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Abstract

When observing task demonstrations, human apprentices are able to identify whether a given task is executed correctly
long before they gain expertise in actually performing that task. Prior research into learning from demonstrations (LfD)
has failed to capture this notion of the acceptability of a task’s execution; meanwhile, temporal logics provide a flexible
language for expressing task specifications. Inspired by this, we present Bayesian specification inference, a probabilistic
model for inferring task specification as a temporal logic formula. We incorporate methods from probabilistic programming
to define our priors, along with a domain-independent likelihood function to enable sampling-based inference. We
demonstrate the efficacy of our model for inferring specifications, with over 90% similarity observed between the inferred

specification and the ground truth — both within a synthetic domain and during a real-world table setting task.
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Introduction

Imagine showing a friend how to play your favorite quest-
based video game. A mission within such a game might be
composed of multiple sub-quests that must be completed in
order to finish that level. In this scenario, it is likely that
your friend would comprehend what needs to be done in
order to complete the mission well before he or she was
actually able to play the game effectively. While learning
from demonstrations, human apprentices can identify whether
a task is executed correctly long before gaining expertise in
that task. In the context of learning from demonstrations for
robotic tasks, a system that can evaluate the acceptability of an
execution before learning to execute a task can lead to more-
focused exploration of execution strategies. Further, a system
that can express its specifications would be more transparent
with regard to its objectives than a system that simply
imitates the demonstrator. Such characteristics are highly
desirable in applications such as manufacturing or disaster
response, where the cost of a mistake can be especially high.
Finally, a robotic system with a correct understanding of
the acceptability of executions can explore more-creative
execution traces not present in the demonstrated set.

Most current approaches to learning from demonstration
frame this problem as one of learning a reward function
or policy within the setting of a Markov decision process;
however, user specification of acceptable behaviors through
reward functions and policies remains an open problem
Arnold et al. (2017). Temporal logics have been used
in prior research as a language for expressing desirable
system behaviors, and can improve the interpretability
of specifications if expressed as compositions of simpler
templates (akin to those described by Dwyer et al. (1999)).
In this work, we propose a probabilistic model for inferring
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a task’s temporal structure as a linear temporal logic (LTL)
specification.

A specification inferred from demonstrations is valuable
in conjunction with synthesis algorithms for verifiable
controllers (Kress-Gazit et al. (2009) and Raman et al. (2015)),
as a reward signal during reinforcement learning (Li et al.
(2017) and Littman et al. (2017)), and as a system model for
execution monitoring. In our work, we frame specification
learning as a Bayesian inference problem.

The flexibility of LTL for specifying behaviors also
represents a key challenge with regard to inference due to
a large hypothesis space. We define prior and likelihood
distributions over a smaller but relevant part of the LTL
formulas, using templates based on work by Dwyer et al.
(1999). Ideas from universal probabilistic programming
languages formalized by Freer et al. (2014) and Goodman
et al. (2012); Goodman and Stuhlmiiller (2014) are key to
our modeling approach; indeed, probabilistic programming
languages enabled Ellis et al. (2017, 2015) to perform
inference over complex, recursively defined hypothesis spaces
of graphics programs and pronunciation rules.

We evaluate our model’s performance within three domains.
First, we incorporate a synthetic domain and a real-world
task involving setting a dinner table, both of which are
representative of candidate tasks for robots to learn from
demonstrations. For both these domains, the ground-truth
specifications are known, and we report the capability
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of our model to achieve greater than 90% similarity
between the inferred and ground-truth specifications. We also
demonstrate the capability of our model to infer mission
objective specifications for evaluating large-force combat
flying exercises involving multiple friendly and hostile
aircrafts. The LFE domain is particularly challenging, as it
incorporates multiple decision-making participants, some of

which act cooperatively and some in an adversarial fashion.

We demonstrate that our model makes predictions that are
well-aligned with those of an expert acting as the commander
for an example LFE mission. Further, we demonstrate that
our method of using template compositions allows for an
interpretable decision boundary for the classifier inferred by
our model.

Bayesian specification inference was first introduced in
work by Shah et al. (2018); in this paper, we present an
advancement of that work and apply the model to newer
evaluation domains. First, we extend the probabilistic model
to be capable of learning both inductively (from positive

examples only) and from positive and negative examples.

We also extend the evaluation presented by Shah et al. (2018)
to include the large-force exercise domain.

Related Work

One common approach discussed in prior research frames
learning from demonstration as an inverse reinforcement
learning (IRL) problem. Ng and Russell (2000) and Abbeel
and Ng (2004) first formalized the problem of inverse
reinforcement learning as one of optimization in order to
identify the reward function that best explains observed
demonstrations. Ziebart et al. (2008) introduced algorithms
to compute optimal policy for imitation using the maximum
entropy criterion. Konidaris et al. (2012) and Niekum et al.
(2015) framed IRL in a semi-Markov setting, allowing for

implicit representation of the temporal structure of the task.

Surveys by Argall et al. (2009) and Chernova and Thomaz
(2014) provided a comprehensive review of techniques built
upon these works as applied to robotics. However, according
to Arnold et al. (2017), one drawback of inverse reinforcement
learning is the non-triviality of extracting task specifications
from a learned reward function or policy. Our method bridges
this gap by directly learning the specifications for acceptable
execution of a given task.

Temporal logics, introduced by Pnueli (1977), are an
expressive grammar used to describe the desirable temporal
properties of task execution. Temporal logics have previously
served as a language for goal definitions in reinforcement
learning algorithms (Li et al. (2017) and Littman et al. (2017)),
reactive controller synthesis (Kress-Gazit et al. (2009)) and
Raman et al. (2015)), and domain-independent planning (Kim
et al. (2017)).

