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Abstract
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter
UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic
models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking
control. We have found that a tail-sitter is differentially flat with accurate (not simplified) aerodynamic models within
the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output.
This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and
tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters
is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free
constraints and actuator saturation. The planned trajectory of flat output is transformed into state trajectory in real-
time with optional consideration of wind in environments. To track the state trajectory, a global, singularity-free, and
minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to
achieve high-accuracy trajectory tracking within the whole flight envelope. The proposed algorithms are implemented
on our quadrotor tail-sitter prototype, “Hong Hu”, and their effectiveness are demonstrated through extensive real-world
experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows
requiring specific attitude and with speed up to 10m{s, typical tail-sitter maneuvers (transition, level flight and loiter)
with speed up to 20m{s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban
Eight) with acceleration up to 2.5 g. The video demonstration is available at https://youtu.be/2x_bLbVuyrk.
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1 Introduction

A tail-sitter unmanned aerial vehicle (UAV) is a type of
vertical takeoff and landing (VTOL) flying machine that
takes off and lands vertically on its tail while tilts the entire
airframe in a near horizontal attitude for forward flight.
Its hybrid fixed-wing and rotary-wing design combines
advantages of the VTOL capability, aerodynamic efficiency,
and hence extends the power endurance and flight range.
Compared to other hybrid designs of VTOL UAVs, like
tilt-rotors (Carlson 2014; Ozdemir et al. 2014), tilt-wings
(Çetinsoy et al. 2011), rotor-wing (McKenna 2007), and
dual-systems (Park 2014; Gu et al. 2017), tail-sitters have
rotors fixed to the wing and use their thrust in all flight
conditions, leading to a mechanically simple, lightweight
and efficient airframe configuration, which is particularly
important for small-scale, low-cost, portable UAVs. Such
UAVs hold immense potentials for a wide range of industrial
and civil applications, such as infrastructure inspection,
geological surveying, environment mapping, and post-
disaster search and rescue. These exciting opportunities
have attracted intensive research interests and led to the
development of a variety of tail-sitter UAV prototypes, such
as the single-propeller configuration (Frank et al. 2007;
Wang et al. 2017b; De Wagter et al. 2018), the shoulder-
mounted twin-engine configuration (Bapst et al. 2015; Ritz

and D’Andrea 2017; Sun et al. 2018), and the quadrotor
configuration (Oosedo et al. 2013; Gu et al. 2018).

To accommodate the escalating demand of real-world
applications, tail-sitter UAVs must be able to execute highly
aggressive maneuvers, including forward transition to level
flight, back transition break, and quickly bank turns. The
agile maneuverability is crucial for the UAV to navigate
at high-speed through obstacle-dense environments. Unlike
conventional airplanes that fly in open space, tail-sitter
UAVs are subjected to more challenging flight conditions
of fast-varying speed and attitude, asking a holistic design
of the trajectory generation and tracking control, where
the former aims to plan a smooth, dynamically-feasible,
and collision-free trajectory and the latter should track the
planned trajectory with small errors.

While the planning and control of multicopter UAVs have
been comprehensively studied by leveraging the differential
flatness property of the systems (Mellinger and Kumar 2011;
Faessler et al. 2017), thus stimulating a wealth of practical
applications, like flying through narrow gaps (Mellinger
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et al. 2012; Falanga et al. 2017; Ren et al. 2023), perching
on structures (Mellinger et al. 2012; Hang et al. 2019),
autonomous safe navigation (Shen et al. 2011; Zhou et al.
2019; Zhang et al. 2020), and drone racing (Foehn et al.
2021), the equivalent techniques for tail-sitter UAVs are
relatively underdeveloped. The differential flatness for tail-
sitters, which resolves the full states and inputs of the system
from finite flat outputs and their derivatives, has not been
rigorously investigated. A significant hurdle confronting this
task lies in the complex nonlinear aerodynamics inherent
to tail-sitter UAVs. While the wings of a tail-sitter can
produce the desired lift force to enhance power efficiency,
they also introduce highly nonlinear aerodynamic forces into
the system dynamics. Unlike fixed-wing airplanes that are
primarily confined to a conservative level flight regime where
the wing aerodynamics are well understood as being linear,
tail-sitters usually operate within a large flight envelope with
a wide range of angle of attack (AoA), where the wing
aerodynamics exhibit extreme nonlinearity. Consequently,
the study on differential flatness, as well as high-precision
planning and control of tail-sitter UAVs that fully exploit
aerodynamic models are significantly complicated and still
remains an open question.

Besides the theoretical difficulty, trajectory generation
and tracking of tail-sitter UAVs are also confronted with
practical challenges. For example, during outdoor long-
range missions, a tail-sitter UAV often suffers from model
uncertainties and considerable wind disturbances. Other
constraints such as actuator saturation, sensor noise and
limited onboard computation resource also ask for high
robustness and computation efficiency of the designed
algorithms.

1.1 Contributions
In this work, we address the challenge of high-quality
trajectory generation and high-performance tracking control
of tail-sitters by leveraging the differential flatness property,
aiming to enable agile tail-sitter flights within the whole
envelope in real-world environments. Specifically, our
contributions are outlined as follows.

1) We show that the tail-sitter is differentially flat in the
coordinated flight condition, in considering the actual
aerodyanamic model without any simplifications.

2) Based on the differential flatness, we develop
an optimization-based trajectory generation method
enabling aggressive flights while taking account of
actuator constraints, flight time, dynamical feasibility,
and singularity conditions in coordinated flight.

3) We propose a two-stage control architecture. The
first stage transforms the planned flat-output trajectory
into a state-input trajectory while compensating wind
effect and treating singularities. The second stage is a
real-time state trajectory tracking controller.

4) For the second stage, we develop a global, model-
based, minimally-parameterized and singularity-free
model predictive control (MPC) for trajectory tracking
within the entire tail-sitter flight envelope.

5) We demonstrate and validate our algorithms via exten-
sive real-world experiments on an actual quadrotor

tail-sitter prototype in both indoor and outdoor envi-
ronments. To our best knowledge, it is the first tail-
sitter demonstration of flying through narrow tilted
windows and outdoor aerobatics.

1.2 Outline
The outline of the rest of the paper is as follows. Section
2 reviews the related work. The system dynamics including
the aerodynamic model are introduced in Section 3. The
fundamental property of differential flatness is proved in
Section 4. Section 5 describes the system architecture
including high-level trajectory generation and tracking, and
low-level control. Section 6 presents the optimization-based
trajectory generation and its solver. Section 7 derives the
error-state dynamics along the reference trajectory leading
to an on-manifold MPC. Section 8 presents real-world
experiments validating our approach. Finally, Section 9
concludes the paper with extensions and limitations.

2 Related work

2.1 Tail-sitter control
There is a wealth of research on tail-sitter control which
can be generally categorized into two main strategies: the
separated control strategy, which consists of several isolated
controllers designed for respective flight phases, and the
global control that regulates the vehicle maneuvers within
the entire envelope under a unified controller. We will discuss
these control approaches in the following content.

Since the tail-sitter dynamics reduce to a rotary-wing
model and a fixed-wing model in low-speed vertical flight
and high-speed level flight respectively, separated control
methods (Frank et al. 2007; Oosedo et al. 2013; Lyu et al.
2017b) usually divide the flight process into three phases
– vertical flight (including takeoff, landing and hovering),
transition and level flight – and design controllers separately
for each phase. The vertical flight dynamics are linearized
at the stationary hovering equilibrium (Frank et al. 2007;
Matsumoto et al. 2010; Lyu et al. 2017b), and controlled by
means of established control methods for quadrotors, such
as loop-shaping, (Zhou et al. 2018), robust control (Lyu et al.
2018b), and MPC (Li et al. 2018). The level flight controllers
are usually borrowed from the fixed-wing airplanes and
UAVs, such as the total energy control system (Lambregts
1983) which is widely used in the open-source autopilot PX4
(Meier et al. 2015).

Transition control is a key challenge for the separated
control strategy and there is rich literature addressing this
issue. The aerodynamics become highly nonlinear during the
transition due to the dramatic change of AoA. An intuitive
linear control method is to feed a pre-designed profile of
linearly decreasing or increasing pitch angle to the attitude
controller with a constant altitude command (Verling et al.
2016; Lyu et al. 2017a), forcing the vehicle to pitch down or
up until triggering the mode-switching condition. Because
of the nonlinear dynamics, gain-scheduling techniques (Kita
et al. 2010; Jung and Shim 2012) could be applied to enhance
the stability margin. However, this linear method is not
always dynamically feasible and usually results in undesired
altitude deviation. The altitude control performance can be
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Tab. 1. Comparison of the stat-of-the-art global control methods for tail-sitter UAVs.

Study Methodology Aerodynamic Singularity Flight Wind Demo
Model Condition Compensation Flights

Ours MPC & Classic Specific Airspeed Coordinated On Reference ˚, :, ;
Differential Flatness

Tal and Karaman (2022) Cascaded PD & INDI & ϕ-Theory Specific Airspeed No Restriction On Input ˚, ;
Differential Flatness

Lustosa (2017) Scheduled LQR ϕ-Theory None No Restriction None ˚

Ritz and D’Andrea (2017) Cascaded PID Classic Specific Airspeed Coordinated None ˚

Smeur et al. (2020) INDI Quasi-Static Euler Angle Not Specified On Input ˚

Cheng and Pei (2022) Adaptive Control - Euler Angle Not Specified None ˚

Symbols ˚, :, ; indicate three different demonstrated maneuvers: the typical maneuvers ˚ include common tail-sitter flights such as
transition, level flight and loiter; the SEp3q maneuvers : denote a whole-body flying motion with specified pose and velocity; the
aerobatic maneuvers ; denotes aggressive maneuvers with large attitude variation and flight speeds.

improved either by a well-designed transition planner (Naldi
and Marconi 2011; Oosedo et al. 2017; Wang et al. 2017a;
Li et al. 2020a) using accurate aerodynamic models or a
sophisticated altitude controller, such as iterative learning
control (Xu et al. 2019b). A limitation of these methods
is their focus on the altitude and pitch control to transit
a tail-sitter to the level flight phase, often neglecting the
lateral motion or any maneuvers (e.g., bank turns) during the
transition, which are necessary for obstacle avoidance in low-
altitude cluttered environments.

To sum up, although the separated strategy eases the
controller design and has widespread use in practice, the
controller switching usually causes unexpected transient
response, thereby degrading control performance. Given that
a tail-sitter would frequently enter and exit the transition
regime (i.e., a specified range of pitch angle and airspeed)
when performing aggressive maneuvers, a global control
strategy that uses a unified system model and control law
serving for the whole envelope without switching among
different flight phases (e.g., hovering, transition, and level
flight) is more preferable. This direction has prompted a
significant amount of research.

Model-free global control methods for tail-sitters do
not rely on vehicle aerodynamic models, but manage to
approximate the aircraft dynamics locally and stabilize the
local approximation by using linear theory. For example,
Barth et al. (2020) proposed a cascaded model-free global
control framework based on quasi-static assumptions. The
vehicle system is decoupled, approximated and estimated
locally as a group of second-order piece-wise linear systems,
and thus the reference thrust and attitude can be solved
from the desired body velocity. Similarly, Cheng and Pei
(2022) employed an adaptive control law with an IMU-
based thrust-attitude decoupling method, assuming zero
gradient for the aerodynamic forces. Although model-
free methods can estimate and compensate the unmodeled
aerodynamics, they apply small control input at each step to
maintain the effective region of the state-input linearization.
These approaches are not ideal to agile flights requiring
more aggressive control inputs. Consequently, the control

performance degrades (i.e., altitude error exceeds 1m during
transition) during highly agile maneuvers as demonstrated in
Barth et al. (2020); Cheng and Pei (2022).

To further improve the control performance, model-
based global controllers of varying sophistication have
been proposed. For instance, Ritz and D’Andrea (2017)
used a classic aerodynamics model to derive the desired
attitude and thrust from the acceleration commands, by
specifying the coordinated flight condition. To enable
real-time implementation on a low-cost microcontroller,
the aerodynamic model was simplified based on first-
principles derivations, leading to considerable tracking
errors. Zhou et al. (2017) also calculated the desired
attitude but by solving a non-convex optimization using an
accurate aerodynamic model obtained from wind tunnel test.
However, this controller is computational demanding, which
precludes real-time implementation. When the airspeed is
zero, the definitions of angle of attack and sideslip angle
become invalid, introducing singularity into the classic
aerodynamic model used by these two research. There are
studies employing alternative aerodynamic characterizations
to avoid this singularity. Pucci et al. (2013) transformed
a 2-dimension (2-D) planner VTOL (PVTOL) vehicle
into an orientation-independent model, separating the
computation of the vehicle thrust and orientation, thereby
leading to a unified controller design (Pucci 2012). The
author also derived the conditions, spherical equivalency,
that airfoil aerodynamic characteristics must satisfy for
the transformation to hold. Lustosa (2017) proposed
a polynomial-like global aerodynamic parameterization,
termed as the ϕ-theory model, and developed a linear
quadratic regulator (LQR) based on the model. Their
experiment results show that the LQR gain must be
scheduled during the transition to avoid the instability
in pitch angle caused by the model errors of ϕ-theory.
Alternatively, Smeur et al. (2020) designed a global
incremental nonlinear dynamic inversion (INDI) controller
by linearizing the system at the current control inputs. To
design the INDI controller, it requires knowing the current
aerodynamic force (and moment) applied to the UAV and its
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gradient with respect to (w.r.t.) the control input increment
(pitch angle and velocity): the former one is obtained
from inertial measurement units (IMUs), which suffer from
either large measurement noise caused by constant propeller
rotation or considerable filter delay; the latter is derived
from a simple, heuristic aerodynamic model at a quasi-static
condition where the flight path angle is zero. More recently,
Tal and Karaman (2021) integrated the aforementioned ϕ-
theory model and INDI technique into a global cascade PD
controller applicable to both coordinated and uncoordinated
flight. They also introduced feedforward jerk and yaw rate
to improve the tracking performance and demonstrated
indoor aerobatics (Tal and Karaman 2022). Compared to the
previous INDI method (Smeur et al. 2020) with an over-
simplified aerodynamic model, the ϕ-theory model used in
Tal and Karaman (2021, 2022) can significantly increase the
control accuracy. However, similar issues, i.e., significant
measurement noise or filter delay still persist in INDI-based
methods. Moreover, the ϕ-theory models have limited fitting
capability, leading to larger model errors compared with
the classic model, as confirmed by the authors in Lustosa
et al. (2019). To sum up, the existing mode-based global
control methods typically make compromise between model
fidelity and computational load. While high-fidelity models
are costly and impractical for real-time implementation,
simplified models are relatively easy to be estimated from
limited experimental data, but tend to degrade the control
accuracy to varying extents.

Our method aims to fully exploit the UAV’s actual
aerodynamics to achieve high-accuracy and real-time control
performance. Compared to the existing works, our proposed
control scheme has the following advantages. 1) Existing
works either give up the vehicle aerodynamic model (e.g.,
model-free methods (Barth et al. 2020; Cheng and Pei 2022))
or compromise to simplified models (e.g., simplified classic
model (Ritz and D’Andrea 2017), spherical equivalence
model (Pucci et al. 2013), steady-level-flight model (Smeur
et al. 2020) and ϕ-theory model (Lustosa 2017; Tal and
Karaman 2022)), while our proposed controller leverages
classic aerodynamic models without any simplification
on its aerodynamic coefficients. The use of high-fidelity
aerodynamic model is crucial to achieve higher control
accuracy. 2) Existing controllers either ignore wind effect
in the environment (e.g. Ritz and D’Andrea (2017); Lustosa
(2017)), or compensate the disturbance through incremental
control updates from increased control error (e.g. (Smeur
et al. 2020; Tal and Karaman 2022)), while our proposed
approach incorporates wind effect by adjusting the reference
trajectory (e.g., attitude) to maintain coordinated flight based
on the differential flatness, and then tracks the adjusted
trajectory in real time. Given the considerable aerodynamic
efficiency loss of tail-sitter in windy conditions (Vourtsis
et al. 2023), our proposed feedforward strategy compensates
the wind effect in an pre-emptive way before the control
error actually accumulates. 3) Existing controllers (Ritz and
D’Andrea 2017; Tal and Karaman 2022) simultaneously
track trajectories and process singularities, while our work
decouples singularities from the tracking controller, by
the two-statge architecture. Such separation isolates the
singularity treatment from the state tracking controller. 4)
An on-manifold MPC is proposed for trajectory tracking in

high accuracy. MPC tracks full states by solving a finite-
horizon optimization at each step to yield the best future
behavior based on the system model (Borrelli et al. 2017).
Its predictive nature that exploits the information of the
future reference trajectory, contributes to a higher control
bandwidth for trajectory tracking. In contrast, existing
works (Ritz and D’Andrea 2017; Barth et al. 2020; Smeur
et al. 2020; Tal and Karaman 2022) usually track the
position trajectory in a cascaded control structure (e.g.,
a position controller followed by an attitude controller),
which simplifies the outer loop design, but simultaneously
constrains the outer loop’s bandwidth. Admittedly, MPC
is more computationally demanding and its convergence
is challenging to guarantee, but its predictive nature and
constraint handling capability have led to a wealth of
successful robotic applications, such as the leading-edge
Boston Dynamics Atlas humanoid robot (Marion 2021),
drone racing (Foehn et al. 2021) and aerobatics (Kaufmann
et al. 2020; Lu et al. 2022). In summary, a comparison of our
work with those existing state-of-the-art global controllers is
presented in Table 1.

