
1

Formalizing and Evaluating Requirements of
Perception Systems for Automated Vehicles using

Spatio-Temporal Perception Logic
Mohammad Hekmatnejad, Bardh Hoxha, Jyotirmoy V. Deshmukh, Yezhou Yang, and Georgios Fainekos

Abstract—Automated vehicles (AV) heavily depend on ro-
bust perception systems. Current methods for evaluating vision
systems focus mainly on frame-by-frame performance. Such
evaluation methods appear to be inadequate in assessing the
performance of a perception subsystem when used within an
AV. In this paper, we present a logic – referred to as Spatio-
Temporal Perception Logic (STPL) – which utilizes both spatial
and temporal modalities. STPL enables reasoning over perception
data using spatial and temporal operators. One major advantage
of STPL is that it facilitates basic sanity checks on the functional
performance of the perception system, even without ground-truth
data in some cases. We identify a fragment of STPL which is
efficiently monitorable offline in polynomial time. Finally, we
present a range of specifications for AV perception systems to
highlight the types of requirements that can be expressed and
analyzed through offline monitoring with STPL.

Index Terms—Formal Methods, Perception System, Temporal
Logic, Autonomous Driving Systems.

I. INTRODUCTION

The safe operation of automated vehicles (AV), advanced
driver assist systems (ADAS), and mobile robots in general,
fundamentally depends on the correctness and robustness of
the perception system (see discussion in Sec. 3 by Schwarting
et al. (2018)). Faulty perception systems and, consequently,
inaccurate situational awareness can lead to dangerous situ-
ations (Lee (2018); Templeton (2020)). For example, in the
accident in Tempe in 2018 involving an Uber vehicle (Lee
(2018)), different sensors had detected the pedestrian, but the
perception system was not robust enough to assign a single
consistent object class to the pedestrian. Hence, the AV was
not able to predict the future path of the pedestrian. This
accident highlights the importance of identifying the right
questions to ask when evaluating perception systems.

In this paper, we argue that in order to improve AV/ADAS
safety, we need to be able to formally express what should be
the assumptions, performance, and guarantees provided by a
perception system. For instance, the aforementioned accident
highlights the need for predicting the right object class quickly
and robustly. An informal requirement (in natural language)

Mohammad Hekmatnejad was with the School of Computing and Aug-
mented Intelligence (formerly CIDSE), Arizona State University, USA; e-
mail: mhekmatn@asu.edu.

Bardh Hoxha is with the Toyota Research Institute of North America, USA.
Jyotirmoy V. Deshmukh is with the University of Southern California, USA.
Yezhou Yang is with Arizona State University, USA.
Georgios Fainekos is with the Toyota Research Institute of North America,

USA; the work was performed while he was with the Arizona State University,
USA.

expressing such a perception system performance expectation
could be:

Req. 1: Whenever a new object is detected, then it is
assigned a class within 1 sec, after which the object does
not change class until it disappears.

Such requirements are not only needed for deployed safety
critical systems, but also for existing training and evaluation
data sets. For example, a sequence of six image frames from
the KITTI dataset is shown in Figure 1. All detected objects
with bounding boxes are labeled with class names such as Car,
Pedestrian, and Cyclist in those frames. Nonetheless, in Fig.
1(a), a cyclist that was detected in frame f = 0 and existed in
frame f = 1 changed its class to pedestrian in frame f = 2,
which is a violation of Req. 1. If such a requirement is too
strict for the perception system, then it could be relaxed by
requiring that the object is properly classified in at least 4
out of 5 frames (or any other desired frequency). The first
challenge for an automated testing & verification framework
is to be able to formally (i.e., mathematically) represent such
high-level requirements.

Formalizing the expectations on the performance of the
perception system has several benefits. First and foremost,
such formal requirements can help us evaluate AV/ADAS
perception systems beyond what existing metrics used in
vision and object tracking can achieve (Yurtsever et al. (2020);
Richter et al. (2017)). In particular, evaluation metrics used
for image classification algorithms are typically operating on
a frame-by-frame basis ignoring cross-frame relations and
dependencies. Although tracking algorithms can detect mis-
classifications, they cannot assess the frequency and severity
of them, or more complex spatio-temporal failure conditions.

Second, formal specifications enable automated search-
based testing (e.g., see Abbas et al. (2017); Tuncali et al.
(2020); Dreossi et al. (2019b,a); Corso et al. (2020); Gladisch
et al. (2019); DeCastro et al. (2020)) and monitoring (e.g.,
see Rizaldi et al. (2017); Hekmatnejad et al. (2019)) for
AV/ADAS. Requirements are necessary in testing in order to
express the conditions (assumptions) under which system level
violations are meaningful. Similarly, logical requirements are
necessary in monitoring since without formal requirements, it
is very hard to concisely capture the rules of the road. We en-
vision that a formal specification language which specifically
targets perception systems will enable similar innovations in
testing and monitoring AV/ADAS.

Third, formal specifications on the perception system can
also function as a requirements language between original

ar
X

iv
:2

20
6.

14
37

2v
2

 [
cs

.R
O

]
 2

1
N

ov
 2

02
3

2

(a) Frame f = 0 and τ(0) = 0

(b) Frame f = 1 and τ(1) = 0.04

(c) Frame f = 2 and τ(2) = 0.08

(d) Frame f = 3 and τ(3) = 0.12

(e) Frame f = 4 and τ(4) = 0.16

(f) Frame f = 5 and τ(5) = 0.2

Fig. 1: A series of image frames taken from KITTI (Geiger
et al. (2013a)) augmented with the data about classified data-
objects using SqueezeDet (Wu et al. (2017)). Here, τ is a
function that maps each frame f to its captured time.

equipment manufacturers (OEM) and suppliers. As a simple
example for the need of a requirements language consider
the most basic question: should the image classifier correctly
classify all objects within the sensing range of the lidar, or
all objects of at least x pixels in diameter? Again, without
requirements, any system behavior is acceptable and, most
importantly, not testable/verifiable!

Finally, using a formal specification language, we can search
offline perception datasets (see Kim et al. (2022); Anderson
et al. (2023); Yadav and Curry (2019)) to find scenarios
that violate the requirements in order to reproduce them in
simulation, e.g., Bashetty et al. (2020), or to assess the real-
to-sim gap in testing, e.g., Fremont et al. (2020).

Even though there is a large body of literature on the
application of formal languages and methods to AV/ADAS
(see the survey by Mehdipour et al. (2023)), the prior works
have certain limitations when perception systems are specifi-
cally targeted. Works like Tuncali et al. (2020) and Dreossi
et al. (2019a) demonstrated the importance of testing system
level requirements for an AV when the AV contains machine
learning enabled perception components. Both works use
Signal Temporal Logic (STL) (Maler and Nickovic (2004)) for
expressing requirements on the performance of the AV/ADAS.
However, STL cannot directly express requirements on the
performance of the perception system itself.

This limitation was identified by Dokhanchi et al. (2018a)
who developed a new logic – Timed Quality Temporal Logic
(TQTL) – which can directly express requirements for image
classification algorithms like SqueezeDet by Wu et al. (2017).
Namely, TQTL was designed to enable reasoning over objects
classified in video frames and their attributes. For example,
TQTL can formalize Req. 1 that an object should not change
classes. However, TQTL does not support spatial or topolog-
ical reasoning over the objects or regions in a scene. This
is a major limitation since TQTL cannot express requirements
such as occlusion, overlap, and other spatial relations for basic
sanity checks, e.g., that objects do not “teleport” from frame
to frame, or that “every 3D bounding box contains at least 1
lidar point”.

In this paper, we introduce the Spatio-Temporal Perception
Logic (STPL) to address the aforementioned limitations. We
combine TQTL with the spatial logic S4u1 to produce a more
expressive logic specifically focused on perception systems.
STPL supports quantification among objects or regions in an
image, and time variables for referring to specific points in
time. It also enables both 2D and 3D spatial reasoning by
expressing relations between objects across time. For example
with STPL, we can express requirements on the rate that
bounding boxes should overlap:

Req. 2: The frames per second of the camera is high enough
so that for all detected cars, their bounding boxes self-overlap
for at least 3 frames and for at least 10% of the area.
which is satisfiable for the image frames in Fig. 1.

Beyond expressing requirements on the functional perfor-
mance of perception systems, STPL can be used to compare

1For a historical introduction to S4u see van Benthem and Bezhanishvili
(2007) and Kontchakov et al. (2007).

3

different machine learning algorithms on the same perception
data. For example, STPL could assess how rain removal
algorithms (see the work by Sun et al. (2019)) improve the
performance of the object detection algorithms over video
streams. Along these lines, Mallick et al. (2023) proposed to
use TQTL for differential testing between two different models
for pedestrian detection in extreme weather conditions. As
another example, STPL could evaluate the impact of a point
cloud clustering algorithm on a prediction algorithm (see the
works by Campbell et al. (2016) and Qin et al. (2016)).

Since STPL is a very expressive formal language
(TQTL+S4u), it is not a surprise that both the offline and
online monitoring problems can be computationally expensive.
The main challenge in designing a requirements language
for perception systems is to find the right balance between
expressivity and computability.

STPL borrows time variables and freeze time quantifiers
from the Timed Propositional Temporal Logic (TPTL) by Alur
and Henzinger (1994). Unfortunately, the time complexity of
monitoring TPTL requirements is PSPACE-hard (see Markey
and Raskin (2006)). Even though the syntax and semantics
of STPL that we introduce in Section IV allow arbitrary
use of time variables in the formulas, in practice, in our
implementation, we focus on TPTL fragments which are
computable in polynomial time (see Dokhanchi et al. (2016);
Elgyutt et al. (2018); Ghorbel and Prabhu (2022)).

Another source of computational complexity in STPL is
the use of object/region quantification and set operations, i.e.,
intersection, complementation, and union. Even our limited
use of quantifiers (∃, ∀) over finite sets (i.e., objects in a
frame) introduces a combinatorial component to our moni-
toring algorithms. This is a well known problem in first-order
temporal logics that deal with data (e.g., see Basin et al. (2015)
and Havelund et al. (2020)). In addition, the computational
complexity of checking whether sets, which correspond to
objects/regions, satisfy an arbitrary S4u formula depends on
the set representation and the dimensionality of the space (e.g.,
polytopes Baotic (2009), orthogonal polyhedra Bournez et al.
(1999), quadtrees or octrees Aluru (2018), etc).

In this paper, we introduce an offline monitoring algorithm
for STPL in Section VI, and We study its computational
complexity in Section VI-E. In Section VI-F, we identify a
fragment which can remain efficiently computable. Irrespec-
tive of the computational complexity of the full logic, in
practice, our experimental results in Section VII indicate that
we can monitor many complex specifications within practically
relevant times.

All in all, to the best of our knowledge, this is the first
time that a formal language is specifically designed to address
the problem of functional correctness of perception systems
within the context of autonomous/automated mobile systems.
Our goal is to design a logic that can express functional
correctness requirements on perception systems while under-
standing what is the computational complexity of monitoring
such requirements in practice. As a bi-product, we develop
a logical framework that can be used to compare different
perception algorithms beyond the standard metrics.

In summary, the contributions of this paper are:

1) We introduce a new logic – Spatio-Temporal Percep-
tion Logic (STPL) – that combines quantification and
functions over perception data, reasoning over timing of
events, and set based operations for spatial reasoning
(Section IV).

2) We present examples of STPL specifications of in-
creasing complexity as a tutorial (Section V), and we
demonstrate that STPL can find label inconsistencies in
publicly available AV datasets (see Figure 7).

3) We introduce an offline monitoring algorithm (Section
VI), and we propose to use different set representations
for efficient computations (Section VI-E).

4) We study the time complexity of the offline monitoring
problem for STPL formulas, and we propose fragments
for which the monitoring problem is computable in
polynomial time (Section VI-E).

5) We experimentally study offline monitoring runtimes for
a range of specifications and present the trade offs in
using the different STPL operators (Section VII).

6) We have released a publicly available open-source tool-
box (STPL (2023)) for offline monitoring of STPL spec-
ifications over perception datasets. The toolbox allows
for easy integration of new user-defined functions over
time and object variables, and new data structures for
set representation.

One common challenge with any formal language is its
accessibility to users with limited experience in formal re-
quirements. In order to remove such barriers, Anderson et al.
(2022) developed PyFoReL which is a domain specific lan-
guage (DSL) for STPL inspired by Python and integrated
with Visual Studio Code. In addition, our publicly available
toolbox contains all the examples and case studies presented
in this paper which can be used as a tutorial by users without
prior experience in formal languages. One can further envision
integration with Large Language Models for direct use of
natural language for requirement elicitation similar to the work
by Pan et al. (2023); Fuggitti and Chakraborti (2023); Cosler
et al. (2023) for signal or linear temporal logic.

Finally, even though the examples in the paper focus on
perception datasets from AV/ADAS applications (i.e., Mo-
tional (2019); Geiger et al. (2013b)), STPL can be useful in
other applications as well. One such example could be in
robot manipulation problems where mission requirements are
already described in temporal logic (e.g., see He et al. (2018)
and He et al. (2015)).

II. PRELIMINARIES

We start by introducing definitions that are used throughout
the paper for representing classified data generated by percep-
tion subsystems. In the following, an ego car (or the Vehicle
Under Test – VUT) is a vehicle equipped with perception
systems and other automated decision making software com-
ponents, but not necessarily a fully automated vehicle (e.g.,
SAE automation level 4 or 5).

A. Data-object Stream
A data-object stream D is a sequence of data-objects

representing objects in the ego vehicle’s environment. Such

4

data objects could be the output of the perception system, or
ground truth data, or even a combination of these. The ground
truth can be useful to analyze the precision of the output of
a perception system. That is, given both the output of the
perception system and the ground truth, it is possible to write
requirements on how much, how frequently, and under what
conditions the perception system is allowed to deviate from
the ground truth. In all the examples and case studies that
follow, we assume that we are either given the output of the
perception system, or the ground truth – but not both. In fact,
we treat ground truth data as the output of a perception system
in order to demonstrate our framework. Interestingly, in this
way, we also discover inconsistencies in the labels of training
data sets for AV/ADAS (see Fig. 7).

We refer to each dataset in the sequence as a frame. In
each frame, objects are classified and stored in a data-object.
Data-objects are abstract because in the absence of a standard
classification format, the output of different perception systems
are not necessarily compatible with each other. To simplify the
presentation, we will also refer to the order of each frame in
the data stream as a frame number. For each frame i, D(i)
is the set of data-objects for frame i, where i is the order of
the frame in the data-object stream D. We assume that a data
stream is provided by a perception system, in which a function
R retrieves data-attributes for an identified object. A data-
attribute is a property of an object such as class, probability,
geometric characteristics, etc. Some examples could be:
● by R(D(i), id).Class, we refer to the class of an object

identified by id in the i’th frame,
● by R(D(i), id).P rob, we refer to the probability that

an object identified by id in the i’th frame is correctly
classified,

● by R(D(i), id).PC, we refer to the point clouds associ-
ated with an object identified by id in the i’th frame.

The function OI returns the set of identifiers for a given set
of data-objects. By OI(D(i)), we refer to all the identifiers
that are assigned to the data-objects in the i’th frame. Another
important attribute of each frame is its time stamp, i.e., when
this frame was captured in physical time. We represent this
attribute for the frame i by τ(i).

Example 2.1: Assume that data-object stream D is repre-
sented in Figure 1, then the below equalities hold:
● OI(D(1)) = {1,2,3}
● R(D(1),2).Class = cyclist
● R(D(1),2).P rob = 0.57
● τ(1) = 0.04
Finally, we remark that in offline monitoring, which is the

application that we consider in this paper, the data stream D
is finite. We use the notation ∣D∣ to indicate the total number
of frames in the data stream.

B. Topological Spaces

Throughout the paper, we will be using N to refer to the set
of natural numbers and R to real numbers. In the following, for
completeness, we present some definitions and notation related
to topological spaces and the S4u logic which are adopted

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center CES PROPRIETARY

𝕌
X2

X1

X

Y

TM(X)

BM(X)
RM(X)

LM(X)

Fig. 2: Let X = X1 ∪ X2 with CX = X . Left: the whole
rectangle represents the universe (colored gray) U, the regions
X1 and X2 without the dashed-lines (colored light blue)
represent the interior IX of the set X , the dashed lines
(colored darker blue) represent the boundary CX − IX of
the set X , and the remaining region represents U−X . Right:
the tightest bounding box around set X that includes the four
unique elements of the set as in Def. 2.4.

from Gabelaia et al. (2005) and Kontchakov et al. (2007).
Later, we build our MTL × S4u definition on this notation.

Definition 2.1 (Topological Space): A topological space is a
pair T = ⟨U, I⟩ in which U is the universe of the space, and I is
the interior operator on U. The universe is a nonempty set, and
I satisfies the standard Kuratowski axioms where X,Y ⊆ U:

I(X ∩ Y) = IX ∩ IY, IX= IIX, IX ⊆X, and IU = U.

We denote C (closure) as the dual operator to I, such that
CX = U − I(U −X) for every X ⊆ U. Below we list some
remarks related to the above definitions:
● IX is the interior of a set X ,
● CX is the closure of a set X ,
● X is called open if X = IX ,
● X is called closed if X =CX ,
● If X is an open set then its complement X = U−X is a

closed set and vice versa,
● For any set X ⊆ U, its boundary is defined as CX − IX

(X and its complement have the same boundary),

C. Image Space Notation and Definitions

Even though our work is general and applies to arbitrary
finite dimensional spaces, our main focus is on 2D and 3D
spaces as encountered in perception systems in robotics. In
the following, the discussion focuses on 2D image spaces with
the usual pixel coordinate systems. In Figure 2 left, a closed
set is illustrated as the light blue region, while its boundary is
a dashed-line in darker blue.

Definition 2.2 (Totally-ordered Topological Space): A
Totally-ordered (TO) topological space T is a topological
space ⟨U, I⟩ that is equipped with a total ordering relation
⪯ ⊆ U ×U. That is, ∀p1, p2 ∈ U either p1 ⪯ p2 or p2 ⪯ p1.

Definition 2.3 (Total order in 2D spaces): In a two-
dimensional (2D) TO topological space T, p = (x, y) ∈ U
denotes its coordinates in the x−y Cartesian coordinate system,
where x, y ∈ R≥0. For p1 = (x1, y1), p2 = (x2, y2) the ordering
relation is defined as:

(x1, y1) ⪯2D (x2, y2) ⇐⇒ y1 < y2 ∨ (y1 = y2 ∧ x1 ≤ x2).

5

Note that even though Def. 2.3 considers the coordinates
over the reals, i.e., R2

≥0, in practice, the image space is defined
over the integers, i.e., N2 (pixel coordinates). The topological
space in Figure 2 consists of the universe which is all the
pixels that belong to the whole 2D gray-rectangle and the
closure operator that for any set of regions includes their edges.
Assume that the left-upper corner of the image is the origin
of the x − y Cartesian coordinate system, and the x − axis
and the y −axis are along the width and height of the image,
respectively. This is the standard coordinate system in image
spaces. Then, any pixel that belongs to the universe has an
order with respect to the other pixels. For example, consider
X = X1 ∪X2 in Fig. 2, then all the pixels that belong to X2

have higher orders than those in X1.
Definition 2.4 (Spatial Ordering Functions): Given a closed

set U ⊆ U from a 2D TO topological space T = ⟨U, I⟩,
we define the top-most, bottom-most, left-most, right-most,
and center-point functions by TM,BM, LM,RM.CT ∶ 2U → U,
respectively such that

TM(U) = (xp, yp) ∈ U s.t.
∀s = (xs, ys) ∈ U, yp < ys ∨ (yp = ys ∧ xp ≥ xs)

BM(U) = (xp, yp) ∈ U s.t.
∀s = (xs, ys) ∈ U, yp > ys ∨ (yp = ys ∧ xp ≤ xs)

LM(U) = (xp, yp) ∈ U s.t.
∀s = (xs, ys) ∈ U, xp < xs ∨ (xp = xs ∧ yp ≤ ys)

RM(U) = (xp, yp) ∈ U s.t.
∀s = (xs, ys) ∈ U, xp > xs ∨ (xp = xs ∧ yp ≥ ys)

and,CT(U) is the center point of the rectangle defined by
LM(U), RM(U), BM(U), and TM(U) points.

