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Abstract
We study the generalized Procrustes analysis (GPA), as a minimal formulation to the simultaneous localization and
mapping (SLAM) problem. We propose KernelGPA, a novel global registration technique to solve SLAM in the
deformable environment. We propose the concept of deformable transformation which encodes the entangled pose
and deformation. We define deformable transformations using a kernel method, and show that both the deformable
transformations and the environment map can be solved globally in closed-form, up to global scale ambiguities. We
solve the scale ambiguities by an optimization formulation that maximizes rigidity. We demonstrate KernelGPA using
the Gaussian kernel, and validate the superiority of KernelGPA with various datasets. Code and data are available at
https://bitbucket.org/FangBai/deformableprocrustes.
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1 Introduction
The simultaneous localization and mapping (SLAM), as
an enabling technology for sensor localization and scene
reconstruction, has witnessed a huge success in the
past decade Cadena, Carlone, Carrillo, Latif, Scaramuzza,
Neira, Reid and Leonard (2016). However, the successful
application of SLAM critically relies on the assumption of a
rigid (or static) scene Dissanayake, Newman, Clark, Durrant-
Whyte and Csorba (2001).

Deformable SLAM. Recently, researchers have started to
consider SLAM in the nonrigid and dynamic cases. While
both terms seem close, they are referred to as quite different
problems. The nonrigid case typically occurs in medical or
surgical applications, whereas the dynamic case occurs in
outdoor applications with moving pedestrians or traffic. In
contrast to SLAM in the dynamic case, where the movement
in the scene is almost random and thus is difficult to model,
SLAM in the nonrigid environment is largely well-posed,
because the deformation is typically low dimensional, or
follows certain structures or constraints. It is therefore
possible to model and estimate the deformation in the
nonrigid scene, revealing the possibility of a deformable
SLAM approach. We use the term deformable SLAM to refer
to SLAM in the nonrigid (or deformable) case. The research
of deformable SLAM is gaining popularity and has found
its applications in surgical applications Huang, Chen, Zhao,
Zhang and Xu (2021).

SfT and deformable tracking. The first generation of
deformable SLAM systems are basically based on tracking
technologies. In vision and graphics, matching a deformed
shape to a given template, termed shape-from-template (SfT)
in Bartoli, Gérard, Chadebecq, Collins and Pizarro (2015);
Malti and Herzet (2017), is a well researched problem. These
days, SfT can be solved under a large range of deformation

models, see a brief review in Section 2.1. The SfT methods
are the pillar of deformable tracking systems published
in robotics, for instance DynamicFusion Newcombe, Fox
and Seitz (2015), Surfelwarp Gao and Tedrake (2018),
KillingFusion Slavcheva, Baust, Cremers and Ilic (2017),
SobolevFusion Slavcheva, Baust and Ilic (2018), and MIS-
SLAM Song, Wang, Zhao, Huang and Dissanayake (2018),
to name but a few. In SLAM, the template (i.e., the
environment map) is never known ahead. Thus these systems
rely on an open-loop mechanism that incrementally construct
the template. As a consequence, the estimation error of these
tracking systems accumulates along the trajectory, due to the
lack of global feedback. Hence, these solutions are inevitably
suboptimal.

Loop-closure and global registration. In SLAM, the global
feedback is constructed under the term of loop-closures,
which has been well understood in the case of a rigid
scene. In specific, when traveling in the scene, the sensor
observes identifiable geometric points at different poses to
form global feedback. In SLAM, such a global feedback is
referred to as a loop-closure, and an identifiable geometric
point in the scene as a correspondence. In essence, the re-
observation of correspondences at different poses provides
additional information, and thus reduces the uncertainty of
estimation. It must be noted that the observations are defined
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in local coordinate frames relative to the sensor’s poses.
Thus a global registration technique is required to fuse the
observations of correspondences together. This technique is
the generalized Procrustes analysis (GPA), see Section 3.2
for details, or structure-from-motion (SfM) if the sensors are
projective cameras. We emphasize that GPA and SfM are
minimal formulations of SLAM, as they decide the poses
and the scene reconstruction completely. In the rigid case,
both GPA and SfM are well solved — that is why SLAM in
the rigid case is considered a solved problem.

Global registration with deformations. If the scene is
nonrigid, we envision that a global registration technique that
handles deformations is the key to solve deformable SLAM.
Unfortunately, at this stage, the research of such techniques
is rather sparse. Some representative works include: a) the
low-rank shape basis decomposition Bregler, Hertzmann and
Biermann (2000); Xiao, Chai and Kanade (2006); Dai, Li
and He (2014), b) the isometric nonrigid structure-from-
motion Parashar, Pizarro and Bartoli (2017), implemented
in the DefSLAM system Lamarca, Parashar, Bartoli and
Montiel (2020), and more recently c) DefGPA Bai and
Bartoli (2022b), a GPA method with the linear basis warps
(LBWs), see Section 2.2 for a brief review and comparison.
All these methods are developed under certain assumptions
about the deformations the scene undergoes. For example,
methods a) assume structural deformations (e.g., gestures
or facial expressions) to ensure the existence of a low-
rank shape basis; methods b) assume isometric deformations
which are suitable for foldable surfaces (e.g., papers or
cloths). We feature method c) which assumes smooth and
low-dimensional deformations, which is more suitable for
visceral deformations occurring in surgical applications. In
this work, we contribute further to the GPA family with a
novel kernel based deformation model.

Problem statement. We study GPA with smooth and low-
dimensional deformations, termed deformable GPA, a global
registration technique for deformable SLAM. Deformable
GPA can be considered as a minimal formulation of
deformable SLAM. To make the context clear, deformable
GPA is formulated under the following constraints:

1) No temporal information. We assume observations are
made without sequential information, thus technolo-
gies based on tracking do not apply here.

2) No template. We assume a template of the scene
is not available, and disallow inexact methods that
incrementally construct and refine a template.

3) No aids on pose estimation. We assume additional
information on the sensor’s pose is not available.

We assume that the only available information is observa-
tions of correspondences at different poses. The correspon-
dences are used to capture two pieces of information: a) the
sensor’s motion, and b) the deformation of the scene. As we
shall see shortly in Section 3.1, the sensor’s pose and the
deformation of the scene are entangled in deformable SLAM,
making the registration extra difficult.

Contributions. This article is an extension to the KernelGPA
method initially appeared in the proceedings of Robotics:
Science and Systems (RSS) Bai and Bartoli (2022a).
Concretely, this work contains the following contributions:

1. We unify the entangled poses and deformations
together, and formally introduce the concept of
deformable transformation. This way, we avoid the
ambiguities in poses and deformations, because the
deformable transformation is well defined and can be
estimated (up to scale ambiguities).

2. We introduce a novel deformable transformation,
termed kernel based transformation (KBT). As the
name suggests, the KBT is motivated from the kernel
method. Compared with the LBWs in Bai and Bartoli
(2022b), the KBT is more flexible and easier to design.

3. We propose KernelGPA, using KBT as the deformable
transformation in GPA. We enforce implicit transfor-
mation constraints by constraining: a) the geometric
center of the correspondence point-cloud to be at the
origin of the coordinate frame, and b) the point-cloud
covariance to be diagonalized as an unknown Λ.

4. We show that KernelGPA can be solved globally
in closed-form up to

√
Λ whose diagonal elements

represent the global scale ambiguities. Our solution is
based on a special eigenvalue problem first proposed
in Bai and Bartoli (2022b). However, the exposition of
relevant proofs is more concise in this paper.

5. We give a novel method to estimate the unknown
√
Λ.

Compared with Bai and Bartoli (2022b), the novel
method does not require the existence of globally
visible correspondences, thus is more suitable for
partial observations occurring in SLAM. We give an
affine relaxation to obtain a closed-form

√
Λ.

6. We demonstrate the registration performance of
KernelGPA using various datasets. We use three 3D
datasets with correspondences. The first one comprises
a set of 3D liver meshes with simulated smooth
deformations. The second one comprises a set of 3D
face meshes with various facial expressions. The third
one comprises six deformed point-clouds extracted
from computerized tomography (CT) data. We will
release the relevant data to foster future research.

This article makes serveral improvements over the initial
version appeared in RSS Bai and Bartoli (2022a). We have
rewritten most of the text for better clarity, for instance,
the exposition of the constraints in Section 5 and the
special eigenvalue problem in Section 6. Importantly, we
have refined the method to estimate

√
Λ in Section 7, and

have additionally added the discussion of degeneracies in
Section 8. Lastly, we have used more advanced experiments
in this version to demonstrate the usefulness of our method.

The remainder of this paper is organized as follows.
We briefly review related work on deformation models and
global registration techniques in Section 2. We introduce
the concepts of deformable transformation and deformable
GPA in Section 3. We present the KBT in Section 4, and
registration constraints in Section 5. We draw the connection
to a special eigenvalue problem in Section 6, and propose
the method to estimate

√
Λ in Section 7. We discuss

degeneracies in Section 8, and implementation details in
Section 9. We present our experimental results in Section 10,
and conclude the paper in Section 11.

Prepared using sagej.cls



Bai et al.: KernelGPA 3

2 Related Work

2.1 Deformation Models
We shall use landmarks, i.e., points, as the environment
representation and define deformations accordingly. This
representation has a long history in shape analysis Kendall
(1984); Kilian, Mitra and Pottmann (2007). There has
been a rich class of smooth deformation models (also
termed smooth warps) developed based on landmark
representations, e.g., the Free-Form Deformations (FFD)
Rueckert, Sonoda, Hayes, Hill, Leach and Hawkes (1999);
Szeliski and Coughlan (1997), the Radial Basis Functions
(RBF) Bookstein (1989); Fornefett, Rohr and Stiehl
(2001) and the Thin-Plate Spline (TPS) Duchon (1976);
Bookstein (1989). Beyond smooth models, there exist a
class of models defined piece-wisely by implementing
local transformations associated to a set of control
points and modeling the deformations on other parts by
interpolation. Representatives of such models include the
ARAP deformation model Sorkine and Alexa (2007a), the
embedded deformation graph Allen, Curless and Popović
(2003); Sumner, Schmid and Pauly (2007), and Lie-
bodies Freifeld and Black (2012).

Beyond landmark based models, other models based
on curves Joshi, Klassen, Srivastava and Jermyn (2007);
Younes, Michor, Shah and Mumford (2008) or surfaces have
been proposed. Some well-known models include level sets
Osher and Fedkiw (2003), medial surfaces Bouix, Pruessner,
Collins and Siddiqi (2005), Q-maps Kurtek, Klassen, Ding
and Srivastava (2010); Kurtek, Klassen, Gore, Ding and
Srivastava (2011), and Square Root Normal Fields (SRNF)
Jermyn, Kurtek, Klassen and Srivastava (2012); Laga, Xie,
Jermyn and Srivastava (2017). Some models implement an
articulated skeleton structure. Representative works include
the medial axis representations (M-rep) Fletcher, Lu, Pizer
and Joshi (2004), and SCAPE Anguelov, Srinivasan, Koller,
Thrun, Rodgers and Davis (2005). We refer interested
readers to the review papers Younes (2012); Laga (2018) for
more details.

2.2 Global Registration Techniques

Generalized Procrustes analysis. The GPA framework was
used as a fundamental technique in shape analysis to obtain
an initial alignment. Both the rigid and affine transformations
were recovered in the classical literature Kendall (1984);
Goodall (1991); Rohlf and Slice (1990). Recently, a novel
GPA technique with deformation models was proposed in
Bai and Bartoli (2022b). The deformation model in Bai and
Bartoli (2022b) is termed LBWs, which includes the affine
transformation and a rich class of nonlinear deformation
models Rueckert, Sonoda, Hayes, Hill, Leach and Hawkes
(1999); Szeliski and Coughlan (1997); Bookstein (1989);
Fornefett, Rohr and Stiehl (2001); Bartoli, Perriollat and
Chambon (2010) using radial-basis functions, e.g, the well-
known TPS Bookstein (1989).