Kasenberg and Scheutz (2017) explored mining globally
persistent specifications from optimal traces of a finite-state
Markov decision process (MDP). Jin et al. (2015) proposed
algorithms for mining temporal specifications similar to rise
and setting times for closed-loop control systems. Works
by Kong et al. (2014), Kong et al. (2017), Yoo and Belta
(2017), and Lemieux et al. (2015) are most closely related
to our own, as our work incorporates only the observed
state variable (and not the actions of the demonstrators)
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as input to the model. Lemieux et al. (2015) introduced
Texada, a general-specification mining tool for software
logs. Texada outputs all possible satisfied instances of a
particular formula template; however, it treats each time step
as a string, with all unique strings within the log treated as
unique propositions. Texada would treat a system with n
propositions as a system with 2™ distinct propositions; thus,
interpreting a mined formula is non-trivial. Kong et al. (2014),
Kong et al. (2017), and Yoo and Belta (2017) mined PSTL
specifications for given demonstrations while simultaneously
inferring signal propositions akin to our own user-defined
atomic propositions by conducting breadth-first search over a
directed acyclic graph (DAG formed by candidate formulas.
Our prior specifications allow for better connectivity between
different formulas, while using MCMC-based approximate
inference enables fixed runtimes.

We adopt a fully Bayesian approach to model the
inference problem, allowing our model to maintain a posterior
distribution over candidate formulas. This distribution
provides a measure of confidence when predicting the
acceptability of a new demonstration that the aforementioned
approaches do not.

Linear Temporal Logic

Linear temporal logic (LTL), introduced by Pnueli (1977),
provides an expressive grammar for describing temporal
behaviors. A LTL formula is composed of atomic propositions
(discrete time sequences of Boolean literals) and both logical
and temporal operators, and is interpreted over traces [ of
the set of propositions, c. The notation [a], ¢ = ¢ indicates
that o holds at time ¢. The trace [«] satisfies ¢ (denoted as
[a] = ) iff [ar], 0 = ¢. The minimal syntax of LTL can be
described as follows:

pu=p| 11V | Xer | p1Ups )
p is an atomic proposition; ¢; and o are valid LTL
formulas. The operator X is read as ‘next’ and X evaluates
as true at time ¢ if ¢ evaluates to true at ¢ + 1. The operator
U is read as ‘until’ and the formula ¢ U, evaluates as true
at time t7 if (o evaluates as true at some time t5 > t; and
1 evaluates as true for all time steps ¢ such that ¢; < ¢ < ts.
In addition to the minimal syntax, we also use the additional
first- order logic operators A (and) and — (implies), as well as
other higher-order temporal operators, F (eventually) and G
(globally). F; evaluates to true at ¢; if ¢ evaluates as true
for some t > t1. Gy evaluates to true at ¢; if ¢ evaluates
as true for all ¢ > ¢;.

Bayesian Specification Inference

A large number of tasks comprised of multiple subtasks can
be represented by a combination of three temporal behaviors
among those defined by Dwyer et al. (1999) — namely,
global satisfaction of a proposition, eventual completion of
a subtask, and temporal ordering between subtasks. With
Pglobals Peventuals AN Porder representing LTL formulas for
these behaviors, the task specification is written as follows:

© = Pglobal A Peventual A Porder (2)

We represent the task demonstrations as an observed
sequence of state variables, [x]. Let ain{0, 1}" represent a
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vector of finite dimension formed by n Boolean propositions.
The propositions are related to the state variables through a
labeling function, & = f (), which is known a priori.

The inference model is provided a label, y, to indicate
whether an execution is acceptable or not, along with
the actual demonstrations. Thus, the training set D =
{([adiyyi) 5 1€{1,2,...,Ndemo}} consists of Ngemo
demonstrations along with the label. The output, again, is
a probability distribution P(p|D).

Formula Template

Global satisfaction: Let T be the set of candidate
propositions to be globally satisfied, and let 7 C T be the
actual subset of satisfied propositions. The LTL formula that
specifies this behavior is written as follows:

Pglobal = (/\ (G(T))>

TET

3)

Such formulas are useful for specifying that some
constraints must always be met — for example, a robot must
avoid collisions while in motion, or an aircraft must avoid
no-fly zones.

Eventual completion: Let €2 be the set of all candidate
subtasks, and let Wy C €2 be the set of subtasks that must
be completed if the conditions represented by m,,; w € W3
are met. w,, are propositions representing the completion of
a subtask. The LTL formula that specifies this behavior is
written as follows:

“)

Peventual = < /\

weEWq

(T — Fww)>

Temporal ordering: Every set of feasible ordering
constraints over a set of subtasks is mapped to a DAG over
nodes representing these subtasks. Each edge in the DAG
corresponds to a binary precedence constraint. Let W3 be the
set of binary temporal orders defined by Wa = {(w1,w2) :
wy € V,ws € Descendants(w;)}, where V is the set of all
nodes within the task graph. Thus, the ordering constraints
include an enumeration of not just the edges in the task-graph,
but all descendants of a given node. For subtasks w; and wo,
the ordering constraint is written as follows:

Porder = /\

(w1,w2)EW2

(le — (ﬁwszwwl)) (5)

This formula states that if conditions for the execution of
w 1.e. Ty, are satisfied, wo must not be completed until w;
has been completed.

For the purposes of this paper, we assume that all required
propositions a = [, 7, w]T and labeling functions f(x) are
known, along with the sets T" and €2 and the mapping of
the condition propositions 7, to their subtasks. Given these
assumptions, the problem of inferring the correct formula for
a task is equivalent to identifying the correct subsets 7, W7y,
and Wa, that explain the observed demonstrations well.
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Specification Learning as Bayesian Inference

The Bayes theorem is fundamental to the problem of
inference, and is stated as follows:

_ PW)PD )
PID) =5 PH)PD[H)

P(h) is the prior distribution over the hypothesis space, and
P(D | h) is the likelihood of observing the data given a
hypothesis. Our hypothesis space is defined by H = ¢, where
¢ is the set of all formulas that can be generated by the
production rule defined by the template in Equation 2. The
observed data comprises the set of demonstrations provided
to the system by expert demonstrators (note that we assume
all these demonstrations are acceptable). D is the training
dataset.

