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Abstract
This paper presents a novel method for efficiently solving a trajectory planning problem for swarm robotics in cluttered
environments. Recent research has demonstrated high success rates in real-time local trajectory planning for swarm
robotics in cluttered environments, but optimizing trajectories for each robot is still computationally expensive, with
a computational complexity from O

(
k (nt, ε)n

2
t

)
to O

(
k (nt, ε)n

3
t

)
where nt is the number of parameters in the

parameterized trajectory, ε is precision and k (nt, ε) is the number of iterations with respect to nt and ε. Furthermore,
the swarm is difficult to move as a group. To address this issue, we define and then construct the optimal virtual tube,
which includes infinite optimal trajectories. Under certain conditions, any optimal trajectory in the optimal virtual tube
can be expressed as a convex combination of a finite number of optimal trajectories, with a computational complexity
of O (nt). Afterward, a hierarchical approach including a planning method of the optimal virtual tube with minimizing
energy and distributed model predictive control is proposed. In simulations and experiments, the proposed approach is
validated and its effectiveness over other methods is demonstrated through comparison.
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Introduction

Swarm robotics has potential applications in various real-
world scenarios, such as air traffic control, land and sea
search and rescue, and target detection. A certain amount
of research has been dedicated to the smooth and safe
navigation of swarm robotics passing through obstacle-dense
environments.

Passing through an obstacle-dense environment safely
and smoothly as a group is still a challenging task for
swarm robotics. Fast and smooth movement of a swarm
can be achieved through distributed trajectory planning,
but such method may also cause the swarm to split apart.
On the other hand, centralized formation path planning
combined with multi-robot formation control can achieve
swarm passing-through in formation, but it lacks flexibility
and maneuverability. In this work, an optimal virtual tube
planning method inspired by the application of tubes in
transporting objects in real life is proposed for a robotic
swarm to centrally plan an optimal virtual tube that provides
a safe area without obstacles and forward commands in the
environment; then the distributed model predictive control
is used to track the commands, thereby achieving fast and
smooth passing of the swarm as a group in obstacle-dense
environments.

We employ the path planning algorithm to plan a safe
area without obstacles for a swarm to form a group, which
effectively simplifies the obstacle avoidance problem by
replacing obstacle constraints with the tube boundaries.
Hence, the robots in the swarm only need to consider inter-
robot collision avoidance and tube boundary constraints.
Furthermore, the fact that optimal trajectories do not
intersect with each other in the tube substantially reduces

Figure 1. By optimal virtual tube method, an overlay image of
four drones passing through the cluttered environment: The
trajectory of each drone is labeled by a different color in the
upper right figure. Compared to the traditional method, our
method solves only three optimization problems for the three
optimal trajectories of drones, such as the red, blue, and orange
lines. The fourth optimal trajectory of the drone (the green line)
is generated by an affine combination.

the chance that collision avoidance control is triggered.
Based on optimization theories, we propose a method
with a computational complexity of O (nt), where nt

is the number of parameters in trajectory to generate
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infinite optimal trajectories with minimizing energy. This
method has a significant computational advantage over
existing methods with the computational complexity from
O
(
k (nt, ε)n

2
t

)
to O

(
k (nt, ε)n

3
t

)
where ε is precision and

k (nt, ε) is the number of iterations needed to solve the
optimization problem, making it possible to generate optimal
trajectories for large-scale robot swarms in a timely and
centered fashion. The optimal virtual tube planning method
is validated effectively by using the distributed model
predictive control method in simulations and experiments.
Furthermore, the superiority of our method is demonstrated
through comparison with other methods.

Related work
In this section, we provide an overview of the related studies
on topics including trajectory planning, infinite homotopic
trajectory generation, and virtual tube control and planning.

Trajectory planning Trajectory planning is an efficient
method for robots to pass through a complex environment.
Considering the kinematics of the robot and obstacles,
an optimization problem is formulated to plan a smooth
and safe trajectory for each robot. By leveraging the
differential flatness, the optimal trajectory could be tracked
by some robots. The methods of trajectory parameterization
mainly include k-th order polynomials and B-spline. (i)
To ensure passing through fixed waypoints, a trajectory
can be parameterized as k-th order polynomials (Mellinger
and Kumar (2011)). However, trajectories described as
polynomials are prone to collisions with obstacles due
to finite discrete avoidance constraints. To address this
issue, various methods have been proposed for generating
collision-free trajectories. For instance, a collision-free
trajectory has been generated using mixed integer methods in
Deits and Tedrake (2015). An approach proposed by Richter
et al. (2016) refines the trajectory iteratively by minimizing a
cost function and adding additional waypoints between two
ends of a particular trajectory segment that passes through
obstacles to avoid collisions. However, these methods
are computationally intensive for real-time planning. To
overcome these challenges, some methods have been
proposed that use simple constraints to design a quadratic
programming (QP) problem, which can significantly reduce
the computation time. For example, safe flight corridor
(SFC), a collection of convex connected polyhedra that
models free space in a map, is used as a constraint for
obstacle avoidance to generate a collision-free trajectory in
real-time (Liu et al. (2017); Gao et al. (2020)). (ii) The
trajectory parameterized by B-spline (Usenko et al. (2017)) is
proposed to eliminate constraints of intermediate conditions
on any derivative of the trajectory. An essential advantage
of using B-splines is the convex hull property, which
imposes bounds on both the trajectory and its derivatives.
This property allows for strict bounding of the position,
velocity, and acceleration of a robot (Ding et al. (2019)).
The drawback of B-spline, however, is that the B-spline
curve does not pass through the control points that represent
waypoints. To repel the trajectory from obstacles, a gradient-
based method is applied (Zhou et al. (2020)) such that
a penalty function is introduced. Although this method
has been successful, it is experience dependent and lacks

rigorous theoretical proof. It has been shown that if the
control points satisfy certain conditions, the trajectory will
strictly avoid obstacles (Zhou et al. (2019)).

To plan swarm trajectories, existing methods are mostly
extension of single trajectory planning methods. However,
in swarm robotics, other agents are regarded as dynamic
obstacles, which increase the complexity of the problem.
Several methods have been proposed to solve this avoidance
problem, such as RSFC (Relative Safe Flight Corridor)
(Park and Kim (2021)), distributed predictive control (Soria
et al. (2022)), HOOP (Hold Or take Optimal Plan) (Tang
et al. (2018)) and EGO (ESDF-free Gradient-based lOcal)
Swarm (Zhou et al. (2021)), all of which employ increasingly
complex constraints. Safe and smooth trajectories need
to be generated by optimization problems, which require
significant computational resources with an increasing scale
of the swarm. Furthermore, the constraint of gathering the
swarm as a group is also needed to increase the computation
cost. Therefore, the method efficiency for swarm robotics is
a crucial point needed to be considered, especially with the
limited onboard computing resources of robots.

Infinite homotopic trajectories generation The objective
of trajectory planning for a robot passing through an
environment is to plan a trajectory from a start position to
a goal position for each robot. Ideally, trajectory planning
would yield a unique solution to the optimization problem,
but Orthey et al. (2019) demonstrates that local minima in the
optimization problem result in an infinite set of homotopic
collision-free trajectories. To address this challenge, a
generative model of collision-free trajectory is trained in Osa
(2022) to represent an infinite set of homotopic solutions
to the optimization problem. Motivated by the methods of
finding homotopic trajectories for a robot, we proposed an
optimal virtual tube for swarm robotics, which contains an
infinite number of homotopic optimal trajectories in free
space. Our focus is on finding infinite trajectories for a
swarm, rather than for a single robot, although generating
infinite optimal trajectories through infinite optimization
problems is not feasible due to computational complexity.
To mitigate this issue, we first propose and define the
optimal virtual tube, including infinite optimal trajectories.
Then, a theorem is proposed so that any optimal trajectory
in the virtual tube could be represented by a convex
combination of these finite number of optimal trajectories
with a computational complexity of O (nt) if trajectories are
linearly parameterized and satisfy the conditions in lemmas.
Therefore, combining the advantages of formation control
(Alonso-Mora et al. (2017)), the complexity of the optimal
virtual tube planning is independent of the scale of the
swarm*.

Virtual tube control and planning The “virtual tube”
provides safety boundary and direction of motion for
a swarm. This concept appeared in AIRBUS’ SkyRoad
project, is a free space for unmanned aerial vehicles to fly
over cities (Airbus (2019)). These virtual tubes establish
a safe flight area in which drone flights will not interfere
with ground or air traffic. Motivated by this, in our previous

∗The scale of a swarm means the number of robots in the swarm.
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work (Quan et al. (2022)), a straight virtual tube was
proposed for swarm robotics. There are no obstacles inside
the virtual tube, so the area inside can be regarded as a
safety zone. Restricting the robot to fly in the safety zone
can simplify the control, that is, only requiring to guarantee
no collision with other robots and the no collision among
robots and the boundary of the virtual tube, rather than the
collision avoidance with complex obstacles in environment.
The virtual tube ensures the safety of robots and cities.
Then, to guide the swarm to pass through corridors, doors
and windows, and surround surveillance targets without
diverging (Gao et al. (2022)), we have also generalized the
definition of virtual tubes and proposed the curved virtual
tube (Quan et al. (2023b)). This concept of the curve virtual
tube is similar to the lane for autonomous road vehicles in
Rasekhipour et al. (2016), Luo et al. (2018) and corridor for
a multi-UAV system in Nagrare et al. (2022).