The work Bai and Bartoli (2022b) is the closest to ours.
However, we use a kernel method to model deformations,
which is a novel deformation model compared to the LBWs
used in Bai and Bartoli (2022b). In addition, we propose
a novel method to estimate the global scale ambiguities,

which does not require some correspondences to be globally
visible, thus is more suitable for SLAM applications.

Nonrigid structure-from-motion. SfM is a well-known
global registration method that handles camera projec-
tions Hartley and Zisserman (2004). We do not consider
projective cameras in this work, thus will only mention
several nonrigid SfM (NRSfM) methods for references. One
line of NRSfM methods use low-rank shape bases Bregler,
Hertzmann and Biermann (2000); Xiao, Chai and Kanade
(2006); Dai, Li and He (2014). These methods model defor-
mations as a linear combination of the basis shapes, which
are jointly factorized by the singular value decomposition
(SVD). Another line of NRSfM methods use differential
geometry, where the deformations are constrained to be
isometric or conformal, e.g., the isometric NRSfM Parashar,
Pizarro and Bartoli (2017) which has been successfully
implemented in DefSLAM Lamarca, Parashar, Bartoli and
Montiel (2020). We refer interested readers to a recent work
using Cartan’s connections Parashar, Pizarro and Bartoli
(2019) and references therein.

Characterization by deformations. The work Bai and
Bartoli (2022b) assumes smooth and low-dimensional
deformations, as implied by the usage of the LBW. The
works Bregler, Hertzmann and Biermann (2000); Xiao, Chai
and Kanade (2006); Dai, Li and He (2014) require the
existence of the low-rank shape basis. This is possible if
the scene undergoes structural deformations e.g., gestures or
facial expressions. The works Parashar, Pizarro and Bartoli
(2017); Lamarca, Parashar, Bartoli and Montiel (2020)
require the deformation to follow isometry, preserving
infinitesimal rigidity on the surface of the scene. This is
usually true for foldable surfaces like papers or cloths.

In general, the visceral deformation is neither structural
nor isometric, but is smooth (to avoid visceral damages)
and low-dimensional (as driven by a limited number of
force sources, e.g., from muscles). In this work, we propose
the KBT, a smooth and low-dimensional model suitable
for visceral deformations, to meet the demand of surgical
applications.

3 Formulation of Deformable SLAM and its
Connection to GPA

3.1 Deformable SLAM
Our method is based on correspondences, and is independent
of the detailed dense environment model to be used.

Environment modeling. We are concerned with a collection
of m landmarks M ∈ Rd×m residing in the d-dimensional
environment, where d = 2 or d = 3. The onboard sensor
observes these landmarks in M at discrete time points
t = 1, 2 . . . , n. We denote the sensor’s pose at time t by
(Rt ∈ SO(d), tt ∈ Rd). The sensor at t observes mt partial
landmarks in M, denoted by MΓt ∈ Rd×mt , with the help
of a visibility matrix Γt to be defined below. It can be easily
verified that ΓT

t 1m = 1mt
.

Definition 1. (Visibility matrix). We denote the identity
matrix in Rm×m as a set of standard basis vectors in Rm:

Im = [e1, e2, . . . , em] ∈ Rm×m.

Prepared using sagej.cls
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(Rt, tt)

Φt(·)

Pt = RT
t

(
Φt(MΓt)− tt1

T
)
⇐⇒ RtPt + tt1

T = Φt(MΓt)

yt(Pt)
def
= Φ−1

t (RtPt + tt1
T)

M

The pose and deformation are entangled,
which means both are ambiguous.

Deformable transformation:

MΓt

Γt

observation at the sensor’s local coordinate frame
the global coordinate frame

Figure 1. Deformable SLAM as the generalized Procrustes analysis (GPA) problem with deformable transformations. Our method
is based on correspondences whose movements reflect deformations. The movements of the correspondences, as plotted by the
arrows from the black to the red circles, are driven by a low-dimensional deformation field Φt(·). The unknowns are colored in blue,
including a) the rigid pose (Rt, tt), b) the low-dimensional deformation Φt(·), and c) a canonical environment map M. From the
observation model, we notice that a) and b) are entangled, which means we need to know one in order to infer the other. In this
work, we instead propose to solve yt(·), a unified deformable transformation which encodes both poses and deformations. We
derive that both yt(·) and the environment map M can be estimated globally in closed-from up to d scale ambiguities. The global
coordinate frame is implicitly specified by the transformation constraints to be illustrated in Figure 2.

Obviously, MIm = M. The columns of a visibility matrix
Γt are constructed from the standard basis vectors in Rm:

Γt = [ej1 , ej2 , . . . , ejmt
] ∈ Rm×mt ,

where the subscripts j1, j2, . . . , jmt
∈ [1 : m] denote the mt

points visible in Pt.

Remark 1. In Bai and Bartoli (2022b), the authors use the
augmented visibility matrix Γ̄t defined as:

Γ̄t = ΓtΓ
T
t =

mt∑
j=1

etje
T
tj ∈ Rm×m.

Such a Γ̄t is a diagonal matrix whose (k, k)-th element is 1
if the k-th point in M occurs in Mt, and 0 otherwise. Γt is
obtained by deleting the columns of zeros in Γ̄t.

Example 1. Given 5 points, if the first and the third points
are visible, the visibility matrices are defined as:

Γ =


1 0
0 0
0 1
0 0
0 0

 , Γ̄ = ΓΓT =


1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

 .

Point-cloud observation of deformable environment. In
deformable SLAM, the environment deforms over time. We
denote the deformation as a time varying function Φt(·). In
particular the deformed environment at time t is:

Φt(Mt) = Φt(MΓt).

We denote the sensor’s measurement at t by a point-cloud
Pt ∈ Rd×mt defined in the sensor’s local coordinate frame.
In the noise-free case, the measurement Pt at t is the
observation of the deformed environment Φt(MΓt):

Pt = RT
t

(
Φt(MΓt)− tt1

T
)

⇔ RtPt + tt1
T = Φt(MΓt). (1)

Composed transformation. From the above, we see that the
deformation and the pose are entangled. In order to estimate
one, we need to know the other (see Remark 2). To resolve
this ambiguity, we fairly assume the deformation function
Φt(·) is invertible, and thus define yt(·) as a composition of
both the pose (Rt, tt) and the deformation Φ−1

t (·):

yt(Pt)
def
= Φ−1

t (RtPt + tt1
T) = MΓt. (2)

In what follows, we term yt(·) deformable transformation.

Deformable SLAM. We define deformable SLAM as the
problem that estimates 1) the deformable transformations
yt(·) and 2) the environment map M, using a collection of
sensor measurements (Pt, Γt) at time points t = 1, 2 . . . , n.
Formally, we formulate deformable SLAM as:

min

n∑
t=1

φt with φt = ∥yt(Pt)−MΓt∥2F . (3)

Remark 2. Given the pose (Rt, tt) and M, the deformation
field Φt(·) is characterized by the vector flow:

MΓt −→ RtPt + tt1
T.

Conversely, give the deformation field Φt(·), the pose
(Rt, tt) is characterized by the rigid Procrustes analysis.
Thus given M, the disentanglement is possible once either
the deformation Φt(·) or the pose (Rt, tt) is known. In this
work, we focus on how to solve M and yt(·).

3.2 Generalized Procrustes Analysis
The deformable SLAM formulation (3) is essentially a GPA
problem with deformable transformations, see Figure 1.
In the classical literature, GPAs with both the rigid
transformation and the affine transformation are well studied.

GPA with the rigid transformation. In this case, from
formulation (3), we define yt(·) as:

yt(Pt)
def
= RtPt + tt1

T, (Rt ∈ SO(d), tt ∈ Rd).

Prepared using sagej.cls
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There exists a closed-form solution for the case of n = 2
point-clouds. In general, for n ≥ 3, the solution is computed
iteratively by nonlinear least squares (NLS) optimization
techniques, e.g., Gauss-Newton or Levenberg-Marquardt.

GPA with the affine transformation. In this case, from
formulation (3), we define yt(·) as:

yt(Pt)
def
= AtPt + at1

T, (At ∈ Rd×d, at ∈ Rd).

The resulting GPA problem is degenerate. The optimal
solution is At = O, at = 0, M = O, which however is
useless. In order to construct a meaningful solution, we need
to build a set of constraints, for example in the rigid case the
transformation preserves the distance.

We shall term GPA with the rigid transformation as Rigid-
GPA, and GPA with the affine transformation as Affine-GPA.

4 Deformable Transformation

4.1 Linear Basis Warp
The linear basis warp (LBW) in Bai and Bartoli (2022b), is
a generalization of a class of deformable transformations,
e.g., the free-form deformations (FFD) Rueckert, Sonoda,
Hayes, Hill, Leach and Hawkes (1999); Szeliski and
Coughlan (1997), and the thin-plate spline (TPS) Duchon
(1976); Bookstein (1989).

Definition 2. (LBW in Bai and Bartoli (2022b)). Given a
query point p ∈ Rd, the LBW is defined as:

yt(p)
def
= WT

t βt(p), (Wt ∈ Rl×d), (4)

where βt(·) : Rd → Rl is an embedding to the l-
dimensional feature space. βt(·) is typically designed from
radial basis functions (RBFs) Fornefett, Rohr and Stiehl
(2001).

Regularization. Typically, the LBW is used together with a
regularization term:

Rt = µttr
(
WT

t ΞtWt

)
, (µt > 0), (5)

where Ξt is a known matrix. Intuitively, the regularization
Rt acts as a penalty to control the allowed deformation.

Example 2. The affine transformation is a special case of the
LBW where we use:

Wt =
[
At at

]T
, βt(p) =

[
p

1

]
.

There is no regularization in this case,Rt = 0.

Example 3. In case of the TPS warp, βt(·) is designed as:

βt(p) = ET



ρ(∥c1 − p∥)
ρ(∥c2 − p∥)

...

ρ(∥cl − p∥)
p

1


,

where c1, · · · , cl ∈ Rd are l control points, and ρ(·) is
a scalar function called the TPS kernel function. E ∈
R(l+d+1)×l is a matrix constant decided from the control
points and the TPS kernel function. The TPS warp thus
defined implicitly includes a free affine transformation Bai
and Bartoli (2022b).

Matrix Ξt used for regularization is chosen as the bending
energy matrix Bookstein (1989). With this choice, the
regularization is imposed on the nonlinear deformation only,
thus leaving the implicit affine transformation free.

4.2 Kernel Based Transformation
Definition 3. (Kernel function). A kernel function k(·, ·) :
X × X → R evaluates the inner product in some feature
spaceH defined by ϕ(·) : X → H as:

k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩H , xi,xj ∈ X .

The spirit of a kernel method is to transform all the
computation related to ϕ(·) to the inner product ⟨·, ·⟩H, thus
an explicit ϕ(·) will never be required. This way, one can
design a kernel method based on k(·, ·) directly.

Definition 4. (Kernel matrix). Given any x1, . . . ,xm ∈ X ,
and a kernel function k(·, ·), the kernel matrix K ∈ Rm×m

(also called the Gram matrix) is constructed as:

K =


k(x1,x1) · · · k(x1,xm)

...
. . .

...

k(xm,x1) · · · k(xm,xm)

 .

Lemma 1. (Shawe-Taylor and Cristianini (2004)). If
k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩H for some feature mapping
ϕ(·) : X → H, then for any x1, . . . ,xm ∈ X the kernel
matrix K is symmetric positive (semi-)definite. The converse
is also true. If the kernel matrix K constructed from a kernel
function k(·, ·) is symmetric positive (semi-)definite for any
x1, . . . ,xm ∈ X , then there exists a feature mapping ϕ(·) :
X → H such that k(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩H.

Definition 5. (Positive (semi-)definite kernel). A kernel
function k(·, ·) that ensures the symmetric positive (semi-
)definiteness of K for any x1, . . . ,xm ∈ X is called a
positive (semi-)definite kernel.