(6)

Prior specification While sampling candidate formulas as per
the template depicted in Equation 2, we treat the sub-formulas
in Equations 3, 4, and 5 as independent to each other. As
generating the actual formula, given the selected subsets, is
deterministic, sampling @ giopat aNd Yeventual 1S €quivalent to
selecting a subset of a given finite universal set. Given a set A,
we define SampleSubset(A,p) as the process of applying a
Bernoulli trial with a success probability of p to each element
of A and returning the subset of elements for which the
trial was successful. Thus, sampling @ giopa1 and Yeventuat 19
accomplished by performing SampleSubset (T, pg) and
SampleSubset (€2, pg). Sampling @,qer is equivalent to
sampling a DAG, with the nodes of the graph representing
subtasks. Based on domain knowledge, appropriately
constraining the DAG topologies would result in better
inference with fewer demonstrations. Here, we present
three possible methods of sampling a DAG, with different
restrictions on the graph topology.

Algorithm 1 SampleSetsOfLinearChains

1: function SAMPLESETSOFLINEARCHAIN(S2,ppart)

2: i+ 1;,C; +

3 P < random permutation(£2)
4 for a € P do

5: C; .append(a)

6: k < Bernoulli(ppart)

7 if Kk = 1 then

8 =i+ 1,C; « ]
9 return C; V j

Linear chains: A linear chain is a DAG such that all
subtasks must occur within a single, unique sequence out
of all permutations. Sampling a linear chain is equivalent
to selecting a permutation from a uniform distribution, and
is achieved via the following probabilistic program: for a
set of size n, sample n — 1 elements from that set without
replacement, with uniform probability.

Sets of linear chains: This graph topology includes graphs
formed by a set of disjoint sub-graphs, each of which is
either a linear chain or a solitary node. The execution of
subtasks within a particular linear chain must be completed
in the specified order; however, no temporal constraints
exist between the chains. Algorithm | depicts a probabilistic
program for constructing these sets of chains. In line 2, the
first active linear chain is initialized as an empty sequence.
In line 3, a random permutation of the nodes is produced.
For each element a € P, line 5 adds the element to the last
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Table 1. Prior definitions and hyperparameters.

Prior POrder Hyperparameters
Prior1 RandomPermutation(£2) PG,PE

Prior2  SampleSetsOfLinearChains(§2,ppart) PG,PE,Ppart
Prior3 SampleForestofSubTasks(€2, Npew) PG, PEs Nnew

active chain. Lines 6 and 8 ensure that after each element,
either a new active chain is initiated (with a probability of
Dpart) OF the old active chain continues (with a probability of
1- ppart) .

Forest of sub-tasks: This graph topology includes forests
(i.e., sets of disjoint trees). A given node has no temporal
constraints with respect to its siblings, but must precede all its
descendants. Algorithm 2 depicts a probabilistic program for
sampling a forest. Line 2 creates P, a random permutation
of the subtasks. Line 3 initializes an empty forest. In order
to support a recursive sampling algorithm, the data structure
representing forests is defined as an array of trees, F. The
it" tree has two attributes: a root node, F [i].root, and a
‘descendant forest,” F[i].descendant, in which the root node
of each tree is a child of the root node defined as the first
attribute. The length of the forest, F .length, is the number
of trees included in that forest. The size of a tree, F|[i].size,
is the number of nodes within the tree (i.e., the root node
and all of its descendants). For each subtask in the random
permutation P, line 5 inserts the given subtask into the forest
as per the recursive function InsertIntoForest defined
in lines 7 through 13. In line 8, an integer 7 is sampled from
a categorical distribution, with {1,2,..., F.length + 1} as
the possible outcomes. The probability of each outcome is
proportional to the size of the trees in the forest, while the
probability of F.length + 1 being the outcome is proportional
to Npew, a user-defined parameter. This sampling process is
similar in spirit to the Chinese restaurant process (Aldous
(1985)). If the outcome of the draw is F.length + 1, then a
new tree with root node a is created in line 10; otherwise,
InsertIntoForest is called recursively to add a to the
forest F|i].descendants, as per line 12.

Algorithm 2 SampleForestofSubtasks

1: function SAMPLEFORESTOFSUBTASKS(£2, Ny, ew)

2 P <+ random permutation(§2)

3 F ]

4 fora € Pdo

5: F =InsertIntoForest(F,a)

6 return F

7: function INSERTINTOFOREST(F, a)

8: ¢ < Categorical ([F[1].size, F[2].size, . . ., F[F length].size, Ny ew))
9: if ¢ = F.length + 1 then

10: Create new tree F [F.length + 1].root = a

11: else

12: Fi].descendants = InsertIntoForest(JF [¢].descendants, a)
13:  return F

Three prior distributions based on the four probabilistic
programs are described in Table 1. In all the priors, @giobal
and Qepentuql are sampled using SampleSubset (T, pg)
and SampleSubset (2, pg), respectively.