In Def. 2.4, the notation 2A for a set A denotes the set of
all subsets of A, i.e., the powerset of A. In Figure 2, we have
identified the left-most, right-most, bottom-most, and right-
most elements of the set X using the LM(X), TM(X), RM(X),
and BM(X) function definitions. The right rectangle in Figure
2 is the tightest bounding box for the set X , and it can be
derived using only those four points.

D. Spatio-Temporal Logic MTL×S4u
Next, we introduce the logic MTL×S4u over discrete-time

semantics. MTL×S4u is a combination of Metric Temporal
Logic (MTL) (Koymans (1990)) with the S4u logic of topo-
logical spaces. From another perspective, it is an extension
to the logic PTL×S4u (see Gabelaia et al. (2005)) by adding
time/frame intervals into the spatio-temporal operators. Even
though MTL×S4u is a new logic introduced in this paper, we
present it in the preliminaries section in order to gradually
introduce notation and concepts needed for STPL. In this
paper, we use the Backus-Naur form (BNF) (see Perugini
(2021)) which is standard for providing the grammar when
we define the syntax of formal and programming languages.

In the following, we provide the formal definitions for
MTL×S4u. Henceforth, the symbol p refers to a spatial
proposition, i.e., it represents a set in the topological space.

In addition, the symbol T represents spatial expressions that
evaluate to subsets of the topological space. We refer to T as
a spatial term.

Definition 2.5 (Syntax of MTL×S4u as a temporal logic of
topological spaces): Let Π be a finite set of spatial proposi-
tions over T = ⟨U, I⟩, then a formula φ of MTL × S4u can
be defined as follows:

T ∶∶= p ∣ T ∣ T ⊓ T ∣ I T ∣ T Us
I T ∣◯s

I T
φ ∶∶= ∃ T ∣ ¬φ ∣ φ ∧ φ ∣ φ UI φ ∣◯I φ

where p ∈ Π is a spatial proposition.
In the above definition, the grammar for MTL×S4u consists

of two sets of production rules T and φ. The spatial production
rule T in Def. 2.5 contains a mix of spatial (̄ ,⊓, I) and
spatio-temporal (Us

I ,◯s
I) operators. Here, T is the spatial

complement of the spatial term T , ⊓ is the spatial intersection
operator, and I is the spatial interior operator. The Us

I and
◯s
I operators are the spatio-temporal until and the spatio-

temporal next, respectively. Here, the subscript I denotes a
non-empty interval of R≥0 and captures any timing constraints
for the operators. When timing constraints are not needed,
then we can set I = [0,+∞), or remove the subscript I from
the notation. Intuitively, the spatio-temporal until and next
operators introduce spatial operations over time. For instance,
the expression p1Us

[1,3]p2 computes the union over all sets
resulting by the intersection of each occurrence of set p2 at
some time in the interval [1,3] with all the sets p1 up to that
time (see Def. 2.6 for more details). We refer to the spatio-
temporal operators Us

I and ◯s
I , as Spatio-Temporal Evolving

(STE) operators. Also, we call a formula STE if it has STE
operators in it. Similarly, we call a spatio-temporal formula
Spatial Purely Evolving (SPE) if there is no STE operator in
the formula. For more information refer to the (OC) and (PC)
definitions by Gabelaia et al. (2005).

In the production rule φ in Def. 2.5, the spatially exists ∃

checks if the spatial term following it evaluates to a non-empty
set. That is, ∃ T checks if there exist some points in the set
represented by T . In φ, except for the spatially exists ∃ , the
other operators are the same as in MTL. That is ¬, ∧, UI
and ◯I are the negation, conjunction, timed until, and next
time operators, respectively (see the review by Bartocci et al.
(2010)). As an example of a simple formula in MTL×S4u, the
expression ∃ p1 U[0.5,2.5] ∃ p2 is true if the set represented by
p2 is nonempty at some point in time between [0.5,2.5] and
until then the set represented by p1 is non-empty.

In the following, we define the bounded discrete-time
semantics for MTL×S4u. The definition uses the spatial
semantics of S4u while extending the temporal fragment
(PTL) with time constraints over finite traces as in MTL. The
semantics are defined over a data-object stream D. However,
for consistency with PTL×S4u, we will assume the existence
of a spatio-temporal valuation function U ∶ Π × N → 2U that
associates with every proposition p and time frame i a subset
of the topological space. In the definition of STPL in Section
IV, the sets U(p, i) will correspond to identified objects in
the environment, i.e., bounding boxes, bounding rectangles,
or even regions in semantic segmentation. In this section, the
the sets U(p, i) are just arbitrary subsets of the universe.

6

Definition 2.6 (Quantified Topological Temporal Model
and Valuation): A Quantified Topological Temporal Model
(QTTM) is a tuple of the form Q = ⟨T,U,D, τ⟩, where
T = ⟨U, I⟩ is a TO topological space, U is a spatio-temporal
valuation function, D is a data-object stream of size ∣D∣,
τ ∶ N → R+ maps frame numbers to their physical times,
and I is any non-empty interval of R≥0 over time.

Given a model Q, the valuation function V(p,D, i, τ)
represents a subset of the topological space T that is occupied
by spatial proposition p ∈ Π in the i’th frame (e.g., τ(i) is the
captured time). The valuation V is inductively extended to any
formulas that can be produced by the production rule T in the
Def. 2.5 as follows:

V(p,D, i, τ) ∶= U(p, i)
V(T1 Us

I T2,D, i, τ) ∶= ⋃
i′∈{j∈N ∣ τ(j)∈(τ(i)+I)}

(V(T2,D, i′, τ) ∩ ⋂
i≤i′′<i′

V(T1,D, i′′, τ))

V(◯s
I T ,D, i, τ) ∶=

{ V(T ,D, i + 1, τ) if i + 1< ∣D∣, τ(i + 1) ∈ (τ(i) + I)
∅ otherwise (i.e., an empty set)

V(T1 ⊓ T2,D, i, τ) ∶=V(T1,D, i, τ) ∩ V(T2,D, i, τ)
V(T ,D, i, τ) ∶=V(T ,D, i, τ)
V(I T ,D, i, τ) ∶= I V(T ,D, i, τ)

where t + I = {t′′ ∣ ∃t′ ∈ I . t′′ = t + t′}.
The valuation function V definition is straightforward for

the spatial operations, i.e., ,̄⊓, I; V is just applying the
corresponding set theoretic operations, i.e., ,̄∩, I. The more
interesting cases are the spatio-temporal (Us

I ,◯s
I) operators.

The spatial-next operator ◯s
IT first checks if the next sample

(i+1) satisfies the timing constraints, i.e., τ(i+1) ∈ (τ(i)+I),
and if so, it returns the set that T represents at time (i + 1).
The spatial until is a little bit more involved and it is better
explained through derived operators. In the following, we
define some of the commonly used derived operators:
● The spatially for all operator ∀ checks if the spatial

expression T represents a set which is the same as the
universe: ∀ T ≡ ¬ ∃ T ,

● The spatial union operator: T1 ⊔ T2 ≡ T1 ⊓ T2,
● The spatial closure operator: C T ≡ I T ,
● The spatial eventually operator: ◇s

I T ≡ U Us
I T ,

● The spatial always operator: ◻s
I T ≡◇s

I T .
Notice that in the definition of the spatial eventually operator,
we used the universe set U as a terminal even though the
syntax in Def. 2.5 does not explicitly allow for that. The
universe (U) and the empty set (∅) can be defined as derived
spatial expressions, i.e., U = p⊔ p̄ and ∅ = p⊓ p̄. Therefore, if
we replace U in the definition of V for Us

I , we can observe
that ◇s

I corresponds to the spatial union of the expression T
over the time interval I.

Example 2.2: A simple example is presented in Fig. 3
for a data-stream with 4 frames. The spatial expression ◇sp
corresponds to the union of all the sets represented by p over
time (gray set in Fig. 3) since there are no timing constraints.

x

y i = 0
i = 1

i = 2

i = 3

x

y

Fig. 3: Left: the evolution of a spatial proposition p over four
frames with τ(0) = 0, τ(1) = 0.4, τ(0) = 0.8, τ(0) = 1.2;
Right: Gray: the set resulting from ◇sp, and Black: the set
resulting from ◻s

[0,1]p.

On the other hand, the spatial expression ◻s
[0,1] p corresponds

to the intersection of the sets of p at frames i = 0,1,2 since
the last frame (i = 3) with τ(3) = 1.2 does not satisfy the
timing constraints [0,1]. The set ◻s

[0,1] p is represented as a
black box in Fig. 3.

Given the definition of the valuation function V for QTTM,
we can proceed to define the semantics of MTL×S4u. Recall
that the valuation of spatial expressions returns sets from some
topological space. On the other hand, MTL×S4u formulas
are interpreted over Boolean values True (⊺) / False (�), i.e.,
the formulas are satisfied or are not satisfied. To evaluate
MTL×S4u formulas, we use a valuation function [[φ]] which
takes as an input an MTL×S4u formula φ, a data stream D,
a sample i, and a timestamp function τ , and returns True (⊺)
or False (�).

Definition 2.7 (MTL×S4u semantics): Given an MTL×S4u
formula φ, a QTTM Q = ⟨T,U,D, τ⟩, and a frame i ∈ N, the
semantics of φ are defined recursively as follows:

[[∃ T]](D, i, τ) ∶= { ⊺ if V(T ,D, i, τ) /= ∅
� otherwise (i.e., an empty set)

[[¬ϕ]](D, i, τ) ∶= ¬[[ϕ]](D, i, τ)
[[ϕ1 ∧ ϕ2]](D, i, τ) ∶= [[ϕ1]](D, i, τ) ∧ [[ϕ2]](D, i, τ)
[[ϕ1 UI ϕ2]](D, i, τ) ∶=

⋁
j∈{k∈N ∣ τ(k)∈(τ(i)+I)}

([[ϕ2]](D, j, τ) ∧ ⋀
i≤k<j
[[ϕ1]](D, k, τ))

[[◯Iϕ]](D, i, τ) ∶=

{ [[ϕ]](D, i + 1, τ) if i + 1< ∣D∣, τ(i + 1) ∈ (τ(i) + I)
� otherwise

Notice that the definitions of the propositional and temporal
operators closely match the definitions of the spatial and
spatio-temporal operators where set operations (union and
intersection) have been replaced by Boolean operations (dis-
junction and conjunction). Therefore, similar to the spatial ex-
pressions, we can define disjunction as φ1∨φ2 ≡ ¬(¬φ1∧¬φ2),
eventually as ◇Iφ ≡ ⊺UI φ, and always as ◻Iφ ≡ ¬◇I ¬φ.
Finally, the constant true is defined as ⊺ ≡ ∀ U.

Remark 2.8: In some specifications, it is easier to formalize
a requirement using frame intervals and reason over frames
rather than time intervals. To highlight this option, we add
a tilde on top of the spatio-temporal operators with frame
intervals, i.e., in Ũs

I , ◯̃s
I , ŨI , and ◯̃I the interval I is over

7

frame interval. When reasoning over frames, τ(i) equals i,
i.e., τ is the identity function.

Example 2.3: Revisiting Example 2.2, we can now introduce
and explain some MTL×S4u formulas. The formulas ∃ ◇s p
and ∃ ◻s

[0,1] p evaluate to true since the sets ◇sp and ◻s
[0,1] p

are not empty. On the other hand, the formula ∃ ◻s p is false
because the set that corresponds to ◻s p is empty (in Fig. 3
there is no common subset for p across all frames). Notice
that the MTL×S4u formula ◻s ∃ p is true since the set p is not
empty at every frame. Finally, considering time stamps versus
frames, the set ◻s

[0,1] p, which considers timing constraints, is
the same as the set ◻̃s

[0,2] p, which considers frame constraints.

III. PROBLEM DEFINITION

Given a data stream D as defined in II-A, the goal of this
paper is to:

1) formulate object properties in such a data stream, and
2) monitor satisfiability of formulas over the stream.

A. Assumptions

Given a data stream D, we assume that a tracking perception
algorithm uniquely assigns identifiers to classified objects for
all the frames (see the work by Gordon et al. (2018)).

In order to relax this assumption, we need to enable proba-
bilistic reasoning within the spatio-temporal framework, which
is out of the scope of this work. However, our framework could
do some basic sanity checks about the relative positioning of
the objects during a series of frames to detect misidentified
objects.

This assumption is only needed for some certain types of
requirements and for the rest it can be lifted.

B. Overall Solution

We define syntax and semantics of Spatio-Temporal Percep-
tion Logic (STPL) over sets of points in topological space, and
quantifiers over objects. We build a monitoring algorithm over
TPTL, MTL, and S4u and show the practicality, expressivity
and efficiency of the algorithm by presenting examples. This
is a powerful language and monitoring algorithm with many
applications for verification and testing of complex perception
systems. Our proposed language and its monitoring algorithm
are different than prior works as we discussed in the intro-
duction (see also related works in Section VIII), and briefly
summarized below. STPL

● reasons over spatial and temporal properties of objects
through functions and relations;

● extends the reasoning of prior set-based logics by equip-
ping them with efficient offline monitoring algorithm
tools;

● focuses on expressing functional requirements for percep-
tion systems; and

● is supported by open source monitoring tools.

IV. SPATIO-TEMPORAL PERCEPTION LOGIC

In this section, we present the syntax and semantics of
the Spatio-Temporal Perception Logic (STPL). Our proposed
logic evaluates the geometric relations of objects in a data
stream and their evolution over time. Theoretically, any set-
based topological space can be used in our logic. However, we
focus on topological spaces and geometric operations relevant
to applications related to perception.

Next, we are going to define and interpret STPL formulas
over data-object streams. We define our topological space
to be axis aligned rectangles in 2D images, or arbitrary
polyhedral sets (potentially boxes) in 3D environments. An
axis aligned rectangle can be represented by a set of two points
that correspond to two non-adjacent corners of the rectangle
with four sides each parallel to an axis. A polyhedral is a
set formed by the intersection of a finite number of closed
half spaces. We assume that this information is contained
in the perception datastream as annotations or attributes for
each object or region identified by the perception system. For
instance, R(D(i), id).CS may store a rectangular axis-aligned
convex-polygon that is associated with an object id in the
i’th frame. Alternatively, R(D(i), id).CS may store a convex-
polyhedron. Without loss of generality, we will typically use
definitions for 2D spaces (image spaces), and later in the case
study, we will use bounding volumes (3D spaces).

A. STPL Syntax

The syntax of STPL is based on the syntax of TQTL
(Dokhanchi et al. (2018a)) and S4u (Gabelaia et al. (2005)).

In the context of STPL, the spatial propositions are the
symbols that correspond to objects or regions in the perception
dataset. We use the function symbol σ to map these objects
to their corresponding sets. Hence, the syntax of spatial terms
T in STPL is the same as in MTL×S4u, but the function
symbols σ replace the spatial propositions p. In addition,
we add grammar support under production rule A for area
computation for spatial terms. Area computation is needed in
standard performance metrics for 2D vision algorithms, for
example to compute union over intersection (UoI). In the same
spirit, we can also support volume computation for spatial
terms in 3D spaces.

For many requirements, we also need to access other
attributes of the objects in the datastream, e.g., classes, prob-
abilities, estimated velocities, or even compute some basic
functions on object attributes, e.g., distances between bounding
boxes. For usability, we define some basic functions to retrieve
data and compute the desired properties. The functions which
are currently supported are: object class (C), class membership
probability (P), latitude (Lat) and longitude (Lon) coordinates
of a point (CRT), area of bounding box (Area), and distance
(Dist) between two points (CRT). We provide the syntax for
using such functions under the production rule Θ.

This set of functions is sufficient to demonstrate the gener-
ality of our logic. However, a more general approach would be
to define arithmetic expressions over user definable functions
which can retrieve any desired data from the datastream. Such

8

functionality support is going to be among the goals of future
software releases.

Definition 4.1 (STPL Syntax over Discrete-Time Signals):
Let Vt and Vo be sets of time variables and object variables,
respectively. Assume that x ∈ Vt is a time variable, id ∈ Vo
is an object variable, I is any non-empty interval of R≥0
over time. The syntax for Spatio-Temporal Perception Logic
(STPL) formulas is provided by the following grammar
starting from the production rule ϕ:

The syntax for spatial terms is:

T ∶∶= σ(id) ∣ T ∣ T ⊓ T ∣ I T ∣ T Us
I T ∣◯s

I T

The syntax for the functions that compute the area of a spatial
term are:

A ∶∶= Area(T) ∼ r ∣ Area(T) ∼ r ×Area(T)

The atomic propositions that represent coordinates for a
bounding box are:

CRT ∶∶= LM ∣ RM ∣ TM ∣ BM ∣ CT

The syntax for spatio-temporal functions are:

Θ ∶∶=Dist(id,CRT, id,CRT) ∼ r ∣
Lat(id,CRT) ∼ r ∣ Lon(id,CRT) ∼ r ∣
Lat(id,CRT) ∼ r ×Lat(id,CRT) ∣
Lon(id,CRT) ∼ r ×Lon(id,CRT) ∣
Lat(id,CRT) ∼ r ×Lon(id,CRT) ∣
Area(id) ∼ r ∣ Area(id) ∼ r ×Area(id) ∣
C(id) = c ∣ C(id) = C(id) ∣
P (id) ∼ a ∣ P (id) ∼ r × P (id)

The syntax for the STPL formula is:

ϕ ∶∶= ⊺ ∣ x.ϕ ∣ ∃id@x.ϕ ∣ ∃id.ϕ ∣ id = id ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣
τ − x ∼ t ∣ F − x ∼ n ∣ F − x% c ∼ n ∣
◯ϕ ∣ ϕ U ϕ ∣ � ϕ ∣ ϕ S ϕ ∣
Θ ∣ ∃ T ∣ A

where ⊺ is the symbol for true, ∼∈ {<,>,≥,≤,=}, and r ∈
R≥0, c ∈ N, and a ∈ [0,1] are constants. Here, σ ∶ Vo → Π is a
function that maps object variables into spatial propositions.

The syntax of STPL is substantially different from the
syntax of MTL×S4u. In the STPL syntax, x.ϕ stands for
the freeze time quantifier. When this expression is evaluated,
the corresponding frame i is stored in the clock variable x.
The prefix ∃id in the rule ∃id@x.φ or the rule ∃id.φ is the
Existential object quantifier. When the formula ∃id@x.φ(id)
is evaluated, then it is satisfied (true) when there is an object id
at frame/time x that makes φ(id) true. The formula ∃id.φ(id)
is also searching for an object that makes φ(id) true, but in
this case we do not need to refer to the time that the object
was selected. Similarly, the Universal object quantifier is
defined as ∀id@x.ϕ ≡ ¬(∃id@x.¬ϕ) or ∀id.ϕ ≡ ¬(∃id.¬ϕ).
The universal quantifier requires that all the objects in a
frame satisfy the subformula φ. Notice that the syntax of
STPL cannot enforce that all uses of time or object variables

are bound, i.e., declared before use. In practice, such errors
can be detected after the parse tree of the formula has been
constructed through a simple tree traversal.

In contrast to MTL×S4u, the timing constraints in STPL
are not annotating the temporal operators, but rather they are
explicitly stated as arithmetic expressions in the formulas. For
example, consider the specification “There must exist a car
now which will have class membership probability greater
than 90% within 1.5 sec”. With timing constraints annotating
the temporal operators, the requirement would be:

∃id.(C(id) = car ∧◇[0,1.5]P (id) > 0.9).
Since STPL uses time variables and arithmetic expressions
to express timing constraints, the same requirement may be
written as:

∃id@x.(C(id) = car ∧◇(τ − x ≤ 1.5 ∧ P (id) > 0.9)).
The use of time variables enables the requirements engineer
to define more complex timing requirements and to refer
to objects at specific instances in time. The time, frame,
and object constraints of STPL formulas are in the form of
τ − x > r, F − x > n, and id = id, respectively. We denote
τ − x and F − x to refer to the elapsed time and frames,
respectively. Note that we use the same variable to refer to the
freeze time and frame, but distinguish their type based on how
they are used in the constraints (τ represents the current time,
and F represents the current frame number). The operator %
in the expression F − x % c ∼ n is used to specify periodic
constraints. For reasoning over the past time, we added �
(previous) and S (since) operators as duality for the ◯ and U
operators, respectively.