By Lemma 1, a positive (semi-)definite kernel function
k(·, ·) implicitly determines a feature mapping ϕ(·) by the
inner product ⟨·, ·⟩H in some Hilbert space H. Such an
H induced from the kernel function k(·, ·) is termed the
reproducing kernel Hilbert space (RKHS). For more details,
we refer interested readers to Chapter 3 of the book Shawe-
Taylor and Cristianini (2004).

Function representer. Given m data points x1, . . . ,xm ∈
X , and a positive (semi-)definite kernel k(·, ·), we
parameterize a function f(·) : X → R as an expansion of
kernel functions k(xj , ·) over all data points:

f(x) =

m∑
j=1

αjk(xj ,x), ∀x ∈ domain f. (6)

Such an expansion is motivated from the reproducing
property of the RKHS, and its expressiveness is backed by
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the representer theorem in Schölkopf, Herbrich and Smola
(2001).

Assumption 1. We assume positive definite kernel k(·, ·).
Thus the constructed kernel matrix is positive definite.

Definition 6. (Kernel based transformation). Given the
point-cloud Pt = [p1, p2, . . . ,pmt ] ∈ Rd×mt , and a query
point p ∈ Rd, we propose a KBT, as:

yt(p)
def
= Atp+ at +ΩT

t kt(p)

(At ∈ Rd×d, at ∈ Rd, Ωt ∈ Rmt×d), (7)

where:

kt(p) =


k(p1, p)

...

k(pmt , p)

 ,

with k(·, ·) a user specified positive (semi-)definite kernel.

The deformable transformation yt(·) thus constructed
contains two components: the affine part (At, at) and
the deformation part ΩT

t kt(·). The deformation part is an
obvious extension from the expansion (6) to each of x−,
y−, and z−coordinates. The motivation behind the affine
part is that we require yt(·) to model global orientations
and translations. Such information can indeed be lost in the
kernel construction, for example if we choose k(xi,xj) =
κ(∥xi − xj∥2). In addition, orientations and translations are
global, meaning consistently applied to each point, which is
not emphasized in the deformation part.

Regularization. For the KBT (7), we propose to use the
following regularization:

Rt = µttr
(
ΩT

t KtΩt

)
, (µt > 0), (8)

where we define the kernel matrix Kt ∈ Rmt×mt :

Kt =


k(p1, p1) · · · k(p1, pmt

)

...
. . .

...

k(pmt
, p1) · · · k(pmt

, pmt
)

 . (9)

The motivation of this regularization will be given shortly,
near equation (16).

4.3 Operating on the Point-cloud
Given the point-cloud Pt = [p1, p2, . . . ,pmt

] ∈ Rd×mt ,
we apply the deformable transformation yt(·) to each point
of Pt in sequence:

yt(Pt)
def
=
[
yt(p1), yt(p2), · · · yt(pmt)

]
.

For the LBW, the result is:

yt(Pt)
def
= WT

t

[
βt(p1) βt(p2) . . . βt(pmt)

]︸ ︷︷ ︸
Bt(Pt)

def
= WT

t Bt(Pt), (Wt ∈ Rl×d). (10)

For the KBT, the result is:

yt(Pt)
def
= AtPt + at1

T +ΩT
t Kt,

(At ∈ Rd×d, at ∈ Rd, Ωt ∈ Rmt×d), (11)

where Kt is defined in equation (9).

4.4 Derivation of the KBT from the LBW

Derivation of the deformation part. We consider the task of
transforming the point-cloud Pt to a given target point-cloud
Zt, using the LBW and an identity regularization term. This
task can be formulated as minimizing a regression cost:

ηt(Wt) =
∥∥WT

t Bt(Pt)− Zt

∥∥2
F + µt ∥Wt∥2F . (12)

Cost (12) is convex. Its global minimum is attained when the
gradient vanishes:

∂ηt
∂Wt

= O.

After computing the matrix differential, and with some trivial
matrix calculations, we rewrite the above equation as:

Wt = Bt(Pt)

(
− 1

µt
WT

t Bt(Pt) +
1

µt
Zt

)T

︸ ︷︷ ︸
Ωt

def
= Bt(Pt)Ωt. (13)

In this form, Ωt is called the dual variable, as it converts the
LBW to the KBT as:

WT
t Bt(Pt) = ΩT

t Bt(Pt)
TBt(Pt)︸ ︷︷ ︸
Kt

def
= ΩT

t Kt, (14)

where Kt = Bt(Pt)
TBt(Pt). (15)

Note that the dimension l of the feature space of βt(·) may
go to infinity; however we can still express ΩT

t Bt(Pt) as
ΩT

t Kt within mt points in the kernel based model.

Derivation of the regularization. From equation (13), the
regularization µt ∥Wt∥2F can be reformulated with respect
to the dual variable Ωt and the kernel matrix Kt as:

µt ∥Wt∥2F = µt ∥Bt(Pt)Ωt∥2F = µttr
(
ΩT

t KtΩt

)
, (16)

which is how we obtain the regularization in equation (8).

Remark 3. (The independent affine transformation). In the
KBT (7), we include an independent affine transformation,
which is different from the LBWs. This is because for the
LBWs, the affine transformation is typically implemented
by the design of the basis function βt(·). However, for
the KBT, the kernel function k(·, ·) uniformly decides the
elements in Kt, excluding the possibility to use a handcrafted
affine transformation. The usage of the independent affine
transformation can be equivalently thought of as singling out
the affine part in the LBW (4) as:

yt(p)
def
= Atp+ at +WT

t βt(p),

(At ∈ Rd×d, at ∈ Rd, Wt ∈ Rl×d).

In this form, βt(·) only models deformations. By
regularization (16), we see the affine part is free, which is
in the same spirit of common LBWs.
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Cov(M) = QΛQT
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r = Λ
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Figure 2. The proposed constraints M1 = 0, MMT = Λ with an unknown diagonal matrix Λ, allow all possible geometries
(i.e., shapes) for M. This is explained as follows. We assume M to be an arbitrary point-cloud, and denote Cov(M) = QΛQT the
eigenvalue decomposition of its point-cloud covariance. Then we can rigidly transform M to Mr which has exactly the same
geometry as M while Mr1 = 0, MrM

T
r = Λ. Note that as M is unknown, we do not know the eigenvalues Λ. Fortunately Λ is

never required explicitly to derive the globally optimal solution to the GPA formulation, and thus can be estimated afterwards. The
constraints M1 = 0, MMT = Λ implicitly specify the global coordinate frame in Figure 1, by requiring M positioned this way.

5 Transformation Constraint
Definition 7. (Zero-centered point-cloud). A point-cloud M
is zero-centered if and only if M1 = 0. In particular, M̄ is a
zero-centered point-cloud of M where:

M̄ = M− 1

m
M11T.

Definition 8. (Point-cloud covariance). We define the
point-cloud covariance Cov(M) = M̄M̄T with M̄ = M−
1
mM11T being the zero-centered point-cloud of M.

We can simplify Cov(M) in Definition 8 to MMT by
requiring M to be zero-centered as in Definition 7.

Lemma 2. (Lemma 2 in Bai and Bartoli (2022b)). For any
M, any rotation R and any translation t, we have:

Cov(RM+ t1T) = RCov(M)RT. (17)

Lemma 2 shows that: a) Cov(M) is only related to
rotations, and b) the eigenvalues of Cov(M) are preserved
when applying rotations to M.

Definition 9. (Eigenvalues of point-cloud covariance). We
denote Λ = diag(λ1, . . . , λd), where λ1 ≥ · · · ≥ λd ≥ 0
are the d eigenvalues of the point-cloud covariance Cov(M).

In addition, Lemma 2 provides a means to diagonalize
Cov(M) by rotating the point-cloud M. We consider the
eigenvalue decomposition:

Cov(M) = QΛQT =

d∑
k=1

λkqkq
T
k ,

where Q
def
=
[
q1 · · · qd

]
.

It is always possible to have Q ∈ SO(d) by flipping the signs
of qk. In Lemma 2, if we use R = QT, then:

Cov(QTM) = QTCov(M)Q = Λ,

where Cov(QTM) is of diagonal form.
We present the general result below, and give an

illustration in Figure 2.

Theorem 1. For any M, it is always possible to find a rigid
transformation (R, t) such that the rigidly transformed Mr:

Mr = RM+ t1T, R ∈ SO(d), t ∈ Rd,

is a zero-centered point-cloud and has a diagonal form point-
cloud covariance:

Mr1 = 0, Cov(Mr) = MrM
T
r = Λ,

where Λ, as defined in Definition 9, contains the eigenvalues
of the point-cloud covariances Cov(M) and Cov(Mr).

Proof. It suffices to set R = QT and t = − 1
mQTM1.

We are interested in the geometry i.e., the shape, of point-
cloud M, discarding its position and orientation in the global
coordinate system. Thus we propose to solve for an M that
is zero-centered with diagonal covariance:

constraints

{
M1 = 0 (18)

MMT = Λ = diag(λ1, . . . , λd), (19)

where λ1 ≥ · · · ≥ λd ≥ 0 are unknown parameters repre-
senting the eigenvalues of the point-cloud covariance.

Remark 4. The constraints M1 = 0, MMT = Λ allow M
to take all possible geometries, as implied by Theorem 1.

6 Globally Optimal Solution

6.1 Formulation of Deformable SLAM
Using deformable transformation (11) and regularization (8),
we write the cost function at time t as:

φt(At,at,Ωt,M) =
∥∥∥AtPt + at1

T +ΩT
t Kt −MΓt

∥∥∥2
F

+ µttr
(
ΩT

t KtΩt

)
. (20)

Then we use constraints M1 = 0 and MMT = Λ to
implicitly specify the free coordinate frame where to express
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the solution. We complete formulation (3) as the following
optimization problem:

min
{At, at,Ωt},M

n∑
t=1

φt(At, at, Ωt, M)

s.t.M1 = 0, MMT = Λ.

(21)

In the remainder of this section, we derive the globally
optimal solution to problem (21) in function of the unknown
Λ. We will recast problem (21) as a special eigenvalue
problem, and derive the solution in closed-form, see Bai and
Bartoli (2022b) for affine models and TPS warps (a brief
recapitulation is provided in Appendix M).

6.2 Reduced Problem in M

We notice that in problem (21), the transformation
parameters At, at and Ωt are linearly dependent on M. This
presents a separable structure and allows us to reduce the
optimization to M only using the variable projection method
Golub and Pereyra (2003).

The linear dependence of At, at and Ωt on M. We first
notice that in problem (21), given M, the summands in the
cost function become independent. This allows us to derive
the dependence of At, at and Ωt on M by solving a linear
least squares (LLS) optimization from cost (20):

min
{At, at,Ωt}

φt(At, at, Ωt, M), given M. (22)

With some trivial calculations, see appendix C.1, we write:[
[At, at], Ω

T
t

]
= MΓt

[
P̃T

t Kt

]
∆†

t

+ Ft

(
I−∆t∆

†
t

)
, (23)

where P̃t = [PT
t , 1]

T, and Ft ∈ Rd×(mt+d+1) is a free
matrix. ∆†

t is the Moore–Penrose pseudo-inverse of a
positive definite (or positive semi-definite) matrix ∆t

defined as:

∆t
def
=

[
P̃tP̃

T
t P̃tKt

KtP̃
T
t KtKt + µtKt

]
.

Remark 5. The free matrix Ft is used to describe general
solutions of the LLS problem (22), in case that ∆t is rank
deficient (and thus not invertible). If ∆t is positive definite,
then Ft is not required since Ft(I−∆t∆

†
t) = O.

Lemma 3. If Kt is positive definite and µt > 0, then ∆t is
positive definite if and only if P̃tP̃

T
t is positive definite.

Proof. See Appendix D.

Otherwise stated, ∆t is invertible if and only if P̃t has
full row rank which is the case if the point-cloud Pt is not
degenerate, e.g., not flat if d = 3 (namely residing in a plane
in the 3D space) or not a line if d = 2.

