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Abstract
This paper presents a multimodal maritime dataset and the data collection procedure used to gather it, which aims
to facilitate autonomous navigation in restricted water environments. The dataset comprises measurements obtained
using various perception and navigation sensors, including a stereo camera, an infrared camera, an omnidirectional
camera, three LiDARs, a marine radar, a global positioning system, and an attitude heading reference system. The
data were collected along a 7.5-km-long route that includes a narrow canal, inner and outer ports, and near-coastal
areas in Pohang, South Korea. The collection was conducted under diverse weather and visual conditions. The dataset
and its detailed description are available for free download at https://sites.google.com/view/pohang-canal-dataset.
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1 Introduction

Recent advances in autonomous vehicle technology have
led to a growing interest in autonomous navigation in
maritime environments. The development of advanced
perception sensors with rapid progress of computer vision
and deep learning have enabled researchers to explore
the potential of autonomous surface vehicles (ASVs) in
the maritime domain. However, unlike on-land applications
such as self-driving cars, acquiring real-world datasets with
sufficient quantity and variety for maritime environments is
challenging. As a result, there is a shortage of such datasets
available to researchers and developers in this field.

Previous studies on maritime datasets have primarily
focused on computer vision applications, specifically vessel
detection and classification. While these visual datasets
are useful for developing maritime computer vision
algorithms, other types of perceptual and navigation data
that are synchronously acquired onboard are necessary
to perform multi-sensor fusion and achieve reliable and
robust operation. For example, LiDARs and cameras may
play a crucial role in tasks requiring precision, such as
docking (Pereira et al. 2021), object detection, and collision
avoidance (Han et al. 2020), as well as autonomous
navigation in narrow waterways (Wang et al. 2019).
Additionally, radar is capable of detecting objects in the
distance (Kim et al. 2021) and can be used for vehicle
localization through coastline detection (Han et al. 2019).
Therefore, it is essential to collect and analyze a diverse
range of perceptual and navigation data to develop effective
autonomous navigation systems for the maritime domain.

This paper presents a multimodal maritime dataset that
includes diverse types of perceptual and navigation data
to aid in developing autonomous navigation capabilities in
restricted water environments such as narrow canals and port
areas. The dataset was collected in Pohang, South Korea,
following a 7.5-km-long route that comprised a narrow canal,
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Figure 1. Vehicle used for data collection

port, and near-coastal areas. Figure 1 shows the vehicle and
sensor suite used for data acquisition, and Fig. 2 displays
data from all of the perceptual sensors used in this study.
The vehicle was equipped with two GPS antennas, one in
the front and one in the back, as well as an attitude heading
reference system (AHRS) mounted at the back of the vehicle.
Two visual cameras that served as a stereo camera were
mounted in the front of the vehicle, along with an infrared
camera. Additionally, three LiDARs were mounted on the
vehicle’s front, port, and starboard sides. An omnidirectional
camera and a marine radar were mounted on a vertical slide
at the back of the vehicle, as shown in Figure 1.
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Figure 2. Example of the dataset

The remainder of this paper is organized as follows. In
Section 2, we summarize the existing open datasets related
to maritime environments. Section 3 describes the system
configuration, including the hardware sensor system and
recording system. We present the sensor calibration methods
used in this study in Section 4. In Section 5, we describe
the configuration and characteristics of the dataset, including
the environmental conditions and the structure of the dataset.
Finally, the concluding remarks are provided in Section 6.

2 Related work
Real-world datasets are crucial for validating algorithms
and learning materials in deep learning-based mobile
robotics applications. Many on-land datasets have been
published and used for evaluating performance, particularly
in simultaneous localization and mapping (SLAM), as well
as for data-intensive deep learning studies. These datasets
include perceptual and navigation data collected in various
environments, such as parks and campuses using unmanned
ground vehicles (Smith et al. 2009), roads using cars (Geiger
et al. 2012), and indoors using unmanned aerial vehicles
(UAVs) (Burri et al. 2016). To enhance these datasets,
researchers have explored different scenes (Jeong et al. 2019)
and employed additional sensors like radars (Barnes et al.
2020; Kim et al. 2020; Burnett et al. 2022).

