaluation grid, i.e., 2500 query inputs, comparing with the
ground-truth elevation values.

We compare the AK with two existing non-stationary
kernels: the Gibbs kernel and Deep Kernel Learning (DKL).
Since the RBF kernel is widely used in RIG, we also add
this kernel as a stationary baseline. The Gibbs kernel extends
the length-scale to be any positive function of the input,
degenerating to an RBF kernel when using a constant length-
scale function. Following Remes et al. (2018), which showed
improved results, the length-scale function is modeled using
a neural network instead of another Gaussian process. DKL
addresses non-stationarity through input warping. A neural
network transforms the inputs to a feature space where the
stationary RBF kernel is assumed to be sufficient. We use
the same neural network with 2× 10× 10× 10 neurons and
hyperbolic tangent activation function for the AK and DKL
and change the output dimension to 1 for the Gibbs kernel
because it requires a scalar-valued length-scale function.

5.1.4 Sampling Strategies We use different sampling
strategies in the three sets of experiments. We randomly
draw a sample from a uniform distribution at each decision
epoch in random sampling experiments. In active sampling
experiments, we evaluate the predictive uncertainty on
1000 randomly generated candidate locations and then
sample from the location with the highest predictive
entropy. While the AK can be plugged into any advanced
informative planner for RIG, we use the naive informative
planner in Algorithm 2 for simplicity. Specifically, in
addition to the predictive entropy, this planner computes
the distances from these locations to the robot’s position.

We normalize the predictive entropy and distance to
[0, 1]. Each candidate location’s informativeness score is
defined as the normalized entropy minus the normalized
distance. This informativeness score considers the robot’s
physical constraints and encourages the robot to move to
a location with high predictive uncertainty and close to the
robot’s current position. The planner outputs the informative
waypoint with the highest score. A tracking controller is used
to move the robot to the waypoint. Note that the number
of collected samples Nt varies at different decision epochs
depending on the distance from the robot to the informative
waypoint.

5.1.5 Evaluation Metrics We care about the prediction
performance and whether the predictive uncertainty can
effectively reflect the prediction error. Following standard
practice in the GP literature, we use standardized mean
squared error (SMSE) and mean standardized log loss
(MSLL) to measure these quantities (see Chapter 2.5
in Rasmussen and Williams (2005)). SMSE is the mean
squared error divided by the variance of test targets.
After this standardization, a trivial method that makes a
prediction using the mean of the training targets has an
SMSE of approximately 1. To take the predictive uncertainty
into account, one can evaluate the negative log predictive
density (NLPD), a.k.a., log loss, of a test target,

− ln p(y⋆|x⋆) =
ln(2πν)

2
+

(y⋆ − µ)2

(2ν)
,

where µ and ν are the mean and variance in Equations (7)
and (8). MSLL standardizes the log loss by subtracting the
log loss obtained under the trivial model, which predicts
using a Gaussian with the mean and variance of the training
targets. The MSLL will be approximately zero for naive
methods and negative for better methods. In the experiments,
we also measured the root-mean-square error (RMSE) and
the mean absolute error (MAE). We report the mean and
standard deviation of the metrics over ten runs of the
experiments with different random seeds. For a more obvious
quantitative comparison, we present all the benchmarking
results in Tables 2 to 4. Each number summarizes a metric
curve by averaging the curve across the x-axis, i.e., the
number of samples, which indicates the averaged area under
the curve. A smaller area implies a faster drop in the
curve. For all the metrics, smaller values indicate better
performance.

5.1.6 Random Sampling Results Table 2 gives a positive
answer to Q1 firmly. The AK consistently outperforms
other kernels across all the considered environments and
evaluation metrics. To avoid clutter, we only visualize the
SMSE and MLSS curves because they are normalized
versions of RMSE and NLPD and the results of MAE are
consistent with that of RMSE.

Figure 12 shows the metrics versus the number of
collected samples of the four kernels in all environments.
From the SMSE curves, we can see that the advantage of
the AK (i.e., the green line) is most significant in N47W124,
followed by N17E073 and then N45W123. This order
complies with the changes in the spatial variability of these
environments. In environment N43W080, all the lines are
overlapped. N43W080 is the environment that has two spots
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Table 2. Random Sampling Benchmarking Results.