The reduced problem in M. Substituting equation (23)
into the cost (20), we obtain a cost with respect to M
only, denoted as φt(M). With some trivial calculations, see

appendix C.2, we show:

φt(M) = tr
(
MΓtQtΓ

T
t M

T
)
,

where Qt is independent of the free matrix F occurring in
equation (23), defined as:

Qt
def
= I−

[
P̃T

t Kt

]
∆†

t

[
P̃t

Kt

]
.

Lastly problem (21) is reduced to:

min
M

tr
(
MQMT

)
s.t. M1 = 0, MMT = Λ,

(24)

with:

Q =

n∑
t=1

ΓtQtΓ
T
t .

Problem (24) is an optimization problem with respect to M
only. In particular, problem (24) can be solved globally in
closed-form if the all-one vector 1 is an eigenvector of Q.

Properties of Qt and Q. We can work out closed-form
expressions for ∆†

t using the Schur complement Gallier
(2010), see Appendix E. With some trivial calculations,
see Appendix F, we show that Qt can be rewritten as follows:

Qt = (I−Pt)− (I−Pt)KtS
−1
t Kt (I−Pt) , (25)

with Pt
def
= P̃T

t (P̃tP̃
T
t )

†P̃t, and:

St
def
= Kt (I−Pt)Kt + µtKt, (26)

being symmetric positive definite (and thus invertible), since
we assume Kt is chosen positive definite and µt > 0.

Proposition 1. If Kt is chosen positive definite and µt > 0,
then Qt is symmetric positive semidefinite where:

• I ⪰ I−Pt ⪰ Qt ⪰ O

• Qt1mt
= 0

where A ⪰ B means A−B is positive semidefinite.

Proof. See Appendix G.

Theorem 2. In problem (24), Q1 = 0 which means 1 is an
eigenvector of Q corresponding to eigenvalue 0.

Proof. This is obvious as ΓT
t 1m = 1mt

and Qt1mt
= 0.

Remark 6. The expression of Qt in equation (25) is much
more elegant than the one in Bai and Bartoli (2022a). See
Appendix I for details.

6.3 Globally Optimal Estimate of M
We recapitulate necessary results to describe the globally
optimal solution to problem (24).

Definition 10. (The d top eigenvectors and the d bottom
eigenvectors). We consider a symmetric matrix Π ∈ Rm×m
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and its eigenvalue decomposition:

Π = UΣUT =

m∑
k=1

σkuku
T
k ,

with U = [u1,u2, . . . ,um] being orthonormal, and Σ =
diag (σ1, σ2, . . . , σm) whose diagonal elements are arranged
in the non-ascending order as σ1 ≥ σ2 ≥ · · · ≥ σm. We
term:

u1,u2, . . . ,ud,

in sequence the d top eigenvectors of Π, and:

um,um−1, . . . ,um−d+1,

in sequence the d bottom eigenvectors of Π.

Lemma 4. We consider a symmetric matrix Π ∈ Rm×m,
and X ∈ Rm×d. Let Λ = diag (λ1, λ2, . . . , λd) be a
diagonal matrix with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. If u is an
eigenvector of the symmetric matrix Π, then we have:

1. The globally optimal solution of:

max
X

tr
(
XTΠXΛ

)
s.t.XTX = I, XTu = 0,

(27)

is X = [x1, x2, . . . ,xd], where x1, x2, . . . ,xd are
the d top eigenvectors of Π excluding u.

2. The globally optimal solution of:

min
X

tr
(
XTΠXΛ

)
s.t.XTX = I, XTu = 0,

(28)

is X = [x1, x2, . . . ,xd], where x1, x2, . . . ,xd are
the d bottom eigenvectors of Π excluding u.

Proof. An initial version of the proof was given in Bai
and Bartoli (2022b). Here we provide a conciser version
without any further assumption on Π, see Appendix B. Some
preliminaries are provided in Appendix A.

Theorem 3. The globally optimal solution to problem (24)
is in closed-form:

M =
√
ΛXT, where X = [x1, x2, . . . ,xd] ∈ Rm×d,

where x1, x2, . . . ,xd in sequence are the d bottom
eigenvectors of Q excluding the vector 1.

Proof. In problem (24), by letting M =
√
ΛXT, we have:

min
X

tr
(
XTQXΛ

)
s.t.XTX = I, XT1 = 0.

(29)

From Proposition 2, we see 1 is an eigenvector of Q (with
eigenvalue 0). The result is immediate by applying Lemma 4.

Remark 7. (Shifting eigenvectors). Since Q1 = 0, we can
shift the eigenvector 1 of Q to the top by letting:

Q′ = Q+ n11T,

and solve for the d bottom eigenvectors of Q′ to form X.

6.4 Globally Optimal Estimate of the
Deformable Transformation

Upon obtaining the estimate of M, we can decide the optimal
transformation parameters. From equation (23), we set Ft =
O, and take the specific solution:[

[At, at], Ω
T
t

]
= MΓt

[
P̃T

t Kt

]
∆†

t . (30)

We expand ∆†
t in the term

[
P̃T

t Kt

]
∆†

t , see equation (50)
in Appendix F, and write the final result as:

[At, at] = MΓt (I−HtKt) P̃
†
t (31)

ΩT
t = MΓtHt, (32)

with:
Ht

def
= (I−Pt)KtS

−1
t .

Proposition 2. If Kt is chosen positive definite and µt > 0,
then Ht is symmetric positive definite where:

• Ht = HT
t

• Qt = µtHt

Proof. See Appendix H.

The optimal KBT yt(p) in equation (7), for an arbitrary
query point p, can be written as:

yt(p) = MΓt

(
(I−HtKt) P̃

†
t

[
p

1

]
+Htkt(p)

)
. (33)

Since M =
√
ΛXT, we establish the estimate of both M

and yt(·) up to an unknown Λ. It should be noted that any Λ
admits a globally optimal solution to problem (21). Thus this
is what we can maximally achieve by solving problem (21).

6.5 Coordinate Transformation of Data
In the data acquisition process, the point-cloud data Pt can
be expressed in any user defined coordinate frames.

Definition 11. (Coordinate transformation). We refer to
the coordinate transformation of data Pt as P̆t = R̆tPt +
t̆t1

T, with (R̆t, t̆t) being any arbitrary rigid transformation.

Ideally, we want the estimate of M to be invariant under
coordinate transformations of data. By equation (25), Qt can
be expressed with I−Pt and Kt. If both Pt and Kt are
invariant to the coordinate transformation of Pt, then Qt is
invariant to the coordinate transformation, thus so will be Q.

Lemma 5. (Lemma 5 in Bai and Bartoli (2022b)). The
orthogonal projection matrix Pt = P̃T

t (P̃tP̃
T
t )

†P̃t remains
unchanged under any coordinate transformation of Pt.

Proof. See Appendix J.

Proposition 3. If the kernel function k(·, ·) is chosen as
the RBFs, i.e., k(xi,xj) = ϕ(∥xi − xj∥), where k(xi,xj)
is only related to the Euclidean distance of xi and xj , then
Kt is invariant to the coordinate transformation.

Proposition 4. If the kernel function k(·, ·) is chosen as the
RBFs, then matrix Q in problem (24) remains unchanged.
In this case, the optimal estimate of M remains unchanged
under the coordinate transformation.

Prepared using sagej.cls



10 Journal Title XX(X)

7 Global Scale Ambiguity
√
Λ

In Bai and Bartoli (2022b), the authors proposed a method
to estimate the global scale ambiguities (i.e., the diagonal
elements of

√
Λ) using pairwise rigid Procrustes analysis.

The method in Bai and Bartoli (2022b) requires the existence
of some points to be globally visible across all point-clouds.
In this section, we propose a novel method to estimate Λ
which does not require such visibility assumptions.

In addition, the method in this work solves
√
Λ by a

global optimization formulation, whereas the method in Bai
and Bartoli (2022b) relies on local pairwise registrations.
Thus the

√
Λ estimation method proposed in this work can

be superior even if the globally visible correspondences are
available. We provide a justification to this claim in Figure 3.

7.1 As Rigid as Possible
We want the deformable transformation to be as-rigid-as-
possible, that means we want Φt(·) in equation (2) to be
close to an identity mapping. In particular, without the
deformation Φt(·), we have:

yt(Pt) = RtPt + tt1
T = MΓt =

√
ΛXTΓt.

This motivates us to characterize
√
Λ by an optimization

formulation as follows:

min
{Rt, tt},Λ,Rg

n∑
t=1

∥∥∥RtPt + tt1
T −
√
ΛRgGt

∥∥∥2
F
,

(34)
with:

Gt = XTΓt,

and (Rt, tt) denoting the rigid transformation. Here we have
introduced an orthonormal matrix Rg ∈ O(d) for a reason
we will explain later in Section 8.1. At the moment, it suffices
to think of Rg as an identity matrix.

7.2 Reduced Formulation
In formulation (34), we notice tt is linearly dependent on the
other parameters Rt, Λ, Rg . Thus formulation (34) admits
a separable structure which allows us to eliminate tt from
the formulation Golub and Pereyra (2003). In specific, given
Rt, Λ and Rg , the estimates of tt are expressed as:

tt = −
1

mt

(
RtPt −

√
ΛRgGt

)
1, (t ∈ [1 : n]) . (35)

After substituting equation (35) into formulation (34), we
obtain a reduced problem:

min
{Rt},Λ,Rg

n∑
t=1

∥∥∥RtP̄t −
√
ΛRgḠt

∥∥∥2
F
, (36)

with P̄t = Pt − 1
mt

Pt11
T and Ḡt = Gt − 1

mt
Gt11

T.

7.3 Closed-form Evaluation of
√
Λ and Rg

From formulation (36), we consider an affine relaxation of√
ΛRg , and establish its linear dependence on Rt as:

√
ΛRg ← RtP̄tḠ

†
t , (t ∈ [1 : n]) . (37)

From relaxation (37), we then compute (
√
ΛRg)

T
√
ΛRg

and apply the orthonormal constraint RT
t Rt = I, as:

RT
gΛRg =

(
RtP̄tḠ

†
t

)T
RtP̄tḠ

†
t = (P̄tḠ

†
t)

T P̄tḠ
†
t .

Given n point-clouds, we take the average with respect to t
which corresponds to the maximum likelihood estimate:

RT
gΛRg =

1

n

n∑
t=1

(P̄tḠ
†
t)

TP̄tḠ
†
t
def
= L. (38)

We see the lefthand of equation (38) forms the eigenvalue
decomposition of L. We thus compute the diagonals of
Λ as the eigenvalues of L, and the rows of Rg as the
corresponding eigenvectors. We arrange the eigenvalues of
L in the non-descending order. We notice L is positive
definite (or semi-definite), thus the eigenvalues of L are non-
negative. Therefore

√
Λ is well-defined in the real domain.

Remark 8. The idea to factorize
√
Λ from equation (38) is

maturer than the initial version in Bai and Bartoli (2022a).
In particular, the eigenvalue decomposition in equation (38)
was not realized in Bai and Bartoli (2022a). Critically, the
method in Bai and Bartoli (2022a) may lead to negative
diagonals in Λ, causing undefined

√
Λ.

Initialization of Rt and tt. Given
√
Λ and Rg , the rotation

Rt can be solved from formulation (36) in closed-form by
the special orthogonal Procrustes analysis Arun, Huang and
Blostein (1987); Horn, Hilden and Negahdaripour (1988)
between P̄t and

√
ΛRgḠt. Afterwards, we compute tt from

equation (35).

7.4 Iterative Refinement
We can solve formulation (36) exactly using iterative
NLS optimization techniques, e.g., by Gauss-Newton or
Levenberg-Marquardt. The rotation Rt can be readily
handled with Lie group techniques. The diagonal elements
of
√
Λ are constrained to be non-negative, thus requiring

special consideration.

Reflection. We notice that the columns of X (as the
eigenvectors of Q), and thus the rows of Gt (and Ḡt), are
defined up to signs. This means that if we flip the sign of one
column in X, the solution is still optimal. Using a specific
X, the optimal Rt in formulation (36) may have negative
determinants det(Rt) = −1, which is called a reflection.