For STPL formulas ψ, ϕ, we define ψ ∧ ϕ ≡ ¬(¬ψ ∨ ¬ϕ),
� ≡ ¬⊺ (False), ψ → ϕ ≡ ¬ψ ∨ ϕ (ψ Implies ϕ), ϕ R ψ ≡
¬(¬ϕ U ¬ψ) (ϕ releases ψ), ϕ R ψ ≡ ϕ R (ϕ ∨ ψ) (ϕ non-
strictly releases ψ), ◇ψ ≡ ⊺ U ψ (Eventually ψ), ◻ψ ≡ ¬◇¬ψ
(Always ψ) using syntactic manipulation.

Remark 4.2: In principle, in STPL, it is easy to add multiple
classes and classification probabilities for each object. We
would simply need to replace in Def. 4.1 the rules

C(id) = c ∣ P (id) ∼ a ∣ P (id) ∼ r × P (id)
in Θ with

c ∈ C(id) ∣ P (id, c) ∼ a ∣ P (id, c) ∼ a × P (id, c).
where C(id) is now a function which returns a set of classes
for the object. In order to write meaningful requirements over
multiple classes, we would also need to introduce quantifiers
over arbitrary sets. That is, we should be able to write a
formula such as “there exists at least one class with probability
greater than a”: ∃c ∈ C(Id) . P (Id, c) > a. This is within the
scope of First Order Temporal Logics (e.g., see Basin et al.
(2015) and Havelund et al. (2020)) and we plan to consider
such additions in the future.

In general, the monitoring problem for STPL formulas
is PSPACE-hard (since STPL subsumes Timed Proposition
Temporal Logic (TPTL); see Markey and Raskin (2006)).
However, there exists a fragment of STPL which is efficiently
monitorable (in polynomial time).

9

Definition 4.3 (Almost Arbitrarily Nested Formula): An
Almost Arbitrarily Nested (AAN) formula is an STPL formula
in which no time or object variables are used in the scope of
another freeze time operator.
For example,

φ1 = x1. ◻ (F − x1 > 2 ∧ x2.◇ (τ − x2 < 0.01))
φ2 = ◻∃Id1@x.◇ (◻ ∀Id2.(Id1 = Id2) ∧ (τ − x > 2))

are AAN formulas. In formula φ1, the time variable x1 is not
used in the scope of the x2 freeze time operator. In formula φ2,
there is no nested quantifier/freeze time operators. Therefore,
they are both ANN STPL formulas. On the other hand,

φ3 =x1.(◻ x2.◇ (F − x1 > 2 ∧ τ − x2 < 0.01))
φ4 = ◻ ∀Id1@x1.◯∀Id2@x2.◯◻∀Id3.
(P (Id3) > P (Id1) ∧ P (Id3) < P (Id2))

are not AAN formulas. That is because in φ3, the variable x1
is used in the scope of the nested quantifier operator “x2.”. In
φ4, the Id1 is used in the scope of the second nested quantifier
operator “x2.”.

The authors in Dokhanchi et al. (2016) presented an efficient
monitoring algorithm for TPTL formulas with an arbitrary
number of independent time variables. Our definition of AAN
formulas is adopted from their definition of encapsulated
TPTL formulas that are TPTL formulas with only independent
time variables in them.

Remark 4.4: Our definition of AAN formulas is syntactical.
However, there can be syntactically AAN formulas that can be
rewritten as semantically equivalent non-AAN formulas. There
are other ways to define formulas that are not syntactically
ANN but semantically equivalent to AAN formulas. The pre-
cise mathematical definitions of these formulas is beyond the
scope of this paper. In the following, we will show examples
of AAN formulas and some other formulas that are equivalent
to AAN formulas. For example,

φ5 = ◻ x. ◻ y.((τ − x > 1) Ô⇒ ◻(τ − y > 2))

which is not an AAN formula can be rewritten as AAN

φ5
′ = ◻ x. ◻ ((τ − x > 1) Ô⇒ y. ◻ (τ − y > 2)).

On the other hand, although

φ6 = ◻ ∀id1@x. ◻ ∀id2@y.
((C(id1) = C(id2)) Ô⇒ (P (id2) > 0.9)

is not an AAN formula, our monitoring tool supports it since
the clock variables are not used. That is, it can be written as:

φ′6 = ◻ ∀id1@x. ◻ ∀id2.
((C(id1) = C(id2)) Ô⇒ (P (id2) > 0.9))

B. STPL Semantics

Before getting into the semantics of the STPL, we represent
spatio-temporal function definitions that are used in production
rules A, and Θ. The definitions of these functions are indepen-
dent of the semantics of the STPL language, and therefore, we
can extend them to increase the expressivity of the language.

1) Spatio-Temporal Functions: We define functions f as
follows:

● Class of an object:
fC(id,D, i, ϵ, ζ) returns the R (D (k) , ϵ(id)) .Class
as the class of the ϵ(id) object in the k’th frame, where
k ← ζ(id) if ζ(id) is specified, and k ← i otherwise.

● Probability of a classified object:
fP (id,D, i, ϵ, ζ) returns the R(D(k) , ϵ(id)) .P rob
as the probability of the ϵ(id) object in the k’th frame,
where k ← ζ(id) if ζ(id) is specified, and k ← i
otherwise.

● Distance between two points from two different objects:
fDist(idj, idk,CRT1,CRT2,D, i, ϵ, ζ) computes and re-
turns the Euclidean Distance between the CRT1 point of
the ϵ(idj) object and CRT2 point of the ϵ(idk) object
in the k1’th and k2’th frames, respectively; and we have
k1 ← ζ(idj) if ζ(idj) is specified, and k1 ← i otherwise,
and k2 ← ζ(idk) if ζ(idk) is specified, and k2 ← i
otherwise.

● Lateral distance of a point that belongs to an object in a
coordinate system (for image space, see section II-C):
fLAT (id,CRT,D, i, ϵ, ζ) computes and returns the Lat-
eral Distance of the CRT point of the ϵ(id) object in the
k’th frame from the Longitudinal axis, where k ← ζ(id)
if ζ(id) is specified, and k ← i otherwise.

● Longitudinal distance of a point that belongs to an object
in a coordinate system (for image space, see section II-C):
fLON(id,CRT,D, i, ϵ, ζ) computes and returns the Lon-
gitudinal Distance of the CRT point of the ϵ(id) object in
the k’th frame from the Lateral axis, where k ← ζ(id) if
ζ(id) is specified, and k ← i otherwise.

● Area of a region:
fArea(T) computes and returns the area of an spatial
term T if T is specified, otherwise it returns unspecified.

In the above functions, we use identifier variables to refer to
objects in a data stream. Some parameters are point specifiers
to choose a single point from all the points that belong
to an object. The only function with a spatial term as an
argument is the area function that calculates the area of a 2D
bounding box. Similar reasoning for a 3D geometric shape
(polyhedra in general) using a volume function is possible.
This is supported by our open-source software STPL (2023),
but we don’t provide formal definitions here for the brevity of
the presentation.

All the functions have D, i, ϵ and ζ as arguments. Functions
need the data stream D to access and retrieve perception
data, the frame number i to access a specific frame in time
(“current” frame), a data structure (typically referred to as
“environment”) ϵ to store and retrieve the values assigned
to variables (both for time and objects), and, finally, a data
structure ζ to acquire the time/frame at which an object was
selected through quantification. The data structure ζ is used
to distinguish whether the time that an object was selected is
needed or not (see semantics for ∃ in Section IV-B2). For
example, if we would like to store in the object variable Id1,
the value k as the identifier of an object in a frame, and store
in the frame variable x, the value i as the frozen frame, then

10

we would write

ϵ[Id1 ← k] and ϵ[x← i]

respectively. Similarly, we write

ζ[Id1 ← i]

to denote that we store the frame number i when the object
variable Id1 was set. The initial data structures (environments)
ϵ0 and ζ0 are empty. That is, no information is stored about
any object identifier of the clock variable. The environment ζ
is needed for the comparison of objects, probabilities, etc over
different points in time, and environment ϵ is needed for the
comparison of time/frame constraints and quantification of the
object variables.

Note that the above functions are application dependent,
and we can add to this list based on future needs. In the next
section, when we introduce an example of 3D space reasoning,
we present a new spatio-temporal function.

Definition 4.5 (Semantics of STPL): Consider M = ⟨T, V,
D, ϵ, ζ, τ⟩ as a topological temporal model in which T is
a topological space, V is a spatial valuation function, D is a
data-object stream, ζ ∶ Vo → N ∪ {�} is an object evaluating
function, and ϵ ∶ Vt ∪ Vo → N is a frame-evaluating function.
Here, i ∈ N is the index of current frame, τ ∶ N → R+ is a
mapping function from frame numbers to their physical times,
ϕ,ϕ1, ϕ2 ∈ STPL (i.e., formulas belong to the language of the
grammar of STPL), Vt is a set of time variables, and Vo is a
set of object variables. The quality value of formula ϕ with
respect to D at frame i with evaluations ϵ and ζ is recursively
assigned as follows:

2) Semantics of Temporal Operators:

[[⊺]](D, i, ϵ, ζ, τ) ∶= ⊺
[[x.ϕ]](D, i, ϵ, ζ, τ) ∶= [[ϕ]](D, i, ϵ[x⇐ i], ζ, τ)
[[∃id@x.ϕ]](D, i, ϵ, ζ, τ) ∶=

⋁
k∈OI(D(i))

([[ϕ]](D, i, ϵ[id⇐ k, x⇐ i], ζ[id⇐ i]))

[[∃id.ϕ]](D, i, ϵ, ζ, τ) ∶=

⋁
k∈OI(D(i))

([[ϕ]](D, i, ϵ[id⇐ k], ζ[id⇐ �]))

[[τ − x ∼ n]](D, i, ϵ, ζ, τ) ∶= { ⊺ if τ(i) − τ(x) ∼ n
� otherwise

[[F − x ∼ n]](D, i, ϵ, ζ, τ) ∶= { ⊺ if i − x ∼ n
� otherwise

[[F − x% c ∼ n]](D, i, ϵ, ζ, τ) ∶= { ⊺ if (i − x)% c ∼ n
� otherwise

[[idj = idk]](D, i, ϵ, ζ, τ) ∶= {
⊺ if ϵ(idj) = ϵ(idk)
� otherwise

[[¬ϕ]](D, i, ϵ, ζ, τ) ∶= ¬[[ϕ]](D, i, ϵ, ζ, τ)
[[ϕ1 ∨ ϕ2]](D, i, ϵ, ζ, τ) ∶= [[ϕ1]](D, i, ϵ, ζ, τ) ∨

[[ϕ2]](D, i, ϵ, ζ, τ)

[[ϕ1 U ϕ2]](D, i, ϵ, ζ, τ) ∶=

⋁
i≤j
([[ϕ2]](D, j, ϵ, ζ, τ) ∧ ⋀

i≤k<j
[[ϕ1]](D, k, ϵ, ζ, τ))

[[◯ϕ]](D, i, ϵ, ζ, τ) ∶= [[ϕ]](D, i + 1, ϵ, ζ, τ)

3) Semantics of Past-Time Operators: Many applications
require requirements that refer to past time. Past time operators
are particularly relevant to online monitoring algorithms.

[[ϕ1 S ϕ2]](D, i, ϵ, ζ, τ) ∶=

⋁
i≥j
([[ϕ2]](D, j, ϵ, ζ, τ) ∧ ⋀

j<k≤i
[[ϕ1]](D, k, ϵ, ζ, τ))

[[� ϕ]](D, i, ϵ, ζ, τ) ∶= [[ϕ]](D, i − 1, ϵ, ζ, τ)

4) Semantics of Spatio-Temporal Operators: Now we de-
fine the operators and functions that are needed for capturing
the requirements that reason over different properties of data
objects in a data stream. Note that in some of the following
definitions, we used V to avoid rewriting the semantics we
built up upon the syntax and semantics as part of MTL×S4u
logic. The semantics of STPL will be based on the valuation
function V of MTL × S4u with the change that V will now
also accept the environments ϵ and ζ, and we extend the
definition of V over the spatial term σ(id). That is, we replace
in the semantics of the MTL × S4u the valuation of spatial
propositions p with:

V(σ(id),D, i, τ, ϵ, ζ) = U(ϵ(id), k),

where k ← ζ(id) if ζ(id) is specified, and k ← i otherwise.
The semantics for the rest of the spatial operators are:

[[∃ T]](D, i, ϵ, ζ, τ) ∶=V(∃ T ,D, i, τ, ϵ, ζ)
[[Area(T) ∼ r]](D, i, ϵ, ζ, τ) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� if fArea(V(T ,D, i, τ, ϵ, ζ)) is unspecified
⊺ if fArea(V(T ,D, i, τ, ϵ, ζ)) ∼ r
� otherwise

[[C(id) = r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fC(id,D, i, ϵ, ζ)) = r
� otherwise∗

[[P (id) ∼ r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fP (id,D, i, ϵ, ζ)) ∼ r
� otherwise∗

[[Dist(idj ,CRT1, idk,CRT2) ∼ r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fDist(idj , idk,CRT1,CRT2,D, i, ϵ, ζ)) ∼ r
� otherwise∗

[[LAT (id,CRT) ∼ r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fLAT (id,CRT,D, i, ϵ, ζ)) ∼ r
� otherwise∗

[[LON(id,CRT) ∼ r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fLON(id,CRT,D, i, ϵ, ζ)) ∼ r
� otherwise∗

where ∼∈ {>,<,=,≥,≤}, and “otherwise∗” has a higher priority
to become true in the if statements if ϵ(id) /∈ OI(D(i)).

11

Note that we omit the semantics for some of the spatio-
temporal operators in the production rule Θ except the ones
stated above due to their similarity to the semantics of the
presented operators.

Definition 4.6 (STPL Satisfiability): We say that the data
stream D satisfies the STPL formula φ under the current
environment iff [[φ]](D,0, ϵ0, ζ0, τ) = ⊺, which is equivalent
to denote (D,0, ϵ0, ζ0, τ) ⊧ φ.
Note that by ϵ0 and ζ0, we reset all the variables to be empty.
This enables the use of the presented proof system of TPTL
by Dokhanchi et al. (2016).

Example 4.1 (Evaluating a simple spatio-temporal STPL
formula): A sample data stream of three frames time stamped
at times t0, t1, and t2 is illustrated in Figure 4. We labeled
rectangular geometric shapes in each frame by σ(1) and σ(2),
and will refer to them by p1 and p2, respectively. Object p1
does not change its geometric shape in all the frames, but
p2 evolves in each frame. The location of the p1 is the same
in the first two frames, but in the third frame, it moves to
the bottom-right corner of the frame. The location of the p2
changes constantly in each frame, that is, it first horizontally
expands and moves to the bottom-left of the frame, and then
expands horizontally and vertically and moves to the right-
center of the frame. We are going to compute and evaluate
the formula

ϕ ∶= ∃id1.∃id2. ∃ (σ(id1) Us
[0,2] σ(id2))

according to the semantics in Def. 2.6 and Def. 4.5. An
English statement equivalent to the above formula is:

“There exist two objects σ(id1) and σ(id2) in the first
frame such that, σ(id2) is non-empty in the first frame; or,
for the next two frames, its intersection with σ(id1) in the
previous frames is non-empty (given that σ(id1) does not
change)”.

In Figure 5, we demonstrate the result of evaluating the
subformula σ(id1) Us

[0,2] σ(id2) for i = 1 to 3, where we
assign to id1 ← 1 and id2 ← 2 from the four possible
assignments. We used p1 and p2 to refer to σ(id1 ← 1) and
σ(id2 ← 2) in each frame, respectively. That is, p1 at t = 2 is
equivalent to U(ϵ(1),2). The evaluation of STPL formula ϕ
starts with the following equation

[[∃ σ(id1) Us
[0,2] σ(id2)]](D,0, ϵ0, ζ0, τ) ∶=

V(∃ p1 Us
[0,2] p2,D,0, τ, ϵ, ζ)

where, ϵ0[id1 ← 1, id2 ← 2] and ζ0[id1 ← �, id2 ← �].
The evaluating of the until subformula is computed as below

V(p1 Us
[0,2] p2,D,0, τ, ϵ, ζ) ∶=

⋃
t′∈{0,1,2}

(V(p2,D, t′, τ, ϵ, ζ)∩

⋂
0≤t′′<t′

V(p1,D, t′′, τ, ϵ, ζ)),

where τ(0) = 0, τ(1) = 1, and τ(2) = 2.. The above formula
is equal to the below disjunctive normal formula as shown in
Fig. 5

V(p2,D,0, τ, ϵ, ζ)
∪

(V(p2,D,1, τ, ϵ, ζ) ∩ V(p1,D,0, τ, ϵ, ζ))
∪

(V(p2,D,2, τ, ϵ, ζ) ∩ V(p1,D,0, τ, ϵ, ζ) ∩
V(p1,D,1, τ, ϵ, ζ)).

The final evaluation of the above formula is depicted as hashed
regions s0, s1 and s2 in Fig. 6. The union of the regions is a
non-empty set, hence, the spatial existential operator returns
true.

C. MTL/STL Equivalences in STPL

Below, we represent some rewriting rules to translate time
interval based formulas in MTL/STL to their equivalent STPL
formulas.

ϕ1 U[a,b] ϕ2 ≡ x.ϕ1 U((a ≤ τ − x ≤ b) ∧ ϕ2)
ϕ1 R[a,b] ϕ2 ≡ x.ϕ1R((a ≤ τ − x ≤ b) Ô⇒ ϕ2)

◇[a,b] ϕ ≡ x.⊺U((a ≤ τ − x ≤ b) ∧ ϕ)
◇[a,b] ϕ ≡ x.◇ ((a ≤ τ − x ≤ b) ∧ ϕ)
◻[a,b] ϕ ≡ x.�R((a ≤ τ − x ≤ b) Ô⇒ ϕ)
◻[a,b] ϕ ≡ x. ◻ ((a ≤ τ − x ≤ b) Ô⇒ ϕ)

In the next section, we use specific examples of percep-
tion systems to explain each aspect of the logic individually
gradually and later combined.

V. CASE STUDY

In this section, we are going to gradually demonstrate the
expressivity of the STPL language using a sample perception
data stream corresponding to the image frames in Figure
1. There are six frames in this case-study that are taken
from the KITTI2 databases (Geiger et al. (2013a)). We adopt
a perception system based on SqueezeDet by which some
desirable classes of objects in image frames are recognized.
The perception classifies an object as one class from three
desirable classes Car, Cyclist, and Pedestrian. It also assigns to
each detected object a confidence level (normalized between 0
and 1), and a bounding box that surrounds the object. We also
manually associate a unique object identifier to the detected
objects of each frame. The data is available to the object data
stream function D as represented in Table II, and visualized
in the frames in Fig. 1.

In the following sections, we focus on STPL specifications
that use quantifiers, and spatial and temporal operators. We
present the formalization of 15 requirements in total. A
highlight is the STPL formula (16) that formalizes Req. 15
and its utilization on the KITTI dataset in our monitoring tool.
Our monitoring tool was able to detect some mismatches in the
labeled data. All of the STPL formulas and their monitoring
result except the last two are distributed with our monitoring
framework (STPL (2023)).

Note that in the rest of the sections, when we translate
a requirement into STPL, we will refer to the following
assumptions. These assumptions enable us to write smaller

2http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/

12

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center CES PROPRIETARY

Supported Operators

1

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑝2

𝑉𝑄(𝑝1, 𝒟, 0, 𝜏, 𝜖, 𝜁)

𝑉𝑄(𝑝2, 𝒟, 1, 𝜏, 𝜖, 𝜁)
𝑉𝑄(𝑝2, 𝒟, 2, 𝜏, 𝜖, 𝜁)𝑉 𝑄

𝑝
1
,𝒟

,0
,𝜏
,𝜖
,𝜁

≡

𝑉 𝑄
(𝑝

1
,𝒟

,1
,𝜏
,𝜖
,𝜁
)

𝑝1
𝑝2

𝑝2

𝑝1

𝑝1

𝑉𝑄(𝑝2, 𝒟, 0, 𝜏, 𝜖, 𝜁)

𝑖 = 0 𝑖 = 1 𝑖 = 2
Fig. 4: An object-data stream D of three frames illustrated in three time steps t0, t1, and t2. In each frame, there are two
rectangular geometric shapes denoted by identifiers 1 and 2. The lighter blue colored rectangle and the darker blue colored
rectangle are identified by p1 and p2, respectively.