Environment Method SMSE↓10 MSLL↓0 NLPD↓ RMSE↓0 MAE↓0
N17E073 RBF (1.33 ± 0.03) × 10−1 (−9.9 ± 0.1) × 10−1 4.59 ± 0.01 (2.33 ± 0.03) × 101 (1.69 ± 0.03) × 101

AK (1.11 ± 0.04) × 10−1 −1.24 ± 0.01 4.34 ± 0.01 (2.13 ± 0.04) × 101 (1.50 ± 0.02) × 101

Gibbs (1.33 ± 0.01) × 10−1 −1.09 ± 0.02 4.50 ± 0.03 (2.33 ± 0.09) × 101 (1.66 ± 0.04) × 101

DKL (1.37 ± 0.06) × 10−1 (−9.7 ± 0.3) × 10−1 4.62 ± 0.03 (2.37 ± 0.05) × 101 (1.68 ± 0.04) × 101

N43W080 RBF (7.1 ± 0.3) × 10−2 −1.43 ± 0.02 3.87 ± 0.02 (1.23 ± 0.03) × 101 8.13 ± 0.06
AK (6.0 ± 0.5) × 10−2 −1.69 ± 0.06 3.62 ± 0.06 (1.11 ± 0.05) × 101 7.0 ± 0.2
Gibbs (7.2 ± 0.4) × 10−2 −1.48 ± 0.06 3.83 ± 0.06 (1.25 ± 0.05) × 101 8.3 ± 0.3
DKL (6.6 ± 0.8) × 10−2 −1.49 ± 0.04 3.81 ± 0.04 (1.19 ± 0.07) × 101 7.5 ± 0.3

N45W123 RBF (1.65 ± 0.07) × 10−1 (−9.4 ± 0.3) × 10−1 4.37 ± 0.03 (1.97 ± 0.04) × 101 (1.28 ± 0.03) × 101

AK (1.41 ± 0.06) × 10−1 −1.28 ± 0.02 4.03 ± 0.02 (1.80 ± 0.04) × 101 (1.15 ± 0.02) × 101

Gibbs (1.8 ± 0.1) × 10−1 −1.08 ± 0.01 4.24 ± 0.02 (2.07 ± 0.07) × 101 (1.34 ± 0.02) × 101

DKL (2.0 ± 0.1) × 10−1 (−9.1 ± 0.1) × 10−1 4.41 ± 0.01 (2.18 ± 0.07) × 101 (1.42 ± 0.06) × 101

N47W124 RBF (2.26 ± 0.07) × 10−1 (−7.2 ± 0.1) × 10−1 4.77 ± 0.01 (2.77 ± 0.04) × 101 (1.97 ± 0.02) × 101

AK (1.90 ± 0.05) × 10−1 −1.06 ± 0.01 4.43 ± 0.01 (2.53 ± 0.03) × 101 (1.77 ± 0.02) × 101

Gibbs (2.21 ± 0.08) × 10−1 (−7.7 ± 0.4) × 10−1 4.72 ± 0.05 (2.74 ± 0.05) × 101 (1.94 ± 0.03) × 101

DKL (2.34 ± 0.08) × 10−1 (−7.1 ± 0.2) × 10−1 4.78 ± 0.02 (2.82 ± 0.05) × 101 (1.98 ± 0.03) × 101

(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MLSS in N17E073 (f) MLSS in N43W080 (g) MLSS in N45W123 (h) MLSS in N47W124

Figure 12. Random Sampling Metrics versus Number of Collected Samples.

Table 3. Active Sampling Benchmarking Results.

Environment Method SMSE↓10 MSLL↓0 NLPD↓ RMSE↓0 MAE↓0
N17E073 RBF (1.41 ± 0.04) × 10−1 (−9.8 ± 0.2) × 10−1 4.61 ± 0.02 (2.38 ± 0.03) × 101 (1.70 ± 0.03) × 101

AK (1.01 ± 0.02) × 10−1 −1.32 ± 0.04 4.36 ± 0.02 (2.00 ± 0.02) × 101 (1.43 ± 0.02) × 101

Gibbs (1.37 ± 0.06) × 10−1 −1.20 ± 0.08 4.59 ± 0.03 (2.35 ± 0.06) × 101 (1.72 ± 0.05) × 101