Previous research on maritime datasets has primarily
focused on object detection and classification by providing
image data with ground-truth annotations. For instance, in
Zhang et al. (2015), cropped visible and infrared images of
vessels captured during both the day and night were provided
for classification tasks. In Bloisi et al. (2015), images
obtained from surveillance cameras situated in buildings
along the Grand Canal of Venice, Italy, were supplied with
bounding box annotations. Furthermore, in Prasad et al.
(2017), visible and near-infrared videos captured from on-
shore and onboard locations were provided with ground-
truth annotations of horizon detection, object detection, and
tracking data. In Ribeiro et al. (2019), airborne surveillance
images captured using a UAV were supplied with bounding
box annotations for object detection and tracking. In
Bovcon et al. (2019), onboard camera images with semantic
segmentation labels of the sky, obstacles, and water were
provided. In Taipalmaa et al. (2019), the authors focused on
water segmentation through the visual images captured using
an onboard camera. Finally, in Lin et al. (2022), the authors
presented simulated and real-world data of 3D LiDAR point

clouds and ground-truth 3D bounding boxes, focusing on
deep-learning-based object detection.

There is a scarcity of publicly available maritime datasets
that contain both onboard perceptual and navigation data.
Only a few datasets such as Bovcon et al. (2018) and Cheng
et al. (2021) have been made available. The former provides
stereo camera images, GPS, and inertial measurement
unit (IMU) data for semantic segmentation of waterways,
while the latter presents onboard perceptual and navigation
data collected in different weather conditions in an inland
waterway using a small unmanned surface vehicle. This
dataset includes a stereo camera, a 16-channel 3D LiDAR,
three millimeter-wave radars, a GPS, and an onboard
IMU. It also provides ground-truth annotations of water
segmentation and the ground-truth trajectory using GPS and
IMU data.

3 System configuration

3.1 Sensor configuration
The sensor configuration of the vehicle is shown in Figure 3.
The vehicle used in the study was a 7.9 m long and 2.6 m
wide cruise boat, with a weight of 1.7 tons and a capacity
of 12 persons. Two GPS antennas were mounted on the
front and back of the vehicle, respectively, with a baseline of
6.8 m. They were connected to a global navigation satellite
system (GNSS) with real-time kinematic (RTK) receiver,
providing location with an RTK accuracy of 0.01 m + 1 ppm
and heading measurement with an error smaller than 0.28◦.
The GPS data was recorded at a frequency of 5 Hz. An
attitude and heading reference system (AHRS) was placed
on the floor at the back of the vehicle. The AHRS provided
acceleration measurements with a resolution of 0.02 mg and
bias of 0.04 mg, gyroscopic measurements with a resolution
of 0.003◦/s and bias of 8◦/h, and attitude measurements
with a root mean square error of 0.5◦ along the pitch and roll
directions. The magnetometer of the AHRS was calibrated
using the provided software. The AHRS data was recorded
at a frequency of 100 Hz.

To enhance the detection of nearby objects and safety
hazards, three LiDARs were installed on the front and
sides of the vehicle. A 64-channel LiDAR was mounted
horizontally at the front to detect obstacles or vehicles
along the path. Two 32-channel LiDARs were positioned
on the port and starboard sides of the vehicle to extend the
measurement coverage. These side LiDARs were installed at
a downward heading of 30◦ relative to the horizontal plane to
detect small objects on the surface that may pose a threat to
vehicle operation. Each LiDAR had a range of 120 m, with
a resolution of 0.3 cm and a precision of 1.0 to 5.0 cm. The
horizontal field of view (FOV) was 360◦ with a resolution
of 2048, and the vertical FOV of all LiDARs was 33.2◦.
The vertical resolution varied depending on the number of
channels (64 for the front LiDAR and 32 for the port and
starboard LiDARs). The point cloud data collected from each
LiDAR were gathered asynchronously at 10 Hz per cycle. A
frequency-modulated continuous-wave (FMCW) radar with
an X-band wavelength (9.3 GHz to 9.4 GHz) was mounted at
the back of the vehicle. The radar had a range of 50 to 1654.8
m and rotated 1.0 to 1.3 times per second.
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(d) Omnidirectional camera and a marine radar

Figure 3. Hardware sensor configuration: a diagram of the vehicle viewed from the starboard side (a) and front side (b), a picture
of the camera module (c), and the omnidirectional camera and radar mounted on the vertical slide (d). The coordinates are
depicted using red (x), green (y), and blue (z) arrows.