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center CES PROPRIETARY

Supported Operators

1

𝑡 = 0 𝑡 = 1 𝑡 = 2

𝑝2

𝑉𝑄(𝑝1, 𝒟, 0, 𝜏, 𝜖, 𝜁)

𝑉𝑄(𝑝2, 𝒟, 1, 𝜏, 𝜖, 𝜁)
𝑉𝑄(𝑝2, 𝒟, 2, 𝜏, 𝜖, 𝜁)𝑉 𝑄
𝑝
1
,𝒟

,0
,𝜏
,𝜖
,𝜁

≡

𝑉 𝑄
(𝑝

1
,𝒟

,1
,𝜏
,𝜖
,𝜁
)

𝑝1
𝑝2

𝑝2

𝑝1

𝑝1

𝑉𝑄(𝑝2, 𝒟, 0, 𝜏, 𝜖, 𝜁)

𝑖 = 0 𝑖 = 1 𝑖 = 2

Fig. 5: The step-by-step computation of V(p1 Us
[0,2]p2,D,0, τ, ϵ) for i = 0 to 2. Here, p1 and p2 are the same as in Fig. 4.

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center CES PROPRIETARY

Supported Operators

2

𝑠𝑠0
𝑠𝑠1 𝑠𝑠2

Fig. 6: s2 = V(p2,D,0, τ, ϵ), s0 = V(p2,D,1, τ, ϵ) ∩
V(p1,D,0, τ, ϵ), s1 = V(p2,D,2, τ, ϵ) ∩ V(p1,D,0, τ, ϵ) ∩
V(p1,D,1, τ, ϵ), V(p1 Us

[0,2]p2,D,0, τ, ϵ) = s0 ∪ s1 ∪ s2.

formulas. They can be relaxed at the expense of more complex
requirements.

Assumption 5.1: There are different perception modules
to detect, track and classify the objects. That is, the object
detector detects objects, and the object tracker assigns unique
identifiers to the detected objects, and the classifier assigns
classes to the detected objects.

Assumption 5.2: Object detector always detects objects.
Assumption 5.3: Each detected and tracked object has a

unique id.
The tracker can check the detected objects through the se-
quence of frames but it does not imply that the classifier
will assign the same class to them in all the frames. If we
cannot assume the existence of unique IDs on the same object,
then we can still write requirements in a more complicated

form to achieve more conservative results. For example, in
the requirements that follow (Req 3-18), whenever we check
for the presence of the same ID, e.g.,

ψ= = ◻∀Idi.◇∃Idj .(Idi = Idj Ô⇒ φ),

then this precondition can be replaced with one where we
quantify over all objects that intersect with the original object
in the previous frame, e.g.,

ψ⊓ = ◻ ∀Idi@x.◇∃Idj .

((∃ (σ(Idi) ⊓ σ(Idj)) ∧C(Idi) = C(Idj)) Ô⇒ φ).

Notice the increase in complexity between the two formulas.
In ψ=, we just need to store the ID of the object in Idi and
just check if in the future there is another object (Idj) with
the same ID. In ψ⊓, we need to store the time x that we
observed the object Idi, so that we can retrieve its bounded
box and check for intersection with future objects along with
checking the agreement of classes. Clearly, ψ= and ψ⊓ are not
syntactically or semantically equivalent. Nevertheless, under
the assumption of sufficient sampling rate, then the objects
that satisfy ψ= will also satisfy ψ⊓. There exist other possible
formulas under which we can relax the requirement for per-
sistent unique IDs. However, in the following presentation, we
will always be using the assumptions that result in the simplest
STPL formulas.

For the requirements that are formalized into STPL in the
rest of this section, we used our STPL monitoring tool to
apply the data stream in Table II to each STPL formula, and
presented the result in Table I.

13

TABLE I: The result of monitoring STPL formula φ on the
data stream D in Table II. [[φ]] abbreviates [[φ]](D,0,ϵ0,ζ0,τ).
* We used the dataset “0018” from KITTI tracking benchmark
for evaluating formula in Eq.(16).

φ [[φ]] φ [[φ]] φ [[φ]] φ [[φ]]
Eq.(1) ⊺ Eq.(2) � Eq.(3) � Eq.(4) �

Eq.(5) � Eq.(9) ⊺ Eq.(10) ⊺ Eq.(11) �

Eq.(12) ⊺ Eq.(13) � Eq.(14) � Eq.(15) �

Eq.(16) ⊺ *Eq.(16) � Eq.(17) ⊺ Eq.(18) ⊺

A. Object Quantifier Examples

First, we present a requirement that enables search through
a data stream to find a frame in which there are at least two
unique objects from the same class.

Req. 3: There is at least one frame in which at least two
unique objects are from the same class.
STPL (using all the assumptions):

ϕ3 =◇∃Id1.∃Id2.(Id1 ≠ Id2 ∧C(Id1) = C(Id2)) (1)

In the above formula, the object variable constraint requires a
unique assignment of object identifiers to the variables Id1
and Id2. Additionally, the equivalence proposition is valid
only if the classes of a unique pair of objects are equal. Also,
the existential quantifier requires one assignment of objects
to the object variables that satisfy its following subformula.
Lastly, the eventually operator requires one frame in which its
following subformula is satisfiable.

Checking the Formula on Real Data:: From the data
stream D in Table II, and as depicted in the frames in
Fig. 1, the frame numbers 0, 2 and 3 have two pedestrians,
and frame number 3 has two cars in them. Therefore, the
formula is satisfiable for the given object data stream and
we can denote it as (D,0, ϵ0, ζ0, τ) ⊧ ϕ3. Note that we
can push the ◇ operator after the existential quantifier (i.e.,
◇∃Id1.∃Id2.ϕ ≡ ∃Id1.∃Id2.◇ ϕ) and still expect the same
result.

B. Examples with Time Constraints

Next, we formalize a requirement in which we should use
nested quantifiers and time/frame constraints in our formaliza-
tion.

Req. 4: Always, for all objects in each frame, their class
probability must not decrease with a factor greater than 0.1 in
the next two seconds, unless Frame Per Second (FPS) drops
below 10 during the first second.
STPL (using Assumptions 5.1-5.3):

ϕ4 = ◻ ∀Id1@x.(ψId1,x
41 Ô⇒ ψx

42) (2)

where

ψId1,x
41 ≡◇∃Id2.(Id1 = Id2 ∧ τ − x ≤ 2 ∧

P (Id2) < 0.9 × P (Id1))
ψx
42 ≡◯◇ (Ratio(F − x, τ − x) < 10 ∧ τ − x ≤ 1)

Notice that the function “Ratio(F−x, τ−x)” is not directly
allowed by the syntax of STPL (Def. 4.1). However, the
arithmetic expression uses a single freeze time variable x and,
hence, its evaluation is no more computationally expensive
than of the individual expressions “(F − x)” and “(τ − x)”.
We remark that the function Ratio introduces the possibility
of division by zero. In the formula ψx

42, the issue is avoided
in the specification by using the next time operator (◯).
However, an implementation of the function Ratio should
handle the possibility of division by zero. The subformula
ψId1,x
41 searches for a vehicle for which within 2 sec in the

future, i.e., (τ − x ≤ 2), its classification probability drops
below the desired threshold. Notice that with the expression
P (Id2) < 0.9 × P (Id1), we compare probabilities for the
same object across different points in time. The subformula
ψx
42 checks whether within 1 sec in the future the FPS drops

below 10. The implication ψId1,x
41 Ô⇒ ψx

42 enforces that if
there is a vehicle for which the classification probability drops,
then at the same time the FPS should be low.

Checking the Formula on Real Data:: Except for the
object with ID = 2 in the first frame in Table II, the rest
of the objects satisfy the requirement. Therefore, the whole
requirement is not satisfiable, that is (D,0, ϵ0, ζ0, τ) /⊧ ϕ.
Formula (2) is too strict. That is, it checks the maximum
allowed drop in probabilities for a classified object in all
the frames rather than for the newly classified objects. For
example, assume a sample data stream of size three with only
one object classified as a car with the probabilities 0.7, 0.9,
0.64 during the first, second, and third frames, respectively.
Formula (2) without the always operator is not satisfiable
starting from the second frame (more than 28% probability
decrement), but satisfiable for the first and the last frame.

We can relax Formula (2) by adding a precondition to
the antecedent of the implication to only consider the newly
detected objects. The relaxed requirement is possible by using
the weak previous operator �w. The weak previous operator
does not become unsatisfiable in the first frame on a data
stream where there is no previous frame. Similarly, by ◯w, we
denote the weak next operator. It is similar to the next operator,
but it does not become unsatisfiable in the last frame on a
finite data stream. For more information about weak temporal
operators and past LTL see the works by Eisner and Fisman
(2006) and Cimatti et al. (2004), respectively.

The following formula is a revised version of Formula (2):
STPL (using Assumptions 5.1-5.3):

ϕ′4 = ◻∀Id1@x.(ψId1

40 ⇒ (ψ
Id1,x
41 ⇒ ψx

42)) (3)

where

ψId1

40 ≡ �w∀Id3.(Id1 ≠ Id3)

In formula ϕ′4, the antecedent subformula ψId1

40 checks if
an object did not exist in the previous frame. Therefore, the
consequent ψId1,x

41 Ô⇒ ψx
42 is only checked for new objects

that appear in the frame for the first time.
Req. 5: Always, each object in a frame must exist in the

next 2 frames during 1 second.

14

STPL (using Assumption 5.2-5.3):

ϕ5 = ◻∀Id1@x.((�w ∀Id3.(Id1 ≠ Id3))⇒

◻((τ − x ≤ 1 ∧ F − x ≤ 2)⇒

∃Id2.(Id1 = Id2)))

(4)

Similar to the previous example, the equalities that need
to hold are in the consequent of the second implication, but
its antecedent is a conjunction of time and frame constraints.
In this formula, there is a freeze time variable after the first
quantifier operator, which is followed by an always operator.
Thus, the constraints apply to the elapsed time and frames
between the freeze time operator and the second always
operator. Therefore, for any three consecutive frames, if the
last two frames are within 1 second of the first frame, then all
the objects in the first frame have to reappear in the second
and third frames.

Running Formula in Real Data Stream:: The same result
as in the previous example holds here for the data stream D
in Table II that is (D,0, ϵ0, ζ0, τ) /⊧ ϕ5.

Below, we translate the requirement previously presented as
in Req. 1.

Req. 6: Whenever a new object is detected, then it is
assigned a class within 1 sec, after which the object does not
change class until it disappears.
STPL (using Assumptions 5.1-5.3):

ϕ6 = ◻∀Id1@x.

((C(Id1) = 0⇒ ψId1,x
61) ∧

(C(Id1) > 0⇒ ψId1,x
62))

(5)

where the subformulas are defined as:

ψId1,x
61 ≡◇ ((τ − x ≤ 1 ∧ F − x ≥ 1)∧

◻ ∃Id2.(Id1 = Id2 ∧C(Id2) > 0))

ψId1,x
62 ≡ ◻ ∀Id3((F − x ≥ 1 ∧ Id3 = Id1)⇒

C(Id1) = C(Id3))

In the above formula, we evaluate the two implication-form
subformulas for any objects in all the frames. If there is
an object that is not classified (i.e., C(Id1) = 0), then we
check the consequence of the corresponding subformula. The
subformula corresponding to the subformula ψId1,x

61 requires
that when an unclassified object was observed, then eventually
in less than a second afterward, the object always has a class
being assigned to it. If there is an object that is already
classified, then the second predicate has to be evaluated. The
subformula equivalent to the ψId1,x

62 requires that when a
classified object was observed, then afterward the same object
only can take the same class.

Running Formula in Real Data Stream:: In the frame 1
in Table II, the object with ID = 2 changes its class from
cyclist to pedestrian. Therefore, the data stream D does not
satisfy the requirement (D,0, ϵ0, ζ0, τ) /⊧ ϕ6.

TABLE II: Data stream D of image frames in Fig. 1. Each
row for the column headers: Frame, τ , ID (object identifiers),
class, and Prob represent the frame number, the sampling time
(e.g., here we assume that frame-per-second is 25 fps), the as-
sociated identifier to the objects, the classification confidence,
respectively. Moreover, the other four headers are the data
attributes (minimum and maximum lateral and longitudinal
positions of coordinates of the bounding boxes) by which a
bounding box is associated with each classified object. Note
that some objects are not tracked correctly throughout the data
stream.

Frame τ ID Class Prob xmin ymin xmax ymax

0 0 1 car 0.88 58 151 220 287

0 0 2 cyclist 0.75 479 124 690 382

0 0 3 pedestrian 0.63 522 130 632 377

0 0 4 pedestrian 0.64 861 133 954 329

1 0.04 1 car 0.88 61 152 217 283

1 0.04 2 cyclist 0.57 493 111 699 383

1 0.04 3 pedestrian 0.64 877 136 972 330

2 0.08 1 car 0.89 58 143 220 271

2 0.08 2 pedestrian 0.65 511 107 724 367

2 0.08 3 pedestrian 0.64 911 115 1001 340

3 0.12 1 car 0.92 56 139 216 266

3 0.12 2 cyclist 0.59 493 111 705 380

3 0.12 3 pedestrian 0.72 541 125 649 351

3 0.12 4 car 0.58 926 107 1004 302

3 0.12 5 pedestrian 0.76 938 118 998 332

4 0.16 1 car 0.91 53 139 217 265

4 0.16 2 pedestrian 0.80 551 126 658 356

5 0.2 1 car 0.92 52 140 216 264

5 0.2 2 cyclist 0.62 506 104 695 368

5 0.2 3 pedestrian 0.68 552 115 669 362

C. Examples of Space and Time Requirements with 2-D Im-
ages

In the following examples, we want to demonstrate the
expressivity and usability of the STPL language to capture
requirements related to the detected objects and their spatial
and temporal properties.

1) Basic Spatial Examples without Quantifiers.: Let us
assume that we have a spatial proposition p as in Fig. 3.

Example 5.1: One way to formalize that the sampling rate
is sufficient is to check if the bounding box of an object
overlaps with itself across consecutive frames. The following
requirement can be used as a template in more complex
requirements.

Req. 7: The intersection of a spatial predicate p with itself
across all frames must not be empty.
STPL:

ϕ7 = ∃ ◻s p (6)

The above requirement is clearly too strict. In order to make
the requirement more realistic, we introduce frame intervals
(see Rem. 2.8) and also use quantification over objects. If
we change the above requirement to: “All the objects in all

15

the frames must intersect with themselves in the next three
frames”, then we can modify Eq. (6) to the following:

ϕ′7 = ◻∀Id1. ∃ ◻̃s
[0,3] σ(Id1) (7)

Example 5.2: It is interesting to check the occupancy of
an object across a series of frames. This can be used for
identifying regions of interest.

Req. 8: The union of a spatial proposition p with itself in
all the frames is not equal to the universe.
STPL:

ϕ8 = ¬ ∀ ◇s p (8)

The result of applying the formula ◇sp on a sequence of three
frames is shown in Fig. 3. The resulting set is not equal to the
universe; hence; the formula ϕ8 evaluates to true.

2) Basic Spatial Examples with Quantifiers.: In the follow-
ing examples, the spatial requirements cannot be formalized
without the use of quantifiers.

Example 5.3: We can check if some properties hold for all
the objects across all the frames.

Req. 9: Always, all the objects must remain in the bounding
box (x1, y1, x2, y2).
STPL (using Assumption 5.2):

ϕ9 = ◻∀Id.(LAT (Id, LM) ≥ x1 ∧LAT (Id,RM) ≤ x2 ∧
LON(Id, TM) ≥ y1 ∧LON(Id,BM) ≤ y2) (9)

Running Formula in Real Data Stream:: The result of
evaluating the above formula depends on the size and position
of the bounding box. For example, if the bounding box is the
same as the image frame in the data stream D in Table II,
then we have (D,0, ϵ0, ζ0, τ) ⊧ ϕ9.

Example 5.4: The combination of eventually/globally oper-
ators and a quantifier operator is very useful for specifying
properties of an object across time.

Req. 10: Eventually, there must exist an object that at the
next frame shifts to the right.
STPL (using Assumptions 5.2-5.3):

ϕ10 =◇∃Id1@x.◯∃Id2.(
Id1 = Id2 ∧LAT (Id1, LM) < LAT (Id2, LM)) (10)

Note that in the above formula, the Id1 is quantified in a freeze
time quantifier to get access to the data-object values in the
frozen time. If we change the first existential quantifier to the
universal quantifier, then the formula represents the following
requirement: “Eventually, there must exist a frame in which
all the objects shift to the right in the next frame”.

Running Formula in Real Data Stream:: The data stream
D as in Table II satisfies the above formula (D,0, ϵ0, ζ0, τ) ⊧
ϕ10. For example, the pedestrian with ID = 3 moved to the
right in the frame 1. Note that the pedestrian and the recording
camera both moved to the left, while the camera’s movement
was faster.

Example 5.5: The requirement below checks the robustness
of the tracking algorithms in a perception system using time
and spacial constraints.

Req. 11: If an object disappears from the right of the image
in the next frame, then during the next 1 seconds, it can only
reappear from the right.
STPL (using Assumptions 5.2-5.3):

ϕ11 = ◻∀Id1@x.◯w∀Id2@y.(ψId1,Id2

111 ⇒ ψId1,Id2,y
112) (11)

where

ψId1,Id2

111 ≡ Id1 = Id2∧
LAT (Id1, LM) < LAT (Id2, LM) ∧

LAT (Id2, LM) > 3

4
W ∧

◯w∀Id3. (Id3 ≠ Id1)
ψId1,Id2,y
112 ≡◯w◻

(((τ − y < 1) ∧ ∀Id4.(Id2 ≠ Id4) ∧

◯w∃Id5.(Id2 = Id5))⇒

◯wLAT (Id5, LM) > 3

4
W)

Note that in the above formula, the Id1 and Id2 are quantified
in a nested freeze time quantifier structure, and hence, it is
not an AAN formula. There, W is a constant denoting the
width of the image in pixels. This formalization will check
the reappearance of an object even if it happened more than
once. In order to force the formula to only check once for the
reappearance of an object, one should use the release operator.

Checking the Formula on Real Data:: In Table II, in the
third frame, the pedestrian with ID = 3 has disappeared in the
fourth frame and reappeared in the last frame. However, the
preconditions captured in subformula ψId1,Id2

111 for that object
do not hold assuming that W = 1100 for the data stream.
That is the least x position of the bounding box for the object
with ID = 3 is 911 in frame 2, and then it changes to 541 in
frame 3 which violates the condition for shifting toward right
before disappearing (the LAT condition in the subformula
ψId1,Id2

111). Note that, from the second frame afterward, the
tracking algorithm mixes the ID association to the objects,
and as a result, the geometrical positions of the objects are
not consistent. The inconsistent object tracking makes the
subformula ψId1,Id2

111 not hold for viable cases. Therefore, for
the data stream D in Table II, we have (D,0, ϵ0, ζ0, τ) ⊧ ϕ11.

For the examples in the rest of this section, we focus on
the real-time requirements that concern detected objects in
perception systems.

Example 5.6: The requirement below checks the robustness
of the classification of the pedestrians in a perception system
using time and spatial constraints.

Req. 12: If a pedestrian is detected with probability higher
than 0.8 in the current frame, then for the next 1 second,
the probability associated with the pedestrian should not
fall below 0.7, and the bounding box associated with the
pedestrian in the future should not overlap with another
detected bounding box.

16

(a) The car inside the red rectangle is identified with ID 4 in frame
10, and it is annotated as “partly occluded”.

(b) The same car as in Image (a) is bounded by the yellow rectangle,
and it is annotated as “largely occluded” in frame 11.

(c) The car inside the red rectangle is identified with ID 5 in frame
14, and it is annotated as “partly occluded”.

(d) The same car as in Image (c) is bounded by the yellow rectangle,
and it is annotated as “largely occluded” in frame 15.