As a summary, the earlier part of this subsection is
dedicated to the introduction of two problems, namely the
virtual tube planning problem and virtual tube passing-
through control problem. However, The above-mentioned
methods all apply to passing-through control problems. For
the virtual tube planning problem, in previous work (Mao
and Quan (2022)), a generator curve is first obtained by
trajectory planning based on several discrete waypoints,
which are generated using search-based methods. Then the
virtual tube is generated by expanding the generator curve
while avoiding obstacles.

Motivations and contributions
Although there are many studies on the virtual tube passing-
through control problem, a suitable design of the forward
commands for the swarm is still lacking. And the previous
virtual tube planning work also has many limitations. The
motivations of the optimal virtual tube are demonstrated as
follows.

First, the kinematics of the robot are not considered in
design of the forward commands for the swarm in the virtual
tube passing-through control problem. The desired speeds
for robots are manually designed and the directions of the
forward velocity commands of the robots parallel to the
direction of the generator curve, which may cause the swarm
to block performing turning and other maneuvers.

Secondly, the previous virtual tube planning method (Mao
and Quan (2022)) poses limitations to the control algorithm
and is not scalable in high-dimension spaces. The regular
virtual tube is only suitable for some specific methods such
as APF (Artificial Potential Field), flocking algorithm, and
CBF (Control Barrier Function). And it is difficult to be
extended into high-dimension spaces.

Thirdly, trajectories of swarm robotics in existing research
are not optimal, namely any robot in the virtual tube is not
assigned an optimal trajectory. On the other hand, it costs
much computation with the number of robots increasing if
the trajectory optimization method is adopted.

To overcome these limitations, this paper first generalizes
the definition of the virtual tube without a generator curve
so that it is convenient to be applied in a high-dimension
space, and the optimal virtual tube which includes infinite
optimal trajectories is proposed for trajectory planning of
swarm robotics. An optimal virtual tube planning method is

proposed to generate the infinite optimal trajectories in the
optimal virtual tube with a small computational complexity
which makes the virtual tube applicable to a wider range
of control methods. Then the optimal virtual tube planning
method combined with model predictive control is validated
in simulations and experiments, as shown in Fig. 1. The main
contributions are as follows.

• Compared with our previous work (Mao and Quan
(2022)), the definition of the virtual tube is extended
into a high-dimension space. Further, the optimal
virtual tube is defined for trajectory planning of
swarm robotics, whose properties and advantages are
analyzed in this paper. There are infinite optimal
trajectories within the optimal virtual tube. Each
robot is assigned to an optimal trajectory without
intersecting with other trajectories.

• Based on the definitions and theorems, we show that
a linear virtual tube with convex hull terminals is
a type of optimal virtual tubes which is easy to
implement in practice. The infinite optimal trajectories
are generated by the convex combination of finite
optimal trajectories. Therefore, the computational
complexity is only O (nt), in contrast with solving
existing optimization problems with computational
complexity of O

(
k (nt, ε)n

2
t

)
to O

(
k (nt, ε)n

3
t

)
.

• A hierarchical approach including an optimal virtual
tube planning method and model predictive control
is proposed. The corresponding application on drone
swarm is demonstrated in simulations and experi-
ments. Furthermore, comparisons with other methods
are implemented in simulations to demonstrate the
superior performance of our approach.

Paper organization
This paper is organized as follows. The preliminaries
about topology and convex optimization, and problem
formulation are described in Section 2. Section 3 is devoted
to demonstrating the definitions such as virtual tube, optimal
virtual tube, and linear virtual tube, and distinguishes the
proposed work from our previous work. Then, a specific
virtual tube, named linear virtual tube with convex hull
terminals, is defined and proved to be an optimal virtual
tube based on a proposed theorem in Section 4 . In Section
5, a planning method to obtain an optimal virtual tube
is proposed. Model predictive control is proposed for the
swarm to track trajectories in an optimal virtual tube as
an validation of the tube planning method in Section 6.
Experimental results and comparisons in simulations are
presented to illustrate the superior performance of our
approach in Section 7. Finally, Section 8 contains the
conclusion and future work.

Preliminaries and Problem Formulation

Topology
The topological theory is complex and profound. For the
purpose of comprehensibility, we will roughly and intuitively
introduce some basic concepts that need to be used in the
following sections.
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Figure 2. Convex hull example. For a set C = {xi}
(i = 1, 2, ..., 6), the pink area is the conv C. The ∂ (conv C)
and int (conv C) denote the bold black lines and the pink area
without the bold black lines respectively.

Interior The interior of the subset T of a topological space,
denoted by int T , is the largest open subset contained in T ,
expressed as

int (T ) = {x ∈ T |B (x, r) ∩ T ⊆ T for some r > 0} ,

where B (x, r) = {y| ∥y − x∥ ≤ r} represents the ball of
radius r and center x in the any norm ∥·∥.

Diffeomorphism Intuitively, a manifold (Tu (2011)) is a
generalization of curves and surfaces to higher dimensions.
Given two manifolds M and N , a differentiable map f :
M → N is called a diffeomorphism if it is a bijection and
its inverse is differentiable as well.

Simple connectivity (Shick (2007)) Intuitively, a space is
simply-connected if every loop in the space can be shrunk to
a point within the space.

Convex optimization (Boyd and Vandenberghe
(2004))
Convex hull For a set C = {xi}, i = 1, 2, ..., q, the convex
hull of the set C, denoted conv C, is the set of all convex
combinations of points in C:

conv C =

{
q∑

i=1

θixi|xi ∈ C, θi ≥ 0,

q∑
i=1

θi = 1

}
.

The int (conv C) and ∂ (conv C) denote the interior of
conv C and the boundary of the conv C respectively. An
example is shown in Fig. 2.

An optimality criterion for differentiable f0 Suppose that a
convex function f0 is differentiable, so that for all x,y ∈
domf0 (domain of the function f0),

f0 (y) ≥ f0 (x) +∇f0(x)
T
(y − x) . (1)

Let Xf denote the feasible set. Then x is optimal if and only
if x ∈ Xf and

∇f0(x)
T
(y − x) ≥ 0, for ally ∈ Xf . (2)

Problem formulation
Let Xc be the configuration space and denote the obstacle-
free space as Xfree. The trajectory between two given points
q0,qm ∈ Xfree is defined by a map h ((q0,qm) , t) where
t ∈ [0, 1], h ((q0,qm) , 0) = q0, h ((q0,qm) , 1) = qm.

Definition 1. A trajectory h∗ ((q0,qm) , t) is optimal with
respect to cost g if

h∗ ((q0,qm) , t)∈ arg min
h∈H

g (h ((q0,qm) , t))

where t ∈ [0, 1] and H is a candidate space, g could be
the energy cost, length of trajectory or other concerned.
Especially when the cost g is convex, the optimal trajectory
h∗ ((q0,qm) , t) is unique, namely h∗ ((q0,qm) , t) =
arg min

h∈H
g (h ((q0,qm) , t)) .

Given a start point q0 and a goal point qm, the
trajectory planning problem for a single robot is to find
an optimal trajectory h∗ ((q0,qm) , t) ∈ Xfree from q0 to
qm. Consequently, given start points {q0,i} for robots
respectively in a start area C0 and a goal area C1, the
trajectory planning problem for swarm robotics in an
obstacle-dense environment is to assign goal points qm,i

for all robots and then find optimal homotopic trajectories
with minimal energy h∗ ((q0,i,qm,i) , t) from all start points
q0,i ∈ C0 to the goal points qm,i ∈ C1. And then, a control
method is to be adopted to make the robot swarm move fast
and smoothly as a group.

However, as the number of robots in a swarm increases,
the computational cost of generating optimal trajectories
also increases. Therefore, we use the optimal virtual tube
to constrain the safety space where trajectories are located
in and realize the generation of optimal trajectories with a
low computational complexity of O (nt) in the following
sections.

Optimal Virtual Tube
A virtual tube is constructed for swarm robotics, which could
be used for swarm robotics flow. A generalization of a virtual
tube is defined as a set in space, and some specific types
of the virtual tube including the optimal virtual tube are
introduced for trajectory planning of swarm robotics.

Tubes are often used for fluid transportation in three-
dimension Euclidean space, which is denoted by R3.
However, it is not sufficient to describe a motion of a robot
in three-dimension Euclidean space. For example, a set of all
affine motions, including rotations and translations in R3, is
a six-dimension manifold. But this six-dimension manifold
is not R6. Since the virtual tube aims at swarm robotics, it is
extended to be defined as a set in n-dimension space.

Intuitively, a virtual tube is constructed by defining maps
between two bounded convex sets in space. The convex set
is simply connected so that there are no “holes” in the set.
The mathematical definition of the virtual tube is formulated
in the following.

Definition 2. A virtual tube T , as shown in Fig. 3, is a set
in n-dimension space represented by a 4-tuple (C0, C1, f ,h)
where

• C0, C1, called terminals, are disjoint bounded convex
subsets in n-dimension space.

• f is a diffeomorphism: C0 → C1, so
that there is a set of order pairs P =
{(q0,qm) |q0 ∈ C0,qm = f (q0) ∈ C1}.

Prepared using sagej.cls
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Figure 3. Virtual tube example. The purple and blue
polyhedrons are terminals. The shaded polyhedrons are cross
sections Ct. The black curve is a trajectory that is from q0 in
terminal C0 to qm in terminal C1. The gray area is the virtual
tube.

• h is a smooth† map: P × I → T where I =
[0, 1], such that T = {h ((q0,qm) , t) | (q0,qm) ∈
P, t ∈ I}, h ((q0,qm) , 0) = q0, h ((q0,qm) , 1) =
qm. The function h ((q0,qm) , t) is called a trajectory
for an order pair (q0,qm).

And, a cross-section Ct of a virtual tube at t ∈ I is expressed
as:

Ct = {h ((q0,qm) , t) | (q0,qm) ∈ P} . (3)

The surface of the virtual tube is the boundary of T , defined
as ∂T .