The camera module, as depicted in Fig. 3c, was mounted at
the front of the vehicle and equipped with two visual cameras
and an infrared camera, all with 3D-printed lens hoods. The
two visual cameras were configured as a stereo camera and
synchronized at the hardware level using a trigger cable.
Images were acquired simultaneously from both cameras at
a frequency of 10 Hz. The infrared camera had a temperature
measurement range of -25 to 135°C, and automatic thermal
calibration at the hardware level was performed during data
collection to compensate for device temperature variations.
Thermal images were acquired at a rate of 10 Hz. An
omnidirectional camera and a marine radar were installed
on a vertical slide at the back of the vehicle. The slide was
kept at its lowest position while the vehicle passed under low
bridges and was manually raised to obtain better views. The
omnidirectional camera captured six images (five horizontal
views and one top view) simultaneously at a frequency of 10
Hz. The models and detailed specifications of all sensors are
available on our dataset website.

3.2 Data collection system
Figure 4 shows a schematic diagram of the data collection
process, which involved three computers, referred to as
modules A, B, and C. Module A recorded the images
captured using the omnidirectional camera, module B
recorded left and right stereo images, infrared images, and
point clouds of the front, port, and starboard LiDARs,
while module C recorded radar images, GPS signals, and
IMU data. The system times of the three computers were
synchronized tightly using the Chrony (Curnow and Lichvar
2014) library, and the system times of modules A and B

were periodically synchronized with module C. The data
recording initiation and termination were carried out by
sending commands from module C to modules A and B.

Module C
Intel NUC8HV

Omnidirectional
Camera

Stereo Camera
Infrared Camera

Front LiDAR
Port LiDAR

Starboard LiDAR

FMCW Radar
GPS

AHRS

Recording Command / Time Synchronization

Module B
Intel NUC9QN

Module A
Intel NUC8BEH

Figure 4. Data collection system

In order to avoid delays and loss of data during the
simultaneous streaming of data from multiple sensors, the
recording programs for each module were designed to be
more efficient. To address the issue in module A, where
converting the omnidirectional camera image stream to
image files was slowing down the recording process, the
image streams were saved as binary files and converted
during post-processing. In module B, three individual
processes were run simultaneously to record stereo image
pairs, infrared images, and data from the three LiDARs.
Multiple threads within each process were activated to
prevent data loss. On the other hand, module C required only
a single-threaded process for each sensor measurement, as
the data size for each sensor was relatively small.
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4 Sensor calibration

4.1 Intrinsic calibration of cameras
For accurate estimation of the intrinsic parameters of the
cameras, two structured calibration boards were used for
the visual and infrared cameras. The intrinsic calibration of
each camera was performed using the method described in
Zhang (2000), which involves using a checkerboard pattern
calibration board for the visual cameras in the stereo camera
and omnidirectional camera, and a custom-made calibration
board that can reflect infrared lights for the infrared camera.

4.2 Extrinsic calibration
Extrinsic calibration between the perceptual sensors was
performed using either the calibration board or unstructured
measurement data, taking into account the overlap between
their measurement ranges and the limitations of the
experimental environment. In the case of the stereo camera,
the images had sufficient overlapping regions, allowing for
most of the co-visible area to be covered using the calibration
board. However, since the omnidirectional camera was
located at the back of the vehicle, several portions of
the images were occluded by the vehicle, resulting in an
inadequate co-visible area for reliable calibration.