2.2 Tail-sitter trajectory generation
Depending on the control strategy reviewed above, there
are different trajectory generation algorithms for tail-sitters
in literature. For separated control strategies, trajectories
are generated separately for each phase. When the tail-
sitter dynamics reduce to a rotary-wing model in low-
speed vertical flight, well-established trajectory generation
methods for quadrotors (or multicopters) (Mellinger and
Kumar 2011; Mueller et al. 2015) are applicable directly.
Trajectory planners for quadrotors can be also applied
for high-level autonomy, such as obstacle avoidance and
autonomous navigation. Similarly, traditional fixed-wing
planners (Park et al. 2004; Chitsaz and LaValle 2007) can
be adapted for tail-sitter in level flights. For example, the L1
guidance proposed by Park et al. (2004) has been widely used
in prototype verification (Frank et al. 2007; Jung and Shim
2012; Verling et al. 2016) and commercial Autopilots (Meier
et al. 2015) for tail-sitter level flights.

Generating a transition trajectory between vertical and
level flights is relatively challenging due to the nonlinear
aerodynamics during the transition. The intuitive linear
transition method, which designs linearly increasing or
decreasing pitch angle and constant altitude command
(Verling et al. 2016; Lyu et al. 2017a) as mentioned before,
does not consider the dynamical feasibility, thus requiring
a lot of empirical trials and errors. To incorporate dynamic
feasibility, trajectory generation is usually formulated into
nonlinear optimization problems subject to different control
objectives and constraints. For instance, Kita et al. (2010)
calculated a pitch angle and thrust profile achieving
the shortest transition time. Naldi and Marconi (2011)
considered a minimum-time and minimum-energy optimal
transition problem, while Oosedo et al. (2017) and Li et al.
(2020a) respectively minimized the flight time and energy
to maintain a constant altitude during the transition flight.
However, solving these non-convex optimization problems
is computationally expensive, preventing from onboard
implementation and online replanning. These methods are
also confined to straight-line transition that cannot be
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extended to other maneuvers like transition with banked
turns to avoid obstacles. Simplified dynamic models like
the point-mass model (McIntosh and Mishra 2022) can
be used to expedite obstacle-free planning, but again, the
dynamical feasibility is omitted. Overall, existing separated
trajectory generation approaches generate simple trajectories
with limited maneuverability, making them only suitable for
flights in open areas. The aerodynamic simplification and
kinodynamic limitation prevent them from being extended
to dynamically feasible and agile flights in cluttered
environments.

Compared to the separated trajectory generation, design-
ing a dynamically feasible trajectory that spans the entire
envelope is a significantly more complex task because the
tail-sitter is an under-actuated system with extremely nonlin-
ear aerodynamics. For under-actuated mechanical systems,
such as tail-sitters, the differential flatness is an essential
property that can significantly ease trajectory generation. If a
dynamic system is differentially flat, its full states and inputs
can be determined by algebraic functions of flat outputs and
their derivatives (Fliess et al. 1995; Murray et al. 1995). This
property simplifies the trajectory generation problem to a
set of algebraic operations in the flat-output space. This is
a significant reduction in complexity compared to the state-
space planning, which usually has to take into account on-
manifold kinematic constraints. For example, the differential
flatness property of quadrotors (Mellinger and Kumar 2011;
Faessler et al. 2017) has been thoroughly studied and enabled
a variety of applications in trajectory planning.

Research on the differential flatness of tail-sitter UAVs
is scarce due to the extremely complicated, nonlinear
aerodynamics mentioned above. Early research based on
simplified models can trace back to 1990s. Hauser et al.
(1992); Martin et al. (1996) studied the differential
flatness and control of a simple 2-D PVTOL aircraft.
Van Nieuwstadt and Murray (1998) simply considered the
transition dynamics as a nominal flat system where the
aerodynamics are treated as perturbations. Recently, Tal and
Karaman (2021) showed the differential flatness based on
the ϕ-theory aerodynamic model. The vehicle position and
yaw angle are chosen as flat outputs, which allow for a
global framework of trajectory optimization (Tal et al. 2022).
The optimization could then be solved efficiently in the
flat-output space, and the flatness transformation provides
state projections (e.g., mapping acceleration to attitude)
in a cascaded controller. Yet, this framework has certain
theoretical limitations. First, the differential flatness is built
on the coarse ϕ-theory aerodynamic model, the model errors
of which degrade the trajectory quality and the resultant
control performance. Second, the ϕ-theory model assumes
a windless condition that only considers the vehicle attitude
and velocity w.r.t. the fixed inertial frame, rather than the
aerodynamic angles and airspeed. Lastly, the method must
assume that the vehicle has no body or vertical rudder that
produce side forces. Hence, this differential flatness property
is not applicable to outdoor environments commonly with
external winds or more general tail-sitter airframes.

Contrasted with early studies based on simplified 2-
D models (Hauser et al. 1992; Martin et al. 1996), our
work considers the full 3D model of a real tail-sitter
UAVs. Furthermore, in comparison to recent research that

Fig. 1. Coordinate frames: the world frame, body frame and
aerodynamic forces.

used simplified aerodynamic model, such as the spherical
equivalence model (Pucci et al. 2013) and the ϕ-theory
model (Lustosa 2017), or that required particular airframe,
such as configurations without vertical surfaces necessitated
by (Tal et al. 2022), we prove the differential flatness
property on accurate aerodynamic models and more general
tail-sitter airframes. Based on the proved differential flatness,
we propose a systematic trajectory generation framework
for tail-sitter UAVs. High-quality trajectories are optimized
subjecting to actuator constraints, flight time and dynamical
feasibility.

It is interesting to note that, both Tal and Karaman (2022),
which assumes no vertical surfaces but with uncoordinated
flight, and ours, which assumes coordinated flight, eventually
lead to the same effect of avoiding lateral forces. The
lateral force would dramatically complicate the solving of
the UAV state (i.e., attitude and thrust) due to the highly
nonlinear aerodynamic forces. Zhou et al. (2017) solves
these highly nonlinear constraints by leveraging numerical
approach, leading to high computational complexity not
suitable for real-time implementation. Instead, avoiding such
lateral force could effectively isolate and solve the angle
of attack in our work (or Pitch angle in Tal and Karaman
(2022)), hence the rest UAV states.

3 Flight dynamics

This section introduces the dynamic models that describe the
motion of tail-sitters. We define coordinate frames for tail-
sitter modeling, trajectory generation, and tracking control
in Section 3.1. The dynamic model of the tail-sitter is
presented in Section 3.2 and Section 3.3 introduces the
classic aerodynamic models.

3.1 Coordinate frames

As shown in Fig. 1, the definition of coordinate frames
follows the convention of traditional fixed-wing aircraft.
The world frame tO,x,y, zu denoted North-East-Down
(NED), is considered as the inertial frame. The body frame
tOb,xb,yb, zbu is defined as Forward-Right-Down where
the body axis xb points along the nose of the aircraft and
Ob is the vehicle center of gravity.
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3.2 Airframe dynamics
We view the whole body of the tail-sitter as a rigid body.
Referring to the Newton-Euler equations, the translational
and rotational dynamics of the aircraft is modeled as follows:

9p “ v (1a)

9v “ g ` aTRe1 `
1

m
Rfa (1b)

9R “ Rtωu (1c)
J 9ω “ τ ` Ma ´ ω ˆ Jω (1d)

where p and v are respectively the vehicle position and
velocity in the inertial frame, ω is the angular velocity in the
body frame, R denotes the rotation from the inertial frame
to the body frame, m is the total mass of the aircraft, J is
the inertia matrix and g “ r0 0 9.8sT is the gravity vector in
the inertial frame. aT and τ denote the thrust acceleration
scalar and control moment vector produced by actuators
(e.g., four motors for a quadrotor tail-sitter). fa and Ma

are the aerodynamic force and moment in the body frame,
respectively. The notation tau converts a 3-D vector a into a
skew-symmetric matrix such that a ˆ b “ taub,@a,b P R3.
e1 “ r1 0 0sT , e2 “ r0 1 0sT , e3 “ r0 0 1sT are unit vectors
used in the remaining of the paper.

Collecting all the state and input elements of the dynamics
(1) leads to the system state and input below:

xfull “ pp,v,R,ωq P R3 ˆ R3 ˆ SOp3q ˆ R3 (2a)

ufull “ paT , τ q P R ˆ R3 (2b)

Note that in the above model, we assume that the thrust
direction is aligned to the body X axis xb. For cases where
the thrust has a fixed installation angle, it can be trivially
handled by re-defining the body frame.

3.3 Aerodynamics
Referring to (Etkin and Reid 1959), the aerodynamic force
fa is modeled in the body frame as follows:

fa “

»

—

—

—

–

fax

fay

faz

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

´ cosα 0 sinα

0 1 0

´ sinα 0 ´ cosα

fi

ffi

ffi

ffi

fl

»

—

—

—

–

D

Y

L

fi

ffi

ffi

ffi

fl

(3)

where α is the angle of attack. The force components
L,D,Y are the lift, drag, and side force, respectively. The
aerodynamic moment vector Ma consists of rolling L,
pitching M and yawing N moment along the body axis
xb,yb, zb:

Ma “

”

L M N
ıT

(4)

The force and moment components L,D,Y, L,M,N
can be written as products of non-dimensional coefficients,
dynamic pressure 1

2ρV
2, the reference area S (e.g., the

wing area), and the characteristic length c̄ (e.g., the mean
aerodynamic chord), as follows:

L “
1

2
ρV 2SCLpα, βq

D “
1

2
ρV 2SCDpα, βq

Y “
1

2
ρV 2SCY pα, βq

,

M “
1

2
ρV 2Sc̄Clpα, βq

N “
1

2
ρV 2Sc̄Cmpα, βq

L “
1

2
ρV 2Sc̄Cnpα, βq

(5)
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Fig. 2. Longitudinal aerodynamic coefficients CL and CD of
our previous quadrotor tail-sitter UAV prototype, identified by
wind tunnel tests (Lyu et al. 2018a).

where ρ is the air density and V “ }va} is the norm of
the airspeed. CL, CD, CY are the lift, drag, and side force
coefficients, while Cl, Cm, Cn are the rolling, pitching, and
yawing moment coefficients. The aerodynamic coefficients
are functions of the angle of attack α and the sideslip angle
β, depending on the design of the airfoil profile and the
overall airframe. The accurate aerodynamic coefficients are
usually identified by wind tunnel tests (Lyu et al. 2018a).
For readability, the total aerodynamic force fa in (3) can be
rewritten as

fa “
1

2
ρV 2Scpα, βq (6)

where

cpα, βq “

”

cxpα, βq cypα, βq czpα, βq

ıT

(7a)

cxpα, βq “ ´CDpα, βq cosα ` CLpα, βq sinα (7b)
cypα, βq “ CY pα, βq (7c)
czpα, βq “ ´CDpα, βq sinα ´ CLpα, βq cosα (7d)

Given the vehicle ground velocity v and wind speed w
defined in the inertial frame, the airspeed va, the angle of
attack α and the sideslip angle β are calculated as follows:

va “ v ´ w, vB
a “ RTva “

”

vB
ax

vB
ay

vB
az

ıT

, (8)

V “ }va}, α “ tan´1

ˆ

vB
az

vB
ax

˙

, β “ sin´1

˜

vB
ay

V

¸

(9)

We further assume that the airframe is symmetric to the
body X-Z plane, which implies

CLpα, βq “ CLpα,´βq, @α, β (10a)
CDpα, βq “ CDpα,´βq, @α, β (10b)
CY pα, βq “ ´CY pα,´βq, @α, β (10c)

and hence @α

CYpα, 0q“0,
BCLpα, βq

Bβ

ˇ

ˇ

ˇ

ˇ

β“0

“
BCDpα, βq

Bβ

ˇ

ˇ

ˇ

ˇ

β“0

“0, (11a)
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Fig. 3. A tail-sitter UAV in coordinated flight: (a) the axis yb is
perpendicular to both of va and 9v ´ g; (b) the angle of attack α
and thrust acceleration aT are determined on the longitudinal
plane by the fact that the total acceleration comprising the drag
acceleration D{m, the lift acceleration L{m, the aT , and gravity
g is equal to 9v.

Bcpα, βq

Bβ
|β“0 “

„

0
Bcypα,βq

Bβ

ˇ

ˇ

ˇ

β“0
0

ȷT

, (11b)

Bcpα, βq

Bα
|β“0 “

”

Bcxpα,0q

Bα 0 Bczpα,0q

Bα

ıT

. (11c)

4 Differential flatness in coordinated flight
In this section, we aim to investigate the fundamental
differential flatness property which is the theoretical
foundation for trajectory generation and tracking control.
We prove that the tail-sitter is differentially flat in a flight
condition known as the coordinated flight.

4.1 The coordinated flight
An aircraft in coordinated flight indicates a flight condition
without sideslip (e.g., β “ 0,vB

ay
“ 0) (Clancy 1975). This

flight condition does not restrict the degree-of-freedom of
the tail-sitter, which is still able to reach any position in
the entire 3-D space. Moreover, the coordinated flight is
usually preferred over uncoordinated flight (Stevens et al.
2015) for several practical reasons: 1q the coordinated flight
condition ideally achieves maximum aerodynamic efficiency
and also minimizes undesirable aerodynamic moment that
could cause spins. 2q it is naturally required when the
navigation sensors (e.g., cameras) mounted on the vehicle’s
nose have a limited FoV. 3q restricting the sideslip angle
around zero reduces the efforts for aerodynamic model
identification by only requiring the longitudinal aerodynamic
coefficients around β “ 0 (see Fig. 2).

4.2 The differential flatness
Definition 1. (Fliess et al. 1995) A system 9x “ f px,uq ,x P

Rn,u P Rm, Bfpx,uq

Bu “ m, is differentially flat, if there exists
a flat output y P Rm of the form

y “ y
´

x,u, 9u, ¨ ¨ ¨ ,uppq
¯

(12)

such that the system state can be expressed explicitly by
functions of the flat output and a finite number of its
derivatives:

x “ x
´

y, 9y, ¨ ¨ ¨ ,ypqq
¯

(13)

u “ u
´

y, 9y, ¨ ¨ ¨ ,ypqq
¯

(14)

The definition of differential flatness formally requires an
equal dimension of the control input and the selected flat
output for a system with independent inputs. However, the
control input ufull defined in (2) is not independent, due to
the coordinated flight condition.
Theorem 1. Given the system dynamics in (1) and definition
of state and input in (2), when the UAV performs coordinated
flight, it holds that

Bfpxfull,ufullq

Bufull
“ 3 (15)

Proof. The proof is given in Appendix A.

It is seen in Theorem 1 and its proof that two elements
of the body angular velocity and consequently the control
moment τ are coupled, and the control input ufull reduced
by one degree-of-freedom to maintain the coordinated flight
condition. The reduced input dimension decreases the rank
of derivative Bfpxfull,ufullq

Bufull
by one, resulting in a flat output

vector with a dimension of three only.
Our choice of the flat output is the vehicle position p P R3

in the inertial frame. In the following, we prove that all of
the vehicle states xfull and inputs ufull can be expressed by
functions of p and its derivatives.

The position p and velocity v are simply p itself and its
first-order derivatives, respectively. To express the attitude R
as a function of p and its derivatives, we observe that in the
coordinate flight, 1q there is no airspeed along the body Y
axis, implying that yb is perpendicular to the airspeed va;
and 2q because the aerodynamic sideslip force Y is zero
(due to coordinated flight and symmetric airframe) and the
thrust is in the body X-Z plane, there is no force (and hence
acceleration) except gravity along the body Y axis. That is
being said, the total acceleration excluding gravity, 9v ´ g,
has no projection on the body Y axis (i.e., yb is perpendicular
to 9v ´ g). As shown in Fig. 3(a), being perpendicular to
both 9v ´ g and va, yb can only be in one of two opposite
directions. We choose the one closest to the body Y axis
determined at the previous time step, denoted as yprev

b , to
prevent drastic attitude change:

r “ sign ppva ˆ p 9v ´ gqq ¨ yprev
b q (16)

yb “ r
va ˆ p 9v ´ gq

}va ˆ p 9v ´ gq }
, if }va ˆ p 9v ´ gq } ‰ 0 (17)

where signpaq denotes the sign of a P R and the scalar
r denotes the direction of the body Y axis, ensuring that
yb ¨ yprev

b ě 0 (the angle between yb and yprev
b is always less

than 90˝). }va ˆ p 9v ´ gq } “ 0 is a singularity condition that
will be discussed in Section 4.3.

Next, we show how to solve the body Z axis zb and
body X axis xb. We note that the sideslip force is zero due
to the coordinated flight, hence the aerodynamic force fa

reduces to fa “

”

fax
0 faz

ıT

and Rfa “ xbfax
` zbfaz

.
Substituting Rfa into (1b) leads to:

aTxb `
fax

m
xb `

faz

m
zb ` g “ 9v (18)

Decomposing the equation along the direction of xb and zb
respectively, we have (see Fig. 3(b))

aT “xT
b p 9v ´ gq ´ fax

{m zTb p 9v ´ gq “ faz
{m (19a)
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Fig. 4. Numerical examples of the root-finding problem of
F pαq “ 0 in (22) for five pairs of ph, γq and the longitudinal
aerodynamic coefficients shown in Fig. 2.