(e) The car inside the red rectangle is identified with ID 16 in frame
260, and it is annotated as “partly occluded”.

(f) The same car as in Image (e) is bounded by the yellow rectangle,
and it is annotated as “largely occluded” in frame 261.

Fig. 7: We used the labels corresponding to the 390 images in the folder “0008” from the KITTI tracking benchmark. Our
STPL monitoring tool detected frames 11, 15, and 261 with “largely occluded” labels as inconsistent annotations. The training
data and their format are available from the links in the footnote. 3

STPL (using Assumptions 5.2-5.3):

ϕ12 = ◻∀Id1@x.((C(Id1) = Ped ∧ P (Id1) > 0.8) Ô⇒

◻ (τ − x ≤ 1 Ô⇒

∃Id2.(Id1 = Id2 ∧ P (Id2) > 0.7 ∧C(Id2) = Ped ∧
∀Id3.(Id2 ≠ Id3 Ô⇒

¬ ∃ (σ(Id2) ⊓ σ(Id3)))))) (12)

Running Formula in Real Data Stream:: In Table II,
there is no pedestrian associated with probability higher than
0.8, therefore the data stream D satisfies the above formula
(D,0, ϵ0, ζ0, τ) ⊧ ϕ12.

Example 5.7: The requirement below represents a situation
in which all the adversarial cars in the frames from the current
time forward are moving at least as fast as the ego car and in
the same direction.

Req. 13: Always all the bounding boxes of the cars in the
image frames do not expand.
STPL (using Assumptions 5.2-5.3):

ϕ13 = ◻∀Id1@x.(C(Id1) = Car Ô⇒

◻ ∀Id2.((Id1 = Id2 ∧C(Id2) = Car) Ô⇒

Area(Id1) ≥ Area(Id2))) (13)

Notice that in the above example, the geometric position of
the objects in the space is not required.

Running Formula in Real Data Stream:: In Table II, the
bounding box of the car with ID = 1 has expanded in the
frame 2. Therefore, the data stream D does not satisfy the
above formula (D,0, ϵ0, ζ0, τ) /⊧ ϕ13.

To ease the presentation in the formalization of the require-
ments in the following examples, we introduce some derived
spatial operators:

● Subset: p1 ⊑ p2 ≡ ∀ (p1 ⊔ p2)
● Set equality: p1 = p2 ≡ p1 ⊑ p2 ∧ p2 ⊑ p1
Example 5.8: We want to formalize a requirement specifica-

tion that applies restrictions on the positions and movements
of the adversarial and the ego car in all the image frames. The
following requirement can be thought of as a template to be
used within other requirements.

Req. 14: The relative position and velocity of all the cars
are fixed with respect to the ego car.
STPL (using Assumptions 5.2-5.3):

ϕ14 = ∀Id1@x. ◻ ∃Id2.(Id1 = Id2 ∧ σ(Id1) = σ(Id2))

Notice that we quantify over all objects in the first frame
(Id1), and then we require that for all future times there is
an object (Id2) with the same ID and bounding box. If in
addition, we would like to impose the requirement on any

17

new objects that we observe, then the formalization of the
requirement would be:

ϕ′14 = ◻∀Id1@x. ◻ ∃Id2.
(Id1 = Id2 ∧ σ(Id1) = σ(Id2))

(14)

Another formalization for the last requirements is

ϕ′′14 = ◻∀Id1.(◻s σ(Id1) =◇sσ(Id1)) (15)

Running Formula in Real Data Stream:: All of the
objects in Table II have different bounding boxes in different
frames. Thus, the data stream D does not satisfy the above
formulas (D,0, ϵ0, ζ0, τ) /⊧ ϕ14.

Example 5.9: In this example, we represent a sample
requirement for detecting occluded objects. The example is
about a high confidence OBJECT which suddenly disappears
without getting close to the borders. The requirement checks
if such an object existed before and next disappeared, then it
has to be occluded by a previously close proximity object.

Req. 15: If there exists a high confidence OBJECT, and in
the next frame, it suddenly disappears without being close to
the borders, then it must be occluded by another object.
STPL (using Assumptions 5.2-5.3):

ϕ15 = ◻∀Id1@x.((φprob
high ∧ φ

borders
far ∧◯φdisap) Ô⇒

φocc) (16)

and the predicates are defined as:

φprob
high ≡ P (Id1) > 0.8

φborders
far ≡ LON(Id1, TM) > d1 ∧LON(Id1,BM) < d2

∧LAT (Id1, LM) > d3 ∧LAT (Id1,RM) < d4
φdisap ≡ ∀Id2.(Id1 ≠ Id2)

φocc ≡ ∃Id3.∃Id4.(Id1 ≠ Id3 ∧ Id1 = Id4 ∧

∃ (σ(Id4)⊓(σ(Id3) ⊔◯sσ(Id3))))

In the above formulas, the subformula φborders
far checks if the

object identified by Id1 is close to the borders of the image
frame at the current time, where d1, d2, d3, and d4 are some
integers. The subformula ∀Id2.(Id1! = Id2) is to check if an
object disappeared. In the subformula φocc, the Id4 refers to
the object which disappears in the next frame, and the Id3
refers to the object that occludes the other object. The spatial
subformulas check if the bounding box of the two objects
intersect each other in the current frame, or one bounding box
in the current frame intersects with the other bounding box
in the next frame. Similarly, we can formalize the occlusion
without using STE operators by rewriting φocc as below

φocc ≡ ∃Id3.∃Id4.(Id1 ≠ Id3 ∧ Id1 = Id4 ∧
Dist(Id4,CT, Id3,CT) < d5) (17)

Note that the second formalization is less realistic because it
puts a threshold on the Euclidean distance (i.e., d5 is a positive
real number) between two objects to infer their overlap.

Running Formula in Real Data Stream:: All the objects
in Table II are close to the borders of the images, and the data
stream does not satisfy the subformula φborders

far . Therefore, the
data stream D satisfies the the above formula (D,0, ϵ0, ζ0, τ) ⊧
ϕ.

In the following, we used the above formula to partially
validate the correctness of a training data stream that is used
for object tracking.

Running Formula in Real Data Stream:: We used the for-
mula in Eq. (16) to verify the correctness of the labeled objects
as “largely occluded” in the KITTI tracking benchmark. From
the 21 datasets, except for 4 of them (i.e., datasets “0013”,
“0016”, “0017”, and “0018”), we detected inconsistencies in
labeling objects as “largely occluded”. For example, in the
dataset “0008” (to refer to as data stream D), we identified 3
frames in each a car was labeled as “largely occluded”, while
they were inconsistent with the rest of the occluded labels.
That is, we have (D,0, ϵ0, ζ0, τ) /⊧ ϕ. Our STPL monitoring
tool detected the wrong labels by applying the STPL formula
in Eq. (16) on the data stream in less than 2 seconds. The
result of this experiment is shown in the Figure 7. We provide
all the datasets as part of our monitoring tool.

Below, we translate the requirement previously presented as
in Req. 2.

Req. 16: The frames per second of the camera is high
enough so that for all detected cars, their bounding boxes self-
overlap for at least 3 frames and for at least 10% of the area.
We interpret the above requirement to require an overlap check
over a batch of three frames rather than three consecutive
frames.
STPL (using Assumptions 5.2-5.3):

ϕ16 = ◻∀Id1@x.((�w ∀Id3.(Id1 ≠ Id3)) Ô⇒

◻ ((F − x ≥ 1 ∧ F − x ≤ 3) Ô⇒

∀Id2.(Id1 = Id2 Ô⇒
Ratio(Area(σ(Id1) ⊓ σ(Id2)),

Area(σ(Id2))) ≥ 0.1))) (18)

In the above formula, the spatial subformula is in the form
of a non-equality ratio function. Its first parameter represents
an occupied area for the intersection of the bounding boxes
of any two objects obj1 and obj2 referred to by Id1 and Id2,
respectively. The second parameter denotes the area for obj2.
For the non-equality to be satisfiable, first, there must be a
non-empty intersection between the two objects. Second, the
ratio of the intersected area to the area of the second object
must be at least 10%.

Running Formula in Real Data Stream:: The data stream
D in Table II satisfies the above formula (D,0, ϵ0, ζ0, τ) ⊧ ϕ16.

D. Examples of Space and Time Requirements with 3D envi-
ronment

3Training data: http://www.cvlibs.net/datasets/kitti/eval tracking.php, and
data format: https://github.com/JonathonLuiten/TrackEval/blob/master/docs/
KITTI-format.txt

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
https://github.com/JonathonLuiten/TrackEval/blob/master/docs/KITTI-format.txt
https://github.com/JonathonLuiten/TrackEval/blob/master/docs/KITTI-format.txt

18

(a) Annotated LiDAR point cloud image at time t0. (b) Annotated LiDAR point cloud image at time t1.

(c) Annotated camera image for the LiDAR image on the left. (d) Annotated camera image for the LiDAR image on the left.

(e) Colored semantic segmented of the LiDAR data at time t0. (f) Colored semantic segmented of the LiDAR data at time t1.

Fig. 8: Two LiDAR and Camera frames annotated data along with the semantic segmentation data are taken from NuScenes
LidarSeg dataset (Scene-0247) (Caesar et al. (2020)).

(a) x-y plane bird-eye view of
LiDAR point cloud at time t0.

(b) x-y plane bird-eye view of
LiDAR point cloud at time t1.

Fig. 9: The bird-view of LiDAR point clouds for the two
consecutive frames in Fig. 8 where the drivable area in front
of the ego is shown.

1) Missed classification scenario: Here, we are going to
show by example how 3D reasoning is possible using STPL.
Specifically, we are going to show by example if the perception
system misses some important objects. The six images in
Figure 8 illustrates annotated information of two consecutive
frames that are taken from nuScenes-lidarseg4 dataset (Caesar
et al. (2020)). For each detected class of objects, they adopt
color coding to represent the object class in the images. The
color orange represents cars, and the color cyan represents
drivable regions. The color-coded chart of the classes, along
with their frequency in the whole dataset can be found online
(Motional (2019)). In the first frame, at time t0, the LiDAR
annotated image is shown in Fig. 8(a). The corresponding
camera image for the LiDAR scene is shown in Fig. 8(c).
There is a car in this image that we pointed to in a red arrow.
As one can check, there is no point cloud data associated
with the identified car in the LiDAR image, and as a result,
it is not detected/recognized as a car. In the next images
illustrated in Fig. 8(b,d), the undetected car at t0 is identified
and annotated as a car at time t1. Unlike before, there are
some point cloud data associated with the car by which it
was detected. The semantic segmentation of the corresponding
images is shown in Fig. 8(e-f). First, we will discuss how to
decide if there is a missed object in the datasets, similar to
what we presented here. Second, we represent a requirement

4https://www.nuscenes.org/nuscenes?sceneId=scene-0274&frame=0&
view=lidar

https://www.nuscenes.org/nuscenes?sceneId=scene-0274&frame=0&view=lidar
https://www.nuscenes.org/nuscenes?sceneId=scene-0274&frame=0&view=lidar

19

specification in STPL that can formalize such missed-detection
scenarios.

Example 5.10: For this and the next example scenarios, we
have 3D coordinates of bounding volumes and 3D point clouds
representing each detected object in the frames. However, the
height of those points and cubes are not helpful in these cases,
and therefore, we mapped them to the x-y plane by ignoring
the z-axis of sensor positions (i.e., see Motional (2019)).

Let assume that the origin of the coordinate system is the
center of the ego vehicle, and the y-axis is positive for all the
points in front of the ego car, and the x-axis is positive for
all the points to the right of the ego. That is, we have 2D
bounding boxes of classified objects that are mapped to a flat
ground-level environment as shown in Fig. 9. Therefore, we
do not need to define new spatial functions for 3D reasoning.

Req. 17: If there is a car driving toward the ego car in the
current frame, it must exist in the previous frame.
STPL (using Assumptions 5.2-5.3):

ϕ17 = ◻∀Id1.∀Id3@x.((φcar
exist ∧ φdist

close) Ô⇒

�w φ
before
existed) (19)

and the predicates are defined as:

φcar
exist ≡ (C(Id1) = Car) ∧ (C(Id3) =Drv)

φdist
close ≡ LON(Id1,BM) ≤ 1.2 ×LON(Id3,BM)∧
LON(Id1, TM) ≥ 0.5 ×LON(Id3,BM)∧

LAT (Id1,CT) ≥ LAT (Id3, LM)∧
LAT (Id1,CT) ≤ LAT (Id3,RM)

φbefore
existed ≡ ∃Id2.(C(Id2) = Car ∧ Id1 = Id2∧
Dist(Id2,CT,U,CT) >Dist(Id1,CT,U,CT))

Note that in the above 2D spatial functions, we used BM
and TM in contrast to their original semantics in the previous
examples due to the change of origin of the universe. Also,
we assume that the perception system uses an accurate object
tracker that assigns unique IDs to objects during consecutive
frames. We used Id1, Id2, and Id3 to refer to a car in
the current frame, a car in the previous frame, and the
drivable region. Note that we needed to use the previous frame
operator to check if an existing car was absent in the previous
frame. That is, in φbefore

existed, we check if the car identified by
Id2 matches with the same car in the previous frame. The
antecedent of the formula as in Eq. (19) holds in the current
frame, but the consequent of it fails because the car that exists
in the current frame did not exist in the previous frame. Thus,
the data stream shown as image frames in Fig. 9 falsifies the
formula.

It is more realistic to formulate the same requirement using
lane-based coordinate systems, if the perception system detects
different lanes. Consequently, we can simplify the subformula
φdist
close to encode if the cars drive in the same lane.

2) 3D occlusion scenario: In Figure 10, there are four
frames captured at t0 to t3. In the second and third frames, an
occluded car (pointed to a red arrow) is detected. The percep-
tion system detected a car for which there is no information
from the sensors (the cubes in frames 2 and 3 are empty, and
the cameras cannot see the occluded vehicle). Although this
can be the desired behavior for a perception system that does
object tracking, here we are going to formalize a requirement
that detects similar cases as wrong classifications.

For this example, we need to define a new 3D spatial
function Visible by which we can check if given two cars
are visible from the view of a third car. Additionally, we
need to add a data attribute Empty to the data-object stream
D that determines if a bounding volume of an object is
empty (e.g., R(D(i), ID).PC = ∅ checks if there is no point
could data associated with an object identified by ID) or not.
For instance, by R(D(i), ID).Empty we check if an object
identified by ID in the i’th frame is empty. We use function
E(id) as a new syntax that serves as above.

[[V (id,CRT, id, id) ∼ r]](D, i, ϵ, ζ, τ) ∶=

{ ⊺ if fvisible(id,CRT, id, id,D, i, ϵ, ζ)) ∼ r
� otherwise∗

fvisible(id1,CRT, id2, id3,D, i, ϵ, ζ) returns true if the
ϵ(id2) and ϵ(id3) objects are visible from the view point CRT
of ϵ(id1) in the k’th frame, where k ← ζ(id1) if ζ(id1) is
specified, and k ← i otherwise. If one or both are invisible
from the viewpoint of object ϵ(id1), then the function returns
false.

Example 5.11: The below requirement checks the robustness
of the object detection in a perception system using spatial
constraints and functions on point cloud data.

Req. 18: Any detected car (using the LiDAR data) driving
the same direction on the left side of the ego car must include
some point cloud data in its bounding volume unless it is
occluded.
STPL (using Assumptions 5.1-5.3):

ϕ18 = ◻∀Id1.∀Id2.((¬E(Id1) ∧ ¬E(Id2) ∧ (Id1 ≠ Id2)

∧ (C(Id1) = Car) ∧ (C(Id2) = Car)
∧LAT (Id1,RM) < −1 ∧LAT (Id2,RM) < −1
∧LAT (Id1,RM) > −6 ∧LAT (Id2,RM) > −6

∧MD(Id1) =MD(Id2)
∧ V (U,CT, Id1, Id2)

∧◯(¬V (U,CT, Id1, Id2))) Ô⇒

◯(V (U,CT, Id1, Id2)
R

(E(Id1) ∧ ¬E(Id2)))) (20)

In the above formula, we keep track of two cars using Id1
and Id2 that are to the left of the ego car (their distance has
to be limited between 1 to 6 meters from the left side of
the ego car). We assume that the perception system returns

20

(a) Annotated camera image for
the LiDAR image on the right.

(b) Annotated camera image for
the LiDAR image on the right.

(c) Annotated camera image for
the LiDAR image on the right.

(d) Annotated camera image for
the LiDAR image on the right.

(e) Annotated LiDAR point
cloud image at time t0.

(f) Annotated LiDAR point
cloud image at time t1.

(g) Annotated LiDAR point
cloud image at time t2.

(h) Annotated LiDAR point
cloud image at time t3.

Fig. 10: Two LiDAR and Camera frames annotated data are taken from NuScenes LidarSeg dataset (Scene-0399) (Caesar et al.
(2020)). The images are taken by the back-left camera as represented in sensor-position image available at nuScenes website
(Motional (2019)).

the moving direction of each classified object, and we use
function MD to retrieve the direction for a given object
identifier. Note that this function can be replaced by a spatial
formula that uses the coordinates of an object in different
frames to calculate its moving direction. The subformula
V (U,CT, Id1, Id2) requires a visible angle between the two
cars from the point of view of the ego car (i.e., the center point
of the U) to return true. We draw a sample visible angle in the
first and fourth frames in yellow. For the two cars that we could
find a visible angle for them in the first frame, there is none
in frames 2 and 3. Additionally, there is no point cloud in the
occluded car’s bounding volume in frames 2 and 3 that satisfies
the whole formula until the implies operator. The consequence
of the implication is a release formula to be satisfiable from
the next time/frame. In the release formula, the right-hand
side requires the occluded object to be empty, and only when
it becomes visible again, it can be non-empty. The whole
formula is satisfiable for the pair of cars we discussed here.
The data stream shown as image frames in Fig. 10 satisfies
the formula in Eq. (20).

VI. MONITORING ALGORITHM

The offline monitoring algorithm for STPL is one of the
main contributions of this work. We use a dynamic pro-
gramming (DP) approach similar to Dokhanchi et al. (2016);
Fainekos et al. (2012) since we are operating over data streams
(timed state sequences). To keep the presentation as succinct as
possible, we focus the presentation only to the future fragment
of STPL. We divide our monitoring algorithm into four algo-
rithms that work in a modular way. We present the pseudocode
of the algorithms to analyze the worst case complexity of our
STPL monitoring framework. In the following, we are going

to use the formula

φ ∶= ◻∀Id1@x. ◻ ∃Id2.(∀ (σ(Id1) ⊔ σ(Id2))∧

∀ (σ(Id2) ⊔ σ(Id1)) ∧ Id1 = Id2)

to explain some of the aspects of the future fragment of our
monitoring algorithm.
A. Algorithm-1

This algorithm represents the main dynamic programming
body of the monitoring algorithm. It receives an STPL formula
φ, a data stream ρ̂, and dynamic programming tables M and
F . The formula is divided into subformulas as in the example
in Fig. 11. That is, the formula is divided into subformulas
based on the presence of freeze time operators (φi) and
spatial quantifiers (φ′i). It is important to note that the nested
subformulas have lower index, e.g., φ1 is nested in φ2 as in
Fig. 11. Notice that when we have subindexes, i.e., φi,j , we
refer to the formula in the scope of i’th freeze variable and
the j’th index from the root in the depth-first-search order.

The main loop of Algorithm 1 has 4 nested loops (lines
4-20). Further nested loops exist in ComputeFnExpr (Al-
gorithm 3). These nested loops are also the source of the
computational complexity in our monitoring algorithm. The
loops in lines 4 and 5 are responsible for exploring all possible
assignments to the freeze time variables starting from the inner
nested freeze time operators. Line 6 explores the data stream
backward in time to resolve the future fragment of Linear
Temporal Logic (LTL) and the S4u terms. Lines 10-14 identify
whether the subformula φk,j is a spatio-temporal operator and
calls the respective function.

B. Algorithm-2

This algorithm computes the values of the DP table M as
defined in the temporal semantics of the STPL logic in Def.
IV-B2. For a given subformula, first, it determines the operator

21

Center for Embedded Systems | An NSF Industry/University Cooperative Research Center CES PROPRIETARY

∧

Id1 = 𝐼𝑑2

∀ ∀

𝜎(𝐼𝑑2)𝜎(𝐼𝑑1)

𝜎(𝐼𝑑1)

⊔

𝜎(𝐼𝑑1)𝜎(𝐼𝑑2)

𝜎(𝐼𝑑2)

⊔

∧

□

□

∀𝐼𝑑1@𝑥.