The extrinsic parameters between the front LiDAR and
other perceptual sensors were estimated using an in-motion
calibration method, due to the vehicle’s movement and the
asynchronous sensor measurements. This method involved
constructing a point cloud map using a LiDAR SLAM
approach and estimating the LiDAR poses from the SLAM
result. Next, the sensor pose in the global coordinate system
was estimated by matching the sensor data to the point
cloud map (refer to sections 4.2.2 to 4.2.3). The LiDAR
pose when the sensor data was collected was determined by
interpolating the given LiDAR poses using the measurement
timestamps. Finally, the extrinsic parameters were calculated
using the estimated LiDAR pose and the sensor pose in the
global coordinate system.

4.2.1 Omnidirectional camera calibration. The extrinsic
calibration for the cameras in the omnidirectional camera
was achieved by utilizing ArUco markers (Romero-Ramirez
et al. 2018) to improve the correspondence detection between
images, as the overlapping regions between them were
narrow. A factor graph framework was used with camera
pose nodes and 3D point nodes of the calibration board in
GTSAM (Dellaert 2012) to achieve accurate calibration.

4.2.2 LiDAR to LiDAR calibration. The point clouds
obtained from each LiDAR are shown in Figure 5a. The
initial calibration was performed by manually adjusting the
rotation and translation of the port and starboard LiDARs.
Then, to achieve fine calibration between the front/port
LiDARs and front/starboard LiDARs, the Generalized
Iterative Closest Points (GICP) method (Segal et al. 2009)
was applied to each port and starboard point cloud to align
them with the point cloud map generated by the front
LiDAR.

4.2.3 LiDAR to camera calibration. The extrinsic calibra-
tion between the front LiDAR and cameras was performed
by solving linear PnP (perspective-n-points) (Quan and Lan

Front LiDAR

Port LiDAR Starboard LiDAR

(a) Point clouds obtained from the front (red), port (yellow), and
starboard (green) LiDARs

(b) Projection of point cloud onto the left stereo camera

Cam0 Cam1Cam4

(c) Projection of point cloud onto the omnidirectional camera

Figure 5. Example of LiDAR data and their projection onto the
cameras

1999) problems using carefully selected points in the images
and corresponding points in the point cloud map generated
with the front LiDAR. Figure 5b shows the calibration results
for the LiDARs to the left stereo camera, while Figure 5c
shows the results for the omnidirectional camera.

4.3 Hand-eye calibration
As there is no perceptual correlation between LiDAR to
GPS and AHRS, we utilized the hand-eye calibration method
(Tsai and Lenz 1989) for extrinsic calibration between
AHRS to LiDAR and GPS.

4.3.1 AHRS to LiDAR calibration. The positional drift due
to accelerometer error integration can be severe. However,
the orientation can be precisely measured, as the AHRS
provides attitude measurements from the direction of gravity
and geomagnetic force. Due to these limitations, only the
rotation component of the AHRS to LiDAR calibration
is obtained using the hand-eye calibration method, and
the relative translation is determined based on the ASV
blueprint. The dataset contains large rotational movements
near a feature-rich pier area, so orientation measurements
from the AHRS and LiDAR odometry were sampled to
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estimate the relative rotation by solving the hand-eye
problem.

4.3.2 AHRS to GPS calibration. The extrinsic calibration
between the AHRS and GPS was performed using both the
LiDAR-inertial odometry and GPS 2D pose measurements.
As the GNSS-RTK provided accurate location and heading
information, both translation and rotation were considered
for the relative pose estimation. Near the pier, where roll and
pitch motions were negligible, we sampled data and used
the 2D poses from the LiDAR-inertial odometry and GPS
measurements to calculate translation matrix from AHRS to
GPS, TA

G . This equation relates the transformation matrix
between the AHRS coordinate systems at time ti and tj ,
TAi

Aj
, and the transformation matrix between GPS coordinate

systems at time ti and tj , TGi

Gj
, as shown in Fig. 6. Figure

7 shows the extrinsic calibration result, where the LiDAR
point clouds were projected onto satellite maps based on GPS
measurements.
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Figure 6. Top view of the vehicle at time ti and tj . The AHRS
and GPS coordinate systems are shown as {A} and {G}.
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Figure 7. Point clouds of LiDARs and their projections on the
satellite map based on GPS data