Likelihood function The likelihood distribution, P({[c],} |
©,{y:}), is the probability of observing the trajectories within
the dataset given the candidate specification. It is reasonable
to assume that the demonstrations are independent of each
other; thus, the total likelihood can be factored as follows:
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P({lad;} [ @, {yi}) =
2 %)

The probability of observing a given trajectory demon-
stration is dependent upon the underlying dynamics of the
domain and the characteristics of the agents producing the
demonstrations. In the absence of this knowledge, our aim
is to develop an informative, domain-independent proxy for
the true likelihood function based only on the properties of
the candidate formula; we call this the ‘complexity-based’
(CB) likelihood function. Our approach is founded upon the
classical interpretation of probability championed by Laplace
(1951), which involves computing probabilities in terms of a
set of equally likely outcomes. Let there be N, ; conjunctive
clauses in ¢; there are then 2/Veoni possible outcomes in terms
of the truth values of the conjunctive clauses. In the absence
of any additional information, we assign equal probabilities
to each of the potential outcomes. Then, according to the
classical interpretation of probability, for candidate formula
1 (defined by subsets 71, W7,, and W2, 1) and @9 (defined
by subsets T2, W1,, and Wa,) the likelihood odds ratio if
y; = 1 is defined as follows:

Hie{l,Q,...,ndemo} P(p)P([ad; |

Neconj [T11+IW1q [+W2, |
P(lai | p1) _ chonj; = 2\72\+\W1:\+\W2;| o] o2
- Neonjy T1 11 2,
P([a] | ¢2) e _ 2 \+\wE I+ Wa, | o] ¥ ¢
(7N

Here, a finite probability proportional to € is assigned to
a demonstration that does not satisfy the given candidate
formula. With this likelihood distribution, a more-restrictive
formula with a low prior probability can gain favor over
a simpler formula with higher prior probability given a
large number of observations that would satisfy it. However,
if the candidate formula is not the true specification, a
larger set of demonstrations is more likely to include non-
satisfying examples, thereby substantially decreasing the
posterior probability of the candidate formula. The design
of this likelihood function is inspired by the size principle
described by Tenenbaum (2000).

A second choice for a likelihood function, inspired by
Shepard (1987), is defined as the SIM model by Tenenbaum
(2000); we call this the ‘complexity-independent’ (CI)
likelihood function, and it is defined as follows:

®)

1

Pllell¢) {e, Otherwise
We must define likelihood functions for both acceptable
and unacceptable demonstrations. Note that the likelihood
function defined by Equation 7 produces a relatively larger
likelihood value if the candidate formula correctly classifies
the demonstration, and a very small likelihood value if it does
not. Following the classical probability argument as before,
with 2Neon; conjunctive clauses in a candidate formula, there
are 2Neoni possible evaluations of each of the individual
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clauses that would result in the given demonstration not
satisfying the candidate formula. Thus, the likelihood function
for y; = 0 is defined as follows:

2Nconj1 (2Nconj2 _1)
P(ladi | ¢1) gNeonjs (9Neonjy 1
U/ R 6 73 ( )
- 2Nco'n.j1
(2Nconj1 71)6

7[0‘]# P2

®)
o] = o
An equivalent SIM likelihood function for examples with
y; = 0 is defined as follows:

—e€, ifja]Fgp

10
Otherwise (10)

P(la] | ¢) = {1

Note that for larger values of N¢onj, and Neonj, and a
negative label y; = 1, the difference between the CI and the
CB likelihood function is very small.

Inference We implemented our probabilistic model in
webppl (Goodman and Stuhlmiiller (2014)), a Turing-
complete probabilistic programming language. The hyper-
parameters, including those defined in Table 1 and e, were set
as follows: pg,pg = 0.8; ppart = 0.3; Npew = 5; € = 4 X
log(2) x (|T + |2 4+ 0.5/2|(]€2| — 1)). These values were
held constant for all evaluation scenarios. The equation
for € was defined such that evidence of a single non-
satisfying demonstration would negate the contribution of
four satisfying demonstrations to the posterior probability.
The posterior distribution of candidate formulas is constructed
using webppl’s Markov chain Monte Carlo (MCMC) sam-
pling algorithm from 10,000 samples, with 100 samples
serving as burn-in. The posterior distribution is stored as
a categorical distribution, with each possibility representing a
unique formula. The maximum a posteriori (MAP) candidate
represents the best estimate for the specification as per the
model. We ran the inference on a desktop with an Intel i7-
7700 processor.

Evaluations

We evaluated the performance of our model across three
different domains. We developed a synthetic domain with
a low dimensional state-space where we could easily vary
the complexity of the ground-truth specifications. We also
applied our model to a real-world task of setting a dinner
table — a task often incorporated into studies of learning from
demonstrations (Toris et al. (2015)). This task has a large raw
state-space incorporating the poses of the objects included
in the domain. This domain demonstrates the benefits of
using propositions to represent task specifications, as the
complexity of the problem depends upon the number of
Boolean propositions and not the dimensionality of the raw
state-space. (Note that the ground-truth specifications are
known in both of these domains, and it is easy to measure the
quality of the solution by comparing it to the ground-truth
specification.)

Finally, we also applied our inference model to the large-
force exercise (LFE) domain. Large-force exercises are
simulated air-combat games used to train combat pilots.
We developed simulation environments using joint semi-
automated forces (JSAF), a constructive environment for
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generating examples of LFE executions, and used our model
to infer specifications for successful completion of mission
objectives. In this domain, the true specifications are not
known, and we only have annotations of the demonstrated
scenario from a subject matter expert (in this case, the
mission commander who designs the scenario and debriefs
participating pilots).

Metrics

The evaluation metrics used to test the quality of the
inferred specifications depend upon whether the ground-truth
specifications are known. For domains in which it is known
(the synthetic and dinner-table domains), the ground-truth
specification is defined using subsets 7%, W, and Wy (as
per Equations 3, 4, and 5), and a candidate formula ¢ is
defined by subsets 7, W7, and W5. In such cases, we define
the degree of similarity using the Jaccard index (Paul (1912))
as follows:

[ {TUWFUWEN {TUW; UW,} |

Liw) =
(¥) [{T* UWFUWFU{TUW; UW,} |

(1)

The maximum possible value of L(¢) is one such that both
formulas are equivalent. One key benefit of our approach
is that we compute a posterior distribution over candidate
formulas; thus, we report the expected value of E(L(p))
as a measure of the deviation of the inferred distribution
from the ground truth. We also report the maximum value of
L(¢) among the top 5 candidates in the posterior distribution.
We classify the inferred orders in W5 as correct if they are
included in the ground truth, incorrect if they reverse any
constraint within the ground truth, and ‘extra’ otherwise.
(Extra orders over-constrain the problem, but do not induce
incorrect behaviors.)