∃𝐼𝑑2.

𝝋𝟐

𝝋𝟏 𝜑1,3

𝜑1,4

𝜑1,5

𝜑1,6 𝜑1,9

𝜑1,7

𝜑′1,1
𝜑′1,2

𝜑′1,3

𝜑′1,4

𝜑1,8

𝜑′2,1
𝜑′2,2

𝜑′2,3

𝜑′2,4

𝜑2,2

𝜑2,1

𝝋𝟏
′ 𝝋𝟐

′

Fig. 11: A parse tree for the formula in Eq. 14. Distinct regions
represent subformulas φ2, φ1, φ′1, and φ′2. In each region, the
subformulas subscript into the operators and predicates levels.

and then fills the current columns of the DP tables accordingly.
Most of the lines of the algorithm are straightforward where
there is no DP table F in the assignments. The idea of using
the separate DP table F for the freeze subformulas is to
store the result of their evaluation at each frozen time, and
then update the DP table M accordingly. Table M has two
columns for each subformula, one for the current time and
another for the next time. We use u01 and u10 to refer to
the current column (current frame) for updating and the next
column (next frame) for reading, respectively. Therefore, we
need to toggle the value of these variables (between 0 and
1) to change the read column to write column and vice versa.
Table F has two rows for each frame, one for the current time
and the other for the next time. We use t01 and t10 to refer
to the current row for updating and the next row for reading,
respectively. Therefore, we need to toggle the value of these
variables (between 0 and 1) to change the read row to write
row and vice versa. The M[j, u01].val data-member of the
DP table M keeps the current evaluating result of the j’th
subformula φj at the current frame. The other data-members
are used to update min/max values for the quantifier operators.
The IT data-member is a table of size (SO)∣Vid∣, where SO is
the maximum number of objects in all input frames, and Vid
is the set of the Id variables in the scope of the evaluating
subformula φj . In Alg. 2, the only computationally expensive
part is the update of the table in line 24. In practice, the table
update is not an issue since the number of id variables is
not high (at most 4-5 object variables in the examples in this
paper) and the table update can be parallelized.

C. Algorithm-3

This algorithm computes the identifier table IT values of the
DP table M . Here, we compute spatial functions and quantifier
operators. For a given spatial function Fn(. . .), if it has nested

Algorithm 1 STPL Monitor
Input: φ, ρ̂; Global variables: M

∣φ∣×2, F2×∣ρ̂∣; Output: M[1,0].
Comments:
M
∣φ′ ∣×∣ρ̂∣ is a table used to store the evaluation of spatial subformulas. For

all the tables, the out-of-index accesses are handled case by case (i.e., ⊺ or
� is a default value)
Procedure STPL-MONITOR(φ, ρ̂)
1: u01 ← 0 and t01 ← 0 ▷ toggle between 0 and 1
2: φ′ ← Collect all spatial terms, arithmetic expressions, and functions
3: V ← Collect all freeze time variables in φ
4: for k ← 1 to ∣V ∣ do
5: for t← 0 to ∣ρ̂∣ − 1 do ▷ freeze (store) the frame
6: for u← ∣ρ̂∣ − 1 to t do
7: ▷ backward iteration for the future fragment of STPL
8: for j ← φk.max down to φk.min do
9: ▷ iterate over subformulas under each freeze time operator

10: if φj ∈ φ
′ then

11: ComputeFnExpr(φ, j, u, u01, t, ρ̂)
12: else
13: ComputeLTL(φ, j, u, u01, t, t01, k)
14: end if
15: end for
16: u01 ← toggle(u01)

17: end for
18: end for
19: t01 ← toggle(t01)
20: end for
21: k ← ∣V ∣ + 1 ▷ handle the root node
22: if φk is not a freeze operator then
23: Repeat steps 6 to 17 for t = 0
24: else
25: u01 ← toggle(u01) , t01 ← toggle(t01)
26: M[1][u01] = F [t01][0]
27: end if
28: return M[1, u01]

end procedure

function operators, then this algorithm recursively computes
the final values. The IT table stores the values for any func-
tional expression based on the combinatorial assignments of
objects to the object variables. In line 10, if the combination of
object identifiers does not satisfy the correct range of existing
objects in the current frame or a frozen frame, then it assigns
� (false). Otherwise, if any parameter is a spatial formula, then
it runs algorithm 4. The size of the IT table is the maximum
number of combinations for objects with respect to the object
variables. For example, if there are a maximum of five objects
per frame in an object stream, and a formula has a maximum of
three nested object variables, then the size of IT is 53 = 125.
We choose the size of the IT table based on the worst case
scenario, but for efficient computation, we only compute as
many as needed combinations for each quantifier subformula
based on its scope. Therefore, we mark the remaining cells
of the table with NaN for extended computation that merges
these tables for different subformulas in Algorithm 2 by calling
function UpdateIdTable at line 24.

D. Algorithm-4

This algorithm computes the values of the DP table M .
It evaluates spatial-temporal formulas similar to the temporal
formulas of Algorithm 2 with the modification that now set
operations are used as opposed to Boolean operations. The
data structures for the set representation and the corresponding
set operations can affect the computational complexity of 4.
Depending on the application, e.g., 2D vs 3D, a number of

22

Algorithm 2 LTL Monitor
Input: φ, j, u, u01, t, t01, k;

procedure COMPUTELTL(φ, j, u, u01, t, t01, k)
1: u10 ← toggle(u01),t10 ← toggle(t01)
2: if φj ≡ ⊺ then
3: M[j, u01].val ← ⊺

4: else if φj ≡ τ − vk ∼ r then
5: if (τu − τt) ∼ r then
6: M[j, u01].val ← ⊺

7: else
8: M[j, u01].val ← �

9: end if
10: else if φj ≡ F − vk ∼ r then
11: if (u − t) ∼ r then
12: M[j, u01].val ← ⊺

13: else
14: M[j, u01].val ← �

15: end if
16: else if φj is a freeze subformula then
17: M[j, u01]←M[j + 1, u01]

18: if φj has an ∃ quantifier then
19: M[j, u01].val ←M[j, u01].max
20: else
21: M[j, u01].val ←M[j, u01].min
22: end if
23: F [t01][t]←M[j, u01]

24: UpdateIdTable(M[j, u01].IT)
25: else if φj ≡ ¬φm then
26: M[j, u01] = ¬M[m,u01] ▷ Apply ¬ to val, min, max, IT
27: else if φj ≡ φm ∨ φn then
28: M[j, u01]← max(M[m,u01],M[n,u01])
29: else if φj ≡◯φm then
30: if u = ∣ρ̂∣ − 1 then
31: M[j, u01]← �

32: else if φm is followed by @{x, . . .} then
33: M[j, u01]← F [t10, u + 1]
34: else
35: M[j, u01]←M[m,u10]

36: end if
37: else if φj ≡ φm Uφn then
38: if u = ∣ρ̂∣ − 1 then
39: M[j, u01]←M[n,u01]

40: else
41: if φm is followed by x. then
42: M[m,u01]← F [t10, u]
43: end if
44: if φn is followed by x. then
45: M[n,u01]← F [t10, u]
46: end if
47: M[j, u01]←

max(M[n,u01], min(M[m,u01],M[j, u10]))
48: end if
49: end if

end procedure

solutions are possible ranging from a linked list of pairs of
2D points (i.e., union of rectangles) to quadtrees or octrees
(see next section).

E. Correctness and Complexity Analysis
Let ρ̂ be an input signal of size ∣ρ̂∣, φ be an AAN STPL

formula of size ∣φ∣ (note that size of a formula is the sum-
mation of the number of spatial, temporal and spatio-temporal
subformulas), ∣Vt∣ be the size of freeze time variables (or 1
if there is none), Sid be the maximum number of used object
variables in the scope of a quantifier operator, and Sobj be
the maximum number of objects in a single frame in ρ̂. If φ
is a TPTL formula, then it is known from Dokhanchi et al.
(2016) that the upper bound time complexity for the variable-
bounded TPTL monitoring algorithm is O(∣Vt∣ × ∣φ∣ × ∣ρ̂∣2),

Algorithm 3 Compute Function Expression
Input: φ,k, u, u01, t, ρ̂;

procedure COMPUTEFNEXPR(φ,k, u, u01, t, ρ̂)
1: φk ≡ Fn(Ω1, . . . ,Ωn) ∼ r where

r ∈ R, ∼ ∈ {>,<,≥,≤,=, ! =},
and Fn is a reserved function name

2: Pn×1 is a list used to store the evaluated arguments of Fn
3: Sid ← (SO)

∣Vid ∣ where
SO is the maximum number of objects in all the frames
and Vid is the set of the object variables in the scope of φk

4: Scf
O ← number of objects in the current frame u

5: Sff
O ← number of the objects in the freeze frame t

6: FID ← is a map s.t.
∀Id ∈ Vid,{FID[Id] = true ∣ ∃ “∃Id@vx.” ∈ φ
or “∀Id@vx.” ∈ φ}, vx ∈ Vt}

7: for i← 1 to Sid do
8: ▷ iterates over combinatorial assignments of values to the IDs
9: {Id1, . . . Id∣Vid ∣

}← i’th combinatorial of {1, . . . SO}

to {Idj ∣ Idj ∈ Vid,1 ≤ j ≤ ∣Vid∣}

10: if ∃Id ∈ Vid and ((FID[Id] = true and Id > Sff
O) or

(FID[Id] = false and Id > Scf
O)
) then

11: M[k, u01].IT [i − 1]← �

12: else
13: for j ← 1 to n do ▷ iterates over Fn arguments
14: if Ωj is a const number or reserved word then
15: P [j].val ← Ωj

16: else if Ωj ≡ Fn(. . .) then
17: P [j].val ←

ComputeFnExpr(Ωj , k, u, u01, t, ρ̂)
18: else if Ωj ≡ σ(Id) then
19: P [j].region← BoundingBox(Id,FID, u, t)
20: else if Ωj is a spatial formula then
21: P [j].region←

ComputeSpatioTemporal(Ωj , u, t, i, ρ̂)
22: end if
23: end for
24: M[k, u01].IT [i − 1]← Fn(P) ∼ r
25: end if
26: end for
27: SID ← (SO)

L where
L is the maximum number of object variables that can be used
in the scope of any @{. . .} subformula

28: for i← Sid to SID − 1 do ▷ iterates over the remaining of the ID
Table

29: M[k, u01].IT [i]← NaN
30: end for

end procedure

which is polynomial. Additionally, the upper bound space
complexity of the presented algorithm by Dokhanchi et al.
(2016) is O(∣φ∣ × ∣ρ̂∣). Our STPL monitoring algorithm is
founded based on the TPTL monitoring algorithm, but there
are two major additions to the TPTL syntax and semantics.
The first addition to the STPL grammar presented in Def. 4.1
is the existential/universal quantifiers that precedes the freeze
time operator. The second addition is the production rule Θ.
We call this extension of the TPTL language the Quantifiable
TPTL (QTPTL). Next is the production rule T that produces
purely spatio-temporal formulas (Π and ∃ T quantify the
spatio-temporal in a constant time). The last addition to the
QTPTL results in the STPL language. Therefore, we only
analyze the time and space complexity of our algorithm for
parts that concern the two aforementioned additions.

Our proposed monitoring algorithm is based on the Dy-
namic Programming (DP) algorithm by Dokhanchi et al.
(2016) and, therefore, to consider the first addition, we need
to evaluate each object variable related subformula at most

23

Algorithm 4 Spatio-Temporal Monitor (with intervals)
Input: θ, u′, t, i, ρ̂;

procedure COMPUTESPATIOTEMPORAL(θ, u′, t, i, ρ̂)
1: {Id1, . . . Id∣Vid ∣

}← i’th combinatorial assignment of {1, . . . SO} to
object variables

2: for u← ∣ρ̂∣ − 1 down to u′ do ▷ iterates backward over time stamps
3: Scf

O ← number of objects in the current frame u

4: Sff
O ← number of the objects in the freeze frame t

5: for j ← θ.max down to θ.min do ▷ iterates over subformulas
6: if φj ≡ σ(Id) then
7: if ((FID[Id] = true and Id > Sff

O) or
(FID[Id] = false and Id > Scf

O)
) then

8: M[j, u]← ∅ ▷ mark as NaN
9: else

10: M[j, u]← BoundingBox(Id,FID, u, t)
11: end if
12: else if φj ≡ φm then
13: M[j, u]← Complement(M[m,u])
14: else if φj ≡ φm ⊓ φn then
15: M[j, u]← Intersection(M[m,u],M[n,u])
16: else if φj ≡ φm ⊔ φn then
17: M[j, u]← Union(M[m,u],M[n,u])
18: else if φj ≡ I φm then
19: M[j, u]← Interior(M[m,u])
20: else if φj ≡C φm then
21: M[j, u]← Closure(M[m,u])
22: else if φj ≡ φm Ũ

s
I
φn then

23: if u = ∣ρ̂∣ − 1 and 0 ∈ I then
24: M[j, u]←M[n,u]
25: else if u = ∣ρ̂∣ − 1 and 0 /∈ I then
26: M[j, u]← �

27: else if I = [0,+∞) then
28: M[j, u]←M[n,u] ⊔

(M[m,u] ⊓M[j, u + 1])
29: else
30: bl ←min{j + I}; bu ←max{j + I}
31: rmin ← ⊓j≤j′<bl

M[m,j′]

32: M[j, u]← �

33: for j′ ← bl to bu do ▷ iterates over frame indices
34: M[j, j′]←M[j, j′] ⊔ (M[n, j′] ⊓ rmin)

35: rmin ← rmin ⊓M[m,j′]
36: end for
37: if sup I = +∞ then
38: M[j, u]←M[j, u] ⊔(M[m,u] ⊓M[j, u + 1])
39: end if
40: end if
41: end if
42: end for
43: end for
44: return M[θ.min,u′]

end procedure

(Sobj)Sid times. This also requires extra space to build the DP
tables. Therefore, the upper bound time and space complexity
of the QTPTL algorithms increases to O((Sobj)Sid×∣Vt∣×∣φ∣×
∣ρ̂∣2) and O((Sobj)Sid × ∣φ∣ × ∣ρ̂∣), respectively.

Finally, we consider spatial and spatio-temporal subformu-
las denoted as φs in addition to temporal ones denoted as
φt to do complexity analysis of the STPL algorithm. It is
easy to see that the production rule T has the same grammar
as MTL/STL, except that the logical operators are replaced
with spatial ones. Therefore, the time/space complexity of
monitoring these formulas follows the same complexity as
in MTL/STL monitoring algorithms except for the spatial
operations. In MTL/STL, all the logical operations compute
in constant time. However, for spatial operations, depending
on the used data structure for representing the spatial terms,

this might not hold. In Appendix VI.
Appendix: Complexity Analysis of STE formulas, we calculate
exponential lower bound for some spatio-temporal formulas
where the linked-list was used to represent the spatial terms.
That is, if we do not exploit the geometrical properties of
the spatial terms while storing them, then we get exponential
complexity for the spatial operations. Whereas, if we use some
geometry-sensitive data structures such as region Quadtrees
and region Octrees for storing and computing 2D and 3D
spatial terms (e.g., see Aluru (2018); Shneier (1981)), respec-
tively, then, we get a polynomial time and space complexity,
e.g., Bournez et al. (1999). Assume that we can decompose
our d-dimensional topological space (dimension is fixed to be
2D or 3D) into rd cells, where r is the constant resolution
along each axis. Construction of an image Quadtree/Octree
is linear in the size of the image (see Shneier (1981)). The
union and intersection algorithm for Quadtrees, in the worst
case, requires visiting all the nodes in the trees, which can be
done in K times. For computing a spatio-temporal formula
φs, at each time-step, in the worst case, it requires as many
spatial operations as linear to the size of the formula.

Therefore, the time complexity of computing the formula
φs against an input signal ρ̂ is as follows:
● O(∣ρ̂∣ × ∣φs∣ ×K), if there is no time/frame intervals in

the formula and no frozen object variable is used in the
formula. Note that K is a big constant (i.e., K is a
function of the dimension and the resolution of the space)
and we did not omit it to emphasize its impact on the
computation.

● O(∣ρ̂∣ × ∣φs∣ ×K × c), if there are time/frame intervals in
the formula and no frozen object variable is used in the
formula. Here, c is defined as

c = max
0≤j≤∣D∣,I∈T (ϕ)

∣[j,maxJ(j,I)]∣

where T (ϕ) contains all the timing constraints I which
are either attached on the temporal operators in formula
ϕ, or are timing constraints of the form τ − x ∼ n or
F − x ∼ n in the scope of a temporal operator in ϕ. For
example, if ϕ = ◻[0.1,∞)ψ, then [0.1,∞) ∈ T (ϕ), or if
ϕ = x . ◻ (τ − x ≤ 5.5 ⇒ ψ), then [0,5.5] ∈ T (ϕ).
Intuitively, the function J returns all the samples that
satisfy a constraint I from the set T (ϕ) starting from a
sample j. Formally,

J(j,I) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ−1((τ(j) +R I)∩
(τ(j + 1) +R I)) if supI = +∞

τ−1(τ(j) +R I) otherwise

with t +R I = {t′′ ∈ R ∣ ∃t′ ∈ I . t′′ = t + t′}. Note that
when considering constraints on the number of frames,
i.e., F − x ∼ n, then the timestamp mapping τ is the
identity function. For a discussion on c for STL/MTL
with discrete time semantics see Fainekos et al. (2012).

● O(∣ρ̂∣× ∣φs∣×K × ∣Vt∣), if there is no time/frame intervals
in the formula, but there are frozen object variables used
in the formula.

● O(∣ρ̂∣× ∣φs∣×K×c× ∣Vt∣), if there are time/frame intervals
in the formula, and there are frozen object variables used
in the formula.

24

Overall, the upper bound time and space complexity of the
STPL algorithm are O((Sobj)Sid × ∣Vt∣× ∣φ∣× ∣ρ̂∣2×K ×c) and
O((Sobj)Sid × ∣φ∣ × ∣ρ̂∣ ×K), respectively.

In our implementation of the monitoring algorithms (dis-
cussed in Monitoring Algorithm), we focus on the future
fragment of the STPL logic to avoid complexity (e.g, by
excluding past-time operators as presented in Appendix VI.
Appendix: STPL Future Syntax). That is, we improved the
space complexity of STPL formulas without spatial terms
by decoupling the DP tables into two separate tables: one
dedicated to the values of subformulas at the current time
step, and the other for their frozen values along the time
horizon. Therefore, we reduced the space complexity to
O((Sobj)Sid × (∣φt∣+ ∣ρ̂∣)) for non-spatial STPL formulas and
spatial formulas without time/frame intervals in them. For
improving the exponential complexity of the spatial STPL
formulas, we merge the fragmented subsets after spatial opera-
tions. Additionally, if there is no frozen object variable used in
a spatial formula, we only evaluate it once. Some optimizations
can be done based on the content of the formulas, for example,
if a temporal formula does not have globally, eventually, until
and release operators in it, then we deduce the needed horizon
length of the input signal accordingly (i.e., next time operator
only requires the evaluation of the first two frames). Also, we
interpret the time/frame constraints in a formula to possibly
ignore the evaluation of the affected subformulas accordingly.

The correctness of the algorithm with respect to the pre-
sented syntax and semantics of STPL can be proven by using
the correctness proofs that are presented for the TPTL and
MTL monitoring algorithms by Dokhanchi et al. (2016) and
Fainekos et al. (2012).

We have released an open-source version of the code for
both Linux and Windows OS in a public repository in GitLab
(see STPL (2023)). Our tool can be run in standalone mode or
as part of Matlab. Additionally, there are data stream files and
input configuration files that cover most of the examples in
the previous sections, as well as the sensitivity analysis result
in the following section.

F. A Polynomial Time/Space Fragment

In this section, we identify STPL specification templates
for which the monitoring problem becomes polynomial time
in the worst case. In the template below, we assume that the
size of the spatial formula φs is bounded.