4.4 Baseline trajectory
While the GNSS-RTK delivers highly accurate pose
information in most areas, it is constrained in regions
where the vehicle passes under bridges. Therefore, a
straightforward GNSS-INS navigation system may not be
dependable in these areas. To address this issue, we utilized
the front LiDAR measurements in conjunction with the
GNSS-RTK and AHRS measurements in an incremental
smoothing and mapping (iSAM) (Kaess et al. 2008) graph
SLAM framework that was implemented in GTSAM. The
graph structure for the SLAM framework is depicted in
Figure 8.

The LiDAR-inertial odometry framework utilized in this
study is based on LIO-SAM (Shan et al. 2020), with

𝑋଴

GPS Factor

𝑋ଵ

AHRS Factor

Prior Factor 𝑋ଶ 𝑋ଷ
…

IMU Pre-integration

Cloud Matching Factor

Figure 8. Factor graph model for baseline trajectory estimation

(a) Pier

(b) Under the bridge

Figure 9. Comparison of feature extraction results in different
places. The images on the left display the original point cloud,
the middle images depict the feature extraction outcomes using
LIO-SAM, and the right images represent the modified feature
extraction results. The green points indicate surface points, and
the red points indicate corner points.

modifications made to the point cloud feature extraction
method. Unlike urban environments where many objects can
be detected as dense point clouds, the objects in the canal
area are mainly detected as sparse point clouds. Additionally,
the water surface in maritime environments does not provide
sufficient information for LiDAR odometry performance, as
the water absorbs the light. Therefore, a reliable feature
extraction method is crucial for accurate LiDAR odometry
in maritime environments.

The feature extraction method in LIO-SAM, which is
based on LOAM (Zhang and Singh 2014), determines
whether a point is a corner point or a surface point based
on the curvature of the point and its neighboring points.
However, this method often rejects points that have few
neighboring points or are occluded, which can result in the
rejection of points at a distance and thin pole-like objects.
To improve the performance of LiDAR odometry in the
canal area, we modified the point rejection algorithm by
skipping occluded neighboring points and defining pole-like
objects as corner features. Figure 9 illustrates the point cloud
and feature extraction results of LIO-SAM and the modified
algorithm. Figure 10 shows the point cloud mapping results
from the canal area to the inner-port area using LIO-SAM
and the modified method, overlaid on the satellite map.

The GPS factor is created by inserting UTM coordinates
and heading measurements obtained from the GPS, while
the AHRS factor is created by inserting the orientation
measurements obtained from the AHRS. However, since
the direction of the true north measured by the GPS is
different from the magnetic north measured by the AHRS,
we only used the gravity direction estimated from the AHRS

Prepared using sagej.cls



6 Journal Title XX(X)

N S

E

W
400m

Figure 10. LiDAR-inertial SLAM result using LIO-SAM (red
point cloud) and modified method (yellow) in the canal area to
inner-port area.

orientation measurement to correct the roll and pitch of the
vehicle.

5 The canal dataset
The data used in the study was gathered from Pohang Canal,
located in South Korea. The canal area consists of several
regions, including a narrow canal area, an inner port area, an
outer port area, and a near-coastal area, with a total length
of 7.5 km. Figure 11 shows the map of the experimental
location, the trajectory of the vehicle, and examples of
the collected data. The images in columns (b), (c), and
(d) correspond to locations 1, 2, 3, and 4, respectively, as
depicted in Fig. 11.