In the following, some properties are directly obtained
based on Definition 1.

Proposition 1. All cross-sections of a virtual tube are simply
connected.

Proof. The convex sets C0, C1 are simply connected. Thus,
the order pair P is simply connected. For a cross-section Ct0 ,
there is a smooth map h from P × t0 to Ct0 . Therefore, the
cross-section is simply connected. ■

Proposition 2. All cross-sections of a virtual tube are
continuous. That is, for every point in the cross-section, there
exists at least one trajectory through it.

Proof. The domain P × I is continuous. And the map h is
continuous. So all cross-sections are continuous. ■

Remark 1. It should be noted that there is no explicit
definition of a generator curve in Definition 2, compared with
the definition of the virtual tube with a generator curve in
our previous work (Mao and Quan (2022)). In the following,
we will show that the previous definition is a special case
of Definition 2. The virtual tube with a generator curve is
defined as

T (s, θ, ρ) = γ (s) + ρλ (s, θ) (n (s) cos θ + b (s) sin θ) ,

where s ∈ Ds = [s0, sf ] ⊂ R, ρ ∈ Dρ = [ρmin (s) , 1], θ ∈
Dθ ⊂ R, ρmin (s) is a real-value function with respect
to s, the second order differentiable curve γ (s) ∈ Rn

is called generator curve, n (s) = γ̈(s)
∥γ̇(s)∥ − γ̇(s)·γ̈(s)

∥γ̇(s)∥3 γ̇ (s)

Figure 4. Virtual tube with a generator curve in R3, where the
red dotted line is the generator curve; the dark blue plane is a
cross-section and the light blue surface is the virtual tube
surface.

and b (s) = γ̇(s)
|γ̇(s)| × n (s) ∈ Rn are principle normal and

binormal vectors of generator curve γ at the point γ (s)
respectively, and λ (s, θ) ∈ R called radius is continuous
with respect to s. Let terminals

C0 = {q0|q0 = fs (θ, ρ) = T (s0, θ, ρ) , θ ∈ Dθ, ρ ∈ Dρ} ,

C1 = {qm|qm = ff (θ, ρ) = T (sf , θ, ρ) , θ ∈ Dθ, ρ ∈ Dρ} .

Thus, denote f = ff ◦ f−1
s which is a diffeomorphism, and

then, the set of order pairs P is generated by f . Let the
trajectory be

h

(
(T (s0, θ, ρ) , T (sf , θ, ρ)) ,

s− s0
sf − s0

)
= T (s, θ, ρ)

which is a smooth map. Therefore, this virtual tube
with a generator curve is a special case of the virtual
tube in Definition 2. Here is a simple example. As
shown in Fig. 4, the generator curve γ (s) = [s 0 0]

T,
radius λ (s, θ) = 1, normal unit vector n (s) = [0 1 0]

T,
binormal unit vector b (s) = [0 0 1]

T, s ∈ [0, 1], θ ∈
[0, 2π), ρ ∈ [0, 1]. Obviously, C0 and C1 are disjoint
bounded convex subsets, and are called terminals. For any
q0 = [0 ρ cos θ ρ sin θ]

T ∈ C0, the corresponding point
in terminal C1 is qm = f (q0) = [1 ρ cos θ ρ sin θ]

T ∈
C1, the set of order pairs P is constructed. And, f is a
diffeomorphism, h is a smooth map. Thus, this tube with a
generator curve could be defined by Definition 2.

Some definitions which will be used are proposed in the
following.

Definition 3. A virtual tube T (C0, C1, f ,h) is linear if it
satisfies following properties:

• The diffeomorphism f is a linear map for any q0,k ∈
C0 and θk ∈ R, namely

f

(
q∑

k=1

θkq0,k

)
=

q∑
k=1

θkf (q0,k).

†A real-valued function is said to be smooth if its derivatives of all orders
exist and are continuous.
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• The smooth map h is a linear map for any
(q0,k,qm,k) ∈ P and ηk ∈ R, namely

h

(
q∑

k=1

ηk (q0,k,qm,k), t

)

=

q∑
k=1

ηkh ((q0,k,qm,k) , t) .

Definition 4. A terminal C0 (or C1) is a convex hull of the
finite set {q0,k} if it can be expressed as

C0 =

{
q0|q0 =

q∑
k=1

θkq0,k,

q∑
k=1

θk = 1, θk ≥ 0

}
. (4)

According to Definition 1, a trajectory h∗ for an order pair
(q0,qm) is optimal with respect to a cost function defined
as g (h ((q0,qm) , t)). Consequently, the definition of an
optimal virtual tube is proposed in the following.

Definition 5. A virtual tube T is optimal with respect to a
cost g if every trajectory in the tube is optimal with respect
to a cost g, namely T = (C0, C1, f ,h∗) .

As shown in Fig 3, if all trajectories in the tube are optimal,
the tube is an optimal virtual tube.

A Type of Optimal Virtual Tubes: Linear
Virtual Tube with Convex Hull Terminals
There are infinite trajectories in the virtual tube, so it
is impossible to solve optimization problems for every
optimal trajectory respectively. The first natural thought
is to perform interpolation to reduce calculation burden
significantly. There are two lemmas about conditions for
optimality with proofs shown in Appendix A, which are
useful for constructing a type of optimal virtual tubes.

Lemma 1. Constrained with hyperplanes: Suppose that a
convex optimization problem has the following type

min f0 (x)
s.t. Ax = b

(5)

where f0 (x) is a convex function with respect to
x =

[
x0 x1 ... xn

]T
, A ∈ Rp×(n+1)(p < n+ 1) ,

b ∈ Rp and ∇f0 (x) is linear with respect to x. The optimal
solution xk is obtained when b = bk, k = 1, 2, ..., q. Denote
B = {bk}, X = {xk}, b (θ) =

∑q
k=1 θkbk ∈ convB.

Then x (θ) =
∑q

k=1 θkxk ∈ convX is feasible and
optimal.

Lemma 2. Standard form: Suppose that a convex
optimization problem has the following type

min f0 (x)
s.t. Ax = b

fi (x) ≤ 0, i = 1, ...nc

(6)

where fi (x) (i = 0, 1, ..., nc) are convex functions
with respect to x =

[
x0 x1 ... xn

]T
, A ∈

Figure 5. The blue sphere is a terminal which is a convex set.
The purple polyhedron is a convex hull terminal. And they could
also indicate the cross-section Ct at t.

Rp×(n+1)(p < n+ 1), b ∈ Rp and ∇f0 (x) is linear
with respect to x. The optimal solution xk is obtained
when b = bk, k = 1, 2, ..., q. Denote B = {bk},
X = {xk}, b (θ) =

∑q
k=1 θkbk ∈ convB. Then

x (θ) =
∑q

k=1 θkxk ∈ convX is feasible and optimal.

Definition 6. A virtual tube T (C0, C1, f ,h) is called a linear
virtual tube with convex hull terminals if it satisfies:

• The terminal C0 is the convex hull of the finite set
{q0,k}, and the terminal C1 is the convex hull of the
finite set {qm,k}, k = 1, 2, ..., q. The set {q0,k} and
the set {qm,k} have the same number of elements.

• For any q0,k in the set {q0,k}, qm,k = f (q0,k).
• The virtual tube T (C0, C1, f ,h) is linear.

A linear virtual tube with convex hull terminals is a special
case of virtual tubes, and the convex hull of the finite set is
a polyhedron (Boyd and Vandenberghe (2004)), as shown in
Fig. 5. An example of a linear virtual tube with convex hull
terminals is shown in Fig. 3.

Theorem 1. A linear virtual tube with convex hull terminals
T (C0, C1, f ,h) is optimal with respect to cost f0 if (i)
its trajectory for each order pair (q0,qm) can be linearly
parameterized as h ((q0,qm) , t) = C (t)x, where C (t) is
a matrix only respect to t, and x is a parameter vector,
(ii) the trajectories h∗ ((q0,k,qm,k) , t) for order pairs
(q0,k,qm,k) (k = 1, 2, ..., q) are optimal with respect to cost
f0 and satisfy conditions in (6) where b = bk,x = xk for
each trajectory h∗ ((q0,k,qm,k) , t), (iii) the linear equality
constraint is Ax =

∑q
k=1 θkbk for each order pair (q0,qm).

Proof. We show that, in Step 1, any trajectory
h ((q0,qm) , t) in the linear virtual tube with convex
hull terminals can be expressed as a convex combination of
trajectories h ((q0,k,qm,k) , t). Then, in Step 2, based on
Lemma 2, we will show that any trajectory h ((q0,qm) , t)
is optimal if the trajectories h∗ ((q0,k,qm,k) , t) for order
pairs (q0,k,qm,k) (k = 1, 2, ..., q) are optimal. Therefore,
this virtual tube is optimal.
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Step 1. Suppose that the terminal C0 is the convex hull of
the finite set {q0,k}, such as

C0 =

{
q0|q0 =

q∑
k=1

θkq0,k,

q∑
k=1

θk = 1, θk ≥ 0

}
,

where q is the number of the elements in set {q0,k}. Then q
order pairs {(q0,k,qm,k)} are constructed by

qm,k = f (q0,k) .

Thus, the set of order pairs P is constructed by

P = {(q0, f (q0))}

=

{(
q∑

k=1

θkq0,k, f

(
q∑

k=1

θkq0,k

))}
=

{(
q∑

k=1

θkq0,k,
q∑

k=1

θkf (q0,k)

)}
=

{(
q∑

k=1

θkq0,k,
q∑

k=1

θkqm,k

)}
=

{
q∑

k=1

θk (q0,k,qm,k)

}
.