1) Example: The complexities of evaluating an arbitrary
SPE formula φs (the formula is in conjunctive form) on a
data stream ρ̂ is

● O(2a3b) for time and space, if there is no complement
operator in the formula, where a, b ∈ N, and we have:
argmax (2a3b ∣ (∣φs∣ + 1)/2 = 2a + 3b). For instance,
φs ∶= (T ⊔ T ⊔ T) ⊓ (T ⊔ T ⊔ T).

● O(4((∣φs∣+1)/3)) for time and space, if there are com-
plement operators in the NNF formula. For instance,
φs ∶= T ⊓ T ⊓ T ⊓ T ⊓ T ⊓ T .

2) Example: An arbitrary l-level nested spatial globally
formula φ◻s , with a spatial term as its right-most subformula,

is of O(∣ρ̂∣) time and O(1) space complexity.

φ◻s ∶= ◻s
I(T ⊓ ◻s

I(T ⊓ ◻s
I(T ⊓ ◻s

IT)))

3) Example: An arbitrary l-level nested spatial eventually
formula φ◇s , with a spatial term as its right-most subformula,
is of O(∣ρ̂∣(l+1)) time and space complexity.

φ◇s ∶=◇s
I(T ⊔◇s

I(T ⊔◇s
I(T ⊔◇s

IT)))

4) Example: An arbitrary l-level nested spatial eventually
subformula φ◇s followed by an arbitrary k-level nested spatial
globally subformula φ◻s , with a spatial term as its right-most
subformula, is of O(∣ρ̂∣(l+1)) time and space complexity.

φ◇,◻
s ∶=◇s

I(T ⊔◇s
I(T ⊔◇s

I(T ⊔◇s
I

(◻s
I (T ⊓ ◻s

I(T ⊓ ◻s
IT))))))

5) Example: A right-hand-side l-level nested spatial until
formula φUs , where the left-hand-side of all the until operators
are a single spatial term, is of O(∣ρ̂∣(l+2)).

φUs ∶= T Us
I(T Us

I(T Us
I(T Us

I T)))

6) Example: A left-hand-side l-level nested spatial release
formula φRs , where the right-hand-side of all the until opera-
tors are a single spatial term, is of O(∣ρ̂∣(l+2)).

φRs ∶= (((T Rs
I T)Rs

I T)Rs
I T)Rs

I T

VII. EXPERIMENTS AND RESULTS

We selected some of the presented example formulas to
cover different possible combinations for the operators and
quantifiers, and to demonstrate how the computation time
scales concerning the size of the data stream and the formulas.
For this experimental analysis, we used the DeepDrive dataset
5 (Yu et al. (2020)). As indicated in the last column of
Table III, the performance of the STPL monitoring algorithm
for hundreds of monitoring frames (including thousands of
objects) is feasible for offline monitoring. Some statistics
about the experiments are summarized in Table III. We used
a Windows 10 machine with Intel Core i7 CPU 8550U @
1.8GHZ, 16GB RAM, and Matlab R2020a. The STPL moni-
toring algorithm is implemented in C language and compiled
for Matlab.

The formulas in Table III were selected based on the types
of operators and their computational complexity. The maxi-
mum number of nested quantifiers is a source of exponential
complexity (i.e., (Sobj)Sid) in our monitoring algorithm. The
highest number of nested quantification operators was 3 in
Formulas (16) and (17). Another source of complexity is the
number of spatial operators in the formula. For instance, the
worst execution time is observed for the Formula (14) due to
its higher number of spatial operators. These results are not
surprising and are in agreement with our theoretical analysis
in Section VI-E.

In order to study the impact of the number of objects in
each frame on the monitoring algorithm, we manipulated the

5https://bdd-data.berkeley.edu/

https://bdd-data.berkeley.edu/

25

TABLE III: Statistics on execution-time for different formulas
and data stream sizes. We used the Berkeley DeepDrive (BDD)
dataset to compute the results. m−time and e−time represent
the required time (in second) for releasing memories and
executing the monitoring algorithm, respectively.

∣ρ̂∣ ∣φt∣ ∣φs∣ ∣Vt∣ Sobj Sid m-time e-time
quantifier-formed STPL Formula (9) without spatial operators

25 9 0 0 20 1 0 0.002
50 9 0 0 20 1 0 0.001

100 9 0 0 23 1 0 0.005
200 9 0 0 24 1 0 0.008

mix-formed STPL Formula (10) without spatial operators

25 7 0 1 20 2 0 0.132
50 7 0 1 20 2 0 0.519

100 7 0 1 23 2 0 2.76
200 7 0 1 24 2 0 11.31

mix-formed STPL Formula (14) with SPE operators

25 9 8 1 20 2 0.004 1.25
50 9 8 1 20 2 0.003 4.13

100 9 8 1 23 2 0.005 16.32
200 9 8 1 24 2 0.005 63.52

quantifier-formed STPL Formula (15) with STE operators

25 3 4 0 20 1 0 0.006
50 3 4 0 20 1 0 0.029

100 3 4 0 23 1 0 0.119
200 3 4 0 24 1 0 0.176

mix-formed STPL Formula (16) with spatial terms

25 29 6 1 20 3 0.023 2.23
50 29 6 1 20 3 0.023 4.97

100 29 6 1 23 3 0.037 16.07
200 29 6 1 24 3 0.043 46.88

mix-formed STPL Formula (17) without spatial terms

25 29 0 1 20 3 0 1.16
50 29 0 1 20 3 0 2.73

100 29 0 1 23 3 0 10.41
200 29 0 1 24 3 0 33.69

BDD dataset to create artificial datasets with specific number
of objects. The result is presented in Table IV. In the first
row, the maximum number of objects in all the frames is 5.
For all the following rows, this number is doubled. Based on
the O((Sobj)Sid), the e-time of rows should increase with the
ratio of 23 = 8. To remedy the exponential complexity of the
nested quantified formulas, we can use parallel computation to
efficiently evaluate quantified subformulas. More specifically,
Algorithm 3 can be parallelized.

Since the theoretical time complexity of offline STPL mon-
itoring is the same as the time complexity of online past-
time STPL monitoring (see Balakrishnan et al. (2021) for
a toolbox), the problem of online monitoring of bounded
time short duration STPL properties is practically feasible
and relevant. However, the offline STPL monitoring problem
over extremely large perception datasets may not be feasible
without further optimizations or expressivity restrictions. One
promising direction is to prefilter very large perception datasets

TABLE IV: Statistics on execution time for the Formula (16)
on an artificial perception data stream.

∣ρ̂∣ ∣φt∣ ∣φs∣ ∣Vt∣ Sobj Sid m-time e-time
25 29 6 1 5 3 0.001 0.060
25 29 6 1 10 3 0.005 0.441
25 29 6 1 20 3 0.043 2.419
25 29 6 1 40 3 0.312 20.027

and extract subsequences that are interesting for STPL spec-
ifications. One such possibility for filtering is the perception
query language SpRE (Anderson et al. (2023)) – see Section
VIII for a brief discussion. We plan to pursue such a direction
in the future.

VIII. RELATED WORKS

In this section, we provide a detailed overview of related
works. We primarily focus on comparing STPL with other
spatio-temporal logics. In Table V, we provide a summary
comparison of the most relevant logics for easy reference.
We conclude the section with some references on promising
directions on the analysis of perception systems which are not
directly related to spatio-temporal logics.

Region Connection Calculus by Cohn et al. (1997), Shape
Calculus by Bartocci et al. (2010), and Situation Calculus by
Bhatt and Loke (2008) are just some examples of the vast
literature on logics about topology and space. Comprehensive
surveys and comparisons of reasoning methods about topology
and time are provided by Dylla et al. (2017); Aiello et al.
(2007). Spatio-temporal logics and calculi are also frequently
used in robotics for human-robot communication (Kress-Gazit
and Pappas (2010); Summers-Stay et al. (2014)) and for
specifying and verifying properties of AV (Linker and Hilscher
(2013); Loos et al. (2011)). All the aforementioned works
that deal with topology and time primarily focus on deductive
reasoning, theorem proving, knowledge representation, axiom-
atization, and – in some cases – planning. In contrast, STPL
requires computationally efficient tools for spatio-temporal
reasoning in order to monitor data streams from perception
systems.

Even though there exist spatio-temporal logics that can
process spatio-temporal data (offline or online) such as SpaTeL
(Haghighi et al. (2015)), SSTL (Nenzi et al. (2015)), or
SaSTL (Ma et al. (2020)) (for a short survey see Bartocci
et al. (2018)), or even images, e.g., SLCS (Buonamici et al.
(2019)), all these logics are application dependent and cannot
support the topological reasoning needed for perception data
in AV. To highlight the fundamental differences between
the aforementioned logics and STPL, we provide a detailed
comparison with SpaTeL and SSTL. The differences with
the other listed logics and conceptually similar in scope.
The two spatio-temporal languages (SSTL and SpaTeL) are
explicitly developed for describing high-level spatial patterns
that evolve. Both languages are founded based on a graph-
based representation of discrete models of space. For the
SSTL, undirected weighted graphs are used to model space,

26

TABLE V: Overview comparison of spatio-temporal formal languages. The ∃∀ (data) column indicates whether the logic
supports quantification over non-spatial data. The ∃∀ (spatial column indicates whether the logic supports some form of spatial
quantification, e.g., emptiness operator (i.e., there exists a point), or directional operator (there exists a direction). FSM: Finite
state machines.

Language Temporal
Foundation ∃∀ (data) ∃∀ (spatial) Spatial

Foundation
Domain

in practice Applications

STPL AAN-TPTL ✓ ✓ S4u
Sets in

Euclidean spaces Perception systems

TQTL AAN-TPTL ✓ Predicates Perception data Vision based
(2D) perception

SpRE FSM ✓ S4u
Sets in

Euclidean spaces Perception systems

STSL STL ✓ S4u
Distances in

Euclidean spaces
System level

requirements for CPS

SpaTel STL ✓ TSSL Quadrants Pattern recognition

SSTL STL ✓
Graph-based

modeling
Distances in

Euclidean spaces Pattern recognition

GSTL STL ✓ Mereotopology Cubics Knowledge
representation

and in SpaTeL, a networked system whose states encapsulate
an image are represented as quad transition systems.

In more detail, in SSTL, the syntax of the language adds
two spatial operators �[w1,w2]φ and φ1S[w1,w2]φ2 into Signal
Temporal Logic (STL) (Maler and Nickovic (2004)), which
are named bounded somewhere and bounded surround, re-
spectively. The first operator requires φ to hold in a location
that can be reached from the current location with a cost
between w1 and w2. The cost is usually the distance between
the two locations. For the second operator, the notation of
external boundary of a set is required. An external boundary
of a given set of nodes is defined as the set of nodes that are
directly connected to the elements of the given set but are not
members of it. The semantics of the second operator requires
that for the current location l and a given trace x, l belongs to
a set of locations A that all satisfy the formula φ1, and for all
the locations in the external boundary of A, they satisfy the
formula φ2. An SSTL formula can be arbitrarily nested.

In SpaTeL, a combination of Tree Spatial Superposition
Logic (TSSL) (Gol et al. (2014)) and STL is proposed to
reason on spatial patterns. TSSL uses quad-trees to represent
the space by partitioning the space recursively into quadrants.
The TSSL logic is similar to the classic Computation Tree
Logic (CTL) (e.g., see Huth and Ryan (2004)), with the main
difference that the next and until operators are not temporal,
but spatial. That is, evolution happens by a change of resolu-
tion (or zoom in). All the spatial operators are augmented by a
set B that selects the spatial directions (i.e., NW, NE, SW, and
SE) in which the operators are allowed to work. Additionally,
similar to temporal operators, there is a parameter k that limits
the operator’s evaluation range on a finite sequence of states.
For example, ∃Bφ1Ukφ2 means that there exists a set of
directions in B by which the i-th label of a path πB satisfies
the formula φ2 and all the other labels on the path until i
satisfy the formula φ1. A difference between the former and
the latter is that in the former one, the TSSL fragment of a
formula does not include temporal subformulas.

In summary, the key differences of these logics with our
proposed STPL logic are:
● Modeling: SSTL and SpaTeL are not designed to model

physical objects in 2D or 3D spaces. On the other hand,
our logic is explicitly designed to handle physical objects.

● Expressivity: SpaTeL is inherently less expressive than
SSTL due to its modeling and traversing approach on
quad-trees and the decoupled syntax for spatial and
temporal formulas. Therefore, we are going to compare
STPL with SSTL. There are two significant differences.
The first one is the presence of time freeze operator and
time variables and, hence, STPL is more expressive. The
second one is the presence of the quantifiers and set
operations over spatial terms/locations. As an example,
SSTL cannot reason on whether the same object over
two different frames overlaps or not with itself.

● Application: SSTL and SpaTeL are mostly helpful for
pattern recognition purposes, while STPL is a more
general-purpose language. Quantitative semantics: there
is quantitative and qualitative semantics for SSTL and
SpaTeL, but currently, we only presented qualitative
semantics for STPL. The graph-based modeling of the
spatial environment and the fixed metric properties such
as distance makes it more straightforward to define quan-
titative semantics for their underlying logic.

In another line of work, a graph-based spatio-temporal logic
– GSTL by Liu et al. (2020) – is presented for knowledge
representation and reasoning. GSTL deals with spatial ele-
ments as regions, and uses mereotopology (combination of
mereology and topology to support parthood and connectivity,
respectively) to represent relations between spatial elements.
It exploits rectangle/cubic algebra to represent spatial objects.
GSTL combines STL temporal logic with mereotopology-
based spatial operators enriched with interval algebra. The
satisfiability problem for GSTL is decidable by restricting the
evolution of spatial elements. GSTL was primarily designed
for model checking which restricts its expressivity for decid-

27

ability reasons.
The works closest to ours stem from combining temporal

logics with spatial logics (for a historical overview and a
discussion on S4u see Kontchakov et al. (2007)). Gabelaia
et al. (2005) combine Linear Temporal Logic (LTL) (Manna
and Pnueli (1992)) with S4u to define the logic PT L × S4u.
They further define several fragments of PT L×S4u and they
study the decidability of the satisfiability problem. However,
the problem of offline monitoring is not investigated in this
line of work.

More recently, STSL was proposed by Li et al. (2021)
where STL is combined with S4u. Even though the monitoring
problem is studied for STSL, STSL falls short of the goals of
STPL in multiple directions. First and foremost, STSL does
not support generic data and quantification over such data.
That is, it is not possible to express a property such as Req. 2
where we need to quantify over the bounding boxes of all the
cars in a frame. Second, STPL is based on TPTL which is a
strictly more expressive logic than STL used in STSL. Third, a
theoretical or experimental computational complexity analysis
is not presented for STSL to identify what fragments are com-
putationally important while still being practically relevant.
Finally, and most importantly, the applications presented for
STSL are restricted to properties over numerical trajectories
produced by Cyber-Physical Systems, and it is clear that with
the metric space chosen for STSL, the corresponding formal
specifications can be expressed in STL. That is, in practice,
there is no gain in expressive power in STSL over STL.

Another line of research relevant to our work is formal
languages for analysis of perception systems. Timed Quality
Temporal Logic (TQTL) by Dokhanchi et al. (2018a) was de-
signed to reason over streams of perception data. TQTL is built
upon the AAN fragment of Timed Propositional Temporal
Logic (AAN-TPTL) (Dokhanchi et al. (2016)) by introducing
quantification (∃, ∀) over the objects in each frame, and by
introducing functions that retrieve data relevant to each object,
e.g., class, probabilities, bounding box coordinates, etc. The
AAN fragment of TPTL was chosen due to its polynomial time
complexity while still being strictly more expressive then STL.
Note that further algorithmic improvements on AAN-TPTL are
possible, e.g., see Elgyutt et al. (2018); Ghorbel and Prabhu
(2022). Nevertheless, TQTL cannot reason directly about
properties of bounding boxes. For example, TQTL cannot
reason about self-overlap of bounding boxes across time, i.e.,
TQTL cannot express Req. 2. More generally, TQTL cannot
reason about 3D scenes (e.g, bird-eye view of the world) since
this requires a mechanism to relate spatially different objects in
the environment. STPL resolves these shortcomings of TQTL
to enable a versatile framework to reason about perception
systems in both 2D and 3D (along with other state variables
included in the perception data).

Spatial Regular Expressions (SpREs) were recently intro-
duced by Anderson et al. (2023) to find patterns in streaming
data. That is, given a SpRE, the goal is to find all the sequences
of frames that match the pattern specified by SpRE. SpREs
were designed to closely resemble regular expressions, and,
hence, the underlying model of computation for processing
streaming perception data is automata (Sipser (2006)). The

current version of SpRE does not support quantification over
data in order to enable online real-time processing. However,
SpRE supports S4u operators on per frame basis. Clearly,
SpRE is less expressive than STPL, but we envision an
interplay between the two languages. SpRE can potentially
find very quickly the subsequences of streaming data over
which we need to run the more expressive STPL requirements.

The PerSyS monitoring system by Antonante et al. (2021)
presents a mathematical model for fault detection in perception
systems. The base of their work is Perfect Minicomputer
Corporation (PMC) model in multiprocessor systems, which
is generalized to account for models with heterogeneous
outputs (i.e., perception systems), and equipped with temporal
dimensions to support interaction among PMC models. Their
system supports consistency checking among different sensory
outputs of a perception system with some formal guarantees
on the maximum number of inconsistencies. In PerSyS, it is
possible to design models that identify faults, but, similar
to any other graph-based modeling technique, it is highly
reliant on a correct model to begin with, and then adding
formalized requirements as a set of constraints on the models
(i.e., constraints on the edges of the PMC graphs). STPL
monitoring goals are orthogonal to PerSyS. STPL is a speci-
fication language that formalizes assumptions and guarantees
on the functional performance of the perception system. As
such a language, it is more expressive than the constraints
used in PerSyS. As a byproduct, STPL can also function as a
comparison framework between different perception stacks.

Finally, the language Scenic by Fremont et al. (2018) has
been developed for creating single scene images for testing
object detection and classification algorithms. However, our
work is complementary to languages that generate static
scenes.

IX. CONCLUSIONS

In this paper, we presented Spatio-Temporal Perception
Logic (STPL), which is a logic which is specifically designed
for reasoning over data streams of perception systems. STPL
merges and extends other practical logics such as TPTL (Alur
and Henzinger (1994)) and S4u (Aiello et al. (2007)) with
data (object) quantification, functions and relations that enable
topological reasoning over time. Our new logic can be used for
specifying correctness requirements on perception systems, as
well as to compare different machine learning stacks on their
performance beyond the standard metrics (e.g., see Mallick
et al. (2023)). We have identified fragments of STPL which
are efficiently monitorable for perception applications, and
we have demonstrated that practically relevant requirements
which do not fall within these fragments can still be efficiently
monitorable in practice. An open source publicly available
toolbox has been developed STPL (2023) which can be used
for offline perception system analysis. An online monitor for
the past fragment of STPL is also available (Balakrishnan et al.
(2021)). Using STPL, we have been able to discover inconsis-
tencies in publicly available training datasets for AV/ADAS.

Since STPL formulas are rather complex even for experts,
we have have been working toward developing a Domain Spe-
cific Language (DSL) called PyFoReL (Anderson et al. (2022))

28

for easier elicitation and maintenance of STPL requirements.
PyFoReL provides a Pythonic language to compose require-
ments in a modular way while enforcing that they are valid
STPL formulas. The next step would be to interface PyFoReL
and/or the STPL syntax with Large Language Models (LLM).
Similar work has been done in the past for LTL and STL
with practically relevant success (e.g., see Pan et al. (2023);
Fuggitti and Chakraborti (2023)). In addition, verification and
debugging tools for STPL formulas will be needed since LLMs
cannot be trusted to always produce correct translations. In the
past, we have done similar work for STL/MTL specifications
in Dokhanchi et al. (2018b). We expect to achieve further
computational improvements on our monitoring algorithms
by parallelization and by filtering relevant sequences of data
through our new query language SpRE (Anderson et al.
(2023)) before the STPL tools are used. Finally, it would also
be interesting to see if meaningful robust semantics (Bartocci
et al. (2018)) could be defined in order to support test case
generation or even self-supervised training of neural networks.