5.1 Experimental environment
The main canal area is approximately 15 to 30 m wide
and surrounded by a park and small buildings. In this
region, LiDAR data produced a dense point cloud with rich
geometrical features, while radar data was mostly obstructed
by buildings and contained noise. The inner port area was
split into two sides; on the west, there were fish markets and
shops, while on the east, there were shipyards. Consequently,
numerous fishing boats docked on the west side, while ships
of various sizes were located on the east side. The water
width in this area ranged from 50 to 100 m, and LiDARs
acquired a sparse point cloud in the distance. Seawalls,
passenger terminals, and storage buildings were present
in the outer port area, alongside large cruise ships, cargo
ships, and coast guard ships. LiDAR data hardly captured
point clouds of on-land objects in this region, while radar
data clearly revealed the coastline in the distance. A vast
steelworks plant was located southeast of the experimental
site, and it was mostly visible from the near-coastal area.
The vehicle experienced relatively significant roll and pitch
movements in the near-coastal area due to a sailing speed
of around 10 knots, while the vehicle speed was 5 to 7
knots in the canal and port areas. The omnidirectional camera
was removed during nighttime data collection due to safety
concerns. Detailed explanations and characteristics of each
dataset are available on our dataset website.

5.2 Dataset structure
The structure of each data sequence is depicted in Fig. 12.
All sensor data files were recorded along with the time they
were received. The timestamps of each sensor data were
saved either in the form of text files associated with the
data file and its corresponding time or as data file names.
The timestamps of the stereo camera, infrared camera,

omnidirectional camera, and radar data were recorded as
timestamp.txt for each sensor. These timestamp files
contained the sequence of each datum (which was set as the
datum name) and Unix time in the tab-delimited format. The
name of each LiDAR data file was set as the timestamp in
nanoseconds.

5.2.1 GPS data The three global navigation satellite
system messages received from the GNSS-RTK receiver
were GNGGA, GNHDT, and GNRMC. To record the GPS
data, these three messages were combined, and eleven
sequential values were saved for each timestamp in the
navigation/gps.txt file. The values recorded in this
file included Unix time, GPS time, latitude, the hemisphere
of latitude (N/S), longitude, the hemisphere of longitude
(E/W), heading (in degrees), GPS quality indicator, the
number of satellites used, horizontal dilution of precision,
and geoid height. All values were saved in the tab-delimited
format.

5.2.2 AHRS data The AHRS recorded orientation, angu-
lar rate, and linear acceleration data, which were saved
as eleven sequential values for each timestamp in the tab-
delimited format in the navigation/ahrs.txt file.
The values included Unix time, orientation represented as
quaternion values (qx, qy, qz, qw), angular rate in the x, y,
and z directions, and linear acceleration in the x, y, and z
directions.

5.2.3 3D LiDAR data The LiDAR data from the front,
port, and starboard sensors were stored in separate folders
within the lidar directory. The front LiDAR data was
stored in the lidar front folder, while the port and
starboard LiDAR data was stored in the lidar port and
lidar starboard folders, respectively. In each LiDAR
folder, the imu.txt file contained inertial measurement
data from the embedded IMU. The imu.txt file contained
seven values for each timestamp, including Unix time,
angular rates in the x, y, and z directions, and linear
acceleration in the x, y, and z directions.

The LiDAR point cloud data was provided in binary files
and included the 3D coordinates, intensity, sensor time,
reflectivity, ambient, and range value of each point. The
number of points in each point cloud was equal to the
product of the number of channels (64 for the front LiDAR
and 32 for the port and starboard LiDARs) and the axial
resolution (2048 for all LiDAR data in our dataset). The
data was recorded in a sequential ring-wise manner, with
the ring value of each point calculated as the quotient of
point sequence and the number of points in a ring. The
LiDAR’s internal clock recorded the sensor time of each
point, which can be used to de-skew the point cloud. Each
point cloud was saved in a separate file in the points
directory with the filename format <time>.bin. Detailed
methods for reading these binary files in both C++ and
Matlab are explained on our data website.

5.2.4 Radar data When the radar completed one cycle,
the radar images were saved in the radar/images
folder. As the rotation rate of the radar was low and
inconsistent over time, the images were likely to be skewed
whenever the platform was moved. Two timestamp files,
namely timestamp.txt and timestamp deg.txt,
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Figure 11. Data acquisition map, trajectory, and examples of data
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Figure 12. Dataset structure

were created. The timestamp.txt file provided only
the image sequence and time pairs per cycle, while
timestamp deg.txt file additionally provided the
updated angle and time pairs within each image.