Since xb, zb, 9v ´ g and va are all perpendicular to yb,
they should lie in the same plane (see Fig. 3(b)). Hence we
have xT

b p 9v ´ gq “ } 9v ´ g} cos pγ´αq, zTb p 9v ´ gq “ } 9v ´

g} sin pγ´αq, and

aT “} 9v ´ g} cos pγ´αq ´ fax
{m (20a)

} 9v ´ g} sin pγ ´ αq “ ´faz
{m (20b)

where

γ “ r ¨ atan2 p}p 9v´gqˆva}, p 9v´gq ¨ vaq , if }va} ‰ 0
(21)

and r denotes the angle direction (the positive direction
of γ and α is defined such that rotating va along yb will
reach 9v ´ g and xb, respectively), while }va} ‰ 0 has been
specified in }va ˆ p 9v ´ gq } ‰ 0 above.

It is noticed that (20b) only involves the known flat
derivatives and the angle of attack α, which can hence be
solved. Specifically, (20b) can be written as a nonlinear root-
finding problem in terms of α:

F pαq “ h sinpγ ´ αq ` czpα, 0q “ 0 (22)

where

h “
2m} 9v ´ g}

ρV 2S
(23)

In the function of F pαq, the variables h and γ is
completely determined by the flight trajectory (and wind
gust), while czpα, 0q is the third element of c in (7),
which is completely determined by the actual aerodynamic
configuration of the UAV. It should be also noted that γ and
h are independent because they are respectively the angle
and length ratio between 9v ´ g and va. These properties
allow us to investigate the shape of F pαq, hence the solution
of α, for a given pair of ph, γq. An example of such
function F pαq is presented in Fig. 4. As can be seen, the
equation F pαq “ 0 is highly nonlinear due to the nonlinear
aerodynamic model czpα, 0q, hence no closed-form solution
can be found in general. In practice, the equation can be
solved numerically, such as Newton–Raphson method using
czpαq and Bczpα, 0q{Bα identified in advance. Moreover,
the extreme nonlinearity in F pαq also results in multiple
solutions of α in most cases. To avoid the ambiguity and
prevent drastic change of α, αprev, the value of α determined

at the previous time step, could be used as the initial guess
for the numerical solver, to find a solution close to αprev.

With the solved angle of attack α, the body X axis xb, and
hence the rotation matrix R, can be determined as

xb “ Exp pαybq
va

}va}
, if }va} ‰ 0, (24a)

R “

”

xb yb zb

ı

, zb “ xb ˆ yb. (24b)

where Expp¨q is the exponential map on SOp3q and }va} ‰

0 has been specified in the singularity condition }va ˆ

p 9v ´ gq } ‰ 0 above. With the solved α and β “ 0, the
aerodynamic force fa and system input aT are determined
by (6) and (20a), respectively.

Next, to show that the body angular velocity ω is a
function of the flat output, we take the time derivative of the
translational dynamics (1b) as follows:

:v “ p 9aTR ` aTRtωuq e1

`
1

m
R

ˆ

tωufa `
Bfa

B pRTvaq

d

dt

`

RTva

˘

˙

“
1

m
R

Bfa
BvB

a

RT 9va ` 9aTRe1

` R

ˆ

´

Zˆ

aTe1 `
fa
m

˙^

`
1

m

Bfa
BvB

a

tvB
a u

˙

ω

(25)

where Bfa{BvB
a is evaluated at β “ 0 and can be obtained by

taking derivative of (6) as below.

Theorem 2. Given the aerodynamic coefficients cpα, βq of a
symmetric airframe configuration satisfying (11), the partial
derivative Bfa{BvB

a at β “ 0 is

Bfa
BvB

a

“
ρS

2

ˆ

2cvBT

a `
Bc

Bα
vBT

a te2u ` V
Bc

Bβ
eT2

˙

(26)

Proof. The proof is given in Appendix B.

With the :v, 9va,R, fa, aT and Bfa{BvB
a solved above, the

equation (25) forms three linear functions for 9aT and ω. To
solve 9aT and ω uniquely, we need to find one more equation.
Recall that in coordinated flight the tail-sitter has no lateral
airspeed: the condition requires zero lateral airspeed:

vB
ay

“ eT2 R
Tva ” 0 (27)

which leads to the derivative on the both sides:

´eT2 tωuRTva ` eT2 R
T 9va “ 0

ñ ´vT
aRte2uω ` yT

b 9va “ 0
(28)

Combing (28) and (25), we obtain four linear equations in
terms of the 9aT and ω, which can hence be solved as:

»

–

9aT

ω

fi

fl “ N´1h “

»

–

N1

N2

fi

fl

´1 »

–

h1

h2

fi

fl , if rankpNq “ 4 (29)

where rankpNq ă 4 is the second singularity condition that
will be discussed in Section 4.3, and

h1 “ yT
b 9va (30a)
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h2 “ :v ´
1

m
R

Bfa
BvB

a

RT 9va (30b)

N1 “

”

0 vT
aRte2u

ı

(30c)

N2 “

”

Re1 R
´

´
X`

aTe1 ` fa
m

˘\

` 1
m

Bfa
BvB

a
tvB

a u

¯
ı

(30d)

Furthermore, the angular acceleration 9ω can be attained
by further taking the derivative of (29):

»

–

:aT

9ω

fi

fl “
d

dt

`

N´1h
˘

“ ´N´1 9NN´1h ` N´1 9h (31)

where the matrix derivative 9N and 9h are given in Appendix
C. It is noted that the coefficient gradients B2czpα, 0q{Bα2

(hence B2CLpα, 0q{Bα2 and B2CDpα, 0q{Bα2) should be
further provided. Then the control moment τ , is solved from
(1d) as

τ “ J 9ω ´ Ma ` ω ˆ Jω (32)

where the aerodynamic moments Ma is calculated from (5)
based on β “ 0 and the α solved above.

Remark 1. Formally, the flatness functions are real-analysis
by the classic definition. However, when deriving the flatness
function of angle of attack α, we cannot find its closed-form
solution for a general aerodynamic model due to the extreme
nonlinearity. Fortunately, we reduce this problem into a one-
dimensional root-finding problem as shown in Fig. 4, that
can be solved efficiently by numerical methods in real-time
computation. Except α, the remaining flatness functions are
all given explicitly.

Remark 2. In the aerodynamic model (6) and the differential
flatness derivation above, we assumed that the aerodynamic
force fa depends only on the vehicle states (i.e., airspeed
and attitude) but not the control inputs (i.e., moment τ
and thrust aT ). This is generally true for quadrotor tail-
sitter VTOL UAVs where no extra flaps are used and the
propellers are distant from wing hence the wing aerodynamic
force fa not depending on the propeller airflow. For tail-
sitter UAVs whose moment τ is produced by flaps at the
trailing edge of wings, such as the twin-rotor tail-sitter UAV
in Tal and Karaman (2022), the flaps deflection and propeller
airflow would change the aerodynamic force fa, causing the
aerodynamic force fa to depend on the control inputs and
preventing the solving of (22). This issue could be overcome
practically by a strategy similar to Tal and Karaman (2022),
which assumes very small changes of control inputs (i.e.,
flap deflections and propeller thrust) at each step, so that
aerodynamic force fa can be evaluated at the last flap angle
and propeller thrust, and then used to solve ω and τ as
detailed above.

4.3 Singularity conditions
We discuss the two conditions that singularities occur in
the above flatness functions, one is }va ˆ p 9v ´ gq } “ 0 as
specified in (17) and the other is rankpNq ă 4 as specified
in (29). We first investigate the possible singularity condition
where rankpNq ă 4, by calculating the determinant of N as
follows:

(a) Singularity case }va} “ 0 (b) Singularity case γ “ 0

Fig. 5. Determination of the vehicle body Y axis yb (or body Z
axis zb) under two singular conditions (a) }va} “ 0 (e.g., near
hovering flights) and (b) γ “ 0 (e.g., vertical takeoff or landing).
In both figures, the green plane denotes the plane of 9v ´ g and
zfixb . In (a), the red circular plane perpendicular to xb denotes all
possible directions of zb. To minimize the yaw effort, zb should
the intersecting line of the green and red plane. In (b), the blue
disk denotes all possible directions of xb. For each direction of
xb, zb could further rotate along xb freely. To minimize the yaw
effort, both xb and zb should be within the green plane.

Theorem 3. Given the aerodynamic coefficients cpα, βq

of a symmetric airframe configuration satisfying (11), the
determinant of N defined in (30) is calculated as follows.

detpNq “ ´
ρSV 2

2m

BF pαq

Bα
}va ˆ p 9v ´ gq} (33)

Proof. The proof is given in Appendix D.

As can be seen in (33), there are two cases that make N
singular, one is BF pαq

α “ 0 and the other is }va ˆ p 9v ´ gq} “

0. Because the angle of attack α is solved from F pαq “ 0 in
(22), the former condition essentially requires F pαq passing
trough zero with a zero slope, a condition that rarely occurs
for actual aerodynamic configuration czpα, βq (see Fig.4).
Therefore, the singularity condition rankpNq ă 4 reduces
to the first singularity condition }va ˆ p 9v ´ gq} “ 0, which
has to be considered. This singularity condition breaks into
the following three sub-conditions:

} 9v ´ g} “ 0 (34a)
}va} “ 0 (34b)
γ “ 0 (34c)

We investigate the corresponding flight status for these three
condition as follows.

4.3.1 Singularity sub-conditions 1. } 9v ´ g} “ 0 The sub-
condition } 9v ´ g} “ 0 is the case where the vehicle is
free falling, which is undesired in usual flights and should
be avoided in the trajectory planning. Therefore, this sub-
condition would not be encountered in practice.

4.3.2 Singularity sub-conditions 2. }va} “ 0
The second sub-condition }va} “ 0 corresponds to zero

airspeed, which occurs when the vehicle hovers in windless
environments such as indoor places, or flies in the same
velocity as the wind in outdoor environments. When the
airspeed va is zero, (17) becomes singular and hence cannot
determine yb. Actually, even when va is close to zero,
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(17) will be ill-conditioned, where a small change in va

may cause drastic orientation change in yb. To avoid this
ill condition, we choose a small velocity threshold vmin

(e.g. vmin “0.5m{s). When }va} ă vmin, the aerodynamic
force fa, which is quadratic to }va}, can be safely ignored.
Substituting fa “ 0 into (18) leads to

xb “
9v ´ g

} 9v ´ g}
, aT “ } 9v ´ g} (35)

For the axis yb (or equivalently, zb), it could be any
direction perpendicular to xb without affecting the solution
in (35) (see Fig. 5(a)). To minimize the unnecessary efforts
for yawing control, we fix the vehicle yaw angle at the value
of yaw angle just before }va} ă vmin took place (e.g., when
the vehicle decelerates to hover) or the value of yaw angle
at initial time (e.g., when the vehicle just took off from the
ground). Since the yaw angle is represented by the body Z
axis, we hope to find a zb that has the smallest angle with
zfixb , the vehicle body Z axis just before }va} ă vmin took
place or at initial time. This essentially causes zb to lie on
the plane formed by xb and zfixb (see Fig. 5(a)), which, in
return, leads yb to be perpendicular to xb (i.e., 9v ´ g) and
zfixb :

yb “
zfixb ˆ p 9v ´ gq

}zfixb ˆ p 9v ´ gq}
(36)

With xb and yb, the vehicle attitude can be determined by
(24b).

Next, to determine the body angular velocity, we
notice

`

zfixb ˆ p 9v ´ gq
˘T

zb ” 0 always holds. Taking time
derivative on both sides and recalling that zfixb is a prescribed
constant vector, we have

`

tzfixb u:v
˘T

zb “ }zfixb ˆ p 9v ´ gq}yT
b Rte3uω

“ }zfixb ˆ p 9v ´ gq}eT1 ω
(37)

Moreover, neglecting the aerodynamics, the derivative of
translational dynamics in (25) can be rewritten as

:v “ p 9aTR ` aTRtωuq e1 (38)

Combining (37) and (38), both the 9aT and ω can be solved
from the a 4-D linear equations in the same form as (29) with
sub-matrices of h and N are rewritten as follows:

h1 “
`

tzfixb u:v
˘T

zb (39a)
h2 “ :v (39b)

N1 “

”

0 }zfixb ˆ p 9v ´ gq}eT1

ı

(39c)

N2 “

”

Re1 ´aTRte1u

ı

(39d)

Theorem 4. The determinant of N defined in (39) is
calculated as

detpNq “ ´a2T }zfixb ˆ p 9v ´ gq} (40)

Proof. The proof is given in Appendix E.1.

From (35), we have aT “ } 9v ´ g}, which is not zero in
practice (see Section 4.3.1). Therefore, the only requirement

for both (36) and detpNq ‰ 0 is }zfixb ˆ p 9v ´ gq} ‰ 0, a
condition that is always true because at the moment }va} «

vmin, the body X axis xfix
b is almost aligned with 9v ´ g (the

aerodynamic force is negligible and the thrust must provide
most of the special acceleration 9v ´ g), meaning that zfixb
cannot be parallel to 9v ´ g.

Finally, the angular acceleration and control moment are
also solved from (31) and (32), where the derivatives 9h and
9N are recalculated in Appendix E.2.

4.3.3 Singularity sub-conditions 3. γ “ 0
When the airspeed va and the acceleration 9v ´ g is

parallel, the singularity sub-condition γ “ 0 occurs. A
common possible case is that the vehicle performs vertical
takeoff and landing when the wind speed is zero. In this
case, the angle of attack α and thrust acceleration aT can
still be solved from (22) and (20a) respectively, but the body
Y axis cannot be determined from (17), which is singular.
Actually, even when γ is close to zero, (17) will be ill-
conditioned, where a small change in va or 9v ´ g may cause
drastic orientation change in yb. To avoid this ill condition,
we choose a small angle threshold γmin (e.g. γmin “ 5˝).
When |γ| ă γmin, we minimize the unnecessary yaw control
efforts by restricting the axes xb and zb within the plane
formed by va (or 9v ´ g) and zfixb , the vehicle body Z axis just
before |γ| ă γmin occurs or at the initial time. As a result, the
body Y axis is perpendicular to va (or 9v ´ g) and zfixb and
is hence determined from (36). With yb, the body X axis and
the vehicle attitude are determined from (24).

To solve the body angular velocity, we take the time
derivative to the constraint

`

zfixb ˆ p 9v ´ gq
˘T

zb ” 0 which
is identical to (37). Combing this constraints with the
derivative of the translational dynamics in (25), the body
angular velocity is solved in the same form as (29) where
the sub-matrices are given from (30) for h2,N2 and (39) for
h1,N1:

h1 “
`

tzfixb u:v
˘T

zb (41a)

h2 “ :v ´
1

m
R

Bfa
BvB

a

RT 9va (41b)

N1 “

”

0 }zfixb ˆ p 9v ´ gq}eT1

ı

(41c)

N2 “

”

Re1 R
´

´
X`

aTe1 ` fa
m

˘\

` 1
m

Bfa
BvB

a
tvB

a u

¯
ı

(41d)

Theorem 5. The determinant of N defined in (41) is
calculated as

detpNq “
ρSV 2

2m

BF pαq

Bα
}zfixb ˆ p 9v ´ gq}ψ23 (42)

where

ψ23 “ } 9v ´ g} cospγ ´ αq ´
ρSV 2

2m

Bcy
Bβ

cosα (43)

Proof. The proof is given in Appendix F.1.

It is seen in (33) that three possible cases making N

singular, BF pαq

α “ 0, }zfixb ˆ p 9v ´ gq} “ 0, or ψ23 “ 0. As
the discussion to Theorem 3, since the angle of attack α
is solved from F pαq “ 0, the former condition requires
F pαq to pass through zero with a zero slope, which
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rarely occurs for actual aerodynamic configuration czpα, βq.
For the second condition }zfixb ˆ p 9v ´ gq} “ 0, since the
current singularity case occurred at the vertical ascending
or descending flights, the thrust should provide the major
special acceleration 9v ´ g. Since the thrust is aligned with
body X axis, the direction 9v ´ g should be most similar
to xfix

b , not zfixb , which rules out the condition }zfixb ˆ

p 9v ´ gq} “ 0. For the third condition ψ23 “ 0, it requires
a special Bcypα,βq

Bβ |β“0 that satisfies both of F pαq “ 0 and
(43), which generally does not hold in actual aerodynamic
configurations. Therefore, the matrix N is non-singular in
practice.

Finally, the angular acceleration and control moment are
also solved from (31) and (32), but the derivatives 9h and 9N
are recalculated in Appendix F.2.

Remark 3. Singularity conditions ||va|| “ 0 and γ “ 0, is
resolved in a unified manner of assigning zb closest to a fixed
direction zfixb , which is equivalent to fixing the yaw angle. If
the singularity conditions are caused by vehicles at low speed
vertical flights (e.g., hovering, vertical take-off and landing),
such fixing of yaw angle is unnecessary. For example, an
extra yaw angle can be specified by assigning zfixb , to achieve
sensor-pointing and sideways maneuvering.

4.4 Differential flatness transform
In this section, we present a complete differential flatness
transform that maps a flat-output trajectory to a state-input
trajectory, based on the flatness functions in Section 4.2 with
treatments for singularity conditions presented in Section
4.3. Since the flatness functions and singularity treatments
are all based on va, the airspeed, they could naturally
incorporate the wind speed w into the inertial speed v. In
practice, we compute the airspeed as va “ v ´ w̄, where w̄
is a surrogate wind speed to be compensated. In case of full
wind speed compensation, we set w̄ “ w or else w̄ “ 0.