DKL (1.33 ± 0.07) × 10−1 −1.09 ± 0.05 4.59 ± 0.03 (2.32 ± 0.06) × 101 (1.62 ± 0.05) × 101

N43W080 RBF (7.8 ± 0.2) × 10−2 −1.41 ± 0.01 3.96 ± 0.01 (1.28 ± 0.01) × 101 9.0 ± 0.1
AK (5.1 ± 0.2) × 10−2 −1.72 ± 0.02 3.74 ± 0.03 (1.02 ± 0.02) × 101 6.9 ± 0.1
Gibbs (8.0 ± 0.6) × 10−2 −1.48 ± 0.05 3.98 ± 0.06 (1.31 ± 0.06) × 101 9.8 ± 0.4
DKL (7 ± 1) × 10−2 −1.6 ± 0.1 3.9 ± 0.1 (1.2 ± 0.1) × 101 8.2 ± 0.6

N45W123 RBF (1.47 ± 0.04) × 10−1 (−9.7 ± 0.1) × 10−1 4.36 ± 0.01 (1.85 ± 0.02) × 101 (1.23 ± 0.02) × 101

AK (1.08 ± 0.03) × 10−1 −1.55 ± 0.04 4.16 ± 0.02 (1.57 ± 0.03) × 101 (1.14 ± 0.03) × 101

Gibbs (1.29 ± 0.06) × 10−1 −1.48 ± 0.05 4.30 ± 0.02 (1.73 ± 0.04) × 101 (1.28 ± 0.02) × 101

DKL (1.6 ± 0.1) × 10−1 −1.18 ± 0.04 4.35 ± 0.03 (1.91 ± 0.07) × 101 (1.35 ± 0.04) × 101

N47W124 RBF (2.15 ± 0.05) × 10−1 (−7.5 ± 0.1) × 10−1 4.75 ± 0.01 (2.70 ± 0.03) × 101 (1.90 ± 0.03) × 101

AK (1.78 ± 0.08) × 10−1 −1.09 ± 0.07 4.56 ± 0.01 (2.45 ± 0.06) × 101 (1.75 ± 0.03) × 101

Gibbs (2.04 ± 0.06) × 10−1 (−9.9 ± 0.5) × 10−1 4.71 ± 0.02 (2.63 ± 0.04) × 101 (1.86 ± 0.03) × 101

DKL (2.2 ± 0.1) × 10−1 (−8.1 ± 0.5) × 10−1 4.76 ± 0.05 (2.75 ± 0.09) × 101 (1.94 ± 0.05) × 101

with drastic variations. Too few random samples landed on
the two spots to allow the AK to learn better prediction.
That said, the MLSS curve of the AK is still outstanding in

this environment. The advantage of the AK on uncertainty
quantification is significant in all environments. The Gibbs
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(a) Prediction of RBF in N47W124 (b) Prediction of AK in N47W124 (c) Prediction of Gibbs in N47W124 (d) Prediction of DKL in N47W124

(e) Uncertainty of RBF in N47W124 (f) Uncertainty of AK in N47W124 (g) Uncertainty of Gibbs in N47W124 (h) Uncertainty of DKL in N47W124

(i) Error of RBF in N47W124 (j) Error of AK in N47W124 (k) Error of Gibbs in N47W124 (l) Error of DKL in N47W124

Figure 13. Snapshots of the Random Sampling Experiments with Different Kernels.

(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MLSS in N17E073 (f) MLSS in N43W080 (g) MLSS in N45W123 (h) MLSS in N47W124

Figure 14. Active Sampling Metrics versus Number of Collected Samples.

kernel also has better uncertainty quantification than the RBF
kernel and DKL.

Figure 13 visually compares kernels’ prediction, uncer-
tainty, and absolute error after collecting 570 samples in
environment N47W124. Note that the prediction and error
maps use the same color scale for easy comparison across
different methods. Each uncertainty map uses its color
scale – red color only indicates relatively high uncertainty
within the map. These rules applied to other heat maps
hereafter. The AK learns more detailed environmental fea-
tures (c.f., Figure 10h), hence obtaining better SMSE; the AK
also assigns higher uncertainty to the region that is relatively
more difficult to model, thus giving better MSLL. As a
comparison, the RBF kernel ignores these details and assigns
higher uncertainty to the sparsely sampled areas. The Gibbs

kernel also has a smooth prediction in the complex region
because it learns an incorrect length-scale function. Instead
of assigning small length-scales to the complex region, it
places them in the lower-right corner, indicated by the high
uncertainty. DKL’s prediction and uncertainty maps have
similar patterns to the Gibbs kernel.