Any trajectory for the order pair (q0,qm) in P is expressed
as

h ((q0,qm) , t) = h

(
q∑

k=1

θk (q0,k,qm,k), t

)
=

q∑
k=1

θkh ((q0,k,qm,k) , t)
(7)

Step 2. We will show that any trajectory in the linear
virtual tube with convex hull terminals is optimal, namely,
this virtual tube is optimal.

Through solving optimization problem in (6) where b =
bk, the q optimal trajectories for order pairs {(q0,k,qm,k)}
are generated, which are linearly parameterized as

h∗ ((q0,k,qm,k) , t) = C (t)xk, k = 1, ..., q, (8)

where C (t) is a matrix with t, xk is the optimal solution.
Because the linear constraint for each order pair

(q0,qm) is Ax =
∑q

k=1 θkbk, according to Lemma 2, x =∑q
k=1 θkxk is the optimal solution. Therefore, any trajectory

for order pair (q0,qm) ∈ P is optimal which is expressed as

h∗ ((q0,qm) , t) =
q∑

k=1

θkh
∗ ((q0,k,qm,k) , t)

=
q∑

k=1

θkC (t)xk = C (t)
q∑

k=1

θkxk = C (t)x.

Thus, this linear virtual tube with convex hull terminals
(C0, C1, f ,h∗) is optimal. ■

An example of the optimal linear virtual tube with convex
hull terminals is given as the following.

Example 1. In two-dimension Euclidean space, suppose that
there exists a linear virtual tube with convex hull terminals
T (C0, C1, f ,h). The terminals C0, C1 are expressed as the
convex hull of the the set {q0,1,q0,2} and {qm,1,qm,2},
namely C0 = q0 (θ) = (1− θ)q0,1 + θq0,2, C1 = qm (θ) =
(1− θ)qm,1 + θqm,2, θ ∈ [0, 1]. The smooth map f is
defined as qm,k = f (q0,k) , k = 1, 2. Thus, a set of

Figure 6. An optimal virtual tube example. Different colors
represent different optimal trajectories. Curves h∗

0 (t) and h∗
1 (t)

are optimal trajectories generated by solving optimization
problems. And h∗

θ (t) are optimal trajectories generated by
interpolation.

order pairs is expressed as P = {(q0 (θ) ,qm (θ))}. Let
h∗
0 (t) ,h

∗
1 (t) denote the optimal trajectories for order pairs

(q0,1,qm,1) and (q0,2,qm,2) respectively which are gen-
erated by solving optimization problems satisfying Lemma
2. And the linear equality constraint for (q0 (θ) ,qm (θ))
satisfies condition (iii) in Theorem 1. Thus, the optimal tra-
jectory of any order pair (q0 (θ) ,qm (θ)) ∈ P is expressed
as h∗

θ (t) = (1− θ)h∗
0 (t) + θh∗

1 (t). Since every trajectory
in the virtual tube is optimal, T (C0, C1, f ,h∗) is the optimal
virtual tube, as shown in Fig. 6.

A Planning Method to Obtain an Optimal
Virtual Tube
Considering a robot swarm composed of M agents labeled
by j ∈ M = {1, ...,M}, a start area which is the convex hull
of set {q0,k} is labeled by C0, and a goal area which is the
convex hull of set {qm,k} is labeled by C1. Suppose that the
start position q0 (θj) ∈ C0 of robot j is given. An obstacle-
dense environment is between the start area and the goal area.
The objective is to construct an optimal virtual tube and make
robots pass through the obstacle-dense environment in the
optimal virtual tube.

Outline
For an optimal virtual tube T (C0, C1, f ,h∗), the set of order
pairs P is constructed by f first, after inputting terminals C0
and C1. Then the paths for order pairs (q0,k,qm,k) are found.
Next, the optimal trajectories h∗ ((q0,k,qm,k) , t) for order
pairs (q0,k,qm,k) are generated by solving optimization
problems. Finally, an optimal linear virtual tube with convex
hull terminals T (C0, C1, f ,h∗) is constructed, with an
infinite number of optimal trajectories. The whole process
of optimal virtual tube planning is shown in Fig. 7.

Constructing order pairs
Suppose that the start area and goal area called terminal
C0 and C1, are the convex hull of {q0,k} and {qm,k}
respectively with the same number of extreme points
(Adasch et al. (2006)), as shown in Step 1⃝ of Fig. 7.
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Figure 7. Optimal virtual tube planning process.

Since the order pairs in P are constructed by a map f ,
a selection strategy of order pairs (q0,k,qm,k), namely a
suitable map f , is simply described in the following. Suppose
the number of extreme points of terminals is q. First, select
the extreme points (or so called vertices) of the terminal C0
as the set of {q0,k} (k = 1, 2, ..., q). Then, the order pairs
(q0,k,qm,k) are constructed from a map f , where qm,k =
f (q0,k) are also the vertices of terminal C1 and the sorting
principle of qm,k (k = 1, 2, ..., q) is specified by a classic
assignment problem (AP) (Pentico (2007)) in which the
objective function minimizes both the total distance and the
variance of distance between q0,k and qm,k, as shown in
Step 2⃝ of Fig. 7. Then, the set of order pairs P is constructed
from the map f .

Any start position q0 (θj) in terminal C0 is expressed as

q0 (θj) =

q∑
k=1

θkjq0,k,

q∑
k=1

θkj = 1, θkj ≥ 0, j ∈ Z+, (9)

where q is a finite number of elements in {q0,k}. Compared
with the infinite number of start positions in terminal C0, the
number of elements in {q0,k} is small enough. Let f be the
linear map between C0 and C1 so that for any goal position
qm (θj) ∈ C1,

qm (θj) = f (q0 (θj)) = f

(
q∑

k=1

θkjq0,k

)
=

q∑
k=1

θkjf (q0,k)

=
q∑

k=1

θkjqm,k.

The set of order pairs P , thus, has been constructed, such as
{(q0 (θj),qm (θj))}.

Finding paths

The paths for order pairs (q0,k,qm,k) (k = 1, ..., q) are
needed to be found after constructing order pairs. And a
normalized parameterization of the paths is designed.

There are many path-finding methods used for finding
waypoints in the obstacle environment such as RRT, RRT*
(Karaman and Frazzoli (2011)), and A*. For each order pair
(q0,k,qm,k) (k = 1, ..., q), we select RRT* to find m+ 1
waypoints {qi,k} (i = 0, ...,m) between q0,k and qm,k.

To parameterize the waypoints {qi,k}, parameters ui,k are
assigned to corresponding waypoint qi,k. Thus, a partition of
uk is first designed, called knots {ui,k}. Then public knots
{ui} and public normalized knots {tk} are generated by
domain transformation. The chord length parameterization, a
suitable method in most engineering applications (Piegl and
Tiller (2000)), is used to generate knots {ui,k} expressed as

ui,k =

{
0, i = 0,

ui−1,k + ∥qi,k − qi−1,k∥ , i = 1, 2, ...,m.
(10)

It should be noted that the knots {ui,k} for each pair
(q0,k,qm,k) are generally not the same, because of variation
in distances ∥qi,k − qi−1,k∥ , k = 1, ..., q. Motivated by the
parameterization of tensor product surface (Strothotte and
Schlechtweg (2002)), all parameterizations of paths are
expected to be the same for convenience. The public knots
{ui} are the arithmetic mean of all knots, which are
expressed as

ui =

q∑
k=1

uki

q
. (11)

Prepared using sagej.cls



Mao and Quan 9

To get the normalized parameterization for correspondence
with Definition 2, the normalized knots {ti} are obtained by

ti =
ui

um
, i = 0, 1, ...,m. (12)

Connecting adjacent waypoints with straight lines, the
RRT* path planner finds q collision-free paths for q order
pairs {(q0,k,qm,k)} respectively, as shown in Step 3⃝ of Fig.
7.

Remark 2. The numbers of the waypoints {qi,k} of
different order pairs are assumed as the same. Otherwise,
different numbers of the waypoints {qi,k} lead to different
lengths of parameter vectors x in Theorem 1, that would
not satisfy Lemmas 1,2. Meanwhile, through shrinking the
sample space around the first found path to eliminate any
potential detours or alternate routes, all paths could be
homotopic so that there is no obstacle between paths.

Remark 3. The scale of the swarm would be limited
in an extremely cluttered environment. The swarm is not
allowed to split apart to move around obstacles because
of the homotopic paths. Thus, in an extremely cluttered
environment, all paths need to pass through a narrow gap
whose size is much smaller than that of the swarm, which
would cause blockage of the movement of the swarm. To
overcome this weak point, large swarms could be divided
into several subgroups satisfying the minimum size of gaps
to plan virtual tubes.

Optimizing trajectories
The original paths in the above subsection have some sharp
corners, as shown in Step 3⃝ of Fig. 7, which are not feasible
considering the dynamics of the robots. It is necessary to
improve the smoothness of the original paths, as shown in
Step 4⃝ of Fig. 7.

Trajectory representation There are many ways to represent
trajectories linearly, such as B-spline and polynomials. It
is convenient to use n-th order piecewise polynomial to
represent the trajectory h, such as

h (t) =



n∑
i=0

ai,1t
i t0 < t < t1

n∑
i=0

ai,2t
i t1 < t < t2

...
...

n∑
i=0

ai,mti tm−1 < t < tm

(13)

where ai,j =
[
a1,i,j a2,i,j . . . ad,i,j

]T ∈ Rd, j =
1, 2, 3, ...,m. For any t ∈ [tk−1, tk], the trajectory h (t)
could be represented by matrix

hj (t) = C (t)xj (14)

where C (t) =
[
Id tId t2Id . . . tnId

]
,

xj =


a0,j
a1,j
a2,j

...
an,j

 .