Combining all elements above, the complete differential
flatness transform can be obtained as shown in Algorithm
1. With the transform, any flat-output trajectories can be
mapped to the system state xfull and control input ufull as
below:

xfull “ Xfullpp
p0:3qq, ufull “ Ufullpp

p1:4qq, (44)

where Xfullpp
p0:3qq denotes the state flatness function of

the flat output and its derivatives up to the third order, and
Ufullpp

p1:4qq denotes the input flatness function of the flat-
output derivatives up to the fourth order.

5 System overview
In this section, we present the entire framework of trajectory
generation and tracking control for aggressive flights based
on the fundamental differential flatness of the tail-sitter
vehicle presented previously.

5.1 System reduction
The full system presented in (1) is of dimension 12,
comprising the vehicle position, velocity, attitude and
angular velocity. Note that the system has a cascaded
structure, where the input torque τ solely affects the
angular velocity, and then the angular velocity determines

Algorithm 1: Differential flatness transform

1 Given: a trajectory of flat output pp0:4q avoiding
} 9v ´ g} “ 0, current surrogate wind speed w̄,
previous body Y axis yprev

b , velocity threshold vmin,
angle threshold γmin, and the body Z axis zfixb fixed
just before }va} ă vmin or |γ| ă γmin.

2 Calculate the airspeed:
3 va “ v ´ w̄;
4 Calculate the states and inputs:
5 if }va} ă vmin then
6 Assign yb perpendicular to 9v ´ g and zfixb (36);
7 Determine xb (35), aT (35) and R (24b);
8 Calculate h and N (39);
9 else

10 Calculate γ (21);
11 Solve α (22) and aT (20a);
12 if |γ| ă γmin then
13 Assign yb perpendicular to 9v́ g and zfixb (36);
14 Determine xb (24a) and R (24b);
15 Calculate h and N (41);
16 else
17 Determine yb (17), xb (24a) and R (24b);
18 Calculate h and N (30);
19 Set zfixb “ zb;
20 end
21 end
22 Solve ω (29);
23 Solve 9ω (31) and τ (32);
24 Set yprev

b “ yb;

the attitude, hence the velocity and position of the vehicle.
Enabled by this cascaded dynamics, we propose to control
the angular velocity dynamics (1d) separately (referred to
as the “low-level control”). In the low-level control, the
Coriolis term ω ˆ Jω and aerodynamic moment Ma can
be compensated in a feed forward way, while the remaining
dynamics are first order linear systems that can be controlled
by linear feedback controller (e.g., PID controller). More
systematic and advanced control techniques could also be
deployed, such as µ-synthesis (Noormohammadi-Asl et al.
2020), H8 loop shaping (Li et al. 2020b), Notch filters
Xu et al. (2019a), to improve the controller bandwidth and
robustness to model uncertainties (e.g., unknown flexible
modes) and possible vibrations. Details of our low-level
controller is shown in Section 8.1.

With a well-designed low-level controller, we assume that
the vehicle angular velocity can be instantaneously achieved
hence it can be viewed as the control input to the rest vehicle
dynamics consisting of (1a, 1b, 1c) (the “high-level system”).
As a result, the state and input of the high-level system are

x “ pp v Rq (45a)
u “ paT ωq (45b)

which are subject to the following system model

9x “ fpx,uq “

$

’

’

’

&

’

’

’

%

9p “ v,

9v “ g ` aTRe1 ` 1
mRfa

9R “ Rtωu

(46)
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Fig. 6. System overview.

Since the state in (46) is a reduced set of the original one in
(1), the reduced system is still differentially flat. Specifically,
the state and input of the high-level system can be written as

x “ X ppp0:2qq, u “ Uppp1:3qq (47)

where X p¨q and Up¨q are subsets of Xfullp¨q and Ufullp¨q

from (44) and the corresponding state-input trajectory px,uq

will satisfy the high-level system model (46) subject to the
surrogate wind speed w̄. The high-level system in (46) is of
lower dimension and will be used for our trajectory planning
and tracking control.

This system reduction presented above has both advan-
tages and disadvantages. One advantage is the reduction
of computation complexity in trajectory generation, avoid-
ing the cumbersome derivative of moment τ with respect
to the flat-output and the knowledge of dynamic parame-
ters. Another advantage is decoupling the low-level angular
velocity control, which are highly related to the vehicle
dynamics (e.g., flexible modes, motor delay, etc.), from the
high-level system planning and tracking control. A disad-
vantage arises that the original dynamical feasibility (i.e.,
thrust and moment) is approximated as constraints on inputs
of the reduced high-level system (i.e., thrust and angular
velocity). This approximation becomes less accurate when
the vehicle is maneuvering with rapidly varying angular
velocity that necessitates large control moment. Despite
the rough approximation, practical quadrotor applications in
drone racing (Romero et al. 2022) and aerobatics (Kaufmann
et al. 2020; Lu et al. 2022) demonstrate that the feasibility
can be sufficiently guaranteed by constraining inputs of the
reduced system in most cases.

5.2 System framework
With the system reduction above, the overview of our
proposed approach is shown in Fig. 6. A flat-output trajectory
up to the third-order smoothness (i.e, p

p0:3q

d ) is planned
offline for the high-level system by a trajectory generation
module (Section 6). For online trajectory tracking, we
propose a two-stage control strategy. The first stage is
differential flatness transform (Section 4.4) that maps the
flat-out trajectory to the desired state and input trajectory
xd,ud. This transform also incorporates environment wind
(if enabled) and fixes the singularity conditions presented
in Section 4.3. The computed state-input trajectories are

then tracked in the second stage by an unified global on-
manifold MPC, which computes the optimal control inputs
aTcmd

and ωcmd (Section 7). These commands are then sent
as reference to the low-level controller.

6 Trajectory generation
Since the vehicle dynamics is differentially flat in
coordinated flight as proved in Section 4, all states and inputs
can be expressed by flatness functions of the flat output and
its derivatives. As a result, the trajectory generation problem
reduces to low-dimensional algebra in the flat-output space
(i.e., the vehicle position), without any integration of the
under-actuated system dynamics in (46). We parameterize
the vehicle position as polynomials (Bry et al. 2015; Mueller
et al. 2015; Ding et al. 2019) and minimize the flight time
and control efforts computed from the flatness functions (47),
subject to necessary constraints.

6.1 Trajectory optimization
We formulate the trajectory planning as an optimization
problem that finds a dynamically-feasible, smooth trajectory
pptq : R P r0, Tf s ÞÑ R3 with the minimum flight time
Tf , control effort u, and passing through a sequence of
waypoints Q “ pq0, ¨ ¨ ¨ qM q. The purpose of waypoints
are two-fold: 1) it could be used to obtain a collision-free
trajectory when using with a front-end flight corridor (e.g.,
Liu et al. (2017); Gao et al. (2019)); and 2) specifying the
location of the waypoints could change the shape of the flight
trajectory, so that the desired aerobatic flight trajectories can
be obtained. Given the initial state s0, terminal state sf and
waypoints Q, the trajectory optimization is formulated as:

min
pptq,Tf

ż Tf

0

}u}2Wdt` ρTf (48a)

s.t. xptq “ X
´

pp0:2qptq
¯

, uptq “ U
´

pp1:3qptq
¯

(48b)

pp0:3qp0q “ s0, p
p0:3qpTf q “ sf (48c)

pptqiq “ qi, 0 ď tq0 ă ¨ ¨ ¨ ă tqM
ď Tf (48d)

xptq P X, uptq P U (48e)
Spxq ě ϵ (48f)

where W P R4ˆ4 is a positive diagonal matrix penalizing
the total control effort and ρ ą 0 is the flight time penalty. X
denotes the kinodynamic constraint that ensures the vehicle
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to operate within a safe workspace. The state constraints
(48e) in this paper is the velocity condition

}vptq} ď vmax (49)

where vmax is the maximum velocity for safe flight. U “

tu P R4| umin ď u ď umaxu is the boundary of the system
inputs (i.e., the thrust acceleration aT and angular velocity
ω). Spxq denotes the singularity condition. Among the three
singularity sub-conditions in Section 4.3, the conditions
}va} ă vmin and |γ| ă γmin have been well treated, hence
Spxq needs only to consider the first sub-condition:

Spxq “ } 9v ´ g}2 ě ϵ2 (50)

where ϵ is a small positive value for numerical stability on
implementation (ϵ “ 0.1m{s2 in this paper).

The optimization problem in (48) optimizes both the flat-
output trajectory pptq and the flight time Tf , to minimize
the total control efforts and time in (48a). The minimization
of control efforts tend to find smooth trajectories that are
easier to track and the minimization of total time Tf tends
to produce high-speed trajectories. Hence, the optimization
(48) promises both trajectory smoothness and agility. The
system state and control input in (48b) are characterized
as the flatness functions that explicitly exploits the vehicle
dynamic and kinematic models. The initial and terminal
conditions of the trajectory are specified in (48c). The
dynamical feasibility which indicates the actuation capability
of the aircraft (or the tracking capability of the low-level
control system) is guaranteed by the boundary constraints
in (48e). The collision-free and the shape constraints of
the trajectory could be achieved by satisfying the waypoint
constraints in (48d). Finally, singularity conditions are
incorporated into the constraint in (48f).

6.2 Trajectory optimization solving
The trajectory optimization (48) is a nonlinear constrained
optimization problem. We leverage a state-of-the-art flight
trajectory planning framework, MINCO (Wang et al.
2022), to parameterize and solve the trajectory. Referring
to Wang et al. (2022), we insert N free control points
di “ pdi1 , ¨ ¨ ¨ ,diN q P RNˆ3 between each two consecutive
waypoints qi,qi`1 and create a waypoint sequence r “

pq0,d0,q1, ¨ ¨ ¨ ,qM´1,dM´1,qM q P RpMpN`1q`1qˆ3.
The corresponding passing time for the waypoint sequence
is T “ rtq0

, td01
, ¨ ¨ ¨ , td0N

, tq1
, ¨ ¨ ¨ , tqM

s P RMpN`1q`1.
Then we characterize the trajectory by a multi-stage
polynomial trajectory, where a 7th-order polynomial
trajectory with C4 continuity is used to connect to two
consecutive points rj , rj`1 P r at their respective passing
time Tj ,Tj`1 P T. The entire trajectory is therefore
uniquely determined by all points r and respective passing
time T, having the endpoint constraint (48c) and waypoint
constraint (48d) naturally satisfied. To deal with remaining
boundary constraint (48e) and the singularity condition
(48f), we relax these constraints to soft penalties in the
objective function, hence transforming the constrained
nonlinear optimization (48) into an unconstrained nonlinear
optimization problem. The decision variables of the
resultant optimization problem consist of control points
D “ pd0, ¨ ¨ ¨ ,dM´1q P RMNˆ3 and passing time T,

which are solved by a quasi-Newton method (Wang et al.
2022).

To solve the unconstrained nonlinear optimization with
a quasi-Newton method, gradients of the objective and
constraints with respect to the decision variables D and T
are needed. The gradients of flat-output (i.e, Bpp1:3qptq{BD,
Bpp1:3qptq{BT) have been derived in detail in Wang et al.
(2022), with which the gradients of the control input u and
singularity condition in (48f) can be calculated by the chain
rule:

BSpxq

BD
“ 2p 9v ´ gqT

B 9v

BD
(51a)

BSpxq

BT
“ 2p 9v ´ gqT

B 9v

BT
(51b)

Buptq

BD
“

BU
`

pp1:3qptq
˘

Bpp1:3qptq

Bpp1:3qptq

BD
(51c)

Buptq

BT
“

BU
`

pp1:3qptq
˘

Bpp1:3qptq

Bpp1:3qptq

BT
(51d)

where BU
`

pp1:3qptq
˘

{Bpp1:3qptq is gradients of the flatness
functions in Section 4. The calculation is provided in
Appendix G.

7 Global control for trajectory tracking
In this section, we develop a global tracking controller
that allows a tail-sitter to accurately follow aggressive
reference trajectories in real-world environments. Unlike
conventional tail-sitter controllers operating in separate flight
modes or existing global controllers considering a simplified
aerodynamic model, the proposed global controller fully
exploits the vehicle aerodynamics, contributing to accurate,
agile flights within the entire envelope without encountering
control switching or singularity.

7.1 The error-state system
The goal of the tracking controller is to drive the vehicle state
to follow the desired reference state trajectory xd, which is
computed from the trajectory planned in Section 6 via the
flatness function (47). Equivalently, the error between the
actual and reference state trajectory should converge to zero.
Therefore, we only need to control the error state δx.

7.1.1 Definition of the error state
Considering the tail-sitter model in (46), the system state

evolves on a compound manifold below

M “ R3 ˆ R3 ˆ SOp3q, dimpMq “ 9 (52)

x “

¨

˚

˚

˚

˝

p

v

R

˛

‹

‹

‹

‚

P M, u “

»

–

aT

ω

fi

fl P R4 (53)

We assume that the trajectory planner generates a full
reference trajectory, including the state xd “ ppd vd Rdq P

M and input ud “

”

aTd
ωT

d

ıT

P R4. Note that the state-
input trajectory pxd,udq satisfies the model (46) subject to
the surrogate wind speed w̄.

Defining the error between the actual state x and the
reference one xd, both lie on the state manifold M, is

Prepared using sagej.cls



14 Journal Title XX(X)

not trivial. We adopt the definition in our prior work (Lu
et al. 2022), which defines the error state in the local
homeomorphic space (an open set in Euclidean space)
around each point xd. This particular error definition on
manifold is denoted as a (Hertzberg et al. 2013) detailed as
below:

δx fi xd a x “

”

δpT δvT δRT
ıT

P R9 (54a)

δp fi pd a p “ pd ´ p P R3 (54b)

δv fi vd a v “ vd ´ v P R3 (54c)

δθ fi Rd a R “ LogpRTRdq P R3 (54d)

where Logp¨q is the logarithmic map of the manifold SOp3q

and also the inverse of the exponential map Expp¨q. The
control inputs are in the Euclidean space, so their errors can
be defined directly:

δu fi ud ´ u “

”

δaT δωT
ıT

P R4 (55a)

δaT fi aTd
´ aT P R (55b)

δω fi ωd ´ ω P R3 (55c)

7.1.2 The error-state system dynamics
To control the error state δx (54) to converge to zero, we

need to obtain its dynamic model. To do so, we take the
derivative of the error state with respect to time.

Theorem 6. Given the error state defined in (54), where the
actual trajectory px,uq satisfies (46) with the actual wind
speed w and the reference trajectory pxd,udq satisfies (46)
with the surrogate wind speed w̄, then the dynamics of the
error-state system is:

δ 9x “

”

δ 9pT δ 9vT δ 9θ
T

ıT

(56a)

δ 9p “ δv (56b)

δ 9v“

ˆ

aTd
Rde1̀

1

m
Rdfad

˙

´

ˆ

aTRe1̀
1

m
Rfa

˙

(56c)

δ 9θ “ AT pδθq
`

´RT
d Rω ` ωd

˘

(56d)

where fad
and fa are the aerodynamic forces in terms of the

desired and actual state, respectively

fad
“ fa

`

vB
ad

˘

, vB
ad

“ RT
d pvd ´ w̄q (57a)

fa “ fa
`

vB
a

˘

, vB
a “ R pv ´ wq (57b)

Ap¨q denotes the Jacobian of the exponential coordinates of
SOp3q (Bullo and Murray 1995):

Apδθq“I3`

ˆ

1´cos }δθ}

}δθ}

˙

tδθu

}δθ}
`

ˆ

1´
sin }δθ}

}δθ}

˙

tδθu2

}δθ}2

(58)

Proof. The proof is given in Appendix H.

Lemma 1. The first-order linearization of the error-state
dynamics given in (56) is:

δ 9x “ Fxδx ` Fuδu ` Fwδw (59)

where

Fx “

»

—

—

—

–

0 I3 0

0 Mv MR

0 0 ´tωdu

fi

ffi

ffi

ffi

fl

,Fu “

»

—

—

—

–

0 0

MT 0

0 I3

fi

ffi

ffi

ffi

fl

,Fw “

»

—

—

—

–

0

´Mv

0

fi

ffi

ffi

ffi

fl

(60a)

MT “ Rde1 (60b)

Mv “
1

m
Rd

Bfad

BvB
ad

RT
d (60c)

MR “ Rd

˜

´aTd
te1u ´ t

fad

m
u `

Bfad

BvB
ad

t
vB
ad

m
u

¸

(60d)

Bfad

BvB
ad

“
Bfa
BvB

a

ˇ

ˇ

ˇ

ˇ

vB
ad

(see Equation (26)) (60e)

δw “ w ´ w̄ (60f)

Proof. The proof is given in Appendix I.

Remark 4. The error system in (59) is valid for any
desired state-input trajectory pxd,udq. This is because the
system matrix Fx, input matrix Fu and Fw can always be
calculated properly without encountering any singularities at
any desired state Rd and vd. For the calculation of Bfad

BvB
ad

,

as shown in (26), it involves the calculation of Bc
Bα and Bc

Bβ ,
which are invalid when vad

“ 0. Fortunately, regardless of
the values of Bc

Bα and Bc
Bβ , we always have limvaÑ0

Bfad

BvB
ad

“ 0

according to (26). Consequently, the linearized error-state
system in (59) has no singularities within the entire flight
envelope.