5.1.7 Active Sampling Results The objective of active
sampling experiments is to investigate whether prediction
uncertainty can influence sampling towards significant
areas and ultimately enhance accuracy. By comparing the
SMSE results of the AK in Table 2 and Table 3, we
observe a clear improvement in accuracy when using the
active sampling strategy. Specifically, the relative accuracy
improvements are 9%, 15%, 23%, and 6% in N17E073,
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(a) Prediction of AK in N43W080 (b) Prediction of AK in N45W123 (c) Prediction of Gibbs in N45W123 (d) Prediction of DKL in N45W123

(e) Uncertainty of AK in N43W080 (f) Uncertainty of AK in N45W123 (g) Uncertainty of Gibbs in N45W123 (h) Uncertainty of DKL in N45W123

(i) Errorr of AK in N43W080 (j) Error of AK in N45W123 (k) Error of Gibbs in N45W123 (l) Error of DKL in N45W123

Figure 15. Snapshots of the Active Sampling Experiments with Different Kernels.

Table 4. Robotic Information Gathering Benchmarking Results.

Environment Method SMSE↓10 MSLL↓0 NLPD↓ RMSE↓0 MAE↓0
N17E073 RBF (1.45 ± 0.03) × 10−1 (−9.7 ± 0.2) × 10−1 4.63 ± 0.02 (2.42 ± 0.02) × 101 (1.73 ± 0.02) × 101

AK (1.14 ± 0.04) × 10−1 −1.27 ± 0.03 4.41 ± 0.04 (2.14 ± 0.04) × 101 (1.51 ± 0.02) × 101

Gibbs (1.43 ± 0.07) × 10−1 −1.16 ± 0.04 4.61 ± 0.04 (2.40 ± 0.07) × 101 (1.76 ± 0.06) × 101

DKL (1.38 ± 0.09) × 10−1 −1.01 ± 0.06 4.61 ± 0.04 (2.38 ± 0.08) × 101 (1.67 ± 0.06) × 101

N43W080 RBF (7.7 ± 0.4) × 10−2 −1.40 ± 0.02 3.94 ± 0.02 (1.27 ± 0.03) × 101 8.8 ± 0.2
AK (6.6 ± 0.2) × 10−2 −1.64 ± 0.04 3.78 ± 0.03 (1.14 ± 0.02) × 101 7.69 ± 0.09
Gibbs (7.6 ± 0.9) × 10−2 −1.50 ± 0.05 3.91 ± 0.07 (1.25 ± 0.07) × 101 9.0 ± 0.6
DKL (7.0 ± 0.1) × 10−2 −1.56 ± 0.07 3.85 ± 0.06 (1.19 ± 0.08) × 101 8.1 ± 0.6

N45W123 RBF (1.60 ± 0.06) × 10−1 (−9.3 ± 0.2) × 10−1 4.39 ± 0.02 (1.93 ± 0.04) × 101 (1.29 ± 0.02) × 101

AK (1.32 ± 0.06) × 10−1 −1.43 ± 0.04 4.15 ± 0.03 (1.71 ± 0.04) × 101 (1.21 ± 0.03) × 101

Gibbs (1.38 ± 0.07) × 10−1 −1.34 ± 0.04 4.30 ± 0.03 (1.79 ± 0.05) × 101 (1.32 ± 0.04) × 101

DKL (1.7 ± 0.2) × 10−1 −1.06 ± 0.08 4.41 ± 0.06 (1.99 ± 0.09) × 101 (1.40 ± 0.06) × 101

N47W124 RBF (2.23 ± 0.06) × 10−1 (−7.4 ± 0.1) × 10−1 4.76 ± 0.01 (2.75 ± 0.03) × 101 (1.94 ± 0.02) × 101

AK (1.85 ± 0.04) × 10−1 −1.10 ± 0.03 4.48 ± 0.03 (2.50 ± 0.03) × 101 (1.79 ± 0.03) × 101

Gibbs (2.12 ± 0.08) × 10−1 (−9.0 ± 0.5) × 10−1 4.73 ± 0.03 (2.69 ± 0.05) × 101 (1.91 ± 0.02) × 101

DKL (2.36 ± 0.06) × 10−1 (−7.7 ± 0.4) × 10−1 4.78 ± 0.03 (2.83 ± 0.03) × 101 (1.99 ± 0.04) × 101

N43W080, N45W123, and N47W124, respectively, which
answers Q2. The AK’s better uncertainty quantification can
further enhance prediction accuracy when the data collection
strategy is guided by predictive uncertainty. However, we
do not observe consistent improvements when using active
sampling with the other kernels. Although they all improve
the SMSE in N45W123 and N47W124, they do not improve
the accuracy in the other two environments. Note that
the relative improvements in N17E073 and N47W124 are
smaller because the AK has already achieved good accuracy
in these two environments when using random samples,
so there is less room to improve than in the other two
environments.