The representation of trajectory (14) is convenient to be used
in quadratic programming (QP) in the following.

Constraints The constraints, including the terminal condi-
tions and intermediate conditions, are constructed as linear
equations for smoothness. In terms of obstacle avoidance,
adding corridor constraints could avoid collisions.

The terminal conditions are expressed as

h1 (t0) = C (t0)x1 = q0,k,
hm (tm) = C (tm)xm = qm,k,
dph1(t)

dtp

∣∣∣
t=t0

= q
(p)
0,k,

dphm(t)
dtp

∣∣∣
t=tm

= q
(p)
m,k,

(15)

where q
(p)
0,k and q

(p)
m,k are the p-order conditions in the start

and goal points, terminals of the trajectory are constrained
in start and goal points. And the intermediate conditions are
expressed as

dphi (t)

dtp

∣∣∣∣
t=ti

=
dphi+1 (t)

dtp

∣∣∣∣
t=ti

, (16)

where p = 0, 1, 2, ...kr, i = 1, 2, ...,m− 1,

dphi (t)

dtp

∣∣∣∣
t=ti

=
dpC (t)

dtp

∣∣∣∣
t=ti

xi,

dphi+1 (t)

dtp

∣∣∣∣
t=ti

=
dpC (t)

dtp

∣∣∣∣
t=ti

xi+1.

Specifically, when p = 0, the terminals of each segment are
waypoints:

hi (ti) = hi+1 (ti) = qi,k. (17)

For convenience, we denote

C
(p)
t =

dpC (t)

dtp

which could transform (16) into[
C

(p)
ti −C

(p)
ti

] [ xi

xi+1

]
= 0. (18)

Based on (15), (17), and (18), the linear equality constraints
are derived

Ax =

 A1

A2

A3

x =

 b1

b2

b3


k

= bk, (19)

where

x =

 x1

...
xm

 ,b1 =

 0
...
0

 ,b2 =


q0,k

q1,k

...
qm−1,k

qm,k

 ,

b3 =
[
q
(p)
0,k · · · q

(1)
0,k q

(p)
m,k · · · q

(1)
m,k

]T
,

A1 =


C

(p)
t1 −C

(p)
t1 · · · 0 0

...
... · · ·

...
...

0 0 · · · C
(p)
tm−1

−C
(p)
tm−1

 ,
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A2 =


Ct0 0 · · · 0
0 Ct1 · · · 0
...

...
...

...
0 0 · · · Ctm−1

0 0 · · · Ctm

 ,

A3 =



C
(p)
t0 0 · · · 0 0
...

...
. . .

...
...

C
(1)
t0 0 · · · 0 0

0 0 · · · 0 C
(p)
tm

...
...

. . . 0
...

0 0 · · · 0 C
(1)
tm


.

To avoid collision between trajectories and obstacles,
corridor constraints (Mellinger and Kumar (2011)) are added
by constraining nj intermediate points in the segment from
qi,k to qi+1,k (i = 0, 1, 2, ...,m− 1). For an intermediate
point of trajectory h (sj) in the segment from qi,k to qi+1,k,
the perpendicular distance vector between h (sj) and the
segment is expressed as

di (sj) = (h (sj)− qi,k)−
(
(h (sj)− qi,k)

T
ti

)
ti,

where ti is the unit vector along segment from qi,k to qi+1,k.
Thus, the convex constraints are expressed as:

fi (x) = ∥di (sj)∥∞ − δi ≤ 0, (20)

where sj = ti +
j

1+nc
(ti+1 − ti), j = 1, ..., nc, δi is the

corridor width, di (sj) is the perpendicular distance vector.

Cost function The optimization problem to minimize energy
cost could be formulated as a QP by regarding x in (19)
as variable vectors (Mellinger and Kumar (2011)). The cost
function is expressed as

Es =
tm∫
t0

∥∥∥dkrh(t)
dtkr

∥∥∥2dt
=

m∑
i=1

xT
i

ti∫
ti−1

C
(kr)
t

T
C

(kr)
t dtxi

= xTHx.

(21)

Optimization problem The goal of the optimization problem
is to minimize the energy cost meanwhile satisfying
constraints. Thus, combining (19), (20), and (21), this
problem could be expressed as

min
x

xTHx

s.t. Ax = bk

fi (x) ≤ 0, i = 1, ..., nc,

(22)

which is in the form concerned with Lemma 2. Therefore,
the optimal trajectories h∗ ((q0,k,qm,k) , t) are derived
by solving q optimization problems for q order pairs
{(q0,k,qm,k)}.

Constructing optimal virtual tube
The waypoints for any order pair (q0 (θj),qm (θj)) could
be expressed as

qi (θj) =

q∑
k=1

θkjqi,k, i = 0, 1, 2, ...,m.

And the normalized knots {ti} are used to parameterize the
waypoints. Thus, the linear equality constraints are expressed
as  A1

A2

A3

x =

q∑
k=1

θkj

 b1

b2

b3


k

. (23)

According to Theorem 1, the linear virtual tube with
convex hull terminals (C0, C1, f ,h∗) is optimal, as shown
in Step 5⃝ of Fig. 7. In other words, for any start point
q0 (θj), a goal point qm (θj) is assigned, and then the
optimal trajectory h∗ ((q0 (θj),qm (θj)) , t) is expressed as

h∗ ((q0 (θj),qm (θj)) , t) =

q∑
k=1

θkjh
∗ ((q0,k,qm,k) , t),

(24)
where

∑q
k=1 θkj = 1, θkj ≥ 0.

For all robots at each t′, the desired positions are
{h∗ ((q0 (θj),qm (θj)) , t

′)} (j ∈ M) which are within the
convex hull of

{
h∗ ((q0,k,qm,k

)
, t′
)}

(k = 1, 2, ..., q). In
other words, the swarm would approach a convex hull at each
t′.

Remark 4. The optimal virtual tube has similar effects to
the formation constraint. The swarm approaches a desired
convex hull or called graph Ct at each time t. However, the
distance constraint of adjacent robots is not considered in
tube planning as it is in the process of controller design,
which leaves more flexibility for the formation of the swarm,
compared with the formation constraint.

Complexity analysis
In this subsection, we analyze the time complexity of
the proposed method. Suppose the q optimal trajectories
h∗ ((q0,k,qm,k) , t) have been generated before. And
according to (13), the number of parameters in trajectory
h∗ ((q0,k,qm,k) , t) is nt = (n+ 1)md where n is the
orders of trajectory, m is the number of the segments
and d is the number of dimension. The operation of the
convex combination in (24) only has some basic operations
including addition and multiplication on the nt-dimension
vectors. Therefore, time complexity of our method is O (nt).

As for solving optimization problem to generate the
optimal trajectory, the time complexity is both related
to the number of iterations and the time complexity
of each iteration‡. Furthermore, the number of itera-
tions is related to the precision ε and the dimension
nt, which could be expressed as k (nt, ε). Therefore, the
time complexity of solving optimization problem is nor-
mally from O

(
k (nt, ε)n

2
t

)
to O

(
k (nt, ε)n

3
t

)
(Wright

(1997)). For example, the best-known interior-point method
algorithm require O (k (nt, ε)) = O

(√
nt log (1/ε)

)
iter-

ations and the complexity of each iteration is roughly
O
(
n3
t

)
. Thus, the complexity of the interior-point method

is O
(
n3.5
t log (1/ε)

)
. Compared with solving optimization

‡There is an another popular approach to analyze the complexity of
optimization. The black-box model is used for the oracle complexity, which
regards queries to the object function as oracles and considers the number
of queries (Bubeck (2015)). However, it is not suitable for comparison with
the convex combination operation.
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problem, our method effectively reduces the computations
by removing the iteration and matrix operations.

Model Predictive Control for Tracking
Trajectories in an Optimal Virtual Tube
The optimal virtual tube is applicable to a wide range of
control methods. Specifically, the optimal virtual tube can
provide the desired trajectories, which makes the swarm
exhibit an effect similar to the formation control by using the
optimal control methods such as Model Predictive Control
(MPC). Or it can also provide desired velocity command
to a swarm based on the control method such as Artificial
Potential Field (APF) and Control Barrier Function (CBF)
for smoother control.

To easily understand and verify the characteristics of the
optimal virtual tube, an application in control for the optimal
virtual tube is provided. A hierarchical approach is employed
to enable swarm robotics to move within the optimal virtual
tube, comprising two layers: optimal virtual tube planning
and trajectory tracking for a robot swarm. First, the optimal
virtual tube planning is proposed in the above section, which
generates optimal trajectories for the swarm. Subsequently,
each robot tracks its own trajectory while avoiding collisions
with other robots. This section first introduces a robot model
and then designs an MPC controller to realize trajectory
tracking and conflict avoidance.

Robot model
The dynamic of a holonomic robot is described as a mass
point model:

ṗi = vi,
v̇i = ui,

(25)

where pi ∈ R2
(
R3
)

and vi ∈ R2
(
R3
)

are the position and
velocity of the ith robot, ui ∈ R2

(
R3
)

is the acceleration
input to the ith robot, i = 1, 2, ...,M .

This system (25) could be expressed as

ẋ = Ax+Bu (26)

where x =
[
pi vi

]T
, u = ui. And the discretized form

is
xk+1 = Akxk +Bkuk (27)

where xk and uk are state and input at the time k,

Ak =

[
I TsI
0 0

]
,Bk =

[
0
TsI

]
.