7.2 On-manifold MPC for trajectory tracking
With the error-state dynamics (59), which is a standard linear
time varying system, a MPC that minimizes the state δx and
δu is utilized for trajectory tracking. Setting the unknown
disturbance δw in (59) to zero, the MPC is an optimization
problem as follows:

δu˚ “argmin
δuk

N´1
ÿ

k“0

`

}δxk}2Qk
`}δuk}2Rk

˘

`}δxN }2PN

s.t. δxk`1 “pI9`∆tFxk
q δxk`∆tFuk

δuk

δx0 “ δxinit

δuk P δUk, k “ 0, ¨ ¨ ¨ , N ´ 1

(61)

where N is the predictive horizon, and Qk,Rk,PN are
positive-definite diagonal matrices, denoting the penalty
of the stage state, stage input and terminal state, respec-
tively. Uk “ tδu P Rm|umin ´ ud

k ď δu ď umax ´ ud
ku is

the constraints for the input error that is derived from the
actual input constraints umin ď uk ď umax. The optimiza-
tion in (61) is a standard quadratic programming (QP) prob-
lem, which can be solved efficiently by existing QP solvers.
Finally, the optimal control command at the current step is

ucmd “ ud0
` δu˚

0 (62)

Remark 5. The MPC in (61) is minimally parameterized
and singularity-free. The minimal parameterization results
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from the use of error state δx in the controlled system (59),
which parameterizes the original state x on the state manifold
M in its homeomorphic space. This space, being a normal
Euclidean space, has the same dimension (i.e., 9) as the state
manifold M. The resultant MPC formulation (61) does not
have any redundant parameters when compared with existing
quaternion-based MPC for UAV control (Falanga et al. 2018;
Sun et al. 2022). The singularity-free property of the MPC
is two-folds. First, the MPC is not singular to the flight
trajectory because the error system (59) is always valid in the
entire flight envelope. Second, the MPC is not singular to the
parameterization δx. Common minimal parameterization of
manifolds, such as Euler angles (Kamel et al. 2017; Nguyen
et al. 2021), parameterizes the manifold with respect to a
fixed point on the manifold, the resultant parameterization
is singular at certain configurations. In contrast, our error
state δx parameterizes the state manifold with respect to each
point on the reference trajectory (as opposed to a fixed point).
If the feedback MPC controller is stable (as it always needs to
be), the error state is stabilized around zero and hence avoids
the singularity effectively. The minimally-parameterized, yet
singularity-free nature of our MPC, avoids any switching in
parameterization or control scheme, and eventually leads to
a global trajectory tracking controller.

Remark 6. The MPC in (61) is a model-based controller,
where the computation of Fx and Fu requires the knowledge
of the aerodynamic model fa and its derivative (see (60)).
This enables the MPC to exploit a high-fidelity aerodynamic
model of the vehicle to achieve high-accuracy tracking
control while effectively admits practical constraints, such
as the input saturation.

Remark 7. The error-state dynamics formally derived in
Section. 7.1.2 are globally equivalent to the original system.
This equivalence allows to treat the tail-sitter as a formal
nonlinear system. The system is further linearized along
the reference state-input trajectory at each point, leading
to a linear time-varying system in (59). The consequent
MPC design is standard, and its convergence analysis can be
studied using established techniques in existing literature like
(Mayne et al. 2000), and hence will not be further discussed
in the rest of paper.

8 Real-world experimental results

In this section, we validate the key ideas of the approach
presented in this paper via real-world experiments on
a quadrotor tail-sitter UAV. The algorithms of trajectory
generation, flatness transform and global tracking controller
are implemented to enable the vehicle to perform aggressive
agile flights. Extensive challenging indoor and outdoor field
tests are demonstrated, including agile SEp3q flight through
consecutive narrow windows, typical tail-sitter maneuvers
(transition, level flight and loiter), and extremely aggressive
aerobatics (Wingover, Loop, Vertical Eight, Cuban Eight,
and their combo). All experiments are successfully tested at
least three times for initial verification, data collection, and
video record.

Fig. 7. Our quadrotor tail-sitter UAV prototype: Hong Hu.

8.1 Tail-sitter UAV platform
We validate the presented algorithms on a quadrotor tail-
sitter prototype, named “Hong Hu”, based on our previous
airframe design (Gu et al. 2018). As shown in Fig. 7, Hong
Hu is manufactured out of carbon fiber, weighs 2.4 kg, and
has a wingspan of 90 cm. The cruise airspeed is 18m{s. It is
powered by four T-MOTOR1 MN5006 KV450 motors and
APC2 13 ˆ 10 propellers, achieving a hovering throttle at
43% of the full throttle. The tail-sitter UAV is equipped with
an onboard computer DJI Manifold 2-C3(1.8GHz quad-
core Intel i7 CPU) and an autopilot PX4 Mini4 with a
global positioning system (GPS) receiver module. A uni-
axial airspeed sensor is mounted on the nose of the airframe.
An action camera DJI Action 25 is fixed on a carbon rod for
first-person-view (FPV) video capturing.

The presented algorithms of trajectory generation and
high-level tracking control (i.e., MPC) are implemented on
the onboard computer, and communicated via the Robot
Operating System (ROS). An open-source QP solver OOQP
(Gertz and Wright 2003) is deployed to solve the MPC
problem in (61) at 100Hz. The predictive horizon is set to 12
in all experiments and the MPC takes 0.85ms in average to
compute the optimal commands of thrust acceleration aT and
angular velocity ω, which are then sent to the autopilot PX4
Mini via MAVROS6. In the autopilot, the thrust acceleration
command aT is mapped to the throttle command by thr “

kTaT , where the coefficient kT is computed as thrh{9.81
with thrh being the throttle at hovering. The angular velocity
command ω is tracked by three PID controllers, each
compares the respective angular velocity command with
its onboard IMU measurements and calculate a normalized
control torque τ at 400Hz. The three PID controllers,
one for each channel, are decoupled, where the coupled
Coriolis term ω ˆ Jω and aerodynamic moment Ma are all
viewed as unknown disturbances and hence ignored in the
controller. In the experiments, we found the vehicle exhibited
a severe vibration caused by the propeller rotation and
attenuate this vibration by a Notch filter added on each PEED
controller (Xu et al. 2019a). The throttle and normalized
torque are finally mixed into the four motor pulse-width

1https://uav-en.tmotor.com/
2https://www.apcprop.com/
3https://www.dji.com/manifold-2/specs
4https://px4.io/
5https://www.dji.com/dji-action-2
6http://wiki.ros.org/mavros
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Fig. 8. Sizes of the quadrotor tail-sitter UAV (a) and the narrow
window (b).

modulation (PWM) commands using the standard quadrotor
configuration. The vehicle state is estimated by an extended
Kalman Filter (EKF) also running on the autopilot. External
position and heading measurements are obtained by a motion
capture system for indoor experiments or the GPS module
with magnetometer for outdoor experiments.

The aerodynamic model is identified by wind tunnel
tests in our previous work (Lyu et al. 2018a) and refined
by real flight tests due to the new propulsion system and
manufacturing. For model refining, we conduct a series of
normal and inverted level flight tests in different speeds (and
angle of attack), and collect the flight data of motor PWM,
vehicle velocity and attitude. To ensure the sideslip angle is
zero during the flights, we measure the wind speed using
an anemometer, and manually set the vehicle heading along
the wind direction prior to each level or inverted flights.
We calculate the rotor speed from the motor PWM, the
incoming airflow consisting of the measured wind speed
and the vehicle’s inertial speed, and then obtain the total
thrust according to the open-source APC propeller model7.
Excluding the propeller thrusts leads to the lift and drag
forces exerted on the vehicle and hence the values of CL

and CD at different angle of attack α. We conduct the flight
tests from low speed to high speed and iteratively refine the
aerodynamic model, to achieve stable flights. For the side
force coefficient CY , we use the model of (Lyu et al. 2018a)
without any modification.

In all outdoor experiments without otherwise specified,
the wind speed is estimated and compensated in the
differential flatness transform (by setting the surrogate wind
w̄). Referring to Johansen et al. (2015), only the wind speed
components in the world frame X-Y plane is estimated
by an EKF that propagates a constant wind speed model
based on the airspeed sensor measurement and the vehicle
inertial velocity and attitude. To avoid unstable wind speed
estimation due to degraded airspeed measurements at low
flight speeds, the estimated wind speed is compensated in
the differential flatness transform only when the airspeed
magnitude ||va|| ą 5m{s . When the vehicle speed is below
this threshold or in all indoor experiments, no wind speed
is compensated in the differential flatness transform (i.e.,
setting w̄ “ 0). In all results that follow, the angle of attack
and side slip angle are computed based on w̄ used in the
flatness transform, regardless of the actually estimated wind
speed.

8.2 SE(3) flight through narrow windows
Flying through narrow windows is a challenging but
potentially worthwhile scenario that a UAV can navigate

Vertical Plane

Horizontal Plane

Fig. 9. The traverse trajectory is divided into two pieces: the
first one (the green line) connects the start position A and the
center of the window B, and the second one (the yellow line)
connects B and the target position C. The specified traverse
velocity vt is perpendicular to the window plane. The body axis
yb is along the long side of the window, and the angle between
xb and vt is specified as θ “ 30˝.

in obstacle-dense environments, such as searching through
thick forest or collapsed buildings after disasters. The main
challenge of the problem is that the vehicle can fly through
the narrow window only when its body is aligned with the
window orientation to fit the limited traversing space as
shown in Fig. 8. This task requires the UAV to execute a
precise, aggressive full body motion on SEp3q (i.e., SEp3q

flight). For the sake of flight agility and tracking accuracy,
dynamical feasibility of the trajectory should be guaranteed
rigorously in planning, such that the tracking error can be
reduced when the vehicle executes the maneuver.

To generate a collision-free and dynamically feasible
trajectory through a narrow window, we divide the trajectory
into two pieces (i.e., before and after passing through the
window), and optimize them by (48) separately. As shown in
Fig. 9, the first trajectory (the green line) connects the UAV
start position to a traversing position fixed at the center of the
window, and the second trajectory (the yellow line) connects
the traversing position to the target position. To determine
the boundary conditions for these two trajectories, the speed,
acceleration, and jerk at the start and target positions are
all set to zeros (i.e., stationary hovering). For the traversing
position, the position is the center of the window, velocity
vt is normal to the window plane with magnitude manually
specified. To determine the acceleration at the traversing
position, we specify the body Y axis to be along the window
long edge and set the body X axis to form a θ “ 30˝

angle with the traversing velocity vt (i.e., AoA is α “ 30˝

at the traversing position). Then, we choose the thrust aT
by minimizing the total acceleration at at the traversing
position:

min
aT

}at} “ min
aT

}RpaTe1 ` RTg `
1

m
faq}

“ min
aT

}aTe1 ` RTg `
1

m
fa}

“ min
aT

}aT ` eT1 pRTg `
1

m
faq}

(63)

7https://www.apcprop.com/technical-information/performance-data/
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(a)

(b)

Fig. 10. Snapshot sequences of agile tail-sitter flight through narrow windows. (a) Flying through a single window in 10m{s. (b)
Flying through two consecutive windows in 8m{s.
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Fig. 11. Flight data of the SE(3) flight through a single window with roll 20˝ and traversing speed 10m{s: (a) position, (b) flight
speed, (c) angle of attack, (d) thrust acceleration, (e) position tracking errors, (f) attitude in Euler angles, (g) sideslip angle, (h)
angular velocity. In all subplots where applicable, the solid and dashed lines denote the measurement and reference, respectively.
For the thrust acceleration, the measurement is obtained from the accelerometer X axis. For the angle of attack and sideslip angle,
their measurements are displayed only when the airspeed exceeds 1m{s due to the unstable airspeed measurements at low
speeds. The vertical dotted lines denote the moment the vehicle passes the window, and the shaded areas in (d) and (h) denote the
feasible region of the actuation in trajectory optimization (48).

Taking the thrust constraint into consideration, (63) leads to
a constrained linear optimization:

a˚
T “ argmin

aT

}aT ` eT1 pRTg `
1

m
faq}

s.t. aTmin
ď aT ď aTmax

(64)

where aTmin and aTmax are the boundaries of thrust
acceleration. Then, the traversing acceleration can be
obtained by substituting the optimal thrust acceleration and
the determined attitude into the translational dynamics in
(1b). Finally, the traversing jerk is set to zeros for simplicity.

We validate the algorithms in real-world experiments as
shown in Fig. 10. The kinodynamic and control input con-
straints of the planner are vmax “ 12m{s, aTmin

“ 6m{s2,
aTmax

“ 16m{s2, and ωmax “ 200 deg{s. To increase the
tracking accuracy for position and attitude, which is crucial
for the UAV to pass the window, parameters of the MPC are
set as Qk “ diag([1800, 1800, 1800, 5, 5, 5, 50, 50, 50]),
Rk “ diag([0.3, 0.4 0.4, 0.4]), and PN “ Qk. All poses of
the windows and UAV are measured by a motion capture
system. The flying volume is about 15 ˆ 15ˆ 4m3.

In the first scenario, the tail-sitter performs aggressive
SEp3q flights to fly through a single window. Fig. 10(a)
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Fig. 12. Flight data of the SE(3) flight through two consecutive windows with roll angles 20˝ and ´20˝ and traversing speeds both
at 8m{s: (a) position, (b) flight speed, (c) angle of attack, (d) thrust acceleration, (e) position tracking errors, (f) attitude in Euler
angles, (g) sideslip angle, (h) angular velocity. In all subplots where applicable, the solid and dashed lines denote the measurement
and reference, respectively. For the thrust acceleration, the measurement is obtained from the accelerometer X axis. For the angle
of attack and sideslip angle, their measurements are displayed only when the airspeed exceeds 1m{s due to the unstable airspeed
measurements at low speeds. The vertical dotted lines denote the moments when the vehicle passes the windows, and the shaded
areas in (d) and (h) denote the feasible region of the actuation in trajectory optimization (48).

and Fig. 11 respectively show the snapshot sequence and
experimental data of a successful flight passing through a
window with roll angle ϕ “ 20˝ and in a traversing speed
of }vt} “ 10m{s. As can be seen in Fig. 11(a-b), to fly
through the window with the specified speed, the UAV must
accelerate from stationary hovering to the traversing speed
(i.e., 10m{s) in a time less than 3.4 seconds and a space
within 3.6 ˆ 8.1ˆ 1m3. To achieve this, the UAV performs
transition and a banked turn simultaneously (see Fig. 11(f)).
In fact, the planner and controller are not even aware of
the transition, but treats the entire flights uniformly. Then
the UAV traverses the window with the required pose and
velocity at 3.36 s (the vertical black dotted line) and finally
recover to the hovering status again within a very limited
flight space. During the flight, the angle of attack varies up
to 113˝ in merely two seconds (see Fig. 11(c)), indicating a
large envelope of angle of attack. Despite this, the overall
position error as shown in Fig. 11(e) is less than 0.3m
and the slideslipe angle as shown in Fig. 11(g) is well
stabilized around zero. The seemly large sideslip angle at
the beginning and end of the flight is due to the unstable
airspeed measurements at very low speeds. Fig. 11(d) and (h)
show that the trajectory planner effectively bounds the thrust
acceleration and angular velocity of the reference trajectory
within the nominal actuator constraints (the shaded area).

In the second scenario, the tail-sitter performs more
aggressive SEp3q flights to fly through two consecutive
windows. Fig. 10(b) and Fig. 12 respectively show the
snapshot sequence and experimental data of a successful
flight with window roll angles ´20˝ and 20˝ and traversing
speeds both at 8m{s. As shown in Fig. 10(b) and Fig.
12(a), (b) and (f), the UAV traverses the first window at
1.81 s, then immediately pulls up the pitch angle, which
slows down the speed, to gain sufficient lift maintaining the
height. After this, the UAV pitches down and accelerates
again to fly through the second window safely at 2.79 s. The
fact that the maneuver in this scenario is more aggressive

Tab. 2. Average Pose tracking error of SEp3q flights.

Roll Angle ϕ }vt} (m/s) δpRMS(cm) δθRMSp
˝
q

0˝ 8 10.8 4.7

20˝ 8 13.5 6.4

40˝ 8 9.5 4.0

20˝ 3 10.7 4.5

20˝ 5 12.8 5.2

20˝ 10 9.5 4.0

0˝ & 20˝ 8 11.6 6.2

20˝ & ´20˝ 8 10.0 5.5

40˝ & 20˝ 8 12.0 6.6

than the former, is also shown in Fig. 12(d) and (h) where
the IMU measurements of thrust acceleration and angular
velocity reach 20m{s2 and 400 deg{s, respectively. The
position tracking error in Fig. 12(e) is consequently larger,
but the overall position error remains less than 0.3m. Other
phenomenons, such as the large envelope of angle of attack,
simultaneous bank turn and transition, and stabilization of
the sideslip angles, are all similar to the previous experiment.

To provide more convincing results, we conduct two test
groups of experiments demonstrating the flights through
single and double windows, respectively. The first group
consists of six different flight tests with a window roll
angle ϕ P t0˝, 20˝, 40˝u and a traversing speed }v} P

t3, 5, 8, 10u m/s. The second group consists of three SEp3q

flights with window angles combinations drawn from
t´20˝, 0˝, 20˝, 40˝u and a traversing speed of 8m{s. All
nine experiments are successfully conducted with results
summarized in Tab. 2. The first group results demonstrate
a sufficiently high control accuracy to avoid collision (i.e.,
the maximum average position and attitude error are 13.5
cm and 6.4˝, respectively). It also shows that the proposed
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Fig. 13. Forward flight of the straight-line path in 18m{s: (a) trajectory illustration, (b) images from the FPV camera. Labels A-F
denote different flight phases of the vehicle: A. hovering, B. forward transition, C. and D. level flight, E. backward transition, F.
hovering.