The AK still performs the best in the active sampling
experiments, as seen in Table 3 and Figure 14. The SMSE
curves in Figure 14 and Figure 12 are similar, except that

the advantage gap of the AK shrinks in N47W124 and
increases in N43W080. We attribute the faster error drop
in N43W080 to the better sample distribution. Figures 15a
and 15e show that, when using the AK, more informative
samples are collected in the complex regions in N43W080.
Figure 15 also shows the prediction, uncertainty, and 570
samples of the three non-stationary kernels in N45W123,
where all methods provide better accuracy when using active
sampling strategies. The predictions of the AK and the
Gibbs kernel are visually similar. The minor difference
is located at the lower-right corner, where the AK learns
more details (c.f., Figure 10f). This difference comes from
the different sampling patterns. The AK samples the right
part densely while the Gibbs kernel emphasizes the upper-
right (c.f., Figures 15f and 15g). Also, the Gibbs kernel
samples the left part of the environment very sparsely.
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(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MLSS in N17E073 (f) MLSS in N43W080 (g) MLSS in N45W123 (h) MLSS in N47W124

Figure 16. Robotic Information Gathering Metrics versus Number of Collected Samples.

(a) Prediction of RBF in N17E073 (b) Prediction of AK in N17E073 (c) Prediction of Gibbs in N17E073 (d) Prediction of DKL in N17E073

(e) Uncertainty of RBF in N17E073 (f) Uncertainty of AK in N17E073 (g) Uncertainty of Gibbs in N17E073 (h) Uncertainty of DKL in N17E073

(i) Error of RBF in N17E073 (j) Error of AK in N17E073 (k) Error of Gibbs in N17E073 (l) Error of DKL in N17E073

Figure 17. Snapshots of the Robotic Information Gathering Experiments with Different Kernels.

Figure 15d shows that DKL is good at depicting the river.
However, it connects the two “hotspots” at the upper-
right corner, which is an interesting phenomenon: two non-
adjacent locations are correlated. This phenomenon can be
found in all the DKL predictions (see Figures 13d and 17d).
The cause of this behavior is that the neural network in DKL
warps the geometry of the input space, so the correlation
of two given data points is no longer proportional to their
distance in the original input space. It is non-trivial to explain
the prediction uncertainty and sampling distribution of DKL
shown in Figure 15h.

5.1.8 Informative Planning Results The RIG experiments
are more challenging than random and active sampling
because once the robot decides to visit an informative

waypoint, it has to collect the intermediate samples along
the trajectory, so the results in Table 4 should not be
compared with that of Tables 2 and 3. Given a fixed
maximum number of samples, the number of decision
epochs of RIG is much smaller than that of active sampling,
which makes informed decisions more essential. Table 4
shows that AK consistently leads across all metrics in the
four environments with the simple informative planning
strategy described in Algorithm 2. The conclusions we can
draw from Figure 16 are the same as in active sampling
experiments. From Figure 16, we can see again that the AK
has the fastest error reduction, especially in N47W124. All
non-stationary kernels have better MLSS than the stationary
baseline. The AK ranks first in MSLL, and the Gibbs kernel
outperforms DKL.
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(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MSLL in N17E073 (f) MSLL in N43W080 (g) MSLL in N45W123 (h) MSLL in N47W124

(i) MAE in N17E073 (j) MAE in N43W080 (k) MAE in N45W123 (l) MAE in N47W124

Figure 18. Sensitivity Analysis of the Number of Base Kernels M .

(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MSLL in N17E073 (f) MSLL in N43W080 (g) MSLL in N45W123 (h) MSLL in N47W124

(i) MAE in N17E073 (j) MAE in N43W080 (k) MAE in N45W123 (l) MAE in N47W124

Figure 19. Sensitivity Analysis of the Number of Hidden Units H .