For the LFE domain, where the ground-truth specifications
are unknown but SME annotations for whether the mission
objectives were accomplished are provided for the dataset,
we use the weighted F1 score for both ‘achieved’ and ‘failed’
labels. This score is evaluated on a test set that is held out
while using the remaining examples in the dataset to infer the
specifications.

Synthetic Domain

In our synthetic domain, an agent navigates within a two-
dimensional space that includes points of interest (POIs) to
visit and threats to avoid. The state of the agent x represents
the position of that agent within the task space.

Let 7 ={1,2...,N¢hreats; Tepresent a set of threats
positioned at &7, V ¢ € T, respectively. A proposition 7; is
associated with each threat location ¢ € taw such that:

true,
T, =
false,
The proposition 77, holds if the agent is not within the
avoidance radius €;,,4¢ Of the threat location.
Let Q={1,2,...,npos} represent the set of POIs

positioned at xp, V i € £2. A proposition w; is associated
with each POI such that:

||a3 — X7} Z €threat (12)

otherwise
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Figure 1. Example trajectories from Scenario 1. Green circles
denote the POls; red circles denote the avoidance zones of
threats.

H(B — TP

< e€po
. ‘ ! (1 3)
otherwise

true,
w; =
false,
w; evaluates as true if the agent is within a tolerance radius
epog of the POL
Finally, propositions 7; V¢ € €2 are conditions propositions
that denote the accessibility of the POI ¢, and are defined as
follows:

(14)

false, 3 j such that ||$Cpi — T || < €threat
™=
‘ otherwise

true,

7; evaluates as false if the POI 7 is inside the avoidance
region of any of the threats.
The agent can be programmed to visit the accessible

POIs and avoid threats as per the ground-truth specification.

The ground-truth specifications are stated by defining the
following: a set T' C 7 that represents the subset of threats
that the agent must avoid; a set Wy C €2 that represents
the subset of POIs the agent must visit; and the ordering
constraints defined by Wa, a set of feasible pairwise
precedence constraints between the POIs.

Here, we demonstrate the results of applying our
inference model to three scenarios with differing ground-truth
specifications.

Scenario 1: In Scenario 1, we placed five threats in the
task-domain, and their positions were sampled from a uniform
distribution for each demonstration. There were four points
of interest, labeled 1, 2, 3, 4, and their positions were fixed
across all demonstrations. The agents were required to visit
the POIs in a fixed order ([1, 2, 3, 4]). Example trajectories
from this scenario are depicted in Figure 1.

The posterior distribution was computed using prior
1 (defined in Table 1), with both CB (Equation 7) and
CI (Equation 8) likelihood functions. The expected and
maximum values among the top 5 a posteriori formula
candidates of L(y) are depicted in Figure 2. We observed
that the CB likelihood function performed better than the

CI likelihood function at inferring the complete specification.
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Figure 2. Figure 2a depicts the results from Scenario 1, with the
dotted line representing the maximum possible value of L(y).
Figure 2b shows the number of unique formulas in the posterior
distribution

Using the CI function resulted in a higher posterior probability
assigned to formulas with high prior probability that were
satisfied by all demonstrations. (These tended to be simple,
non-informative formulas; the CB function assigned higher
probability mass to more-complex formulas that explained
the demonstrations correctly.) Figure 2b depicts the number
of unique formulas in the posterior distributions. The CB
likelihood function resulted in posteriors being more peaky,
with fewer unique formulas as training set size increased; this
effect was not observed with the CI function.

The posterior distribution was also computed using priors
2 and 3 with the CB likelihood function. The expected
and maximum values among the top 5 a posteriori formula
candidates of L(¢) are depicted in Figure 3a. Prior 3 aligned
better with the ground-truth specification with fewer training
examples. With a larger training set, prior 2 recovered the
exact specification, while prior 3 failed to do so. Figure 3b
depicts the expected value of the correct and extra orders in
the candidate formulas included in the posterior distribution.
The a priori bias of prior 3 toward longer chains is apparent,
as it recovered more correct orders with fewer training
demonstration in comparison to prior 2. Prior 2 recovered
all correct priors with more training examples; however, prior
3 failed to do so with 30 training examples.

Scenario 2: Scenario 2 contained five POIs 1,2,3,4,5
and five threats. Like Scenario 1, the threat positions were
sampled uniformly for each demonstration. All the POIs, if
accessible, had to be visited. A partial ordering constraint
was imposed such that POIs [1, 3, 5] had to be visited in that
specific order, while POIs {2, 4} could be visited in any order.
Some demonstrations generated for Scenario 2 are depicted
in Figure 4.
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Figure 3. Figure 3a depicts the results from Scenario 1 using
priors 2 and 3, with the dotted line representing the maximum
possible value of L(y). Figure 3b depicts the expected value of
the number of correct and extra orders in the posterior
distribution.
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Figure 4. Example trajectories from Scenario 2. Green circles
denote the POls; red circles denote the avoidance zones of
threats.

For Scenario 2, the posterior distribution was computed
using priors 2 and 3, as the ground-truth specification did
not lie in support of prior 1. The expected and maximum
values among the top 5 formula candidates of L(p) are
depicted in Figure 5a. Given a sufficient number of training
examples, both priors were able to infer the complete formula;
with 10 or more training examples, both priors returned the
ground-truth formula among the top 5 candidates with regard
to posterior probabilities. Figure 5b depicts the correct and
extra orders inferred in Scenario 2. Prior 3 assigned a larger
prior probability to longer task chains compared with prior 2,
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Figure 5. Figure 5a indicates the L(¢y) values for Scenario 2,
and Figure 5b depicts the correct and extra orderings inferred in
Scenario 2. The dotted lines represent the number of orderings
in the true specification.

but both priors converged to the correct specification given
enough training examples.