Dynamic obstacles
As depicted in Fig. 8(a), for a robot i in the swarm, other
robots j is regarded as the dynamic obstacles which are
represented by an ellipse of area Oj,k at time k. The ellipse
of area Oj,k at time k is denoted by

Oj,k = {p| ∥E (p− pj,k)∥ ≤ 1} , k = 0, 1, ..., N, (28)

where pj,k is the position of the center mass of robot j at
time k, E = diag (aj , bj , cj) is an invertible scaling matrix to
bound the boundary of the ellipse. The details of designing E
can be found in Quan et al. (2023a). If the robot i is regarded

Figure 8. Constructing constraints for avoiding collisions. The
purple ellipses Oj,k+n (n = 0, 1, ..., 4) are boundaries of robot
j at time k + n. The blue ellipses Oij,k+n (n = 0, 1, ..., 4) are
obstacle space for robot i at time k + n. (a) The obstacle
constraints for robot i at time k + n. (b) Two situations: collision
and avoidance. The dotted lines are tangent planes Hij,k of
points which are intersections of surfaces of blue ellipses and
connections of points pj,k,pi,k.

as a mass point, the obstacle space Ok of robot i at time k is
expressed as

Ok =
⋃

j∈M,j ̸=i

Oij,k, (29)

where Oij,k = {p|p ∈ Oi,k ⊕Oj,k}, ⊕ is the Minkowski
sum. However, when the robot i does not collide with other
robots, the avoidance constraints

pi,k ∩ Ok = ∅ (30)

are not convex constraints. Thus, half spaces Hij,k, as shown
in Fig. 8(b), are used to construct affine inequality constraints
at each time k. The constraints (30) are transformed into

O = {xk|Hkxk ≤ hk + sk, k = 0, 1, ..., N} , (31)

where xk are states of robot i, Hk, hk are parameters of half
space constraints, sk is a positive relaxation variable to avoid
infeasibility problem in practice.

Optimization problem

The distance to desired state xd,k =
[
pd,k vd,k

]T
and desired input ud,k at time k generated by desired
trajectory h∗ ((q0,qm) , t (s))§ is minimized so that the
robot could track the desired trajectory. Thus, the model

§In practice, the normalized knots {ti} are not suitable for a robot to track
trajectory. To address this issue, the t (s) = vR

um
s is used in the trajectory

h∗ ((q0,qm) , t (s)), where vR is a coefficient related with robots, um ∈
{ui}.
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predictive control problem containing robot model and other
constraints in N + 1 steps is formulated as

min
xk,uk

x̃T
NQx,N x̃N +

N∑
k=0

qs,ks
2
k +

N−1∑
k=0

x̃T
kQx,kx̃k+

ũT
kQu,kũk

s.t.
xk+1 = Akxk +Bkuk

xk ∈ Xt ∩ O,
uk ∈ U ,
k = 0, 1, ..., N,

(32)
where x̃k = xd,k − xk, ũk = ud.k − uk, Qx,k and Qu,k

are positive definite coefficient matrixs, Xt is the feasible
set of xk, U is the feasible set of uk. The feasible set
of vk in Xt satisfies the dynamic constraints of robots.
And the feasible set of pk in Xt is the interior of the
virtual tube int (T ) for the robot within the virtual tube,
and {pk| ∥pk − pd,k∥ ≤ εc ∈ R+} for the robot on the
boundary of the virtual tube ∂T where εc is a feasible
constant.

Simulations and Experiments
This section presents simulations and experiments of the
drone swarm in simple scenarios to demonstrate the
effectiveness of the proposed optimal virtual tube planning
method and the MPC controller. Comparisons with existing
methods including multi-robots formation control (Alonso-
Mora et al. (2017)) and predictive control of aerial swarm
(Soria et al. (2021)) are made in complex scenarios. The
optimal virtual tube planning and trajectory tracking in
simulations are implemented using MATLAB code, and
executed on a PC with Intel Core i7-7700 @ 2.8GHz CPU
and 16G RAM. The safety distance between drones is 1m.
A video of simulations and experiments is available on
https://youtu.be/9pT5SiCsZis.

Simulations in simple scenarios
The results of the optimal virtual tube planning and trajectory
tracking are obtained. To demonstrate the effectiveness of the
proposed method, comparisons between the optimal virtual
tube planning and a traditional planning method are made
in 2-D and 3-D space. The simulation results demonstrate
that the proposed method with a computational complexity
O (nt) produces the same results as the traditional
planning method with a computational complexity from
O
(
k (nt, ε)n

2
t

)
to O

(
k (nt, ε)n

3
t

)
while requiring less

computational effort.

A 2-D optimal virtual tube The optimal virtual tube
planning is first validated in a 2-D map. Two methods were
set with identical terminals C0 and C1, as illustrated in Fig.
9 with dotted lines. Additionally, 11 start positions and 11
goal positions are also the same. For the traditional planning
method, 11 separate optimization problems are required to be
solved, as depicted in Fig. 9(a). In contrast, for the proposed
method, only two trajectories need to be planned: black
curves in Fig. 9(b). The remaining 9 trajectories, depicted
by red curves in Fig. 9(b), are generated by interpolation of
the two planned trajectories. Similarly, 101 trajectories are
generated in the same way, requiring the resolution of only

two optimization problems for two trajectories. Comparing
the traditional method with the proposed method, the errors
were found to be negligible, with magnitudes less than 1.8×
10−14m, as shown in Fig. 10. Thus, this outcome validates
Theorem 1. To demonstrate that the error is independent of
the number of interpolations, the variable vector is analyzed
and the distribution of one parameter in the variable vector is
shown with respect to the number of trajectories obtained by
interpolation in Fig. 11. The results show that the error for
this parameter remains stable as the number of interpolations
increases from 10 to 1000.

In Fig. 9(b), the terminal C0 is represented by a line with
a length of 10m. To validate the controller, 11 drones are
tightly placed in the terminal C0, as shown in Fig. 12. Then,
11 optimal trajectories are assigned to each drone. In the
result of the simulation depicted in Fig. 12, the drone swarm
safely and smoothly arrives at terminal C1. When the drones
are far apart, they follow their own trajectories. However,
when the swarm passes through a narrow cross-section of
the virtual tube in Fig. 12, some drones need to avoid
nearby drones, which may cause them to deviate from their
trajectories (t = 12.96s) but return to planned trajectories
after passing through the narrow space (t = 14.80s). The
minimum distance among drones in the swarm with respect
to the time shown in Fig. 13 is always greater than the safety
distance 1m, which indicates that there is no collision among
drones. To demonstrate the accuracy of drone tracking, errors
between the desired and true trajectory of all drones are
depicted in Fig. 14. Therefore, the simulation demonstrates
that every drone can track the trajectory with high accuracy
while avoiding other drones.

A 3-D optimal virtual tube For a 240m×240m×120m
map, illustrated in Fig. 15(a), the start terminal C0 which
is the convex hull of the set {q0,k} is represented as
a green tetrahedron, while the goal terminal C1 which
is the convex hull of the set {qm,k} is represented as
a red tetrahedron. First, the order pairs (q0,k,qm,k) are
constructed by assigning the red points to green points
respectively. Thus, any start point q0 (θj) in terminal C0 is
expressed as (9), and the map f maps this point to the goal
point qm (θj). Then, a set of order pairs P is constructed
as {(q0 (θj),qm (θj))}. Next, the paths of the order pairs
(q0,k,qm,k) are generated by a tree-based motion planner
called RRT*, as shown in Fig. 15(b). The optimal trajectories
h∗ of the order pairs (q0,k,qm,k) are then obtained by
solving optimization problems, as depicted in Fig. 15(c).
Finally, the optimal virtual tube is generated based on
Theorem 1, which is illustrated in Fig. 15(d).

The drone swarm comprises 84 drones, and their start
and goal points are generated by equispaced interpolation.
Subsequently, the 84 optimal trajectories for all drones are
generated by interpolation between four optimal trajectories.
The error between the trajectories by interpolation and by
solving 84 optimization problems, as shown in Fig. 16,
is negligible. Then, drones could track their trajectories
correspondingly.

The terminals C0 and C1 in Fig. 15(a) are tetrahedra. The
drone swarm with 84 drones is placed in the terminal C0.
There are only 4 trajectories being planned and other 80
trajectories are generated by interpolation. In the simulation
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Figure 9. Comparison between the traditional method and the optimal virtual tube planning. (a) Trajectories planned by 11 different
optimization problems with the traditional method. (b) Trajectories are planned only by two optimization problems with optimal
virtual tube planning. (c) Trajectories planned by 101 different optimization problems with the traditional method. (d) Trajectories are
planned only by two optimization problems with optimal virtual tube planning. The colorful rectangles are obstacles. The blue points
and the red points are start points and goal points. The optimal trajectories planned by optimization problems are depicted in black,
while the optimal trajectories obtained by interpolation are shown in red. The magenta dotted lines denote the terminals.

result, as shown in Fig. 17, the drone swarm arrives at
terminal C1 safely and smoothly. The minimum distance
among drones in the swarm with respect to the time shown
in Fig. 18 is always higher than the safety distance, which
demonstrates no collision among drones.

Comparisons in complex scenarios

In this subsection, we assess the performance of the proposed
method in terms of navigation efficiency in a complex
scenario. We first present several performance metrics and
then compare different methods in complex scenarios.

Performance metrics We use the following performance
metrics to compare our proposed method with other
methods.

• Average time: The average of the arrival times of
robots in the swarm to the goal area. If any robot in
the swarm does not reach the goal area within a certain
time limit, the average time is set to be infinite.

• Arrival rate: The ratio of the number of robots reaching
the goal area to the total number of robots in a certain
time limit.
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Figure 10. Errors between variable vectors by interpolation and optimization program are illustrated using colorful curves
representing the error in each parameter of the variable vectors. (a) The errors of 11 trajectories. (b) The errors of 101 trajectories.
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Figure 11. Error distribution of a parameter in variable vector.