5.2.5 Stereo camera data The left and right images
from the stereo camera are stored in the left images
and right images folders respectively, within the
stereo folder. Since each stereo image pair was captured
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Table 1. The data sequence list. Sensors are marked as L (LiDARs), R (Radar), S (Stereo Camera), I (Infrared Camera), O
(Omnidirectional Camera), and N (AHRS and GPS)

Data Name Description Path Length Sensor Suite Issues

pohang00 Daytime 7.43 km L, R, S, I, O, N GPS without RTK
pohang01 Nighttime 7.46 km L, R, S, I, N Unstable and missing GPS data
pohang02 Daytime 7.25 km L, R, S, I, O, N Unstable GPS data
pohang03 Daytime 7.37 km L, R, S, I, O, N -
pohang04 Daytime 7.24 km L, R, S, I, O, N -
pohang05 Nighttime 6.86 km L, R, S, I, N -

synchronously, the sequence value in timestamp.txt
represents both the left and right image files for the same
timestamp value. The images were saved in png format with
a resolution of 2048 × 1080 pixels.

5.2.6 Infrared camera data The infrared images were
stored in the infrared/images folder. The images were
recorded in 16-bit png format with a resolution of 640 ×
512 pixels, encoding 14-bit thermal data. The temperature of
each pixel can be calculated using the equation:

t = 0.04p− 273.15 (1)

where p is the pixel value and t is the corresponding
temperature in degrees Celsius. The data collection
frequency was set to 10 Hz, but some intervals between
images were longer than others due to thermal calibration.

5.2.7 Omnidirection camera data The six omnidirec-
tional camera images were stored in the cam 0, cam 1,
cam 2, cam 3, cam 4, and cam 5 folders within the omni
folder. Similar to the stereo camera data, the sequence value
in timestamp.txt indicates the corresponding images
from all six cameras collected synchronously for the same
time value. Each image was stored in jpg format with a
resolution of 2464 × 2048 pixels.

5.2.8 Calibration The calibration folder contains
two files, extrinsics.json and intrinsics.json,
that provide the extrinsic and intrinsic calibration param-
eters, respectively. The extrinsics.json file contains
the parameters that relate the AHRS sensor to each of the
other sensors. On the other hand, the intrinsics.json
file contains the intrinsic calibration parameters for each
camera, such as focal length, principal point, and distortion
coefficients.

5.2.9 Baseline trajectory The baseline trajectory is saved
as eight sequential values for each timestamp in tab-
delimited format. The values include Unix time, ori-
entation as a quaternion (qx, qy, qz, qw), and trans-
lation (x, y, z). The trajectory data is stored in the
navigation/baseline.txt file.

5.3 Data sequence and known issues
The dataset comprises six data sequences, consisting of four
daytime sequences and two nighttime sequences, as shown in
Table 1. Due to technical issues, the GPS data for sequences
pohang00 and pohang02 was collected without RTK
measurements, and sequence pohang01 has missing GPS
data during operation.

5.4 Data player
Inspired by Jeong et al. (2019), we provide the dataset player
for ROS environment. The source code and the description
can be found at https://github.com/dhchung/rosmsg player.

6 Conclusion

In this paper, we present a multimodal maritime dataset
that contains continuous onboard navigation and perceptual
data acquired in various maritime environments. The dataset
includes GPS data obtained using a GNSS RTK receiver
with two GPS antennas and AHRS data. Additionally, to
address the need for various types of perceptual sensors
with different characteristics and measurement ranges in the
maritime environment, the dataset includes three LiDARs,
a marine radar, a stereo camera, an infrared camera, and
an omnidirectional camera. The dataset has been designed
to facilitate full-scale autonomous navigation research and
can be utilized in various domains, including sensor fusion,
structure reconstruction and assessment, and other robotic
applications.
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Romero-Ramirez F, Muñoz-Salinas R and Medina-Carnicer R
(2018) Speeded up detection of squared fiducial markers.
Image and Vision Computing 76. DOI:10.1016/j.imavis.2018.
05.004.