Scenario 3: Scenario 3 included five threats and five POIs
labeled {1,2, 3,4, 5}, respectively. The threat positions were
uniformly sampled for each scenario. Each of the POlIs,
if accessible, had to be visited; however, there were no
constraints placed on the order in which they were visited.
Figure 6 depicts some of the example demonstrations.

Again, the posterior distribution was computed using priors
2 and 3. The expected and maximum values among the top
5 formula candidates of L(y) are depicted in Figure 7a.
In this scenario, both priors performed equally well with
regard to recovering the ground-truth specification. With 10
or more demonstrations, both priors returned the ground-
truth specification as the maximum a posteriori estimate.
The expected value of the extra orders contained in the
posterior distributions is depicted in Figure 7b. Once again,
the tendency of prior 3 to return longer chains is apparent, as
more formulas in the posterior distribution returned a greater
number of extra ordering constraints as compared with prior
2.

The runtime for MCMC inference is a function of the
number of samples generated, the number of demonstrations
in the training set, and demonstration length. Scenarios 1
and 2 required an average runtime of 10 and 90 minutes for
training set sizes of 5 and 50, respectively.

TempLogIn (Kong et al. (2017)) required 33 minutes to
terminate with three PSTL clauses. For all the scenarios,
the mined formulas did not capture any of the temporal
behaviors in Section , indicating that additional PSTL clauses
were required. However, with five and 10 PSTL clauses, the
algorithm did not terminate within the 24-hour runtime cutoff.
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Figure 6. Example trajectories from Scenario 3. The green
circles denote the POls; the red circles denote the threat
avoidance zones.
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Figure 7. Figure 7a indicates the L(y) values for Scenario 3,
and Figure 7b depicts the correct and extra orderings inferred in
Scenario 3. The dotted lines represent the number of orderings
in the true specification.

Scaling TempLogln to larger formula lengths is difficult, as
the size of the search graph increases exponentially with the
number of PSTL clauses, and the algorithm must evaluate all
formula candidates of length n before candidates of length
n+ 1.

Dinner Table Domain

We also tested our model on a real-world task: setting a
dinner table. This task featured eight dining set pieces that
had to be organized on a table while the demonstrator avoided
contact with a centerpiece. Figure 8a depicts each of the final
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configurations of the dining set pieces, depending upon the
type of food served. The pieces placed on the table were
varied for each of the eight configurations; however, the
positions of the pieces remained constant across all final
configurations. A total of 71 demonstrations were collected,
with six participants providing multiple demonstrations for
each of the four configurations.

The eight dinner set pieces included a large dinner plate,
a smaller appetizer plate, a bowl, a fork, a knife, a spoon, a
water glass, and a mug; the set of pieces is represented by €2.
Each piece was tracked with a motion-capture system over
the course of the demonstration, with the pose of an object
i € Q in the world frame represented by T,°. In addition,
the pose of the wrists of the demonstrators T}, and T},
were also tracked throughout the demonstration. We defined
propositions that tracked whether an object was in its correct
position or whether a demonstrator’s wrist was too close to
the centerpiece using task-space region (TSR) constraints
proposed by Berenson et al. (2011).

The origin for each TSR constraint is located at the desired
final position of each object. The pose Tu?i represents the
transform between the origin frame and the TSR frame for
the object, i. The bounds for B; represent the translation and
rotational tolerances of the constraint. Finally, P; represents
the set of poses in the TSR frame that fall within the tolerance
bounds. The pose of object ¢ with respect to the TSR frame is
given by T} = (Tu% )~IT. A proposition w; is associated
with object ¢ as follows:

{true,
W; =
false.

Thus, the proposition w; evaluates as true if the pose of
object ¢ satisfies the TSR constraints, and false otherwise.

A TSR constraint is also associated with the centerpiece,
where T represents the pose of the centerpiece with respect
to the world frame, and the bounds of the constraint are
defined by B., with P, representing the set of poses that fall
within the tolerances. The poses of the demonstrator’s wrists
with respect to this TSR frame are given by T} fori € {1,2}.
A proposition 7. is associated with the centerpiece, and is
defined as follows:

{false,
Te =
true,

T. evaluates as false if either of the wrist poses falls within
the TSR bounds, and evaluates as true otherwise.

Finally, condition propositions 7; V ¢ € £ encode whether
the object ¢ must be placed. Their values are set prior to
the demonstration and held constant for its duration. These
propositions encode the fact that serving certain courses
during a meal requires specific placement of certain dinner
pieces.

Based on the propositions defined above and the
configurations of the dinner table, the ground-truth
specifications of this task are as follows: the demonstrator’s
wrists should never enter the centerpiece’s TSR region (global
satisfaction); if m; is true, then the corresponding dinner
piece must be placed on the table (eventual completion);

and the large plate must be placed before the smaller plate,
which in turn must be placed before the bowl (ordering).

TV e P,

15
otherwise (1%

T, e P.VTE, € P,

16
otherwise (16)



Shah et al.

() (b)

Figure 8. Figure 8a depicts all the final configurations. Figure 8b depicts the demonstration setup. (Photographed by the authors in

April 2017.)
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Figure 9. Figure 9a depicts the L(p) values for the dinner table
domain, with the dotted line representing the maximum possible
value. Figure 9b depicts the correct and extra orderings inferred
within this domain; the dotted lines represent the number of
orderings in the true specification.

We constructed the posterior distributions over candidate
specification using priors 2 and 3 by incorporating subsets of
the training demonstrations of varying sizes, and evaluated the
similarity between the inferred specifications and the ground
truth using the expected and maximum values among the top
5 a posteriori candidates of the metric L(p).