Fig. 14. Inverted flight of the straight-line path in 18m{s: (a) trajectory illustration, (b) images from the FPV camera. Labels A-F
denote different flight phases of the vehicle: A. hovering, B. inverted forward transition, C. and D. inverted level flight, E. interted
backward transition, F. hovering.

trajectory generation in coordinated flight is applicable to
low-speed SEp3q flights (down to 3m{s). For the second
group results, the pose tracking error slightly increases at
the second window due to the dramatic attitude and velocity
variations as mentioned before, but still small enough for the
UAV to pass through the window. To sum up, the varioius
agile flights through narrow windows demonstrate that the
proposed trajectory generation and control framework is
capable to execute accurate SEp3q flights, which shows a
promising application to aggressive autonomous flight with
obstacle avoidance in cluttered environments. Readers are
encouraged to watch the accompanying videos for better
visualization of the experiments.

8.3 Typical maneuvers in field environments
In this task, we examine the effectiveness and performance
of the proposed algorithms for typical maneuvers in field
environments. We test a straight-line maneuver (including
hovering, transition and level flight) and loiter flights
with speed ranging from 5m{s to 20m{s, and make
comparisons to conventional tail-sitter controllers (with
details supplied later). We reserve the same parameters
of the planner and controller, except decreasing the MPC
position penalty (i.e., the first three diagonal elements of
Qk) to r1200, 1200, 1200s to increase the robustness to
uncertainties like unmeasured wind disturbance, and noisy
GPS measurement in outdoor environments.

8.3.1 Straight-line flight
Transition and level flights are two crucial maneuvers

for tail-sitter UAVs and are commonly tested for tail-
sitter controllers. We demonstrate the proposed framework
on these maneuvers via a forward flight trajectory, which

involves three maneuvers: forward transition, level flight,
and backward transition (see Fig. 13(a), and an inverted
flight trajectory, which involves another three maneuvers:
inverted forward transition, inverted level flight, and inverted
backward transition (see Fig. 14(a). We present the tracking
performance on these trajectories with different level-flight
speed ranging from 5m{s to 20m{s, and make comparisons
against existing works in terms of transition accuracy.

We design the forward and inverted flight trajectories
along the same straight-line path, where the vehicle first
flies forward along the path to a target position and then
flies in an inverted pose along the same path back to the
origin, as shown in Fig. 15. Both forward and inverted
flight trajectories have the same level-flight phase, which is
manually specified as a constant-velocity trajectory (speed
ranges from 5m{s to 20m{s) lasting for 4-5 seconds. The
trajectories from the initial hovering position to the constant-
velocity trajectory and that from the constant-velocity
trajectory to the target hovering position are designed by the
proposed trajectory optimization method in (48), for both
forward and inverted trajectories.

Fig. 13 and Fig. 14 show the 3-D trajectory and FPV
images of the test with level-flight speed of 18m{s, and
the corresponding flight data are detailed in Fig. 15. As
shown in Fig. 15, the tail-sitter first performs a forward
transition (phase I) from hovering to level flight with speed
18m{s (phase II) while the pitch angle decreases from 90˝

to 13˝. After flying 112m over 7.7 seconds, the vehicle
performs a backward transition (phase III) to hovering (phase
IV). Subsequently, the vehicle performs an inverted forward
transition (phase V), where the pitch angle increases from
90˝ to 146˝, reaching the inverted level flight with speed
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Fig. 15. Flight data of the straight-line flight test consisting of both forward and inverted flights: (a) position, (b) flight speed, (c)
angle of attack, (d) position tracking errors, (e) pitch angle, (f) sideslip angle. Flight stages from I to VII divided by shaded areas
indicate the I. forward transition, II. level flight, III. backward transition, IV. hovering, V. inverted forward transition, VI. inverted level
flight and VII. inverted backward transition. For the angle of attack and sideslip angle, their measurements are displayed only when
the airspeed exceeds 2m{s due to the unstable airspeed measurements at low speeds. In all subplots where applicable, the solid
and dashed lines respectively denote the measurement and reference.
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Fig. 16. The position tracking error in six different speeds when the tail-sitter flies in different phases of a straight-line path.

of 18m{s (phase VI). Finally the vehicle performs an
inverted backward transition (phase VII) to return to the
initial hovering position. It is seen that the vehicle feedback
trajectory of position, velocity and pitch angle tracks the
reference state trajectory precisely throughout the flight. Fig.
15(d) shows the position tracking error. As can be seen, the
overall tracking error is 0.13m in average and 0.52m at
most, which is incredibly small considering that the flight
speed is up to 18m{s, and the angle of attack varies over
230˝ (see Fig. 15(c)).

To provide a more convincing result and demonstrate the
effectiveness of the proposed framework in full-envelope
flight, we conduct a group of straight-line flights with six
different level-flight speeds of }v} P t5, 8, 12, 15, 18, 20u

m/s. The position tracking error in each flight phase of
each flight is statistically analyzed in Fig. 16. As can be
seen, the errors at all times in all 36 groups of data across
different flight speeds or phases are less than 0.5m, showing
that the proposed framework enables a tail-sitter to fly
within the whole envelope in high accuracy. Notably, the
tracking error during inverted flight is as low as 0.2m. The
increased tracking accuracy in the inverted flight are due
to better fitting of the aerodynamic coefficients in negative
AoA regions. It is also noted that existing methods based
on separated trajectory planners and controllers Frank et al.
(2007); Oosedo et al. (2017); Lyu et al. (2017b); Xu et al.
(2019a) did not demonstrate such inverted flights, because
the required AoA is out of the designed envelope.

Moreover, we make a comparison on the transition
accuracy with a traditional linear transition controller (Lyu
et al. 2017b), which is the same strategy used by the autopilot
PX4. To ensure a fair comparison, we implement both our
MPC and the traditional controller with the same low-level
angular velocity controller, on the same vehicle. In addition,
the linear transition controller are tuned to the best extent.
The cascaded attitude and altitude PID controllers of the
linear transition controller are turned by Ziegler-Nichols
method, while the linear Pitch reference is determined by a
transition duration and angle span. The angle span indicates
the Pitch change between hovering and level flight at cruise
speed, and is obtained as 13˝ ´ 90˝ in the former straight-
line flight experiment (see Fig 15(e)). The transition duration
is initially set to the same transition time of our method but
it failed the transition flight due to the too short transition
time. Then, we gradually increase the transition duration
until successful flight is achieved. We iteratively refine the
above attitude and altitude controller, achieving comparable
performance demonstrated in existing research (Oosedo et al.
2017; Lyu et al. 2017b; Xu et al. 2019a).

Because the linear transition controllers usually focus on
pitch and altitude control, and have no position control in
other directions, we focus on the comparison of longitudinal
state variables only. Fig. 17(1a)-(1c) shows the comparison
in forward transition. Our method controls the pitch angle
to decrease from 90˝ to 13˝ smoothly and speeds up
from hovering to 18m{s in merely 3 seconds with altitude
error peaking at 0.11m, while the linear method has good
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Fig. 17. Comparison on transition control performance between our presented approach and the linear transition method (Lyu et al.
2017b). (1a)-(1c) are respectively the pitch angle, flight speed and altitude tracking error for the forward transition, and (2a)-(2c) are
those for backward transition. The solid and dashed lines in (1a) and (2a) respectively denote the measurement and reference.

performance in pitch control and accelerating but the altitude
drops 0.41m. Similarly, in backward transition shown in
Fig. 17(2a)-(2c), our method tracks the reference pitch angle
smoothly and has maximum altitude error of 0.52m only,
while the linear method tracks the linear pitch trajectory with
significant pitch fluctuations and has large altitude deviation
of 1.35m. It can be also noticed that our method pulls up
the pitch angle over 120˝ and then returns to 90˝ for fast
deceleration as shown in Fig. 17(2b), the resultant backward
transition is 4 seconds shorter than the linear method. In
this comparison, our model-based framework shows its
advantages in tracking accuracy and flight aggressiveness,
which outperforms the model-free linear transition control.

8.3.2 Loiter flight
Loiter flight is another typical trajectory that validates the

cruise performance of tail-sitters. As shown in Fig. 18, the
trajectory consists of three phases: banked forward transition
from hovering to loiter, loiter flight in constant speed, and
banked backward transition from loiter to hovering. The
loiter trajectory is designed in three steps. The constant-
speed circular trajectory is first determined manually. Then
the banked forward transition trajectory is optimized by (48)
with initial condition as the hovering state and terminal
condition as the first point on the circular trajectory.
Similarly, the banked backward transition trajectory is
optimized by (48) to perform a loiter-to-hovering maneuver.

Fig. 18 and Fig. 19 respectively show the trajectory and
flight data in the loiter test with a flight radius of 50m
and speed of 18m{s. As shown in Fig. 18 and Fig. 19(b-
c), after a while of stationary hovering, the tail-sitter first
performs a coupled roll and pitch rotation to smoothly
transition into the circular trajectory, and similarly transitions
out of the circular trajectory with coupled roll and pitch
rotations. Compared to traditional control methods (Verling
et al. 2016; Lyu et al. 2017b) where a loiter trajectory is
separated into straight-line transition followed by a bank turn
in level flight, our maneuver is more elegant and time-saving
due to less extra flight distance. It is seen in Fig. 19 that
during the entire flight, the feedback of position, velocity
and attitude tracks the reference closely. More specifically,

Fig. 19(e) illustrates the position tracking error, which is
less than 0.26m during the 45-second constant-speed loiter
and slightly increases to 0.42m and 0.56m in the two
transition phases, respectively. Moreover, we conduct this
test with different loiter speed }v} P t8, 12, 18u m/s. The
tracking error statics of each phase of the three tests are
summarized in Fig. 20. Banked transitions in the largest
speed 18m{s have the largest worst-case tracking errors
(i.e., 0.31m for the forward transition and 0.33m for the
backward transition), while all loiter flights have similarly
small errors less than 0.21m. The above experimental results
demonstrate that the proposed trajectory generation and
tracking control framework promises high-accuracy flights
in real outdoor environments.

In order to demonstrate the effectiveness and significance
of wind speed compensation in the controller, we conduct
a loiter fight in 18m{s with wind speed in the flatness
transform enabled and disabled online. As shown in Fig.
21(f), the wind speed is estimated during the entire flight
test, but the control framework only compensates the wind
speed after 89s, indicated by the shaded background. When
the wind speed is not compensated, the reference pitch
angle (and angle of attack) maintains at a constant value
25˝ due to the constant loitering speed (see Fig. 21(d, e)).
In contrast, the actual vehicle pitch angle climbs to about
50˝ to increase the lift due to the smaller airspeed when
following the wind, and drops to around 10˝ to decrease
the lift due to the larger airspeed when against the wind.
Moreover, due to the uncompensated wind speed, the vehicle
actually does not perform coordinated flight, causing a
side force that is then compensated by the vehicle roll
angles (see Fig. 21(a)). Furthermore, the uncompensated
wind speed contributes to an extra disturbance as shown
in (59), which causes the control error of the measured
sideslip angle (which is computed without considering the
estimated wind velocity and should be equal to the reference
sideslip angle) to fluctuate between 12.5˝ and ´7˝ (see Fig.
21(b)). On the other hand, when the estimated wind speed is
used in the differential flatness transform for the calculation
of the state-input trajectory and the subsequent trajectory
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Fig. 18. Loiter flight with flight radius of 50m and velocity of 18m{s: (a) trajectory illustration, (b) images from the FPV camera.
Labels A-F denote different states of the vehicle: A. hovering, B. banked forward transition, C and D. loiter flight, E. banked
backward transition, F. hovering.

Fig. 19. Flight data of the loiter flight in 18m{s: (a) position, (b-d) attitude in Euler angles, (e) position tracking errors, (f) flight
speed, (g) angle of attack, (h) sideslip angle. Flight stages from I to III divided by shaded areas indicate the banked forward
transition, loiter, banked backward transition, respectively. For the angle of attack and sideslip angle, their measurements are
displayed only when the airspeed exceeds 2m{s due to the unstable airspeed measurements at low speeds. In all subplots where
applicable, the solid and dashed lines respectively denote the measurement and reference.
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Fig. 20. Position tracking error in three different phases when
the tail-sitter flies the loiter trajectory in different speeds.

tracking controller, the reference pitch angle is recalculated
to fluctuate according to the wind speed, similarly the
reference yaw angle is also adjusted to keep the sideslip angle
at zero (i.e., ensuring the coordinated flight condition). As a
result, the control errors in pitch, slideslip angle, and flight
speed are significantly reduced.

Finally, a comparison between our method and the
total energy control system (TECS) is conducted on the
loiter flight of 18m{s. As a mature technique for fixed-
wing aircraft flight control, TECS also has been widely
used in tail-sitter level flights. Due to the approximately
linear aerodynamic force in low AoA, TECS employs a
proportional and integral (PI) control scheme to regulate
the airspeed and altitude by controlling the error of the

total energy (i.e., the sum of potential and kinetic energy)
to zero (Lambregts 1983). We use the TECS implemented
in the PX4 autopilot and tune its parameters to the best
extent. Similar to the previous transition control comparison,
both the proposed MPC and TECS utilize the same low-
level controller for tracking the angular velocity command.
The inner attitude loop, middle energy balance loop, and
outer total energy loop of the TECS, which compute the
commands for angular velocity, pitch angle, and thrust
respectively, are tuned in sequence using the Ziegler-Nichols
method. The resulting control performance achieved in the
experiment is on par with those demonstrated in related
works (Lyu et al. 2017b; Gu et al. 2017). As shown in Fig.
22, the vehicle altitude drops around 1.5m in average and
2.5m in maximum when using TECS for the loiter flight.
In comparison, there is no obvious steady-state error for our
approach and the maximum altitude error is less than 0.25m.
The results are reasonable since TECS does not make use of
any aerodynamic models of the vehicle, while our approach
fully exploits these information.

8.4 Aerobatics
In this task, we push the tail-sitter to its physical limits
to perform extremely aggressive aerobatics, which further
demonstrates the effectiveness and robustness of our
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Fig. 21. Loiter flight test in 18m{s with and without wind speed compensation in the controller: (a) roll angle, (b) sideslip angle, (c)
flight speed, (d) pitch angle, (e) angle of attack, (f) estimated wind speed. In all subplots, the white area denotes the flight when
setting w̄ “ 0 in the flatness function (Algorithm 1), while the shaded area denotes the duration when the online-estimated wind
speed is used as the w̄ in the flatness transform. Note that both the measured and reference angle of attack and sideslip angle are
computed based on w̄, regardless of the actually estimated wind speed.
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Fig. 22. Comparison on the altitude control performance
between our presented approach and the total energy control
system (TECS) in a 18m{s loiter flight.

proposed methods. Our approach is the first to enable
an autonomous tail-sitter to perform a series of aerobatic
maneuvers with such agility in real outdoor environments.
These maneuvers are highly challenging even for expert
human pilots and are listed by increasing difficulty as
follows:

1) Wingover: the vehicle makes a 180˝ turn in heading
by executing a fast climb and turn, during which the
wing swings over the top of the turn (i.e., the roll angle
reaches 90˝), as shown in Fig. 23.

2) Loop: the vehicle enters a vertical circle and makes a
360˝ flip in pitch angle, as shown in Fig. 24.

3) Vertical Eight: the vehicle performs a vertical figure-
“8” trajectory with pitch angle pulled up and down
over 180˝, as shown in Fig. 25.

4) Cuban Eight: similarly to the Vertical Eight, the
vehicle performs a “8”-shape trajectory with pitch
angle pulled up and down over 180˝, as shown in Fig.
26.

5) Combo: the vehicle starts with Cuban Eight, followed
by Wingover, Vertical Eight, Loop, and ends with
another Wingover to fly back to the origin, as shown in
Fig. 27. The entire maneuver is executed consecutively
without any breaks.

As shown in Fig. 23-26, to specify the shape of the
trajectory and the vehicle pose at certain position on the
trajectory, we separate the entire trajectory by multiple pieces
by boundary points (i.e., the black squares). At the boundary
points, the full vehicle states (i.e., position, velocity,
and attitude) are specified and transformed to trajectory
boundary conditions pp0:3q. With these boundary conditions,
trajectories within two consecutive boundary points are
optimized by our trajectory optimization framework (48).
To further specify the shape of each trajectory segment,
we specify some waypoints (i.e., the black dots) that the
trajectory must pass through, which is naturally supported
by the optimization framework in (48). All the trajectories
begins with a forward transition (i.e., the origin to the
first black square) and ends with a backward transition
to hovering (i.e., the last black square to the destination).
Taking the Wingover in Fig. 23(a) as example, the trajectory
consists of four segments: forward transition, climbing up
with 90˝ rotation in both roll and yaw, diving down with
reverse heading, and backward transition. The design of
the Loop trajectory in Fig. 24(a) is similar, except that the
top boundary point is designed to drive the vehicle upside
down (i.e., ´180˝ in pitch angle) and further inserting two
waypoints to guarantee the shape of Loop. The Vertical Eight
and Cuban Eight trajectories are generated by connecting
two Loop trajectories. The boundary points of the connecting
trajectories are obtained from the original Loop trajectories
and a waypoint in the middle is used to serve the intersection
point of the two connecting trajectories.