We thus extend formulation (36) using η ∈ Rd to handle
the possible reflections caused by the specification of X:

min
{Rt∈SO(d)},η∈Rd

n∑
t=1

∥∥RtP̄t − diag(η)Ḡt

∥∥2
F , (39)

where diag(η) is a diagonal matrix taking the components
in η. We further denote sign(η) a vector containing the signs
of the components in η.

If there exist reflections, the optimal η in formulation (39)
can have negative components. In this case, we flip the sign
of the columns of X accordingly. In general, we set:

X← Xdiag(sign(η))

√
Λ← diag(η)diag(sign(η)).

Prepared using sagej.cls



Bai et al.: KernelGPA 11

number of missing correspondences

50 100 150 200 250 300 350 400 450 500 550 600

-1%

0%

1%

2%

3%

4%

5%

CVE - leave 1

50 100 150 200 250 300 350 400 450 500 550 600

-1%

0%

1%

2%

3%

4%

5%

CVE - 20 fold

AFF TPS(3) TPS(5) TPS(7) Kernel

Figure 3. Performance improvements of the proposed
√
Λ estimation method over the one in Bai and Bartoli (2022b). We

gradually remove the correspondences in the HandBag dataset Gallardo, Collins and Bartoli (2017) (with 155× 8 correspondences
in total), and report statistics of 20-trial Monte-Carlo runs based on leave-1 and 20-fold cross-validations Bai and Bartoli (2022a), for
five transformation models: affine, TPS with 3× 3, 5× 5 and 7× 7 control points, and the proposed KBT.

These operations preserve the optimality of both X and
√
Λ.

Remark 9. It should be noted that the rigid transformations
(Rt, tt) solved from formulation (34) are different from
the ambiguous poses defined in equation (1). In essence,
formulation (34) approximately solves Rigid-GPA, by
constraining M as M =

√
ΛXT. Thus the optimal (Rt, tt)

obtained from formulation (34) are similar to the poses
obtained from Rigid-GPA, as shown in Figure 4.

Figure 4. Estimated trajectories of Rigid-GPA, Affine-GPA,
TPS-GPA, and Kernel-GPA on the liver dataset.

8 Degeneracies

8.1 Zero-deformation and Noise-free
We consider the case where matrix Q in problem (24)
has d+ 1 zero eigenvalues, where one of them corresponds
to the eigenvector 1 (Theorem 2). Following Remark 7,
we can drop the eigenvector 1 easily by solving the d
bottom eigenvectors of Q′ = Q+ n11T instead to form the
columns of X. Note that in this case:

QX = O = XUg diag(0),

where Ug is an arbitrary orthonormal matrix, i.e., UgU
T
g =

UT
gUg = I. We see that any Xg

def
= XUg is a valid solution

as XgX
T
g = I. Thus, the optimal solution of problem (24)

will be defined up to an arbitrary Ug as:

M =
√
ΛUT

gX
T.

In this case, Ug is fundamentally ambiguous, which means
there is no way to decide Ug from problem (24) directly.

This is the reason why we introduce Rg in formulation
(34, 36), where we essentially denote Rg = UT

g . If such a
degeneracy occurs, we can factorize Rg (and thus Ug) from
equation (38) by the eigenvalue decomposition.

8.2 Flat Point-cloud in 3D Space

The cost function. We consider the case of d = 3 and
denote X = [x1, x2, x3]. With some matrix manipulations,
see Appendix K, we show that the cost of problem (29) can
be rewritten as:

tr
(
XTQXΛ

)
=

3∑
k=1

λk

∥∥∥∥∥∥∥∥

√
Q1 (I−P1)Γ

T
1

...
√
Qn (I−Pn)Γ

T
n

xk

∥∥∥∥∥∥∥∥
2

F

. (40)

Matrix Pt is the orthogonal projector to the range space of
P̃T

t Meyer (2000). In particular, if a vector y lies in the range
space of P̃T

t , then (I−Pt)y = 0. Hence, this cost is zero
(and thus minimized) if each of ΓT

t xk can be chosen from the
respective range space of P̃T

t , which is usually impossible
due to the existence of noise and deformations.

The canonical planar point-cloud. If the point-cloud Pt is
flat, then Pt can be rigidly transformed to the xy−plane. In
addition, from Theorem 1, we conclude that for a flat Pt,
there exists a rigid transformation (Rc, tc) and a canonical
2D point-cloud Ptxy in the xy−plane such that:

P̃t =

[
Pt

1T

]
=

[
Rc tc

0T 1

]Ptxy

0T

1T

 , with Ptxy =

[
uT
tx

uT
ty

]
,

Prepared using sagej.cls



12 Journal Title XX(X)

where uT
txuty = 0, uT

tx1 = 0, uT
ty1 = 0. Note that utx, uty ,

and 1 form an orthogonal basis of the range space of P̃T
t .

The solution of X. Vector 1 lies in the range space of each
P̃T

t . However, due to the constraint XT1 = 0, we require the
columns of X to be orthogonal to 1. As a result, 1 must be
excluded from X. Hence, the columns of X are essentially
constructed based on the “closeness” to the range space of
each PT

t , or equivalently to the range space of each PT
txy , by

evaluating the cost (40). Note that since each PT
txy has a two

dimensional range space, the last column of X, i.e., x3 will
be pushed toward the null space of Ptxy by the orthogonality
constraint xT

1x3 = 0 and xT
2x3 = 0.

The solution of
√
Λ. After solving X, we leverage

formulation (39) to estimate
√
Λ. In particular, we consider

the following problem by using the canonical 2D point-
clouds Ptxy in the xy−plane, as:

min
{Rt∈SO(d)},η∈Rd

n∑
t=1

∥∥∥∥∥Rt

[
Ptxy

0T

]
− diag(η)Ḡt

∥∥∥∥∥
2

F

.

(41)
If the optimal Rt of problem (41) implements a rotation
in the xy-plane, then the last component in

√
Λ is zero,

i.e., λ3 = 0, see Appendix L for more details. In this case,
the optimal M will be flat, residing in the xy−plane. This
happens if GPA solved from the canonical 2D point-clouds
Ptxy with t ∈ [1 : n] is optimal in the embedded 3D space.

Remark 10. In general, if the 2D data are generated by
flattening 3D observations to 2D, e.g., a) by a projective
function or b) by simply ignoring the z−coordinates, the
optimal reconstruction in the embedded 3D space is usually
not flat! Such an example is the SfM problem.

Remark 11. Similar discussions hold for the case of d = 2,
if the point-clouds degenerate to lines in the plane.

9 Implementation

9.1 Regularization Strength µt

We rewrite KtS
−1
t as:

KtS
−1
t =

1

µt

(
1

µt
Kt (I−Pt) + I

)−1

.

If µt → +∞, then 1
µt
Kt → O. As a result, KtS

−1
t → O

and thus Ht = (I−Pt)KtS
−1
t → O. From equations (25,

31, 32), we conclude when µt → +∞, KernelGPA becomes
the Affine-GPA:

Affine GPA


Qt = I−Pt

[At, at] = MΓtP̃
†
t

ΩT
t = O.

For general cases, from equations (25, 31), we notice that
both Qt and [At, at] make use of the kernel matrix Kt in
the form of KtS

−1
t Kt:

KtS
−1
t Kt =

(
(I−Pt) +

(
1

µt
Kt

)−1
)−1

,

where µt controls the influence of Kt as 1
µt
Kt, and thus the

allowed deformation. The larger µt, the smaller the influence
of Kt, and thus the lower the allowed deformation.

We use the same regularization strength for all point-
clouds, by setting µt = µ for t ∈ [1 : n].

9.2 Gaussian Kernel
The proposed KernelGPA can be implemented with a range
of kernel functions, up to the choice of the user. Following
Proposition 3 and Proposition 4, we suggest designing the
kernel function k(·, ·) as the RBFs. Other than that, we do
not pose any extra constraint on the possibilities of k(·, ·).

We specifically implement k(·, ·) using the Gaussian
kernel, which is an RBF taking the form:

k(xi,xj) = exp

(
−∥xi − xj∥2

2σ2

)
. (42)

We decide the kernel bandwidth σ as σ = pd̄, where
d̄ denotes the mean of the pairwise Euclidean distances
between all the discrete training points:

d̄ = mean (∥xi − xj∥) , for all (i ̸= j), (43)

and p > 0 is a tunable scale factor.
In our case, for each point-cloud Pt and thus each Kt, we

implement a Gaussian kernel with kernel bandwidth σt. We
set σt = pd̄t where d̄t denotes the mean pairwise Euclidean
distances between all the corresponding points in Pt.

10 Experimental Results
We evaluate the performance of different GPA methods
using three datasets: a) the semi-synthetic liver dataset for
smooth organ deformations, b) the facial expression dataset
for structural deformations, and c) the TOPACS point-clouds
extracted from computerized tomography (CT) scans for real
medical scenarios.

10.1 Preliminary

Correspondences. The proposed GPA registration is based
on correspondences, which can be extracted from RGB-
D cameras, segmented meshes or raw point-clouds. The
computational complexity is determined by the dimension
of the Q matrix, and is thus decided by the number of used
correspondences. Since we have assumed low-dimensional
deformations, the GPA registration does not require a large
number of correspondences. In contrast, in most cases, the
redundancy of correspondences does not improve much the
accuracy of the GPA registration, but cause strains on the
computation. Hence, we always suggest using a reasonable
amount of correspondences, as long as they are sufficient to
capture the underlying motions and deformations.

Test points. After solving GPA, we obtain an estimate of
the deformable transformations yt(·) and a reference map of
used correspondences. While formulated in the cost function,
it is not a good idea to evaluate the residual yt(Pt)−MΓt,
because yt(·) may overfit the correspondences. Therefore,
we use correspondences to solve GPA, and afterwards
benchmark the performance of GPA registration using the
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idea of test points. Importantly, the test points are never
used to solve GPA (as the correspondences of these points
are typically not available), but usually serve as a dense
representation of the geometry of the scene.

Consistency by extrapolation. We denote the test points as
P̌t (t ∈ [1 : n]). After solving deformable transformations
yt(·), we evaluate the coherence of the transformed points
yt(P̌t) for all t ∈ [1 : n]. To benchmark the closeness of
these transformed points, we need to define a distance metric,
based on e.g., surface-to-surface or nearest neighboring
point distances etc. To simplify the evaluation, we assume
the correspondence information for the test points are also
known. We use Γ̌t to denote the corresponding visibility
information of P̌t. Such assumption allows us to evaluate
the deviation of the transformed points yt(P̌t) directly.

Evaluation metrics. We define the mean map of the test
points using the mean of yt(P̌t), as:

M̌
def
=

(
n∑

t=1

yt(P̌t)Γ̌
T
t

)(
n∑

t=1

Γ̌tΓ̌
T
t

)†

, (44)

where
∑n

t=1 Γ̌tΓ̌
T
t count the total visibilities of each

correspondence. We shall use the mean map M̌ as the
reconstruction of the test points. Then we benchmark the
accuracy of the mean map M̌ using the consistencies of the
transformed test points. In specific, for each point in M̌, we
define the point-wise consistencies of the test points as:

δ̌ =

√√√√1T

(
n∑

t=1

(Σt ∗Σt) Γ̌T
t

)(
n∑

t=1

Γ̌tΓ̌T
t

)†

,

where Σt = yt(P̌t)− M̌Γ̌t, (t ∈ [1 : n]) . Here Σt ∗
Σt denotes element-wise matrix multiplication, and the
outermost square-root is also computed element-wise.

Benchmark methods. We term GPA with the TPS warp
as TPS-GPA, and GPA with the KBT as Kernel-GPA. We
compare Kernel-GPA with the Rigid-GPA, Affine-GPA and
TPS-GPA methods. We use in total 125 = 5× 5× 5 control
points for the TPS warp, which are evenly distributed along
the principle axes of the point-cloud. The regularization
strength of the TPS warp is set to 0.01 as suggested in Bai
and Bartoli (2022b) for 3D data.