With prior 2, our model correctly identified the ground
truth as one of the top 5 a posteriori formula candidates in all
cases. With prior 3, the inferred formula contained additional
ordering constraints compared with the ground truth. Using
all 71 demonstrations, the MAP candidate had one additional

ordering constraint: that the fork be placed prior to the spoon.

Upon review, it was observed that this condition was not
satisfied in only four of the 71 demonstrations.
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Evaluating Large Force Exercises

Large-force exercises (LFE) are combat flight training
exercises that involve multiple aircraft groups, with each
group playing a designated role in the completion of the
mission. Evaluating a LFE execution is a challenging task for
the mission commander. The raw state-space of the domain
includes the navigation data for each aircraft involved in the
scenario (up to 36 aircrafts were included in the scenarios
we simulated), along with configuration settings for each of
those aircrafts (weapon stores, weapon deployments, etc.)
and outcomes of combat engagements that occur throughout
the scenario. The mission commander must distill this time-
series and evaluate the mission based on multiple output
modalities. He or she must first identify the transition points
between predetermined scenario phases, then evaluate the
overall success of the mission’s execution in terms of a
finite number of predetermined objectives. Evaluation of the
mission objectives depends not only upon the final state
of the scenario, but also on the behavior of the aircrafts
throughout the mission, thus making LTL a suitable grammar
for representing mission objective specifications.

We evaluated the capabilities of our model to infer LTL
specifications that match a mission commander’s evaluations
of mission objective completion. In this section, we begin
by describing the nature of the offensive counter air (OCA)
mission that serves as the subject of our study. Next, we
describe how these missions are evaluated by experts, and
how the stated mission objectives are well-suited for use with
the temporal behavioral templates we use in our candidate
formulas. Finally, we describe the results obtained when
applying our model to the LFE domain dataset.

LFE Scenario description Each LFE for the OCA mission
we modeled consists of 18 friendly aircrafts and a variable
number of enemy aircrafts and ground-based threats. Among
the friendly aircrafts, there are eight escort aircrafts that are
capable air-to-air fighters, eight SEAD (suppression of enemy
air defenses) aircrafts capable of attacking ground-based
threats, and two strike aircrafts that carry the ammunition
that must be deployed in order to attack a designated ground
target within a time-on-target (TOT) window. The aircrafts’
starting positions during a typical scenario are depicted in
Figure 10.The role of the mission commander is to debrief
the participants once a LFE scenario execution is completed.
During debriefing, the LFE-OCA scenario is segmented into
four phases by design as follows:

¢ Escort Push
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* Strikers Push
* Time-On-Target (TOT)
* Egress

The mission commander must identify the times that
correspond to the transitions between these mission phases,
and also provide an assessment of whether the following three
mission objectives were achieved:

* MO1: Gain and maintain air superiority.

e MO2: Destroy an assigned target within the TOT
window.

* MO@3: Friendly attrition should not exceed 25%.

Each of the mission objectives is a Boolean-valued function
of the raw state-space of the LFE scenario, and the mapping
between them is not explicitly known. Inputs from subject
matter experts (SMEs) were also utilized to represent the
mission execution in terms of certain Boolean propositions
over which we can apply our probabilistic model. The
propositions were defined as follows:

1. Enemy aircraft attrition (50%, 75%, 100%) (three
propositions).

2. Either strike aircraft fired upon.

3. Either strike aircraft shot down.

Last munition released by strikers.

Strike aircrafts flying in on-target flight phase.

Assigned target hit.

N e s

Friendly aircraft attrition (25%, 50%, 75%) (three
propositions, each turn false if the corresponding
attrition is reached).

In order to generate realistic demonstrations of how the
different executions unfold, the scenarios were defined in Joint
Semi-Automated Forces (JSAF) — a constructive environment
capable of simulating realistic aircraft behavior. The data
collected for each demonstration included the position, speed,
attitude, and rates of each of the aircrafts (both friendly
and hostile); the individual mission phase of each aircraft
(a discrete set of phases by which the aircraft specific mission
timeline can be labeled); and the firing times, designated
targets, detonation times, and outcomes of each weapon
deployment over the course of the scenario. The mapping
from the collected data to the Boolean propositions stated
above is well defined.

In order to apply our probabilistic model to the LFE domain,
we defined the sets T and €2. The propositions 7, 2, and 3 were
included in the set 7 as candidates for global satisfaction. The
propositions 1, 4, 5, and 6 were included in €2 as candidates
for eventual completion.

Data collection A total of 24 instances of LFEs were
simulated and included in the dataset. Each instance had
a different outcome with respect to the mission objectives,
based on the different outcomes of engagements between
friendly and hostile forces. Each scenario was evaluated by
an SME acting as a mission commander performing a manual
debrief. The primary annotation task was to evaluate whether
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Figure 10. The starting configuration of a large-force exercise
scenario. The red aircrafts are the hostile forces, and the blue are
friendly forces.

each of the objectives was successfully achieved upon mission
completion. The secondary annotation task was to determine
the segmentation points among the four scenario phases on
the mission timeline. The segmentation task is not directly
relevant to specification inference, but we used the labels
to simultaneously train a secondary classifier in one of the
baselines.

Benchmarks The training data for evaluations of LFEs
consists of both acceptable and unacceptable demonstrations,
along with the label for that demonstration; thus, it can be
viewed as a supervised learning problem. We decided to
compare the classification accuracy of our model against
a classifier trained with a recurrent neural network as the
underlying architecture.

1. Stand-alone: Here, the recurrent neural network is
trained to jointly optimize the binary cross-entropy for
classification of each of the three mission objectives.
The loss functions for all the mission objectives are
equally weighted. The recurrent neural networks are
composed of long and short-term memory (LSTM)
modules (Hochreiter and Schmidhuber (1997)), along
with their bidirectional variants (Graves et al. (2005)).
Such models have shown state-of-the-art performance
during time-series classification tasks (Ordofiez and
Roggen (2016)). These models — henceforth referred to
as ‘LSTM’ and ‘Bi-LSTM, respectively — were trained
using only the time-series of the propositions as inputs.