Segal A, Hähnel D and Thrun S (2009) Generalized-icp. In:
Trinkle J, Matsuoka Y and Castellanos JA (eds.) Robotics:
Science and Systems. The MIT Press. ISBN 978-0-262-51463-
7. URL http://dblp.uni-trier.de/db/conf/

rss/rss2009.html#SegalHT09.
Shan T, Englot B, Meyers D, Wang W, Ratti C and Rus D

(2020) Lio-sam: Tightly-coupled lidar inertial odometry via
smoothing and mapping. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp.
5135–5142. DOI:10.1109/IROS45743.2020.9341176.

Smith M, Baldwin I, Churchill W, Paul R and Newman P (2009)
The new college vision and laser data set. The International
Journal of Robotics Research 28(5): 595–599. DOI:10.
1177/0278364909103911. URL https://doi.org/10.

1177/0278364909103911.
Taipalmaa J, Passalis N, Zhang H, Gabbouj M and Raitoharju

J (2019) High-resolution water segmentation for autonomous
unmanned surface vehicles: a novel dataset and evaluation. In:
2019 IEEE 29th International Workshop on Machine Learning
for Signal Processing (MLSP). pp. 1–6. DOI:10.1109/MLSP.
2019.8918694.

Tsai R and Lenz R (1989) A new technique for fully autonomous
and efficient 3d robotics hand/eye calibration. IEEE
Transactions on Robotics and Automation 5(3): 345–358. DOI:
10.1109/70.34770.

Wang W, Gheneti B, Mateos LA, Duarte F, Ratti C and Rus
D (2019) Roboat: An autonomous surface vehicle for urban
waterways. In: 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 6340–6347. DOI:
10.1109/IROS40897.2019.8968131.

Zhang J and Singh S (2014) Loam: Lidar odometry and mapping in
real-time. In: Robotics: Science and Systems.

Zhang MM, Choi J, Daniilidis K, Wolf MT and Kanan C (2015)
Vais: A dataset for recognizing maritime imagery in the
visible and infrared spectrums. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition Workshops
(CVPRW). pp. 10–16. DOI:10.1109/CVPRW.2015.7301291.

Zhang Z (2000) A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22(11): 1330–1334. DOI:10.1109/34.888718.

Prepared using sagej.cls

https://arxiv.org/abs/2203.10168
https://arxiv.org/abs/2203.10168
https://doi.org/10.1177/0278364915620033
https://chrony.tuxfamily.org
https://chrony.tuxfamily.org
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21935
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21935
https://doi.org/10.1177/0278364919843996
http://dblp.uni-trier.de/db/conf/rss/rss2009.html#SegalHT09
http://dblp.uni-trier.de/db/conf/rss/rss2009.html#SegalHT09
https://doi.org/10.1177/0278364909103911
https://doi.org/10.1177/0278364909103911

	1 Introduction
	2 Related work
	3 System configuration
	3.1 Sensor configuration
	3.2 Data collection system

	4 Sensor calibration
	4.1 Intrinsic calibration of cameras
	4.2 Extrinsic calibration
	4.2.1 Omnidirectional camera calibration.
	4.2.2 LiDAR to LiDAR calibration.
	4.2.3 LiDAR to camera calibration.

	4.3 Hand-eye calibration
	4.3.1 AHRS to LiDAR calibration.
	4.3.2 AHRS to GPS calibration.

	4.4 Baseline trajectory

	5 The canal dataset
	5.1 Experimental environment
	5.2 Dataset structure
	5.2.1 GPS data
	5.2.2 AHRS data
	5.2.3 3D LiDAR data
	5.2.4 Radar data
	5.2.5 Stereo camera data
	5.2.6 Infrared camera data
	5.2.7 Omnidirection camera data
	5.2.8 Calibration
	5.2.9 Baseline trajectory

	5.3 Data sequence and known issues
	5.4 Data player

	6 Conclusion