10.2 Liver

Data generation. We use a segmented liver mesh model, as
shown in Figure 5, which has 2002 vertices and 201 of them
are selected as correspondences. We simulate deformations
using the As-Rigid-As-Possible method Sorkine and Alexa
(2007b) implemented in the CGAL* library. We simulate a
circular trajectory comprising 60 poses, as shown in Figure 5.
For the reason of clarity, only parts of the poses are plotted
as the pyramid shapes. At each pose, the sensor observes
a deformed mesh in its local coordinate frame, subject to
partial visibilities and measurement noise:

• Partial visibility. We randomly drop 30% of the 201
correspondences to simulate partial visibilities caused
by correspondence detection failures, see Figure 6.

Figure 5. The simulated liver dataset. These dataset contains
60 meshes, deformed from a template liver mesh by the
As-Rigid-As-Possible method Sorkine and Alexa (2007b). Each
mesh has 2002 vertices with known correspondences. We
observe these 60 meshes from different perspectives, by
assigning 60 poses along a simulated circular trajectory, where
only parts of the sensor poses are shown as blue pyramids. The
green dots denote the control points used to generate
deformations, and the red dots denote the disabled
correspondences in Figure 8.

Figure 6. The simulated partial visibility of correspondences.
The blue and red dots represent correspondences visible in the
blue and red views, respectively. For a region without any
correspondences, the deformation therein is never captured and
thus is subject to information loss. Thus we drop
correspondences randomly to simulate partial visibilities.

• Measurement noise. We add zero-mean Gaussian noise
with its standard-deviation set to 1 mm, to simulate
imperfect sensor measurements.

Evaluation. We set tuning parameters p = 0.25 and µ = 0.1.
We compute the GPA registration using the downsampled
201 correspondences, and then evaluate the performance of
different GPA methods using all the 2002 correspondences.
For each tested case, we report the minimum, maximum and
mean of the point-wise registration error δ̌ in Table 1. We
visualize the mean map M̌, and the point-wise registration
error δ̌ in Figure 7, by using the case where the meshes
are fully-observable without noise. It can be seen that GPA
with deformable transformations (i.e., TPS-GPA and Kernel-
GPA) can significantly outperform classical Rigid-GPA and
Affine-GPA methods. The proposed Kernel-GPA method
gives better results for regions with larger deformations.

We further set a small region of the liver to be invisible
in all the 60 measurements, as seen in Figure 8, and use

∗https://www.cgal.org
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Table 1. The statistics of different GPA methods on the liver dataset.

Rigid-GPA Affine-GPA TPS-GPA Kernel-GPA

full visibility no noise
min (mm) 0.389 0.140 0.022 0.006
max (mm) 5.208 3.008 1.567 1.310
mean (mm) 2.470 1.423 0.459 0.174

partial visibility no noise
min (mm) 0.384 0.238 0.062 0.042
max (mm) 5.207 3.031 1.518 1.868
mean (mm) 2.480 1.435 0.503 0.453

full visibility with noise
min (mm) 1.517 1.501 1.215 0.557
max (mm) 5.691 3.506 2.404 2.448
mean (mm) 3.062 2.229 1.713 1.749

partial visibility with noise
min (mm) 1.531 1.499 1.328 1.127
max (mm) 5.717 3.524 2.423 2.542
mean (mm) 3.070 2.251 1.790 1.928

Rigid-GPA Affine-GPA

TPS-GPA Kernel-GPA

Figure 7. The accuracy of different GPA methods on the liver
dataset. We visualize the mean map M̌ and encode point-wise
consistencies of the test points δ̌ with color. Both TPS-GPA and
Kernel-GPA give significantly better performance.

the mesh vertices therein as test points. In this test, we
extrapolate the situation in the invisible region using yt(·)
computed from correspondences outside the invisible region.
The predicted mean map M̌ and the point-wise consistencies
of the transformed test points δ̌ are shown in Figure 8 for
each GPA method. This result further backs our claim on the
superior performance of TPS-GPA and Kernel-GPA, where
both methods can extrapolate the deformation in the invisible
region with very similar performances.

Overall, for smooth deformations, we find both TPS-GPA
and Kernel-GPA can give satisfactory results.

Rigid-GPA Affine-GPA

TPS-GPA Kernel-GPA

Figure 8. Extrapolation on the liver dataset. We disable the
correspondences in the colored region across all the 60
meshes. We solve GPA without the disabled correspondences,
and then transform the test points in the region to construct a
predicted mean surface. The reconstruction error of the
predicted mean surface is given as the point-wise consistencies
of the transformed test points, color coded.

10.3 Facial Expression

Data generation. We create a facial expression dataset
which contains the meshes of 5 facial expressions: 1)
smiling, 2) curling the lip to the left, 3) curling the lip to the
right, 4) cheek blowing and 5) opening the mouth, as shown
in Figure 9. The meshes of the head model are reconstructed
with detailed facial geometry from a single input image
using off-the-shelf toolbox DECA† from Feng, Feng, Black

†https://deca.is.tue.mpg.de
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Figure 9. The facial expression dataset. We reconstruct the 3D model using DECA. The expressions from left to the right are
respectively: 1) smile face, 2) curling the lip to the left, 3) curling the lip to the right, 4) cheek blowing, and 5) opening the mouth.

Table 2. The statistics of different GPA methods on the facial expression dataset.

Rigid-GPA Affine-GPA TPS-GPA Kernel-GPA

smiling
min (mm) 0.129 0.138 0.152 0.003
max (mm) 9.901 10.536 10.518 2.797
mean (mm) 1.552 1.564 1.553 0.374

curling left
min (mm) 0.099 0.138 0.152 0.002
max (mm) 8.415 7.583 7.559 4.290
mean (mm) 1.797 1.579 1.567 0.309

curling right
min (mm) 0.158 0.103 0.090 0.004
max (mm) 8.265 8.283 8.251 3.613
mean (mm) 1.730 1.652 1.640 0.400

cheek blowing
min (mm) 0.186 0.065 0.073 0.004
max (mm) 16.941 13.580 13.507 7.209
mean (mm) 3.445 2.984 2.955 0.527

opening mouth
min (mm) 0.240 0.156 0.145 0.003
max (mm) 11.998 10.280 10.207 4.747
mean (mm) 2.173 2.343 2.317 0.368

Rigid-GPA Affine-GPA

TPS-GPA Kernel-GPA

Figure 10. The face model M̌ reconstructed from each GPA
method, textured with the point-wise consistencies δ̌.

and Bolkart (2021). In the reconstructed meshes, the indices
of the vertices are consistent thus the correspondences are
available. There are 5118 vertices in total for each mesh, and
we select 326 as correspondences for GPA registration and
the rest for test.

Evaluation. We set tuning parameters p = 0.25 and µ =
0.2. We use the selected 326 correspondences to solve
GPA, and test the registration performance using all the
5118 points. We first show the reconstructed mean maps
M̌ for each GPA method in Figure 10, and encode the
point-wise consistencies δ̌ with textures. We specifically
examine the discrepancy between the transformed test points
yt(P̌t) and the mean map M̌, for each t individually. The
statistics are reported in Table 2, and the visualization is
given in Figure 11. For structural deformations, Kernel-GPA
significantly outperforms the other methods, owing to its
capability to handle e.g., the 4-th cheek blowing point-cloud.
Such data are challenging for TPS-GPA, as facial expressions
are less smooth, with particularly large deformations on the
cheek, around the nose and the mouth.

We examine the extrapolation ability of yt(·) around
the chin area, as shown in Figure 12a, by disabling the
correspondences in the selected region. We solve GPA
without the disabled correspondences, and use the computed
yt(·) to extrapolate the deformation. Within the region, the
predicted mean map M̌ and the point-wise consistencies of
the transformed test points δ̌ are visualized in Figure 12b. It
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Figure 11. The deformable transformations yt(·) of different GPA methods on the facial expression dataset. We visualize the
shape of the transformed test points yt(P̌t) and encode the point-wise discrepancies between yt(P̌t) and the mean map M̌Γ̌t

with color. The markers on the face represent the transformed correspondences, i.e., yt(Pt).

can be seen that the Kernel-GPA gives significantly better
prediction compared with the other three GPA methods,
confirming the superior modeling power of the KBT.

Overall, for structural deformations, we find the proposed
Kernel-GPA method outperforms the TPS-GPA , the Affine-
GPA and the Rigid-GPA methods.

10.4 CT Point-cloud

Data generation. We provide a dataset, termed TOPACS,
for computerized tomography (CT) registration. The CT data
we use, shown in Figure 13, contain 6 scans of lungs, which

are processed by the SURF3D features Raju and Newman
(1993) resulting in 6 point-clouds (with 20000 points for
each point-cloud). Initial correspondences are found by
matching feature descriptors and then refined by an ICP
algorithm. The global correspondences are found by a graph
matching algorithm, and the ambiguous ones are removed
based on distances. We categorize the correspondences into
four sets C3, C4, C5, C6 by their visibilities. For example, C3
collects the correspondences visible in exactly three point-
clouds, and others are defined analogously.

Evaluation. We set tuning parameters p = 0.20 and µ =
0.05. We use one category of the correspondences Ck
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(a) Disabled correspondences in red

Rigid-GPA Affine-GPA

TPS-GPA Kernel-GPA

(b) Extrapolation error of each GPA method

Figure 12. Extrapolation on the facial expression dataset. We solve GPA without the correspondences around the chin, and then
transform the test points in the chin area to construct a predicted mean surface to to fill the hole. The point-wise consistencies of
the transformed test points are color coded.
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Figure 13. The TOPACS point-cloud dataset. The point-clouds are processed from real CT scans using SURF3D features. This
dataset contains 6 point-clouds, with 20000 points for each point-cloud. There are in total 1320 correspondences classified into four
categories according to their occurrences.

to to solve GPA, which gives an estimate of deformable
transformations yt(·). Then we use the other categories
Cj (j ̸= k) as the test points. We compute the point-wise

consistencies of the transformed test points δ̌ (thanks to
the known correspondences), and report the statistics in
Table 3. For this dataset, we see a remarkable reduction of
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Figure 14. The registration of different GPA methods on the TOPACS dataset, with exactly the same tuning parameters used in
Table 3. In this example, we use C3 to solve GPA, and then show the final registration result by visualizing the point-wise
consistencies of C4, C5, C6, as both size-coded and color-coded with the filled circles. The smaller the marker size, the better. The
transformed correspondences are also plotted as colored dots, where the corresponding points are plotted with the same color.

Table 3. The statistics of different GPA methods on the TOPACS dataset.

registration test Rigid-GPA Affine-GPA TPS-GPA Kernel-GPA
min (mm) 7.38 3.81 2.06 1.18

C3 C4C5C6 max (mm) 49.61 35.67 27.78 31.07
mean (mm) 17.10 13.79 8.29 6.74
min (mm) 3.26 2.86 1.19 0.55

C4 C3C5C6 max (mm) 59.41 42.36 36.79 34.68
mean (mm) 17.30 13.29 8.15 6.62
min (mm) 2.76 2.57 1.56 0.59

C5 C3C4C6 max (mm) 61.20 45.78 37.32 35.69
mean (mm) 17.13 13.22 8.57 7.64
min (mm) 2.21 1.63 1.05 0.88

C6 C3C4C5 max (mm) 63.71 56.54 47.97 46.82
mean (mm) 17.66 14.12 10.04 9.94
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the registration error from the Rigid-GPA to the Affine-GPA.
This is probably because of the fact that each point-cloud is
for a different subject, and the subject’s morphology varies a
lot in width, length and thickness. Another explanation is that
a large portion of deformations are caused by the stretching
of shoulders in the preparation process of the CT scanning.
Such shearing is well-modeled by the affine transformation.
We further see that both the TPS-GPA and the Kernel-
GPA methods can further improve the performance of the
affine-GPA, owing to their capabilities to model nonlinear
deformations caused by breathing.