For all aerobatics above, we use the same parameters
of the planner and controller as in the indoor SEp3q

flights and outdoor typical flights (i.e., Section 8.2 and 8.3,
respectively), except further decreasing the MPC position
penalty (i.e., the first three diagonal elements of Qk)
to r900, 900, 900s to increase the system robustness in
consideration of the highly aggressive maneuvers being
executed.

Fig. 28 details the flight data of the Wingover. The vehicle
first transits from hovering to level flight with speed of
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Fig. 23. Wingover: (a) illustration of the trajectory that is divided in two segments by three boundary points (black squares). Each
segment is optimized by (48), (b) images from the FPV camera. Labels A-F denote different flight phases of the vehicle.

Fig. 24. Loop: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots) that are
constrained in (48), (b) images from the FPV camera. Labels A-F denote different flight phases of the vehicle.

Fig. 25. Vertical Eight: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots),
(b) images from the FPV camera. Labels A-F denote different flight phases of the vehicle.

Fig. 26. Cuban Eight: (a) illustration of the trajectory, boundary points (black squares), and intermediate waypoints (black dots), (b)
images from the FPV camera. Labels A-F denote different flight phases of the vehicle.
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Fig. 27. Combo flight trajectory illustration.
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Fig. 28. Flight results of the aerobatic maneuver Wingover: (a) position, (b) flight speed, (c),(f) and (i) attitude in Euler angles, (d)
position tracking errors, (e) acceleration. (g) angle of attack and sideslip angle, (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2m{s due to the unstable airspeed
measurements at low speeds. In all subplots, the solid and dashed lines respectively denote the measurement and reference. Note
that the ZXY Euler angle representation incur singularity when roll angle reaches 90˝ at 45 s.

15m{s, then performs the Wingover maneuver in 14-18m{s
and finally ends with a backward transition to hovering. The
vehicle climbs 16.5m at the top and achieves the specified
90˝ roll and yaw angle at 45 s. Note that the ZXY Euler
angle incurs singularity in the visualization, but our global
on-manifold MPC has no such singularity as shown in the
FPV image in Fig. 23(b)D. Throughout the flight, the vehicle
tracks all of the state trajectories closely: the position error is
less than 0.75m in all time and the sideslip angle is well
stabilized around zero. This tracking accuracy is not trivial
for outdoor UAV aerobatics with such large large span of
angle of attack (up to 130˝), acceleration (up to 18m{s2),
and angular velocity (up to 175 deg{s).

The flight results of the Loop is shown in Fig. 29. The
vehicle transits to 15m{s and successfully finishes a Loop
with radius of around 15m in 10 s. It is seen that the pitch

angle rises to 180˝ at 44.6 s, when the vehicle is totally
upside-down at the top of the Loop as designed, which is
also shown in Fig. 24(b)D. The vehicle also tracks all of the
state trajectories closely in the coordinated flight condition
(i.e., the sideslip angle is shown around zero). The position
error also remains below 1m in all directions, even though
the maximum acceleration and angular velocity increase to
25.5m{s2 and 370 deg{s, respectively.

As shown in Fig. 30, the vehicle finishes a more aggressive
aerobatic maneuver of Vertical Eight also in high tracking
accuracy. From 58 s in level flight, the vehicle begins to pull
up the pitch angle to 145˝ and quickly lowers it to zero
at 65 s, meanwhile the vehicle simultaneously gains 60m
altitude by following a “S”-shape trajectory (i.e., position A-
B-C in Fig. 25(a)). After that, the vehicle flies another “S”-
shape trajectory to decrease to the original altitude when the
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Fig. 29. Flight results of the aerobatic maneuver Loop: (a) position, (b) flight speed, (c),(f) and (i) attitude Euler angles, (d) position
tracking errors, (e) acceleration. (g) angle of attack and sideslip angle, (h) angular velocity. For the angle of attack and sideslip
angle, their measurements are displayed only when the airspeed exceeds 2m{s due to the unstable airspeed measurements at low
speeds. In all subplot, the solid and dashed lines respectively denote the measurement and reference.

Fig. 30. Flight results of the aerobatic maneuver Vertical Eight: (a) position, (b) flight speed, (c),(f) and (i) attitude Euler angles, (d)
position tracking errors, (e) acceleration. (g) angle of attack and sideslip angle, (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2m{s due to the unstable airspeed
measurements at low speeds. In all subplot, the solid and dashed lines respectively denote the measurement and reference.

pitch angle continues to decrease to ´260˝ (i.e, nearly free
falling as shown in Fig. 25(b)E) and quickly increases to 35˝

to perform a 15m{s level flight again. It is seen that the angle
of attack ranges from ´115˝ to 120˝, the largest span among
all the demonstrated aerobatics. Moreover, the acceleration
and angular velocity respectively peak at 25.5m{s2 and
400 deg{s. Despite such large span of angle of attack and
high acceleration and angular velocity, the overall position
error still remains less than 1m.

Similarly, the vehicle executes the Cuban Eight maneuver
in high tracking performance despite the extremely high
aggressiveness. The vehicle tracks the “8”-shape with a
width of 65m, a height of 30m, and a time duration of

15 s. The pitch angle increases from 36˝ in level flight to
225˝ at position C in Fig 26(a), then it decreases to ´88˝

at position E and recovers to 36˝ at position F for level
flight. The resulting span of angle of attack is about 220˝.
The acceleration and angular velocity peaks at 22m{s2 and
400 deg{s, respectively. The maximum position error slightly
rises to 1.38m due to the large control actuation but the
overall tracking performance for the other state trajectories
are still as good as other aerobatic maneuvers.

Moreover, we demonstrate a Combo trajectory by
connecting the above aerobatic maneuvers in sequence, as
shown in Fig. 27. The vehicle performs the Combo maneuver
which requires extremely large control actuation over the
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Fig. 31. Flight results of the aerobatic maneuver Cuban Eight: (a) position, (b) flight speed, (c),(f) and (i) attitude Euler angles, (d)
position tracking errors, (e) acceleration. (g) angle of attack and sideslip angle, (h) angular velocity. For the angle of attack and
sideslip angle, their measurements are displayed only when the airspeed exceeds 2m{s due to the unstable airspeed
measurements at low speeds. In all subplot, the solid and dashed lines respectively denote the measurement and reference.

Fig. 32. Control efforts of the aerobatic maneuver Combo. The shaded areas indicate the comprising maneuvers of Cuban Eight,
Wingover, Vertical Eight, Loop and Wingover. The dotted lines denote input constraints in the MPC optimization (61).
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Fig. 33. The aggressiveness and control performance of five aerobatic maneuvers in the Combo flight. (a-d) show the norm of
velocity, acceleration, angular velocity and position control error, respectively.

entire 62 s flight. In Fig. 32, it is seen that the thrust
acceleration and angular velocity commands computed by
the MPC frequently touch their limits, but the controller
still manages to stabilize the vehicle under such control
saturation.

The trajectory aggressiveness and tracking accuracy of the
five aerobatic maneuvers in the Combo flight are statistically

analyzed in Fig. 33. The maximum velocity, acceleration and
angular velocity reach 19.4m{s, 25.5m{s and 520 deg{s,
respectively. Still, the proposed global controller shows a
remarkable tracking performance that the average position
tracking error is 0.33m and largest position error is
only 1.35m. Readers are highly recommended to watch
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Fig. 34. Time consumption of (a) solving the proposed
trajectory optimization to generating a trajectory segment, (b)
solving the proposed MPC at each control step.

the accompanying videos for better visualization of the
experiments.

8.5 Time consumption
The statistical time consumption of the trajectory planner and
MPC in all of the above flight tests including SEp3q flights,
typical maneuvers, and aerobatic maneuvers is summarized
in Fig. 34. For the trajectory generation in (48) which runs
offline, the computation time is about 45-750ms to generate
one trajectory segment with a length of about 2.5-50m. The
average and maximum time consumption to solve the MPC
problem in (61) in total is 0.84ms and 3.46ms, respectively,
showing a high computational efficiency ensuring online
implementation at 100Hz.

9 Conclusion
In this section, we discuss the limitation and extension of the
proposed framework, and then draw the conclusion.

9.1 Limitation
Our proposed framework is a model-based approach. Higher
tracking accuracy requires a more precise dynamic model,
especially the aerodynamic model. However, identifying a
high-fidelity aerodynamic model generally requires high-
cost and time-consuming wind tunnel tests. The cost and
time escalate for tail-sitter UAVs where the envelope of
angle of attack is large. In this paper, we leveraged the wind
tunnel test data in (Lyu et al. 2018a). For general tail-sitter
UAVs, such aerodynamic model could be identified from
onboard sensor data collected in real flights, which would
be a promising future research to pursue.

Another limitation lies in the robustness and computation
efficiency of the trajectory planner. In this paper, we adopted
the MINCO trajectory optimization framework (Wang et al.
2022), which parameterizes the trajectory by a multi-stage
polynomial and penalizes the constraints in the objective
function as soft constraints. Softly penalizing the constraints
in objective functions could reduce the optimization time
by eliminating the hard constraints. However, due to the
extremely nonlinear objective function, the solver could
easily converge to local minimum violating the constraints.
This phenomenon occasionally occurred in the planning
of the outdoor aerobatic trajectories when the waypoints
locations are poorly specified. Moreover, the optimization
time is still quite long, 40-750ms, preventing it from

real-time implementation on current tail-sitter onboard
computing devices.

9.2 Extension
Firstly, the proposed trajectory optimization could poten-
tially be solved more efficiently by leveraging state-of-
the-art nonlinear optimization techniques (e.g., Schulman
et al. (2014); Gill et al. (2005)), the availability of higher-
performance onboard computing devices, and the paralleliza-
tion of the optimization based on Graphic Processing Units
(GPUs). With an efficient solution, the proposed trajectory
generation could serve as a reliable back-end planner for
on-line trajectory planning. Equipped with onboard sensors
such as cameras and lidars, and the corresponding front-
end corridor generation techniques (e.g., Liu et al. (2017);
Gao et al. (2019)), the tail-sitter could perform autonomous
obstacle avoidance in cluttered environments.

Secondly, the tracking accuracy can be further improved
by augmenting a low-level controller to the thrust
acceleration aT . In the present implementation, we directly
mapped the thrust acceleration command aT to the collective
throttle of the four motors. However, the actual propeller
thrust is also affected by various other factors, such as
the propeller inflow (Brandt and Selig 2011; Gill and
D’andrea 2017) and motor internal dynamics. These factors
have caused significant errors between the actual and
commanded thrust acceleration as shown in our experiment
results. This issue could be mitigated by tracking the thrust
acceleration command aT with a low-level controller based
on accelerometer measurements.

Thirdly, other than the model predictive controller in
the present implementation, the flatness function provides
a possibility to design a more light-weight cascaded PID
controller that runs on low-cost micro processors. The
cascaded control architecture could be similar to that
of a multicopter: an outer-loop position controller first
computes the desired acceleration, then our differential
flatness function maps the desired acceleration to the desired
attitude and thrust, finally the attitude is tracked by an inner-
loop attitude controller. Such a cascaded control structure is
also used in existing works (Ritz and D’Andrea 2017; Cheng
and Pei 2022), but based on an over-simplified aerodynamic
model.

Finally, the proposed framework can be extended to
other configurations of tail-sitter UAVs, such as the single-
propeller configuration (Frank et al. 2007; Wang et al. 2017b;
De Wagter et al. 2018) and the shoulder-mounted twin-
engine configuration (Bapst et al. 2015; Ritz and D’Andrea
2017; Sun et al. 2018). All of he trajectory generation,
flatness transform and global control for the high-level
system can be directly applied to the other configurations,
while the low-level controller could be re-designed according
to the specific vehicle dynamic parameters and actuator
performances.

9.3 Conclusion
In this paper, we proposed a trajectory generation and global
tracking controller for aggressive agile tail-sitter flights.
The foundation of the framework is the differential flatness
property that is proved in coordinated flights. The singularity
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conditions occurred in the flatness function were fully
investigated and resolved in the framework. Based on these
theoretical results, we developed a trajectory optimization
framework for trajectory generation and a model predictive
controller for trajectory tracking. The entire approach is
tested on a quadrotor tail-sitter prototype in extensive real-
world flights. Notably, we demonstrated agile SEp3q flights
in indoor environments and aerobatic maneuvers in windy
outdoor environments, which were rarely shown in any prior
literature works. Extensive flight tests on typical maneuvers
of transition, level flight and loiter, have also shown a
superior tracking accuracy compared to existing methods.
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Appendix A Proof of theorem 1

Given the vehicle dynamics in (1), the rank of system
dynamics derivative w.r.t input can be given by eliminating
unrelated items:

rank
ˆ

Bfpxfull,ufullq

Bufull

˙

“ rank
ˆ

B p 9v, 9ωq

BpaT , τ q

˙

“ rank

¨

˝

»

–

B 9v
BaT

B 9v
Bτ

B 9ω
BaT

B 9ω
Bτ

fi

fl

˛

‚

(65)
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where the following elements can be computed directly from
the system dynamics in (1):

B 9v

BaT
“ xb,

B 9v

Bτ
“ 0,

B 9ω

BaT
“ 0 (66)

and B 9ω
Bτ has coupling effect due to the coordinated flight

condition that the vehicle has no lateral airspeed:

vB
ay

“ eT2 R
Tva ” 0 (67)

which leads to the derivative on the both sides:

´ eT2 tωuRTva ` eT2 R
T 9va “ 0 (68a)

ñ yT
b 9va “ vT

aRte2uω (68b)

ñ yT
b 9va “ vB

ax
ωz ´ vB

az
ωx (68c)

It is seen that the body angular velocity elements ωx and ωz

are coupled. Without loss of generality, we consider ωz as a
function of ωx. Then we have

B 9ω

Bτ
“

»

—

—

—
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B 9ωx
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B 9ωy
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B 9ωz

Bτ

fi

ffi
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Bτ
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1 0 0

0 1 0

B 9ωz

B 9ωx
0 0

fi
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ffi

fl

looooooomooooooon

A

J´1

(69)
With (65), (66) and (69), the derivative is finally computed

and transformed based on the fact of non-zero vector xb and
the full-rank inertia matrix:

»

–

B 9v
BaT

B 9v
Bτ

B 9ω
BaT

B 9ω
Bτ

fi

fl “

»

–

xb 0

0 A

fi

fl

»
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1 0
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fi
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»
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xb 0
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fi

fl

(70)
Therefore, we have its rank

rank
ˆ

Bfpxfull,ufullq

Bufull

˙

“ rank

¨

˝

»

–

xb 0

0 A

fi

fl

˛

‚“ 3 (71)

Appendix B Proof of theorem 2
Reminding the aerodynamic force in (6) and the coordinated
flight condition that there is no lateral airspeed in (27) (i.e.,
eT2 v

B
a “ 0) , we have

Bfa
BvB

a

“
ρS

2

ˆ

c
BV 2

BvB
a

` V 2 Bc

Bα

Bα

BvB
a

` V 2 Bc

Bβ

Bβ

BvB
a

˙

(72)

where

BV 2

BvB
a

“
B}vB

a }2

BvB
a

“ 2vBT

a (73a)
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BvB
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“
B

BvB
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tan´1 eT3 v
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eT1 v
B
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3 vB
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1 vB
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¯2
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a e
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a e
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˘2
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ax

ı
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ax
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vBT

a te2u
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(73b)
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“
B
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ˆ

sin´1 eT2 v
B
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}vB
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1
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B
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vBT
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}vB
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}vB
a }2

“
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(73c)

and the aerodynamic coefficient gradients Bc
Bα and Bc

Bβ of an
axially symmetric airframe satisfies (11). Substituting (73)
into (72), we have

Bfa
BvB

a

“
ρS

2

ˆ

2cvBT

a `
Bc

Bα
vBT

a te2u ` V
Bc

Bβ
eT2

˙

(74)

Appendix C Calculation of matrices 9N and
9h

As the matrices N and h are broken into block matrices in
(29), their time derivatives can be taken in block matrices as
follows:

9h “

»

–

9h1

9h2

fi

fl , 9N “

»

–

9N1

9N2

fi

fl (75)

where

9h1 “
d

dt
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yT
b 9va

˘
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dt

`

eT2 R
T 9va

˘
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`
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(76a)
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ˆ
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ˆ
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ˆ
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˙

(76b)
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0 9N12

ı

(76c)
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˘

“
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aRtωu
˘

te2u (76d)
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ı

(76e)
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ˆ
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a
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a u
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˙^
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a u

˙
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ˆ
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(76g)

Bfa
BV

“ ρV Sc (76h)
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Bfa
Bα

“
1

2
ρV 2S

Bc

Bα
(76i)

9vB
a “

d
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`

RTva

˘

“ ´tωuRTv ` RT 9va (76j)
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1 `

´

vB
az
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ax

¯2
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V 2
(76k)
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a 9va{V (76n)

and with (74), we have

d

dt

ˆ

Bfa
BvB

a

˙

“
ρS

2

ˆ

2

ˆ

Bc

Bα
9αvBT

a `c 9vBT

a

˙

`

ˆ

B2c

Bα2
9αvBT

a

`
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9vBT

a

˙

te2u`

ˆ

9V
Bc

Bβ
`V
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BβBα
9α

˙

eT2

˙

(77)

Appendix D Proof of Theorem 3
(determinant of N)

We first denote

Ψ “ ´

Zˆ

aTe1 `
fa
m

˙^

`
1

m

Bfa
BvB

a

tvB
a u (78)