• Average speed: The average speed of the robots
reaching the goal area in a certain time limit. The other
robots not reaching the goal area are not considered.

We run each method 30 times for each scenario to report the
mean for each metric.

Complex scenarios In the complex scenarios, as shown in
Fig. 20, the obstacles are randomly placed and the start area
and goal area are designed as the tetrahedra. We test the
navigation performance of the swarm in scenarios with 10,
20, 30, 40, and 50 random obstacles each. And the numbers
of drones are set as the same.

Let the radius of drones be 0.5m and the maximum speed
of drones be 5m/s. The results of the comparisons among
the three methods are summarized in Table 1. Three typical
scenarios with 10, 30, and 50 random obstacles are shown
in Fig. 21. (i) In an optimal virtual tube, each drone is
assigned to an optimal trajectory considering the kinematics
of the drone. Compared with other methods, the desired

optimal trajectories make drone swarm fly more smoothly
and fast as a group as shown in Fig. 21(b). Constraints
in the obstacle avoidance process are efficiently simplified
as the result of replacing the normal constraints with tube
boundary constraints. Moreover, there is no intersection
between the optimal trajectories for all drones in the optimal
virtual tube so that the collision avoidance among drones
is reduced. Therefore, the optimal virtual tube planning
method is superior to other methods in terms of average
time and average speed in obstacle-dense environments.
Meanwhile, the optimal virtual tube has the same arrival
rate as the formation control due to containing goal path
planning algorithms in both methods to avoid falling into a
deadlock. Compared with the formation control, the optimal
virtual tube achieves fast passing through obstacle-dense
environments by relaxing hard formation constraints. The
swarm will try to maintain the desired formation during the
flight but will deform in a small gap between obstacles. (ii)
As shown in Fig. 21(a), the multi-robot formation control
guarantees that all drones in the swarm arrive at the goal
area while maintaining formation. The global path planner
used in formation control finds several intersecting convex
polytopes to remain the swarm in the free space so that
all drones could reach the goal area, namely, 100% arrival
rate can be achieved. However, the formation constraint also
requires a minimum volume of the convex polytope while
maintaining the formation, resulting in a longer planned path,
compared with other methods. The average time, thus, is
longer than that of our method. (iii) As for the predictive
control of the aerial swarm, it has the minimum arrival
time in obstacle-sparse environments. However, it should be
noted that the average time is set to be infinity in obstacle-
dense environments due to at least one drone does not
reach the goal area in a certain time limit. Without the
goal paths, the predictive control considers the goal point
as the direction of migration that has a better performance
in obstacles-sparse environments. However, in obstacles-
dense environments especially with non-convex obstacles,
the direction of obstacle avoidance may be opposite to the
direction of migration so that the drone is easily blocked
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Figure 12. Simulation results of drone swarm trajectory tracking. The 11 dark blue lines are trajectories for 11 drones, while the red
circles indicate drones.

resulting in the lowest arrival rate, as shown in Fig. 21(c).
And the several non-regular obstacle constraints negatively
affect the average speed.

Summaries In this subsection, we have validated the
superiority of our method in several scenarios with random
obstacles by comparing with the state-of-art methods
including multi-robot formation control and predictive
control of aerial swarm. The metrics of our method including
arrival rate, average time, and average speed are superior to
other methods in obstacle-dense environments. The swarm
could pass through obstacle-dense environments as a group
fast and smoothly.

Experiments

A 30m×10m×8m space for real flight is depicted in Fig.
22. Known obstacles are randomly positioned on the ground
within this area, and a VICON motion capture system is
utilized for drone localization. The drone depicted in Fig. 23,
which has a wheelbase of 350 millimeters, is equipped with
a Jetson NX for onboard computation and utilizes the CUAV
V5 nano Autopilot as its flight controller.

Task settings The designated flight area is partitioned into
three distinct regions, namely the starting area, obstacle area,
and goal area. The primary objective of this task for a swarm
of four drones is to initiate their flight from the starting area,
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The number of obstacles Metrics Methods
Formation control Optimal virtual tube Predictive control

10
Average time (s) 67.8 58.6 53.1
Arrival rate (%) 100 100 100
Average speed (m/s) 4.4556 4.6656 4.516

20
Average time (s) 67.5 59.3 51.5
Arrival rate (%) 100 100 100
Average speed (m/s) 4.5032 4.5992 4.5871

30
Average time (s) 84.6 76.0 ∞
Arrival rate (%) 100 100 35
Average speed (m/s) 4.4792 4.6083 1.9498

40
Average time (s) 63.2 57.0 ∞
Arrival rate (%) 100 100 75
Average speed (m/s) 4.5623 4.8729 3.4681

50
Average time (s) 83.3 65.3 ∞
Arrival rate (%) 100 100 75
Average speed (m/s) 4.6201 4.8541 4.2050

Table 1. Performance metrics for different methods in complex scenarios with a varied number of obstacles.
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Figure 13. Minimum distance among drones. The blue curve is
the minimum distance with respect to time. The red dotted line
is the safety distance among drones.
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Figure 14. Comparison of actual and desired trajectories for
the drone swarm.

navigate through the obstacle area without any collision, and
ultimately reach the goal area.

Optimal virtual tube planning Firstly, the initial positions
q0,k of four drones in the start area must be specified, as
depicted in Fig. 24. It is observed that Drone 1, Drone 2,
and Drone 3 are assigned to q0,1, q0,2, q0,3 respectively
whose convex hull is the terminal C0 in the start area. And the
position q0,4 of Drone 4 is the affine combination of {q0,k}
within the terminal C0, which is expressed as

q0,4 = θ1,4q0,1 + θ2,4q0,2 + θ3,4q0,3,

3∑
k=1

θk,4 = 1. (33)

Similarly, the goal positions qm,k of drones are assigned.
Specially, the goal position qm,4 is expressed as

qm,4 = θ1,4qm,1 + θ2,4qm,2 + θ3,4qm,3,

3∑
k=1

θk,4 = 1.

(34)
Thus, the order pairs (q0,k,qm,k) are obtained.

Subsequently, path-finding is used to generate paths for
the three drones, as depicted in Fig. 25(a). For each
order pair (q0,k,qm,k) (k = 1, 2, 3), there are 8 intermediate
configurations, with m = 7 denoting the final configuration.
To parameterize the trajectories, normalized knots {ti} are
automatically generated. Three optimization problems are
then solved to obtain the optimal trajectories shown in Fig.
25(b), which are formulated as follows:

h∗ ((q0,1,q7,1) , t) = C (t)x1,
h∗ ((q0,2,q7,2) , t) = C (t)x2,
h∗ ((q0,3,q7,3) , t) = C (t)x3.

(35)

Hence, utilizing Theorem 1, the optimal virtual tube
(C0, C1, f ,h∗) is constructed. Since the position q0,4

is located in the terminal C0, the optimal trajectory
h∗ ((q0,4,q7,4) , t) for Drone 4 can be generated by

h∗ ((q0,4,q7,4) , t) = C (t)

3∑
k=1

θk,4xk, (36)

as illustrated in Fig. 25(c). Upon obtaining the four
trajectories for the drones, each drone can track its own
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Figure 15. An optimal virtual tube planning process. (a) Constructing order pairs P . The red points represent the start points, and
the green points represent the goal points. The red trigonal pyramid denotes the start area, and the green trigonal pyramid denotes
the goal area. (b) Finding paths. A path-finding algorithm is used to find paths, shown as green lines. (c) Optimizing trajectories.
Optimal trajectories are generated by solving optimization problems. The colorful lines represent different trajectories for different
pairs. (d) Constructing optimal virtual tube. An optimal virtual tube is generated based on the optimal trajectories, shown as a yellow
area. (e) Generating infinite optimal paths. Other optimal trajectories, denoted by colorful lines, are automatically generated by
interpolation.

trajectory while avoiding the others, as depicted in Fig. 25(d).
As depicted in Fig. 26, the 4th optimal trajectory of Drone
4, is generated by the convex combination of three optimal
trajectories. Subsequently, the drone swarm successfully
tracks trajectories to pass through the environment. The
velocity of randomly selected Drone 2 with respect to time is
shown in Fig. 27, which indicates that the drone swarm can
fast and smoothly pass through the optimal virtual tube.

Summary

The hierarchical approach including the optimal virtual tube
planning method and model predictive control is validated
in simulations and experiments. First, the optimal virtual
tube planning method in 2-D and 3-D space is simulated to
verify the correctness of Theorem 1 by comparing it with the
traditional methods. And the MPC controller is implemented
in the swarm to achieve inter-drone collision avoidance
while the trajectory tracking is achieved. Simulation results
demonstrate that the proposed method of optimal virtual
tube planning is applicable to large-scale swarm movements.

The number of optimization problems is independent of
the number of drones when the start positions of drones
are within the terminal C0. Then, comparisons with other
methods show that our approach implements the fast and
safe movement of the swarm as a group in obstacle-dense
environments. In real flight, the approach is validated by
the swarm with 4 drones passing through an obstacle-dense
environment fast and smoothly.

Conclusion and Future Work

This paper extends the definition of the virtual tube, proposes
optimal virtual tubes, and then analyzes their properties.
One type of virtual tubes, namely the linear virtual tube
with convex hull terminals, is used for constructing an
optimal virtual tube. Then, a planning method for this
linear virtual tube with convex hull terminals is proposed
and its effectiveness is demonstrated in simulations and
experiments. The results in 2-D and 3-D show that the
error between results obtained through our planning method
and optimization is negligible. Therefore, our method can
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Figure 16. Errors between variable vectors of trajectories by
interpolation and optimization problem are illustrated using
colorful lines representing the error in each parameter of the
variable vectors.