2. Coupled: In prior research, performance improve-
ments on a primary task have been observed due to
simultaneous training on a secondary related task (Sohn
et al. (2015)). We hypothesized that simultaneously
training the classifier on the secondary task of iden-
tifying scenario phases might improve classification
accuracy compared with a standalone RNN. The loss
functions used were binary cross-entropy for each of
the mission objectives and categorical cross-entropy
for the scenario phase identification. The overall loss
function was an equally weighted sum of the individual
cost functions. These models were also composed of
LSTM modules and their bidirectional counterparts,
and are referred to as ‘LSTM Coupled’ and ‘Bi-LSTM
Coupled,” respectively. These models were trained
using the propositions and collected flight phase data.

Evaluations The classification models were evaluated
through a four-fold cross-validation wherein the training
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Table 2. Weighted F1 scores for both scenario outcomes for
each of the classifiers.

Classifier MO1 MO2 MO3
LST™M 0.533 0.533 0.481
Bi-LSTM 0.533 0.533 0.481
LSTM Coupled 0.533  0.533 0.481
Bi-LSTM Coupled  0.533  0.533  0.481
BSI (Prior 2) 0.674 0.712  0.877
BSI (Prior 3) 0.674 0.676  0.877

dataset was divided into four equal partitions, with three of
the partitions used for training (18 scenarios) and testing
performed on the remaining partition (6 scenarios); this
was repeated across all partitions. The predictions of the

model for each of the scenarios were assimilated at the end.

We also applied our model to the entire dataset in order
to analyze which of the propositions were included in the
maximum a posteriori estimate of the specifications. The
overall accuracy of the classifiers was evaluated using the F1
score on all the predictions for both the possible outcomes
of the mission objectives (" Achieved’ and ’Failed”) for each
mission objective.

Results As presented in Table 2, our model outperformed
RNN-based supervised learning models. With a four-fold split
of training and test data, prior 2 seemed to outperform prior
3; one possible explanation would be that the bias of prior 3
toward longer task chains might result in a higher rate of false
negatives.

We also noticed the tendency of RNN models to collapse
to predicting the most commonly occurring outcome in the
training set for all values of inputs. Thus, the model was
unable to achieve high accuracies even on the training set,
suggesting that it is not only the small size of the dataset that
results in poor performance. This might indicate that either
greater model capacity or a different model architecture may
be required.

Next, we analyzed the maximum a posteriori formula
returned by our model using prior 2, and the F1 scores
obtained were 0.959, 0.918, and 0.959 for the three mission
objectives, respectively. The compositional structure of the
model allowed us to examine the propositions included in
the formulas and interpret the decision boundaries of the
classifiers; the results were as follows:

1. MO1 (Gain and maintain air-superiority) The
propositions included in g1 Were 7, 3, and 2;
these correspond to a maximum allowable friendly
attrition rate of less than 25%, and enforcing the
condition that the strikers were never fired upon or
shot down, respectively. (This is consistent with the
definition of air superiority.) The propositions included
N Qepentual Were 4, 1, and 5; these correspond to
strikers eventually releasing their weapons, the friendly
forces shooting down 75% of the enemy fighters, and
strike aircrafts eventually reaching their on-target flight
phase, respectively. (Again, the included propositions
indicate that gaining air superiority allowed strikers to
operate freely.) Finally, .4 enforced that friendly
forces shot down 50% of the hostile air threats before
strikers released their weapons.
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2. MO2: (Destroy assigned target) The propositions
included in @g0pq; Were 7 and 3; these represent a
maximum friendly attrition of 50%, and only enforcing
that the strikers were never shot down, respectively.
(Note that this does not enforce the condition that
strikers were never fired upon.) Yeyentuqr included 1,
4,5, and 6; these represent eventually shooting down
all hostile aircrafts (which would seem unnecessary),
strikers entering their on-target flight phase, eventually
releasing their weapons — and, most importantly,
attacking the assigned target. ¢,rqer enforced the
condition that the friendly aircrafts had to shoot down
all hostiles before the close of the TOT window.

3. MO3: No more than 25% friendly losses: The
propositions in @gopq included 7, 2, and 3; these
correctly enforced that no more than 25% friendly
aircrafts could be shot down, and also that the strikers
were never shot down or fired upon. Yeyentuqr included
1, 4, and 5, representing 75% hostile force attrition, and
enforced that the strikers had to eventually enter their
on-target phase and deploy their weapons. No orders
were included in the formula. The propositions that
enforced weapon deployment by strikers and requisite
hostile attrition were not required for this objective to be
fulfilled; however, they were included by the model due
to their frequent occurrence with objective completion.
The compositional nature of the model allows the user
to identify constraints that will be easily enforced.

Conclusion

In this work, we presented a probabilistic model to infer task
specifications in terms of three behaviors encoded as LTL
templates. We presented three prior distributions that allow for
efficient sampling of candidate formulas as per the templates.
We also presented a likelihood function that depends only
upon the number of conjunctive clauses in the candidate
formula, and is transferable across domains as it requires no
information about the domain itself. Finally, we demonstrated
our model on three distinct evaluation domains. On the
domains where the ground-truth specifications were known,
we demonstrated the capability of our model to identify the
ground-truth specification with up to 90% similarity , in both
a low-dimensional synthetic domain and a real-world dinner
table domain. In the large-force exercise domain, where the
ground-truth specifications are not known, we showed the
ability of our model to align its predictions with those of an
expert to a greater extent than supervised learning techniques.
We also demonstrated our model’s ability to explain its
decision boundaries due to the compositional nature of the
formula template.
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