With (20), we have

aTe1 `
fa
m

“ } 9v ´ g}

”

cospγ ´ αq 0 ´ sinpγ ´ αq

ıT

(79)
With (26) and (11), we have

Bfa
BvB

a

tvB
a u “

ρS

2

ˆ

´
Bc

Bα
eT2 tvB

a u2 ` V
Bc

Bβ
eT2 tvB

a u

˙

“
ρSV 2

2

»

—

—

—

–

0 Bcx

Bα 0

Bcy

Bβ sinα 0 ´
Bcy

Bβ cosα

0 Bcz

Bα 0

fi

ffi

ffi

ffi

fl

(80)

Therefore, combining (79) and (80), (78) can be rewritten
as

Ψ “

»

—

—

—

–

0 ψ12 0

ψ21 0 ψ23

0 ψ32 0

fi

ffi

ffi

ffi

fl

(81)

where

ψ12 “ ´} 9v ´ g} sinpγ ´ αq `
ρSV 2

2m

Bcx
Bα

(82a)

ψ21 “ } 9v ´ g} sinpγ ´ αq `
ρSV 2

2m

Bcy
Bβ

sinα (82b)

ψ23 “ } 9v ´ g} cospγ ´ αq ´
ρSV 2

2m

Bcy
Bβ

cosα (82c)

ψ32 “ ´} 9v ´ g} cospγ ´ αq `
ρSV 2

2m

Bcz
Bα

(82d)

Now we calculate the determinant of N. With (30c) and
(30d), N can be factorized as

N “

»

–

1 0

0 R

fi

fl

»

–

0 vBT

a te2u

e1 Ψ

fi

fl

looooooooomooooooooon

N̄

(83)

which implies detpNq “ detp sNq. Performing elementary
row and column operations on sN produces

sN“

»

—

—

—

—

—

—

–

0 ´vB
az

0 vB
ax

1 0 ψ12 0

0 ψ21 0 ψ23

0 0 ψ32 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

„

»

—

—

—

—

—

—

–

1 0 0 0

0 ψ32 0 0

0 0 ´vB
az

vB
ax

0 0 ψ21 ψ23

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(84)

By substituting (82) into (84), the determinant of N hence
can be calculated as follows:

detpNq “ detp sNq “ ´ψ32

`

vB
az
ψ23 ` vB

ax
ψ21

˘

“ ´ψ32}va} pψ23 sinα ` ψ21 cosαq

“ ´ψ32}va} p} 9v ´ g} cospγ ´ αq sinα

`} 9v ´ g} sinpγ ´ αq cosαq

“ ´ψ32}va}} 9v ´ g} sin γ

“ ´ψ32}va ˆ p 9v ´ gq} (85)

It is noted that the derivative of (22) w.r.t. α is given as

BF pαq

Bα
“ ´

2m} 9v ´ g}

ρSV 2
cospγ ´ αq `

czpα, 0q

Bα

“
2m

ρSV 2
ψ32 (86)

Therefore, the determinant of N is finally arrived at

detpNq “ ´
ρSV 2

2m

BF pαq

Bα
}va ˆ p 9v ´ gq} (87)

Appendix E Singularity }va} “ 0

E.1 Proof of Theorem 4: determinant of N
With (39c) and (39d), N can be factorized as

N “

»

–

1 0

0 R

fi

fl

»

–

0 }zfixb ˆ p 9v ´ gq}eT1

e1 ´aT te1u

fi

fl

loooooooooooooooomoooooooooooooooon

N̄

(88)

which implies detpNq “ detp sNq. Performing elementary
row and column operations on sN produces

sN „ diag
´”

1 }zfixb ˆ p 9v ´ gq} aT ´aT

ı¯

(89)

Hence, the determinant of N can be calculated as:

detpNq “ ´a2T }zfixb ˆ p 9v ´ gq} (90)
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E.2 Calculation of 9h and 9N

As h and N break into block matrices, their derivatives 9h
and 9N can be presented as like (75), where each block is
calculated as follows:

9h1 “
`

tzfixb u;v
˘T

zb `
`

tzfixb u:v
˘T

Rtωue3 (91a)
9h2 “ ;v (91b)

9N1 “

”

0
´p 9v́ gq

T
tzfix

b u
2:veT

1

}tzfix
b up 9v́ gq}

ı

(91c)

9N2 “

”

Rtωue1 ´

´

p 9v́ gq
T :v

aT
R`aTRtωu

¯

te1u

ı

(91d)

Appendix F Singularity γ “ 0

F.1 Proof of Theorem 5: determinant of N
Because yb is perpendicular to va, so it still holds the lateral
airspeed condition yT

b va “ 0. We can leverage the results in
(81), (82) and (86) in Appendix D to factorize detpNq as
follows:

N “

»

–

1 0

0 R

fi

fl

»

–

0 }zfixb ˆ p 9v ´ gq}eT1

e1 Ψ

fi

fl

loooooooooooooooomoooooooooooooooon

N̄

(92)

which implies detpNq “ detp sNq. Performing elementary
row and column operations on sN produces

sN „ diag
´”

1 }zfixb ˆ p 9v ´ gq} ψ23 ψ32

ı¯

(93)

where ψ23 “

´

} 9v ´ g} ´
ρSV 2

2m
Bcy

Bβ

¯

cosα is from (82c) by

setting γ “ 0, and ψ32 “
ρSV 2

2m
BF pαq

Bα is from (86). Finally,
the determinant of N is

detpNq “
ρSV 2

2m

BF pαq

Bα
}zfixb ˆ p 9v ´ gq}ψ23 (94)

F.2 Calculation of 9h and 9N

Similarly, the derivatives 9h and 9N can be presented as like
(75), in which block matrices 9h1 and 9N1 are given by (91a)
and (91c) in Appendix E.2, while 9h2 and 9N2 are given by
(76).

Appendix G Gradients of the flatness
functions

We denote P “

”

vT 9vT :vT
ıT

,b “

”

9aT ωT
ıT

for
simplicity. We also split the matrix h and N2 in (30),

(39), (41) into h “

”

h1 hT
2

ıT

and N2 “

”

N21 N22

ı

,
respectively.

G.1 When in coordinated flight
The flatness functions are presented in Section 4.2, and the
corresponding gradients are given as follows:

BaT
BP

“
B} 9v ´ g} cos pγ´αq ´ fax

{m

BP

“
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BP
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(95a)
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ˆ
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(95b)

where
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(96a)
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“ r

B

BP
cos´1

ˆ

p 9v ´ gqTva

} 9v ´ g}}va}

˙

“
r

| sin γ|

ˆˆ

cos γp 9v ´ gqT

} 9v ´ g}2
´

vT
a

} 9v´g}}va}

˙

B 9v

BP

`

ˆ

cos γvT
a

}va}2
´

p 9v ´ gqT

} 9v´g}}va}

˙

Bv

BP

˙

(96c)

Bα

BP
“

Bh
BP sinpγ ´ αq ` h cospγ ´ αq

Bγ
BP

h cospγ ´ αq ´ Bcz

Bα

(96d)

Bh

BP
“

2m

ρS

ˆ

p 9v´gqT

} 9v ´ g}}va}2

B 9v

BP
´
2} 9v´g}vT

a

}va}4

Bv

BP

˙

(96e)

Bh

BP
“

”

Bh1

BP
T Bh2

BP
T

ıT

(96f)

Bh1

BP
“ 9vT

a

Byb

BP
` yT

b

B 9v

BP
(96g)

Bh2

BP
“

B:v

BP
´

1

m

ˆ

BRξ

BP

∣∣∣∣
ξ“

Bfa
BvB

a
RT 9va

`R
B

´

Bfa
BvB

a

¯

ξ

BP

∣∣∣∣∣∣
ξ“RT 9va

`R
Bfa
BvB

a

BRT ξ

BP

∣∣∣∣
ξ“ 9va

` R
Bfa
BvB

a

RT B 9v

BP

¸

(96h)

BRξ

BP
“ ξ1

Bxb

BP
` ξ2

Byb

BP
` ξ3

Bzb
BP

(96i)

BRT ξ

BP
“

„

´

ξT Bxb

BP

¯T ´

ξT Byb

BP

¯T ´

ξT Bzb

BP

¯T
ȷT

(96j)

Byb

BP
“ r

}tvau p 9v´gq }2I3´tvau p 9v´gq p 9v´gq
T

tvau

}tvau p 9v´gq }3

B ptvau p 9v ´ gqq

BP
(96k)

B ptvau p 9v ´ gqq

BP
“ ´t 9v ´ gu

Bv

BP
` tvau

B 9v

BP
(96l)

Bxb

BP
“ tybuExppαybq

va

}va}

Bα

BP
`

BExppαybqξ

Byb

∣∣∣∣
ξ“

va
}va}

` Exppαybq
}va}2I3 ´ vav

T
a

}va}3

Bv

BP
(96m)

BExppαybqξ

Byb
“

B

Byb

`

I3`tybu sinα`tybu2p1´cosαq
˘

ξ

“ ´tξu sinα ´ pttybuξu ` tybutξuq p1 ´ cosαq

(96n)
Bzb
P

“ txbu
Byb

BP
´ tybu

Bxb

BP
(96o)

B

BP

ˆ

Bfa
BvB

a

ξ

˙

“
ρS

2

ˆˆ

2
Bc

α
vBT

a `
B2c

Bα2
vBT

a te2u
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`V
B2c

BβBα
eT2

˙

ξ
Bα

BP
`

ˆ

2cξT ´
Bc

Bα
ξT te2u

`
Bc

Bβ

eT2 ξv
BT

a

V

¸

BvB
a

BP

¸

(96p)

BvB
a

BP
“

BRT ξ

BP

∣∣∣∣
ξ“va

` RT Bva

BP
(96q)

BNb

BP
“

»

–

bT BNT
1

BP

b1
BN21

BP `
ř4

i“2

´

bi
BN22ei´1

BP

¯

fi

fl (96r)

BNT
1

BP
“

„

0
´

´te2u
BvB

a

BP

¯T
ȷT

(96s)

BN21

BP
“

Bxb

BP
(96t)

BN22ej
BP

“
BR

BP
RTN22ej ` R

ˆ

´te1uej
BaT
BP

`

1

m

ˆ

teju
Bfa
BP

`
B2fa

BvB
a BP

tvB
a uej ´

Bfa
BvB

a

teju
BvB

a

BP

˙˙

(96u)

G.2 When in singularity condition }va} “ 0

The flatness functions are rewritten in Section 4.3.2 when
}va} “ 0. The corresponding modified gradients that are
different from Appendix G.1 are given as follows:

BaT
BP

“
B} 9v ´ g}

BP
(97a)

Bxb

BP
“

} 9v ´ g}2I3 ´ p 9v ´ gqp 9v ´ gqT

} 9v ´ g}3

B 9v

BP
(97b)

Byb

BP
“

}tzfixb up 9v ´ gq}2I3 ´ ptzfixb up 9v ´ gqqptzfixb up 9v ´ gqqT

}tzfixb up 9v ´ gq}3

tzfixb u
B 9v

BP
(97c)

Bh1

BP
“

`

tzfixb u:v
˘T Bzb

BP
` zTb tzfixb u

B:v

BP
(97d)

Bh2

BP
“

B:v

BP
(97e)

BNT
1

BP

„

0
´

´e1
p 9v´gq

T
tzfix

b u
2

}tzfix
b up 9v´gq}

B 9v
BP

¯T
ȷT

(97f)

BN22ej
BP

“ ´aT
BR

BP
te1uej ` Rte1uej

BaT
BP

(97g)

G.3 When in singularity condition |γ| “ 0

The flatness functions are rewritten in Section 4.3.2 when
|γ| “ 0. Since aT , h2 and N2 are the same as those presented
in Section 4.2, while h1 and N1 are the same as those in
Section 4.3.2, their gradients are the identical to those given
respectively in Appendix G.1 and G.2.

Appendix H Proof of Theorem 6 (the
error-state dynamics)

The dynamics of (56b) and (56c) simply take the time
derivative to (54b) and (54c), respectively. Denoting θ “

LogpRq, the exponential map holds 9θ “ AT pθqω, where
ω “ pRT 9Rq_, p¨q_ the inverse of t¨u that maps a skew-
symmetric matrix to a vector, and Ap¨q denotes the Jacobian

of the exponential coordinates of SOp3q (Bullo and Murray
1995):

Apθq“I3`

ˆ

1´cos }θ}

}θ}

˙

tθu

}θ}
`

ˆ

1´
sin }θ}

}θ}

˙

tθu2

}θ}2

(98)
By substituting (54b) into the above rules, we have

δ 9θ “ AT pδθq

ˆ

`

RTRd

˘T d

dt

`

RTRd

˘

˙_

“ AT pδθq
`

RT
d R

`

´tωuRTRd ` RTRdtωdu
˘˘_

“ AT pδθq
`

´RT
d Rω ` ωd

˘

(99)

which is the error attitude dynamics in (56d).

Appendix I Proof of Lemma 1 (the
linearized error-state dynamics)

The position error dynamics in (56b) is linear, and
the velocity error dynamics in (56c) can be linearized
along the reference trajectory. Specifically, since RTRd “

Exppδθq « I3 ` tδθu, (54) implies:

δ 9v “

ˆ

aTd
Rde1 `

1

m
Rdfad

˙

´

ˆ

aTRe1 `
1

m
Rfa

˙

«
`

aTd
Rd ´ paTd

´ δaT qRdpI3 ` tδθuqT
˘

e1

`
1

m
Rd

`

fad
´ pI3 ` tδθuqT pfad

´ δfaq
˘

« Rde1δaT ´ Rd

ˆ

aTd
te1u ` t

fad

m
u

˙

δθ ` Rd
δfa
m
(100)

where

δfa “ fad
´ fa «

Bfad

BvB
ad

δvB
a (101a)

δvB
a “ vB

ad
´ vB

a “ RT
d vad

´ RTva

« RT
d vad

´ pI3 ` tδθuqRT
d pvad

´ δvaq

« ´tδθuRT
d vad

` RT
d δva

« tvB
ad

uδθ ` RT
d δva (101b)

and the partial derivative Bfad
{BvB

ad
in (101a) is given in

(74):

Bfad

BvB
ad

“
Bfa
BvB

a

ˇ

ˇ

ˇ

ˇ

vB
ad

(see Equation (74)) (102)

In (101b), va “ v ´ w is the actual air velocity and vad
“

vd ´ sw is the air velocity used to calculate the reference
trajectory. Hence,

δva “ va ´ vad
“ δv ´ δw; δw “ w ´ w̄ (103a)

and

δfa «
Bfad

BvB
ad

`

tvB
ad

uδθ ` RT
d pδv ´ δwq

˘

(104a)

By substituting (101a) and (104) into (100), the velocity
error dynamics can be given by

δ 9v “ MT δaT ` Mvδv ` MRδθ ` Mww (105)
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where

MT “ Rde1 (106a)

Mv “
1

m
Rd

Bfad

BvB
ad

RT
d (106b)

MR “ Rd

˜

´aTd
te1u ´ t

fad

m
u `

Bfad

BvB
ad

t
vB
ad

m
u

¸

(106c)

Mw “ ´
1

m
Rd

Bfad

BvB
ad

RT
d (106d)

To linearize the attitude error dynamics, we substitute
(54d) in (56d) and approximate ApδRq « I3. Thus we have

9δR « ´RT
d Rω ` ωd

« ´ pI ` tδRuq
T

pωd ´ δωq ` ωd

« δω ´ tωduδR (107)

Prepared using sagej.cls


	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related work
	2.1 Tail-sitter control
	2.2 Tail-sitter trajectory generation

	3 Flight dynamics
	3.1 Coordinate frames
	3.2 Airframe dynamics
	3.3 Aerodynamics

	4 Differential flatness in coordinated flight
	4.1 The coordinated flight
	4.2 The differential flatness
	4.3 Singularity conditions
	4.3.1 Singularity sub-conditions 1.  - g = 0
	4.3.2 Singularity sub-conditions 2. va = 0
	4.3.3 Singularity sub-conditions 3. = 0

	4.4 Differential flatness transform

	5 System overview
	5.1 System reduction
	5.2 System framework

	6 Trajectory generation
	6.1 Trajectory optimization
	6.2 Trajectory optimization solving

	7 Global control for trajectory tracking
	7.1 The error-state system
	7.1.1 Definition of the error state
	7.1.2 The error-state system dynamics

	7.2 On-manifold MPC for trajectory tracking

	8 Real-world experimental results
	8.1 Tail-sitter UAV platform
	8.2 SE(3) flight through narrow windows
	8.3 Typical maneuvers in field environments
	8.3.1 Straight-line flight
	8.3.2 Loiter flight

	8.4 Aerobatics
	8.5 Time consumption

	9 Conclusion
	9.1 Limitation
	9.2 Extension
	9.3 Conclusion

	A Proof of theorem 1
	B Proof of theorem 2
	C Calculation of matrices  and 
	D Proof of Theorem 3 (determinant of N)
	E Singularity va = 0
	E.1 Proof of Theorem 4: determinant of N
	E.2 Calculation of  and 

	F Singularity = 0
	F.1 Proof of Theorem 5: determinant of N
	F.2 Calculation of  and 

	G Gradients of the flatness functions
	G.1 When in coordinated flight
	G.2 When in singularity condition va = 0 
	G.3 When in singularity condition || = 0 

	H Proof of Theorem 6 (the error-state dynamics)
	I Proof of Lemma 1 (the linearized error-state dynamics)