Figure 17 is a snapshot of different methods’ prediction,
uncertainty, and absolute error after collecting 400 samples
in N17E073. The prediction maps show that the RBF kernel
misses many environmental features that non-stationary
kernels can capture. We observe the following behaviors by

comparing the patterns in the uncertainty maps and error
maps.

• Regardless of the prediction errors, the RBF kernel
gives the less-sampled area higher uncertainty, so the
robot’s sampling path uniformly covers the space.
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(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MSLL in N17E073 (f) MSLL in N43W080 (g) MSLL in N45W123 (h) MSLL in N47W124

(i) MAE in N17E073 (j) MAE in N43W080 (k) MAE in N45W123 (l) MAE in N47W124

Figure 20. Sensitivity Analysis of the Minimum Primitive Length-Scale ℓmin.

(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MSLL in N17E073 (f) MSLL in N43W080 (g) MSLL in N45W123 (h) MSLL in N47W124

(i) MAE in N17E073 (j) MAE in N43W080 (k) MAE in N45W123 (l) MAE in N47W124

Figure 21. Sensitivity Analysis of the Maximum Primitive Length-Scale ℓmax.

• The AK assigns higher uncertainty in the regions with
more significant spatial variation; thus, the sampling
path focuses more on the complex region.

• The Gibbs kernel also has higher uncertainty in the
rocky region but does not assign high uncertainty
to the lower right. Therefore, the sampling path

concentrates on the upper-right corner and misses
some high-error spots at the bottom.

• When using DKL, the robot also samples the upper-
right corner densely, and the prediction error at the
bottom of the map is the largest across different
methods. However, DKL places high uncertainty in the
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(a) SMSE in N17E073 (b) SMSE in N43W080 (c) SMSE in N45W123 (d) SMSE in N47W124

(e) MSLL in N17E073 (f) MSLL in N43W080 (g) MSLL in N45W123 (h) MSLL in N47W124

(i) MAE in N17E073 (j) MAE in N43W080 (k) MAE in N45W123 (l) MAE in N47W124

Figure 22. Results of the Four Variants in the Ablation Study.

(a) Training MSLL in Volcano (b) Test MSLL in Volcano (c) Training MSLL in N17E073 (d) Test MSLL in N17E073

Figure 23. Results of the Over-Fitting Analysis in the Volcano Environment Introduced in Figure 1 and N17E073.

high-area region, which can guide the robot to visit
these spots later.

5.2 Further Evaluation and Analysis

We evaluate the AK under different parameter settings for
sensitivity analysis and compare four variants of the AK for
ablation study. The challenges of learning the model are also
discussed in this section.

5.2.1 Sensitivity Analysis We use the same experiment
configurations as the main experiments in the sensitivity
analysis but only run the random sampling strategy. In each
analysis, we only change one target parameter to different
settings and keep all the other parameters fixed. Figure 18
presents the sensitivity analysis results of the number of base
kernels M , which should be larger than 2. Increasing M
brings better performance, albeit with a diminishing return
and higher computational complexity. Choosing a number in
the range of [5, 10] is a good trade-off between performance
and computational efficiency.

Figure 19 shows that the AK is not sensitive to the number
of hidden units in the neural network as long as H is not too
small. When H = 2, the uncertainty quantification ability
decreases, as indicated by the blue MSLL curve. In this case,
the AK can only blend the minimum and maximum primitive
length-scales, and the instance selection mechanism can only
use a two-dimensional membership vector.

Smaller ℓmin yields better performance, as shown
in Figure 20, albeit with a diminishing improvement. The
blue and green lines overlap, meaning that the advantage is
negligible when choosing a minimum length-scale smaller
than 0.01. If the inputs are normalized to [−1, 1], setting
the minimum primitive length-scale to 0.01 is appropriate.
It is worth noting that this is the minimum primitive length-
scale for the length-scale selection component. It does not
mean that the AK can only learn the minimum correlation
corresponding to this minimum length-scale because the
instance selection component can further decrease the kernel
values.

As shown in Figure 21, the AK is robust to the choice of
the maximum length-scale as long as it is not too small, e.g.,

Prepared using sagej.cls



22 Journal Title XX(X)

(a) An Autonomous Surface Vehicle is performing elevation information gathering task using a sonar.