We provide a visualization in Figure 14, by using
the correspondences C3 to solve GPA and C4, C5, C6 for
validation, as this is the worst case in Table 3. We see
that both the TPS-GPA and the Kernel-GPA methods give
similar performances, while there are marginal differences
in the statistics. This can be understood as the underlying
deformations are smooth, similar to the liver data studied in
Section 10.2. This further backs the claim that both TPS-
GPA and Kernel-GPA are suitable for surgical applications,
while Kernel-GPA is preferred in case of more complex
deformations, e.g., the facial expression data studied in
Section 10.3.

In contrast to the simulated liver in Section 10.2 with
perfect correspondences, the correspondences from CT scans
(i.e., slices of gray images) are never perfect due to the lack
of textures and are thus subject to mismatches (i.e., outliers).
However, we show that the correspondence based method
works well, even for such challenging CT data. In practice,
we expect better performance of GPA methods, if the
correspondences are extracted from RGB images.

11 Discussion and Conclusion

We have proposed KernelGPA, a novel GPA method using
the KBT as the deformable transformation. We have given
detailed mathematical derivations to show the point that
KernelGPA can be solved globally in closed-form up
to some global scale ambiguities. We have proposed to
estimate the global scale ambiguities by an optimization
formulation that favors rigidity, which has also allowed us
to give insights on the degenerate cases. While we have
implemented KernelGPA using the Gaussian kernel, the
proposed KernelGPA can be implemented using any positive
definite kernel, e.g., the Laplacian kernel. We have validated
the performance of KernelGPA with both simulated and real
datasets. Our Matlab code and data are publicly available for
future comparison.

Computational complexity. Computationally, the complex-
ity of KernelGPA is characterized by the number of corre-
spondences used, and largely independent of the number of
poses. In specific, the most expensive part of KernelGPA
comprises: 1) the construction of matrix Qt in equation (25)
which requires the inversion of matrix St, and 2) the Eigen
decomposition of matrix Q to solve formulation (24). The
dimension of both St and Q are decided by the number of
correspondences used. In practice, for example in medical
applications, the number of correspondences are typically
limited to a few hundred, which can be handled effectively.
For certain cases, if a large number of correspondences are

available, we suggest selecting a reasonable number of robust
correspondences that cover the deformable part of the scene.

Connection to the Tomasi-Kanade factorization. For the
affine case, the affine transformation and the canonical map
can be jointly factorized by the singular value decomposition
(SVD), see Section 3.2 in Bai and Bartoli (2022b) and the
∗AFF d method. This SVD approach is in the same spirit of
the Tomasi-Kanade factorization Tomasi and Kanade (1992)
in computer vision based on the orthographic camera model.
The SVD approach has been extended to handle structural
deformations, see Bregler, Hertzmann and Biermann (2000).
In this work, we have proposed an alternative factorization
method based on the Eigen decomposition. As for the cost
function, the residual of the SVD approach is defined in
the coordinate frame of the sensor, while the residual of
our Eigen approach is defined in the coordinate frame of
the canonical map. Critically, we show in Section 5 that
the geometry of the canonical map M can be defined up
to d global scale ambiguities. This point is not realized in
the classical SVD approach, which thus does not use the
constraints in Section 5 to further reduce the ambiguities.
As a result, the SVD approach gives a solution up to a
global affine transformation, while our Eigen approach gives
a solution up to d global scale ambiguities. Recall that the
affine transformation has d2 parameters (not considering the
translation), hence more than the d of our method.

Future work. The future work includes handling pose
ambiguities (for example, by adding additional sensor
information or deformation assumptions), incorporating
probabilistic models to handle non-isotropic noise, extending
the proposed GPA method to SfM problems, exploring
different kernel functions, and exploiting the sparsity of the
kernel matrix for even faster computation.

A Brockett Cost Function on the Stiefel
Manifold

Definition 12. (Brockett cost function on the Stiefel
manifold). The matrix Stiefel manifold is the set of matrices
satisfying:

St(d,m) =
{
X ∈ Rm×d |XTX = I

}
.

The following function defined on the Stiefel manifold is
termed the Brockett cost function Brockett (1989); Absil,
Mahony and Sepulchre (2009):

fX∈St(d,m)(X) = tr
(
XTΠXΛ

)
, (45)

where Π ∈ Rm×m is symmetric, and Λ =
diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

Lemma 6. (Brockett (1989); Birtea, Caşu and Comănescu
(2019); Absil, Mahony and Sepulchre (2009)). The critical
points of the Brockett cost function fX∈St(d,m)(X) on the
Stiefel manifold are the eigenvectors of Π.

If we choose X′ = [ξ1, ξ2, . . . , ξd] with Πξk = αkξk
(i.e., ξk is an eigenvector of Π corresponding to eigenvalue
αk), then we have cost fX′∈St(d,m)(X

′) = λ1ξ1 + λ2ξ2 +
· · ·+ λdξd.
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Lemma 7. (Hardy-Littlewood-Polya Hardy, Collection,
Littlewood, Pólya, Pólya and Littlewood (1952)). For
two sequences of real numbers x1 ≥ x2 ≥ · · · ≥ xn and
y1, y2, . . . , yn in any order, we consider:

η =

n∑
i

xiyπ(i),

where π denotes a permutation of indices in [1 : n]. The
maximum of η is attained when yπ(1) ≥ yπ(2) ≥ · · · ≥
yπ(n). The minimum of η is attained when yπ(1) ≤ yπ(2) ≤
· · · ≤ yπ(n).

Lemma 8. (Brockett (1989)). For a symmetric Π ∈ Rm×m,
we denote its eigenvalue decomposition as:

Π = UΣUT =

m∑
k=1

σkuku
T
k ,

where U = [u1,u2, . . . ,um] is an orthonormal matrix, and
Σ = diag (σ1, σ2, . . . , σm) with σ1 ≥ σ2 ≥ · · · ≥ σm. Let
Λ = diag(λ1, λ2, . . . , λd) with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.
We have:

1. maxX∈St(d,m) tr
(
XTΠXΛ

)
is attained at:

X = [u1,u2, . . . ,ud],

which comprises the d top eigenvectors of Π, with cost
λ1σ1 + λ2σ2 + · · ·+ λdσd.

2. minX∈St(d,m) tr
(
XTΠXΛ

)
is attained at:

X = [um,um−1, . . . ,um−d+1],

which comprises the d bottom eigenvectors of Π, with
cost λ1σm + λ2σm−1 + · · ·+ λdσm−d+1.

B Proof of Lemma 4
We first notice that when XTu = 0, the cost is equivalent to:

tr
(
XTΠXΛ

)
= tr

(
XT

(
Π− cuuT

)
XΛ

)
,

where c is an arbitrary scalar. Importantly, by using different
c, we can shift u to the top or bottom eigenvector of Π−
cuuT. We denote the eigenvalue decomposition of Π as:

Π =

m∑
k=1

σkuku
T
k ,

with σ1 ≥ σ2 ≥ · · · ≥ σm.

Case 1. We consider c > σ1 − σm, and the following
relaxation of problem (27) without constraint XTu = 0:

max
X

tr
(
XT

(
Π− cuuT

)
XΛ

)
s.t. XTX = I.

(46)

If X∗ is optimal to problem (46) and satisfies XT
∗u = 0, then

X∗ is optimal to problem (27).
Problem (46) admits a Brockett cost on the Stiefel

manifold (see Appendix A), where we denote its solution
by X∗. The columns of X∗ comprise the d top

eigenvectors of Π− cuuT. If c > σ1 − σm, u becomes
the bottom eigenvector of Π− cuuT. Thus X∗

Tu = 0
because eigenvectors with respect to different eigenvalues
are orthogonal. To conclude, if c > σ1 − σm, problem (46)
is a tight relaxation to problem (27).

Lastly, when c > σ1 − σm, the d top eigenvectors of Π−
cuuT are the d top eigenvectors of Π excluding u.

Case 2. We consider c > σ1 − σm, and the following
relaxation of problem (28) without constraint XTu = 0:

min
X

tr
(
XT

(
Π+ cuuT

)
XΛ

)
s.t. XTX = I,

(47)

which is a tight relaxation to problem (28) if c > σ1 − σm.

C Derivation of the Reduced Problem

C.1 Linear Dependence of At, at, Ωt on M

By defining P̃t = [PT
t , 1]

T, we notice that the affine part can
be rewritten as:

AtPt + at1
T = [At, at]

[
Pt

1T

]
= [At, at] P̃t,

Then we write cost φt(At, at, Ωt, M) in matrix form:

φt(At,at,Ωt,M) =
∥∥∥AtPt + at1

T +ΩT
t Kt −MΓt

∥∥∥2
F

+ µttr
(
ΩT

t KtΩt

)
=

∥∥∥∥∥[[At, at], Ω
T
t

] [P̃t O

Kt

√
µtKt

]
−
[
MΓt O

]∥∥∥∥∥
2

F

=
∥∥∥[[At, at], Ω

T
t

]
Ct −

[
MΓt O

]∥∥∥2
F
,

where we have defined the matrix constant Ct as:

Ct =

[
P̃t O

Kt

√
µtKt

]
.

Given M, the problem regarding At, at, Ωt:

min
At, at,Ωt

φt(At, at, Ωt, M), given M,

is a LLS optimization problem. The optimal solution is in
closed-form:[

[At, at], Ω
T
t

]
=
[
MΓt O

]
C†

t

+ Ft

(
I−CtC

†
t

)
, (48)

where C†
t is the Moore–Penrose pseudo-inverse of Ct, and

Ft ∈ Rd×(mt+d+1) is a free matrix (i.e., an arbitrary matrix
with the compatible dimension). We denote:

∆t
def
= CtC

T
t =

[
P̃tP̃

T
t P̃tKt

KtP̃
T
t KtKt + µtKt

]
,
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and expand the Moore–Penrose pseudo-inverse C†
t as:

C†
t = CT

t

(
CtC

T
t

)†
= CT

t ∆
†
t .

Lastly, we express equation (48) using ∆t as:[
[At, at], Ω

T
t

]
=
[
MΓt O

]
CT

t ∆
†
t + Ft

(
I−CtC

T
t ∆

†
t

)
= MΓt

[
P̃T

t Kt

]
∆†

t + Ft

(
I−∆t∆

†
t

)
,

which is the form in equation (23).

C.2 Cost φt(M)

We first notice that Y
(
I−CtC

†
t

)
Ct = O because the

Moore–Penrose pseudo-inverse satisfies Ct = CtC
†
tCt.

Substituting equation (48) into the cost φt(At,at,Ωt,M),
we obtain the reduced cost φt(M):

φt(M) =
∥∥∥[MΓt O

] (
C†

tCt − I
)∥∥∥2

F

= tr
([

MΓt O
] (

I−C†
tCt

) [
MΓt O

]T)
,

where we have used the fact that I−C†
tCt is symmetric

and idempotent, since it is an orthogonal projection matrix
(i.e., the orthogonal projector to the null space of Ct). In
particular, we can write C†

tCt as:

C†
tCt = CT

t

(
CtC

T
t

)†
Ct = CT

t ∆
†
tCt.

The matrix multiplication shows:[
MΓt O

]
CT

t = MΓt

[
P̃T

t Kt

]
.

Lastly, we write φt(M) as:

φt(M) = tr

(
MΓt

(
I−

[
P̃T

t Kt

]
∆†

t

[
P̃t

Kt

])
ΓT
t M

T

)
.

D Positive Definiteness of ∆t and P̃tP̃
T
t

D.1 Preliminary
Lemma 9. (Gallier (2010)). For any symmetric matrix S of
the form:

S =

[
A B

BT C

]
,

if C is positive definite, then S is positive definite if and only
if A−BC−1BT is positive definite.

Lemma 10. (Woodbury matrix identity). For any invertible
A and D, the following identity holds:

(A+BDC)−1 = A−1

−A−1B
(
D−1 +CA−1B

)−1
CA−1.