Figure 17. Simulation results of drone swarm following in 3-D.
The colorful curves are different trajectories. The colors of
trajectories correspond to varied speeds where the red
represents the high speed and the blue represents the low
speed.
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Figure 18. Minimum distance among drones in 3-D. The red
dotted line is the 1m safety distance.
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Figure 19. Error between desired and actual trajectory for
drone swarm.

Figure 20. Complex scenario with random obstacles. The start
area and goal area are denoted by the red and green
tetrahedra.

efficiently reduce the computation burden and generate
optimal trajectories by convex combinations. An application
of the optimal virtual tube, which uses an MPC controller
for a drone swarm to track the trajectories in simulations
and experiments, shows that the swarm could pass through
obstacle-dense environments fast and safely as a group. In
addition, as shown in Fig. 28, when the start terminal of
the virtual tube is shrunk to a point, it can also be applied
to single-robot trajectory planning, that is, to plan infinite
optimal trajectories for a single robot to reach the target area.

In summary, there are several advantages of our method.
(i) The computational burden involved in trajectory planning
for large swarm robotics is significantly reduced by our
approach, making it practical for real-world applications.
(ii) Swarm robotics are enabled by our method to
navigate through obstacle-dense environments fast and
safely as a cohesive group with desired formations. (iii)
Enhanced scalability for swarm robotics is provided by
our method, enabling the management of larger swarms
while maintaining efficient navigation. On the other hand,
there are also some limitations of our method. (i) The
large swarm robotics may be blocked in extremely cluttered
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Figure 21. Trajectories of swarm robotics for three methods in environments with different numbers of obstacles. The colors of
trajectories correspond to varied speeds where the red represents the high speed and the blue represents the low speed.

Figure 22. Space for real flight.

environments¶. Due to the property of simply connected
cross-sections, all trajectories in the virtual tube are

Figure 23. Drone used for real flight.

homotopic, preventing the swarm from splitting apart to
move around obstacles. This may cause difficulties in

¶The extremely cluttered environment signifies that the gaps or spaces
between obstacles are considerably narrower than the collective volume
occupied by the swarm, compared with the obstacle-dense environment. For
example, the environment where gaps between obstacles can only hold a
single robot to pass through is the extremely cluttered environment.
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Figure 24. Drone positions at the start area.

extremely cluttered environments. When the space of the
gap that the virtual tube passes through is smaller than
the physical volume of the swarm, collision avoidance
procedure is necessary for the swarm to pass through this
gap. However, this may block the swarm. (ii) The swarm is
not allowed dividing into subgroups for a single virtual tube.
Multiple virtual tubes become necessary when the swarm is
partitioned into distinct subgroups for various goal areas or
within extremely cluttered environments. Nonetheless, it is
worth noting that managing multiple virtual tubes may entail
greater complexity and potentially higher costs compared
to individual planning for each robot in extremely cluttered
environments.

To overcome these limitations and make the swarm
autonomous, dependable and affordable (ADA) (Cai et al.
(2021)), further studies are included in the following. (i)
Path planning for the virtual tube will be designed to reduce
the computation time and limit the minimum volume of
the cross-section according to the physical volume of the
swarm. (ii) The design of the map f for ordered pairs needs
to be studied further, encompassing not only the convex
hull terminals but also the general terminals. This map f
will aid in the prevention of path crossings and the efficient
conservation of energy, among other potential objectives. In
cases where paths for different order pairs intersect, it can be
difficult to distinguish between the boundary and interior of
the virtual tube, where the boundary is used to constrain the
swarm within the virtual tube. (iii) Furthermore, a method
of constructing the virtual tube network or multiple virtual
tubes will be explored to allow the swarm to split apart to
move around obstacles.
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Figure 26. Real flight of drone swarm.

0 5 10 15 20 25
Time (s)

-2

-1

0

1

2

3

4

5

V
el

oc
ity

 (
m

/s
)

velocity with axis x
velocity with axis y
velocity with axis z
speed

Figure 27. Velocity of Drone 2.
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A Proofs of Lemma 1 and Lemma 2

A.1 Proof of Lemma 1
Proof. In Step 1, it is proved that x(θ) is feasible. Then the
optimality of x(θ) is shown in Step 2.

Step 1. According to an optimality criterion (Boyd and
Vandenberghe (2004)) for differentiable f0. Let Xθ, Xk

denote feasible sets:

Xθ = {x|Ax = b (θ)} ,Xk = {x|Ax = bk} .

Then for all x ∈ Xk,

∇f0 (xk)
T
(x− xk) ≥ 0, k = 1, 2, ..., q. (37)

Since xk is feasible, each solution x in Equation (37) can
be expressed as the combination of a special solution and
a solution in zero space, such as x = xk + v,v ∈ N (A).
Therefore, this optimal condition (37) is transformed into

∇f0(xk)
T
v ≥ 0, for allv ∈ N (A) . (38)

When b = b(θ), we substitute x (θ) into (5) to obtain

Ax (θ) =

q∑
k=1

θkAxk =

q∑
k=1

θkbk = b (θ) .

Therefore, x(θ) is feasible.
Step 2. For all x ∈ Xθ, it has

∇f0 (x (θ))
T
(x− x (θ)) =

q∑
k=1

θk∇f0 (xk)
T
v. (39)

Combining Equation (39) with (38) derives

∇f0 (x (θ))
T
(x− x (θ)) ≥ 0, for allx ∈ Xθ. (40)

Therefore, x(θ) is optimal. ■

A.2 Proof of Lemma 2
Proof. In Step 1, it is shown that x(θ) is feasible. Then the
optimality of x(θ) is shown in Step 2.

Step 1. According to an optimality criterion (Boyd and
Vandenberghe (2004)) for differentiable f0. Let Xθ, Xk

denote feasible sets,

Xθ = {x|Ax = b(θ), fi (x) ≤ 0, i = 1, ..., nc} ,

Xk = {x|Ax = bk, fi (x) ≤ 0, i = 1, ..., nc} .
Let Vk denote the equivalent feasible set,

Vk = {v|A(xk + v) = bk, fi (xk + v) ≤ 0, i = 1, ..., nc} .

And for all x ∈ Xk,

∇f0 (xk)
T
(x− xk) ≥ 0. (41)

Since xk is feasible, every x has x = xk + v, v ∈ Vk.
Therefore, the optimal condition (41) can be expressed as:

∇f0(xk)
T
v ≥ 0, for all v ∈ Vk. (42)

Let b be b (θ). Substituting x (θ) into constraints yields

Ax (θ) =

q∑
k=1

θkAxk =

q∑
k=1

θkbk = b (θ) ,
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fj (x (θ)) ≤
q∑

k=1

θkfj (xk) ≤ 0, j = 1, ..., nc.

Therefore, x (θ) is feasible.
Step 2. For all x ∈ Xθ, it has equivalent constraint Vθ =∑q
k=1 θkVk. Therefore, for all vθ ∈ Vθ, there exist specific

vk ∈ Vk so that

vθ =

q∑
k=1

θkvk.

In the following, we will show ∇f0(x (θ))
T
vθ ≥ 0.

When q = 2,

∇f0(x (θ))
T
vθ

=
(
θ21 + θ1θ2

)
∇f0(x1)

T
v1 +

(
θ22 + θ1θ2

)
∇f0(x2)

T
v2

+θ1θ2(∇f0 (x1)−∇f0 (x2))
T
(x1 − x2).

(43)
Since f0 is a convex function, there have

f0 (x1) ≥ f0 (x2) +∇f0 (x2)
T
(x1 − x2) , (44a)

f0 (x2) ≥ f0 (x1) +∇f0 (x1)
T
(x2 − x1) . (44b)

Combining (44a) and (44b), we obtain

(∇f0 (x1)−∇f0 (x2))
T
(x1 − x2) ≥ 0. (45)

Combining Equation (43) with (45) results in

∇f0 (x (θ))
T
vθ ≥ 0, for all vθ ∈ Vθ. (46)

Suppose that Equation (46) holds when q = n. Then,
when q = n+ 1, we have

vθ = θn+1vn+1 +
∑n

k=1 θkvk

= θn+1vn+1 +
∑n

k=1 θk
∑n

k=1
θk∑n

k=1 θk
vk

= θn+1vn+1 + (1− θn+1)
∑n

k=1 θ̃kvk,

x (θ) = θn+1xn+1 + (1− θn+1)
∑n

k=1 θ̃kxk.
(47)

We substitute (47) into (46) to obtain that

∇f0(x (θ))
T
vθ = θ2n+1∇f0(xn+1)

T
vn+1

+θn+1 (1− θn+1)∇f0(xn+1)
T
vn+1

+(1− θn+1)
2∇f0

(
n∑

k=1

θ̃kxk

)T n∑
k=1

θ̃kvk

+θn+1 (1− θn+1)∇f0

(
n∑

k=1

θ̃kxk

)T n∑
k=1

θ̃kvk

+θn+1 (1− θn+1)

(
∇f0 (xn+1)−∇f0

(
n∑

k=1

θ̃kxk

))T

·
(
xn+1 −

n∑
k=1

θ̃kxk

)
.

In the same way, we could obtain(
∇f0 (xn+1)−∇f0

(
n∑

k=1

θ̃kxk

))T(
xn+1 −

n∑
k=1

θ̃kxk

)
≥ 0.

It is derived that

∇f0 (x (θ))
T
vθ ≥ 0, for all vθ ∈ Vθ. (48)

Therefore, x(θ) is optimal. ■
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