(b) System

x

y

(c) Workspace

(d) Early Snapshot

Collected Data

Informative Waypoint

High Uncertainty

Low Uncertainty

High Elevation

Low Elevation

(e) Final Snapshot

Figure 24. An Active Elevation Mapping Field Experiment. (a) illustrates the physical space the ASV is mapping, and (b) shows
the ASV and its components. (c) shows the rectangular workspace for the elevation mapping experiment. We can see two areas
with significant elevation features in two highlighted areas, but other regions are opaque. (d) and (f) are two snapshots of the
GPR prediction in the rectangular workspace, with the predictive-mean map at the bottom and the uncertainty map (i.e., standard
deviation) at the top. In (d), the lower part shows that some features of the highlighted areas have already been detected. The
uncertainty is significant on the left side of the workspace and a smaller region in the top right. (e) shows the snapshot at the end
of the experiment. The ASV has extensively explored the lower left portion and has a detailed estimate of its elevation map. The
smooth portion in the middle shows differences in elevation, which are not visible in the satellite image. The remaining areas of high
uncertainty are at boundaries of elevation changes in that region and the top right.
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0.2 or 0.3. If the inputs are normalized to [−1, 1], choosing a
value in the range [0.5, 1.0] is reasonable.

To conclude, these results are positive indicators of
addressing Q3: the AK has robust performance to various
parameter settings and does not require laborious parameter
tuning.

5.2.2 Ablation Study We compare four AK variants in
the ablation study via random sampling experiments. Full
means the AK presented in the paper, Weight represents
the AK with only length-scale selection, Mask stands for
instance selection alone, and NNx2 uses two separated
neural networks to parameterize the similarity attention
and visibility attention independently. Figure 22 shows that
using only the instance selection component deteriorates
the performance significantly, so the length-scale selection
component contributes more to the performance, which
answers Q4. We do not observe obvious performance
change after dropping the instance selection component.
Nonetheless, as illustrated in Figure 8, we expect instance
selection to provide better modeling of sharp transitions.
Since instance selection improves the prediction only in
a small region, the improvement might be subtle in the
aggregated evaluation metrics. With our current training
scheme, using two separate neural networks does not provide
a better performance, and one of the MSLL curves is
surpassed by the one-network version (Figure 22f). The two-
network implementation might show its strength with a more
refined approach to parameter training.

5.2.3 Over-Fitting Analysis Non-stationary kernels can
enhance the modeling flexibility of GPR, but they are also
more susceptible to over-fitting. This can lead to degraded
prediction accuracy and uncertainty estimates. To evaluate
the robustness of non-stationary kernels, we present an over-
fitting analysis in N17E073 and the Mount St. Helens
environment. The latter is referred to as the volcano
environment hereafter. We sample 600 training data from
the environment uniformly at random. All the training
configurations are the same as in Section 5.1.3, except for the
number of optimization iterations. We train all the models for
2000 iterations and evaluate the prediction on the training set
and a 100× 100 test grid at each optimization step. Figure 23
shows the training and test MSLL. In some environments,
as shown in Figures 23a and 23b, the AK is fairly robust,
while the Gibbs kernel and DKL show a clear over-fitting
trend – the training MSLL goes down while the test MSLL
goes up. However, as shown in Figures 23c and 23d, all
the non-stationary kernels suffer from over-fitting in some
environments, such as N17E073. To mitigate this issue,
after collecting one new sample, the optimizer takes only one
gradient step on the whole dataset. This heuristic training
scheme works well in practice. We have tried to optimize
the model for more iterations at each decision epoch. All
the non-stationary kernels give poor prediction (the AK
is still more robust in this case), and the issue persists
even after collecting more data. Overall, the answer to
Q5 is positive: the AK is more robust to over-fitting than
other non-stationary kernels, but it can still over-fit in some
environments. Developing more advanced training schemes
to mitigate over-fitting is an essential future direction.

5.3 Field Experiment
The proposed AK is demonstrated in a RIG task – active
elevation, a.k.a. bathymetric mapping for underwater terrain.
Figure 24a shows our robot working in the environment.
The goal is to explore an a priori unknown quarry lake
and build an elevation map of the underwater terrain.
There are two reasons for choosing this task. First, the
underwater terrain is static, so the ground-truth environment
is available by aggregating the sampled data across different
field experiment trials after offsetting the water surface level.
Second, the underwater terrain in our target environment has
a clear separation between “interesting” regions and “boring”
areas, which makes it an ideal testbed for RIG with non-
stationary GPs.