D.2 Proof of Lemma 3
We have denoted ∆t as:

∆t =

[
P̃tP̃

T
t P̃tKt

KtP̃
T
t KtKt + µtKt

]
.

If Kt is chosen positive definite and µt > 0, it suffices to
examine the positive definiteness of:

Et = P̃tP̃
T
t − P̃tKt(KtKt + µtKt)

−1KtP̃
T
t

= P̃t

(
I− (I+ µtK

−1
t )−1

)
P̃T

t

= P̃t(I+
1

µt
Kt)

−1P̃T
t ,

where the last equality holds because of the Woodbury
matrix identity.

We notice that I+ 1
µt
Kt is positive definite. As a result,

Et is positive definite if and only if P̃tP̃
T
t is positive definite.

E Expansion of ∆†
t

We expand ∆†
t with respect to P̃tP̃

T
t , by the Schur

complement for positive semi-definite matrices.
To this end, we denote the Moore–Penrose pseudo-inverse

of P̃tP̃
T
t as (P̃tP̃

T
t )

†, and define:

St
def
= KtKt + µtKt −KtP̃

T
t (P̃tP̃

T
t )

†P̃tKt. (49)

In equation (49), using the notation Pt = P̃T
t (P̃tP̃

T
t )

†P̃t,
we can rewrite St in form of equation (26), as:

St = Kt (I−Pt)Kt + µtKt.

As an orthogonal projector, matrix I−Pt is always positive
semi-definite. Therefore if Kt is positive definite and µt > 0,
then St is positive definite.

By the Schur complement Gallier (2010), the expansion of
∆†

t with respect to P̃tP̃
T
t is:

∆†
t =

[
P̃tP̃

T
t P̃tKt

KtP̃
T
t KtKt + µtKt

]†
=

[
Σ11 Σ12

Σ21 Σ22

]
,

where the relevant blocks are defined as:

Σ11
def
= (P̃tP̃

T
t )

† + (P̃tP̃
T
t )

†P̃tKtS
−1
t KtP̃

T
t (P̃tP̃

T
t )

†

Σ12
def
= −(P̃tP̃

T
t )

†P̃tKtS
−1
t

Σ21
def
= −S−1

t KtP̃
T
t (P̃tP̃

T
t )

†

Σ22
def
= S−1

t .

F Derivation of Qt

Following Appendix E, by denoting P̃†
t = P̃T

t (P̃tP̃
T
t )

†

which is the Moore–Penrose pseudo-inverse of P̃t, we
further compute:[

P̃T
t Kt

]
∆†

t =
[
P̃†

t −HtKtP̃
†
t Ht

]
, (50)

where:
Ht

def
= (I−Pt)KtS

−1
t . (51)
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Matrix Ht thus defined is symmetric, i.e., Ht = HT
t , as to

be shown in Proposition 2 and Appendix H. From equation
(50), we obtain:

Qt = I−
[
P̃T

t Kt

]
∆†

t

[
P̃t

Kt

]

= I−
(
P̃†

tP̃t −HtKtP̃
†
tP̃t +HtKt

)
= (I−Pt)−HtKt (I−Pt)

= (I−Pt)− (I−Pt)KtS
−1
t Kt (I−Pt) .

We refer to the book Meyer (2000) for some properties
of the concepts of: Moore–Penrose pseudo-inverse (Exercise
5.12.16) and orthogonal projectors (Chapter 5.13).

G Proof of Proposition 1: Properties of Qt

G.1 I ⪰ I−P t ⪰ Qt ⪰ O

Lemma 11. Both Pt and I−Pt are symmetric positive
semidefinite.

Lemma 12. St = Kt (I−Pt)Kt + µtKt is symmetric
positive definite, which is always invertible.

Proof. µtKt is symmetric positive definite, since we assume
symmetric positive definite Kt and µt > 0. The orthogonal
projector I−Pt is symmetric positive semidefinite. Thus
Kt (I−Pt)Kt is symmetric positive semidefinite. As as
result, St is symmetric positive definite.

Lemma 13. I ⪰ I−Pt ⪰ Qt.

Proof. Given the fact that St is symmetric positive
definite, we know S−1

t is symmetric positive definite. As
a result, (I−Pt)KtS

−1
t Kt (I−Pt) is symmetric positive

semidefinite. Therefore:

(I−Pt)−Qt ⪰ O⇔ I−Pt ⪰ Qt.

I ⪰ I−Pt is true since Pt is positive semidefinite.

Lemma 14. Qt can be rewritten as:

Qt = (HtKt − I)(I−Pt)(K
T
t H

T
t − I)

+ µtHtKtH
T
t , (52)

where Ht has been defined in equation (51).

Proof. The proof is given in Appendix I.

Lemma 15. Qt is symmetric positive semidefinite.

Proof. In equation (52), we notice that I−Pt is symmetric
positive semidefinite, and Kt is symmetric positive definite.

G.2 Qt1mt = 0

We notice that matrix Pt is the orthogonal projector to the
range space of:

P̃T
t =

[
PT

t , 1mt

]
.

We further observe that 1mt is in fact a column of P̃T
t thus

lying in the range of P̃T
t . As a result, we have:

Pt1mt
= 1mt

⇔ (I−Pt)1mt
= 0.

It is thus obvious to see Qt1mt = 0.

H Proof of Proposition 2: Properties of Ht

We compute:

KtS
−1
t Kt = Kt (Kt (I−Pt)Kt + µtKt)

−1
Kt

=
(
(I−Pt) + µtK

−1
t

)−1
.

Matrix KtS
−1
t Kt is invertible. Thus we have:
(
(I−Pt) + µtK

−1
t

)
KtS

−1
t Kt = I

KtS
−1
t Kt

(
(I−Pt) + µtK

−1
t

)
= I.

Thus the following equalities hold true:

µtS
−1
t Kt = I− (I−Pt)KtS

−1
t Kt (53)

µtKtS
−1
t = I−KtS

−1
t Kt (I−Pt) . (54)

By right-multiplying equation (53) by I−Pt and left-
multiplying equation (54) by I−Pt, we have:

Qt = µt S
−1
t Kt (I−Pt)︸ ︷︷ ︸

HT
t

= µt (I−Pt)KtS
−1
t︸ ︷︷ ︸

Ht

, (55)

where we have used the expression of Qt in equation (25).

I Connection to the Result in Bai and
Bartoli (2022a)

In Bai and Bartoli (2022a), Qt was defined as equation(52)
which can be simplified to the form in equation (25).

In equation (55), we have proved that:

Ht = (I−Pt)KtS
−1
t = S−1

t Kt(I−Pt) = HT
t .

Hence, we can rewrite equation (54) in Appendix H as:

µtKtS
−1
t = I−Kt(I−Pt)KtS

−1
t . (56)

We examine the term µtHtKtH
T
t with the identity (56), as:

µtHtKtH
T
t = µtHtKtS

−1
t Kt (I−Pt)

= Ht

(
I−Kt(I−Pt)KtS

−1
t

)
Kt (I−Pt)

= HtKt (I−Pt)−HtKt (I−Pt)KtH
T
t

= −HtKt (I−Pt)
(
KtH

T
t − I

)
. (57)

Substituting equation (57) into equation (52) to cancel the
term µtHtKtH

T
t , we reach Qt in equation (25) by some

trivial matrix manipulations:

(HtKt − I)(I−Pt)(K
T
t H

T
t − I) + µtHtKtH

T
t

= − (I−Pt)(KtH
T
t − I)

= − (I−Pt)(KtS
−1
t Kt (I−Pt)− I)

= (I−Pt)− (I−Pt)KtS
−1
t Kt (I−Pt) = Qt.
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J Proof of Lemma 5

It can be shown that:

˜̆Pt
def
=

[
P̆t

1T

]
=

[
R̆tPt + t̆t1

T

1T

]
=

[
R̆t t̆t

0T 1

][
Pt

1T

]

=

[
R̆t t̆t

0T 1

]
P̃t.

We notice that ˜̆P
T

t and P̃T
t have the same range space,

thus the orthogonal projection matrices are the same by the
uniqueness Meyer (2000). We can also verify the result by
direct matrix calculations. We notice:

(
˜̆Pt

˜̆P
T

t

)†

=

[
R̆t t̆t

0T 1

]−T (
P̃tP̃

T
t

)† [R̆t t̆t

0T 1

]−1

.

Thus we have ˜̆P
T

t (
˜̆Pt

˜̆P
T

t )
† ˜̆Pt = P̃T

t (P̃tP̃
T
t )

†P̃t.

K Expansion of tr
(
XTQXΛ

)
We denote X = [x1, x2, x3]. We denote the matrix square
root of Qt as

√
Qt, where: Qt =

√
Qt

T√
Qt.

tr
(
XTQXΛ

)
=

n∑
t=1

tr
(
XTΓtQtΓ

T
t XΛ

)

=

n∑
t=1

3∑
k=1

λktr
(
xT
kΓtQtΓ

T
t xk

)

=

n∑
t=1

3∑
k=1

λk

∥∥∥√Qt (I−Pt)Γ
T
t xk

∥∥∥2
F

=
3∑

k=1

n∑
t=1

λk

∥∥∥√Qt (I−Pt)Γ
T
t xk

∥∥∥2
F

=

3∑
k=1

λk

∥∥∥∥∥∥∥∥

√
Q1 (I−P1)Γ

T
1

...
√
Qn (I−Pn)Γ

T
n

xk

∥∥∥∥∥∥∥∥
2

F

.

L Planar Case

The optimal
√
Λ is characterized by formulation (34), and

thus formulation (39). If Pt is flat, then Pt can be rigidly
transformed to

[
PT

txy 0
]T

. Thus it suffices to discuss the
estimate of

√
Λ from the canonical 2D point-clouds Ptxy .

We denote Gt = XTΓt where X is given at this stage. We
further denote Ḡt = Gt − 1

mt
Gt11

T. By the fact that Ptxy

is zero-centered,
√
Λ is characterized by problem (41).

In problem (41), if the optimal Rt implements a rotation
in the xy−plane, then Rt can be formed as:

Rt =

[
Rtxy

1

]
.

As a result, problem (41) can be decomposed as:

min
{Rtxy∈SO(2)},ηxy∈R2, ηz∈R

n∑
t=1

ηz
∥∥gT

3

∥∥2

+

n∑
t=1

∥∥∥∥∥RtxyPtxy − diag(ηxy)

[
gT
1

gT
2

]∥∥∥∥∥
2

F

,

where Ḡt =
[
g1 g2 g3

]T
. The cost of this problem is

minimized if and only if ηz = 0. Thus λ3 = |ηz| = 0.

M GPA Using the LBW in Bai and Bartoli
(2022b)

We recapitulate the result of Bai and Bartoli (2022b). If using
the LBW, we will be solving a GPA formulation as:

min
{Wt},M

n∑
t=1

φt(Wt, M)

s.t.M1 = 0, MMT = Λ,

(58)

where:

φt(Wt, M) =
∥∥WT

t Bt(Pt)−MΓt

∥∥2
F

+ µttr
(
WT

t ΞtWt

)
.

We define the matrix Q as:

Q def
= Γt

(
I−BT

t

(
BtBT

t + µtΞt

)−1

Bt

)
ΓT
t ,

where we have used the shorthand Bt
def
= Bt(Pt).

If Q1 = 0, then the optimal M of problem (58) is:

M =
√
ΛXT, with X = [x1, x2, . . . ,xd] ∈ Rm×d,

where x1, x2, . . . ,xd in sequence are the d bottom
eigenvectors of Q excluding the vector 1, or equivalently are
the d bottom eigenvectors of Q′ = Q+ n11T. The optimal
transformation parameters Wt are:

WT
t = MΓtBT

t

(
BtBT

t + µtΞt

)−1

, (t ∈ [1 : n]) .

It has been shown that Q1 = 0 happens if the LBW has
a free translation. In particular, if the LBW is chosen as the
affine transformation, or the TPS warp, then Q1 = 0.
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