5.3.1 Target Environment The target environment is
a quarry lake formed by seeped-in groundwater and
precipitation since mining and quarrying have been
suspended for a long time. The floor of the quarry lake is
complex in that there are many submerged quarry stones
and even abandoned equipment. Our goal is to build an
elevation map within the workspace, i.e., the white rectangle
shown in Figure 24c, with a small number of samples.
The workspace is 80× 88 meters We chose this workspace
because the central part is relatively flat, while the two circled
areas have interesting spatial variations. We can vaguely see
the environmental features in these circled spots from the
satellite imagery.

5.3.2 Hardware Setup We deploy the Autonomous
Surface Vehicle (ASV) shown in Figure 24b. The
robot has a single-beam sonar pointing downward to
collect depth measurements and a DJI Manifold 2-C
computer for onboard computation. The sonar is the Ping
Sonar Altimeter and Echosounder from BlueRobotics. Its
maximum measurement distance is 50 meters underwater,
and the beam width is 30 degrees. It comes with a
Python software interface, and we implemented its ROS
driver, which is publicly available at github.com/Weizhe-
Chen/single beam sonar. The ASV from Clearpath Robotics
has a built-in Extended Kalman Filter (EKF) localization
module that fuses the GPS signals and the UM6 Inertial
Measurement Unit (IMU) data. The robot also has an
embedded WiFi router for communication in the field. The
ASV is 1.3, 0.94, and 0.34 meters in length, width, and
height, respectively, and is actuated by two thrusters at
the rear. It is a differential-drive robot, but its thrusters’
maximum forward spinning speed is faster than the backward
one. We restrict the maximum linear velocity to 0.7 meters
per second and send linear and angular velocities to the
robot to track an informative waypoint using a PD controller
available at github.com/Weizhe-Chen/tracking pid. Since the
localization is unreliable, the robot only needs to reach a two-
meter-radius circle centered at the waypoint.

5.3.3 Results Figure 24 shows the snapshots of the model
prediction, uncertainty, and sampling path at different stages.
We can see that the prediction uncertainty is effectively
reduced after sampling. Most of the samples (i.e., yellow
dots) are collected in critical regions with drastic elevation
variations. Such a biased sampling pattern allows the robot
to model the general trend of smooth regions with a
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small number of samples while capturing the characteristic
environmental features at a fine granularity.

6 Limitations and Future Work
Although the AK has the same asymptotic computational
complexity as the RBF kernel, its empirical runtime is slower
than that of the RBF kernel. Thus one important future
work is to speed up the computation. We leverage heuristics
to train the non-stationary kernels in our experiments,
which can be improved by a more principled training
scheme in the future. Using a stationary kernel in non-
stationary environments is just one example of model
misspecification. Investigating the influence of other types of
model misspecification on RIG is interesting. For example,
the Gaussian likelihood assumes no sensing outliers, and
the observational noise scale is the same everywhere.
Developing proper ways to handle sensing outliers and
modeling heteroscedastic noise can be important future work
for RIG. We only tried neural-network parameterization
for the weighting function and the membership function.
Comparing different parameterization methods for the AK is
also valuable. Although we have only showcased the efficacy
of AK in elevation mapping tasks, it has potential to benefit
other applications such as 3D reconstruction, autonomous
exploration and inspection, as well as search and rescue.
Exploring its utility in these domains would be interesting.
Additionally, while we focused on non-stationary kernels
in the spatial domain, developing spatiotemporal kernels is
crucial for RIG in dynamic environments.

7 Conclusion
In this paper, we investigate the uncertainty quantification of
probabilistic models, which is decisive for the performance
of RIG but has received little attention. We present a
family of non-stationary kernels called the Attentive Kernel,
which is simple, robust, and can extend any stationary
kernel to a non-stationary one. An extensive evaluation
of elevation mapping tasks shows that AK provides better
accuracy and uncertainty quantification than the two existing
non-stationary kernels and the stationary RBF kernel. The
improved uncertainty quantification guides the informative
planning algorithms to collect more valuable samples around
the complex area, thus further reducing the prediction error.
A field experiment demonstrates that AK enables an ASV
to collect more samples in important sampling locations
and capture the salient environmental features. The results
indicate that misspecified probabilistic models significantly
affect RIG performance, and GPR with AK provides a good
choice for non-stationary environments.
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