ACKNOWLEDGMENT

This work was partially supported by NSF under grants
CNS-2039087, CNS-2038666, IIP-1361926, and the NSF
I/UCRC Center for Embedded Systems.

REFERENCES

Abbas H, O’Kelly ME, Rodionova A and Mangharam R
(2017) A driver’s license test for driverless vehicles. Me-
chanical Engineering 139: S13–S16.

Aiello M, Pratt-Hartmann IE and van Benthem JF (2007)
Handbook of spatial logics. Springer.

Alur R and Henzinger TA (1994) A really temporal logic. J.
ACM 41: 181–203.

Aluru S (2018) Quadtrees and octrees. In: Handbook of Data
Structures and Applications. Chapman and Hall/CRC, pp.
309–326.

Anderson J, Fainekos G, Hoxha B, Okamoto H and Prokhorov
D (2023) Pattern matching for perception streams. In: 23rd
International Conference on Runtime Verification (RV).

Anderson J, Hekmatnejad M and Fainekos G (2022) PyFoReL:
A domain-specific language for formal requirements in
temporal logic. In: IEEE 30th International Requirements
Engineering Conference (RE).

Antonante P, Spivak DI and Carlone L (2021) Monitoring and
diagnosability of perception systems. In: 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). IEEE, pp. 168–175.

Balakrishnan A, Deshmukh J, Hoxha B, Yamaguchi T and
Fainekos G (2021) Percemon: Online monitoring for per-
ception systems. In: International Conference on Runtime
Verification (RV), LNCS, volume 12974.

Baotic M (2009) Polytopic computations in constrained opti-
mal control 50: 119–134.

Bartocci E, Corradini F, Berardini MRD, Merelli E and Tesei
L (2010) Shape calculus. a spatial mobile calculus for 3d
shapes. Scientific Annals of Computer Science 20: 1–31.

Bartocci E, Deshmukh J, Donzé A, Fainekos G, Maler O,
Nickovic D and Sankaranarayanan S (2018) Specification-
based monitoring of cyber-physical systems: A survey on
theory, tools and applications. In: Lectures on Runtime
Verification - Introductory and Advanced Topics, LNCS,
volume 10457. Springer, pp. 128–168.

Bashetty SK, Amor HB and Fainekos G (2020) DeepCrashT-
est: turning dashcam videos into virtual crash tests for
automated driving systems. In: International Conference
on Robotics and Automation (ICRA).

Basin D, Klaedtke F, Müller S and Zălinescu E (2015)
Monitoring metric first-order temporal properties 62(2).

Bhatt M and Loke S (2008) Modelling dynamic spatial
systems in the situation calculus. Spatial Cognition &
Computation 8: 86–130.

Bournez O, Maler O and Pnueli A (1999) Orthogonal poly-
hedra: Representation and computation. In: International
Workshop on Hybrid Systems: Computation and Control.
Springer, pp. 46–60.

Buonamici FB, Belmonte G, Ciancia V, Latella D and Massink
M (2019) Spatial logics and model checking for medical
imaging. International Journal on Software Tools for
Technology Transfer : 1–23.

Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q,
Krishnan A, Pan Y, Baldan G and Beijbom O (2020)
nuscenes: A multimodal dataset for autonomous driving.
In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11621–11631.

Campbell J, Amor HB, Ang MH and Fainekos G (2016)
Traffic light status detection using movement patterns of
vehicles. In: 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, pp. 283–
288.

Cimatti A, Roveri M and Sheridan D (2004) Bounded verifi-
cation of past ltl. In: International Conference on Formal
Methods in Computer-Aided Design. Springer, pp. 245–259.

Cohn AG, Bennett B, Gooday J and Gotts NM (1997) Qual-
itative spatial representation and reasoning with the region
connection calculus. GeoInformatica 1(3): 275–316.

Corso A, Moss RJ, Koren M, Lee R and Kochenderfer
MJ (2020) A survey of algorithms for black-box safety
validation. arXiv preprint arXiv:2005.02979 .

Cosler M, Hahn C, Mendoza D, Schmitt F and Trippel C
(2023) nl2spec: Interactively translating unstructured natural
language to temporal logics with large language models.
In: Computer Aided Verification, LNCS, volume 13965.
Springer, pp. 383–396.

DeCastro J, Leung K, Aréchiga N and Pavone M (2020) In-
terpretable policies from formally-specified temporal prop-
erties. In: 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems Conference (ITSC).

Dokhanchi A, Amor HB, Deshmukh JV and Fainekos G
(2018a) Evaluating perception systems for autonomous
vehicles using quality temporal logic. In: International
Conference on Runtime Verification. Springer, pp. 409–416.

Dokhanchi A, Hoxha B and Fainekos G (2018b) Formal
requirement debugging for testing and verification of cyber-
physical systems. ACM Transactions on Embedded Com-

29

puting Systems 17. DOI:10.1145/3147451.
Dokhanchi A, Hoxha B, Tuncali CE and Fainekos G (2016)

An efficient algorithm for monitoring practical tptl spec-
ifications. In: 2016 ACM/IEEE International Conference
on Formal Methods and Models for System Design (MEM-
OCODE). IEEE, pp. 184–193.

Dreossi T, Donzé A and Seshia SA (2019a) Compositional fal-
sification of cyber-physical systems with machine learning
components. Journal of Automated Reasoning 63: 1031–
1053.

Dreossi T, Fremont DJ, Ghosh S, Kim E, Ravanbakhsh H,
Vazquez-Chanlatte M and Seshia SA (2019b) Verifai: A
toolkit for the formal design and analysis of artificial
intelligence-based systems. In: International Conference on
Computer Aided Verification. Springer, pp. 432–442.

Dylla F, Lee JH, Mossakowski T, Schneider T, Delden AV, Ven
JVD and Wolter D (2017) A survey of qualitative spatial and
temporal calculi: Algebraic and computational properties.
ACM Computing Surveys 50.

Eisner C and Fisman D (2006) Weak vs. strong temporal
operators. A Practical Introduction to PSL : 27–34.

Elgyutt A, Ferrere T and Henzinger TA (2018) Monitoring
temporal logic with clock variables. In: Formal Modeling
and Analysis of Timed Systems (FORMATS), LNCS, volume
11022. Springer.

Fainekos GE, Sankaranarayanan S, Ueda K and Yazarel H
(2012) Verification of automotive control applications using
s-taliro. In: 2012 American Control Conference (ACC).
IEEE, pp. 3567–3572.

Fremont DJ, Kim E, Pant YV, Seshia SA, Acharya A, Bruso
X, Wells P, Lemke S, Lu Q and Mehta S (2020) For-
mal scenario-based testing of autonomous vehicles: From
simulation to the real world. In: 23rd IEEE International
Conference on Intelligent Transportation Systems (ITSC).

Fremont DJ, Yue X, Dreossi T, Ghosh S, Sangiovanni-
Vincentelli AL and Seshia SA (2018) Scenic: Language-
based scene generation. Technical report, arXiv:1809.09310.

Fuggitti F and Chakraborti T (2023) Nl2ltl – a python package
for converting natural language (nl) instructions to linear
temporal logic (ltl) formulas 37(13): 16428–16430.

Gabelaia D, Kontchakov R, Kurucz A, Wolter F and Za-
kharyaschev M (2005) Combining spatial and temporal
logics: expressiveness vs. complexity. Journal of artificial
intelligence research 23: 167–243.

Geiger A, Lenz P, Stiller C and Urtasun R (2013a) Vision
meets robotics: The kitti dataset. The International Journal
of Robotics Research 32(11): 1231–1237.

Geiger A, Lenz P, Stiller C and Urtasun R (2013b) Vision
meets robotics: The KITTI dataset. International Journal
of Robotics Research (IJRR) 32: 1231–1237.

Ghorbel B and Prabhu V (2022) Linear time monitoring for
one variable tptl. In: 25th ACM International Conference
on Hybrid Systems: Computation and Control (HSCC).

Gladisch C, Heinz T, Heinzemann C, Oehlerking J, von Viet-
inghoff A and Pfitzer T (2019) Experience paper: Search-
based testing in automated driving control applications. In:
34th IEEE/ACM International Conference on Automated
Software Engineering (ASE).

Gol EA, Bartocci E and Belta C (2014) A formal methods
approach to pattern synthesis in reaction diffusion systems.
In: 53rd IEEE Conference on Decision and Control.

Gordon D, Farhadi A and Fox D (2018) Re3: Real-time
recurrent regression networks for visual tracking of generic
objects. IEEE Robotics and Automation Letters 3(2): 788–
795.

Haghighi I, Jones A, Kong Z, Bartocci E, Grosu R and
Belta C (2015) Spatel: a novel spatial-temporal logic and
its applications to networked systems. In: Proceedings
of the 18th International Conference on Hybrid Systems:
Computation and Control. pp. 189–198.

Havelund K, Peled D and Ulus3 D (2020) First-order temporal
logic monitoring with bdds 56.

He K, Lahijanian M, Kavraki LE and Vardi MY (2015)
Towards manipulation planning with temporal logic specifi-
cations. In: 2015 IEEE international conference on robotics
and automation (ICRA). IEEE, pp. 346–352.

He K, Lahijanian M, Kavraki LE and Vardi MY (2018)
Automated abstraction of manipulation domains for cost-
based reactive synthesis. IEEE Robotics and Automation
Letters 4(2): 285–292.

Hekmatnejad M, Yaghoubi S, Dokhanchi A, Amor HB, Shri-
vastava A, Karam L and Fainekos G (2019) Encoding and
monitoring responsibility sensitive safety rules for auto-
mated vehicles in signal temporal logic. In: 17th ACM-IEEE
International Conference on Formal Methods and Models
for System Design (MEMOCODE).

Huth M and Ryan M (2004) Logic in Computer Science: Mod-
elling and reasoning about systems. Cambridge university
press.

Kim E, Shenoy J, Junges S, Fremont DJ, Sangiovanni-
Vincentelli A and Seshia SA (2022) Querying labelled
data with scenario programs for sim-to-real validation.
In: ACM/IEEE 13th International Conference on Cyber-
Physical Systems (ICCPS). pp. 34–45.

Kontchakov R, Kurucz A, Wolter F and Zakharyaschev M
(2007) Handbook of spatial logics: Spatial logic + temporal
logic = ? Springer, pp. 497–564.

Koymans R (1990) Specifying real-time properties with metric
temporal logic. Real-Time Systems 2(4): 255–299.

Kress-Gazit H and Pappas GJ (2010) Automatic synthesis of
robot controllers for tasks with locative prepositions. In:
IEEE International Conference on Robotics and Automation
(ICRA). pp. 3215–3220.

Lee TB (2018) Report: Software bug led to death in uber’s
self-driving crash. Ars Technica May 07.

Li T, Liu J, Sun H, Chen X, Yin L, Mao X and Sun J
(2021) Runtime verification of spatio-temporal specification
language 21(26): 2392–2406.

Linker S and Hilscher M (2013) Proof theory of a multi-lane
spatial logic. In: International Conference on Theoreti-
cal Aspects of Computing (ICTAC), LNCS, volume 8049.
Springer, pp. 231–248.

Liu Z, Jiang M and Lin H (2020) A graph-based spatial tem-
poral logic for knowledge representation and automated rea-
soning in cognitive robots. arXiv preprint arXiv:2001.07205
.

30

Loos SM, Platzer A and Nistor L (2011) Adaptive cruise
control: Hybrid, distributed, and now formally verified. In:
Formal Methods, LNCS, volume 6664. Springer, pp. 42–56.

Ma M, Bartocci E, Lifland E, Stankovic J and Feng L
(2020) SaSTL: Spatial aggregation signal temporal logic
for runtime monitoring in smart cities. In: ACM/IEEE
11th International Conference on Cyber-Physical Systems
(ICCPS). pp. 51–62.

Maler O and Nickovic D (2004) Monitoring temporal proper-
ties of continuous signals. In: Proceedings of FORMATS-
FTRTFT, LNCS, volume 3253. pp. 152–166.

Mallick S, Ghosal S, Balakrishnan A and Deshmukh J (2023)
Safety monitoring for pedestrian detection in adverse con-
ditions. In: 23rd International Conference on Runtime
Verification (RV).

Manna Z and Pnueli A (1992) The Temporal Logic of Reactive
and Concurrent Systems — Specification. Springer.

Markey N and Raskin JF (2006) Model checking restricted
sets of timed paths. Theoretical Computer Science 358:
273–292.

Mehdipour N, Althoff M, Tebbens RD and Belta C (2023) For-
mal methods to comply with rules of the road in autonomous
driving: State of the art and grand challenges 152: 110692.

Motional (2019) nuScenes dataset. URL https://www.
nuscenes.org/nuscenes. Accessed: 2020-11-14.

Nenzi L, Bortolussi L, Ciancia V, Loreti M and Massink M
(2015) Qualitative and quantitative monitoring of spatio-
temporal properties. In: Runtime Verification. Springer, pp.
21–37.

Pan J, Chou G and Berenson D (2023) Data-efficient learning
of natural language to linear temporal logic translators for
robot task specification. In: IEEE International Conference
on Robotics and Automation (ICRA).

Perugini S (2021) Programming languages: Concepts and
implementation. Jones & Bartlett Learning.

Qin B, Chong ZJ, Soh SH, Bandyopadhyay T, Ang MH, Fraz-
zoli E and Rus D (2016) A spatial-temporal approach for
moving object recognition with 2d lidar. In: Experimental
Robotics. Springer, pp. 807–820.

Richter SR, Hayder Z and Koltun V (2017) Playing for bench-
marks. In: IEEE International Conference on Computer
Vision, ICCV. pp. 2232–2241.

Rizaldi A, Keinholz J, Huber M, Feldle J, Immler F, Althoff M,
Hilgendorf E and Nipkow T (2017) Formalising and moni-
toring traffic rules for autonomous vehicles in isabelle/hol.
In: Integrated Formal Methods. Springer, pp. 50–66.

Schwarting W, Alonso-Mora J and Rus D (2018) Planning and
decision-making for autonomous vehicles. Annual Review
of Control, Robotics, and Autonomous Systems 1: 187–210.

Shneier M (1981) Calculations of geometric properties using
quadtrees. Computer Graphics and Image Processing 16(3):
296–302.

Sipser M (2006) Introduction to the theory of computation.
2nd edition. Course Technology.

STPL (2023) Spatio-Temporal Perception Logic (STPL) Of-
fline Monitoring Tools. https://gitlab.com/vnv-tools/STPL.

Summers-Stay D, Cassidy T and Voss C (2014) Joint naviga-
tion in commander/robot teams: Dialog & task performance

when vision is bandwidth-limited. In: Third Workshop on
Vision and Language.

Sun H, Ang MH and Rus D (2019) A convolutional network
for joint deraining and dehazing from a single image for au-
tonomous driving in rain. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE,
pp. 962–969.

Templeton B (2020) Tesla in taiwan crashes directly into
overturned truck, ignores pedestrian, with autopilot on.
Forbes June 2.

Tuncali CE, Fainekos G, Prokhorov D, Ito H and Kapinski J
(2020) Requirements-driven test generation for autonomous
vehicles with machine learning components. IEEE Trans-
actions on Intelligent Vehicles 5: 265–280. DOI:10.1109/
TIV.2019.2955903.

van Benthem J and Bezhanishvili G (2007) Modal logics of
space. Handbook of Spatial Logics : 217–298.

Wu B, Iandola F, Jin PH and Keutzer K (2017) Squeezedet:
Unified, small, low power fully convolutional neural net-
works for real-time object detection for autonomous driving.
In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops. pp. 129–137.

Yadav P and Curry E (2019) Vidcep: Complex event process-
ing framework to detect spatiotemporal patterns in video
streams. In: IEEE International conference on big data. pp.
2513–2522.

Yu F, Chen H, Wang X, Xian W, Chen Y, Liu F, Madhavan
V and Darrell T (2020) Bdd100k: A diverse driving dataset
for heterogeneous multitask learning. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 2636–2645.

Yurtsever E, Lambert J, Carballo A and Takeda K (2020)
A survey of autonomous driving: Common practices and
emerging technologies. IEEE Access 8: 58443–58469.

https://www.nuscenes.org/nuscenes
https://www.nuscenes.org/nuscenes
https://gitlab.com/vnv-tools/STPL

31

APPENDIX A
APPENDIX: STPL FUTURE SYNTAX

The following definition introduces a future fragment of
the introduced STPL syntax in Def. 4.1. Here, we restrict the
grammar by including rules that enforce a formula to be an
Almost Arbitrarily Nesting Formula as in Def. 4.3. Notice that
in the following, the grammar rules force the expressions to
be indexed to track the level of nesting in quantifier operators.

Definition A.1 (STPL AAN Syntax for Discrete-Time Sig-
nal): Let Vx and Vo be sets of time variables and object
variables, respectively. Let x be a vector of time variables, i.e.,
x = [x0, . . . , xn−1]T , and id be a vector of object variables,
i.e., id = [id0, . . . , idm−1]T , and I be any non-empty interval
of R≥0 over time. The syntax for Spatio-Temporal Perception
Logic (STPL) formulas is provided by the following grammar:

Φi,j ∶∶= ∃idi@xi.Φf,q
i ∣ xi.Φf

i ∣ ∃idi.Φ
q
i,j

⊺ ∣ ¬Φi,j ∣ Φi,j ∨Φi,j ∣◯Φi,j ∣ Φi,j U Φi,j ∣
◯IΦi,j ∣ Φi,j UI Φi,j ∣ ◯̃IΦi,j ∣ Φi,j ŨI Φi,j

Φf,q
i ∶∶= Φf

i ∣ Φ
q
i,i ∣

⊺ ∣ ¬Φf,q
i ∣ Φf,q

i ∨Φf,q
i ∣◯Φf,q

i ∣ Φf,q
i U Φf,q

i ∣
◯IΦf,q

i ∣ Φf,q
i UI Φf,q

i ∣ ◯̃IΦf,q
i ∣ Φf,q

i ŨI Φf,q
i

Φf
i ∶∶= τ − xi > t ∣ F − xi > n ∣ Φi+1,i ∣

⊺ ∣ ¬Φf
i ∣ Φ

f
i ∨Φf

i ∣◯Φf
i ∣ Φ

f
i U Φf

i ∣
◯IΦf

i ∣ Φ
f
i UI Φ

f
i ∣ ◯̃IΦ

f
i ∣ Φ

f
i ŨI Φ

f
i

Φq
i,j ∶∶= C(Λi,j) = c ∣ C(Λi,j) = C(Λi,j) ∣ P (Λi,j) ≥ r

∣ P (Λi,j) ≥ r × P (Λi,j) ∣ Λi,j = Λi,j ∣ Φi+1,j ∣
⊺ ∣ ¬Φq

i,j ∣ Φ
q
i,j ∨Φq

i,j ∣◯Φq
i,j ∣ Φ

q
i,j U Φq

i,j ∣
◯IΦq

i,j ∣ Φ
q
i,j UI Φ

q
i,j ∣ ◯̃IΦ

q
i,j ∣ Φ

q
i,j ŨI Φ

q
i,j ∣

∃Ωi,j ∣ Θi,j ∣ Πi,j

Λi,j ∶∶= idj ∣ idj+1 ∣ . . . ∣ idi

Ωi,j ∶∶= σ(Λi,j) ∣ ∅ ∣ U ∣ Ωi,j ∣ Ωi,j ⊓Ωi,j ∣ IΩi,j ∣
Ωi,j Us Ωi,j ∣ ◇s Ωi,j ∣ ◻s Ωi,j ∣◯sΩi,j ∣
Ωi,j Us

I Ωi,j ∣ ◇s
I Ωi,j ∣ ◻s

I Ωi,j ∣◯s
IΩi,j ∣

Ωi,j Ũ
s

I Ωi,j ∣ ◇̃
s
IΩi,j ∣ ◻̃s

IΩi,j ∣ ◯̃s
IΩi,j

Πi,j ∶∶= Area(Ωi,j) ≥ r ∣ Area(Ωi,j) ≥ r ×Area(Ωi,j)

Θi,j ∶∶=Dist(Λi,j , CRT,Λi,j , CRT) ≥ r ∣
Lat(Λi,j , CRT) ≥ r ∣ Lon(Λi,j , CRT) ≥ r ∣
Lat(Λi,j , CRT) ≥ r ×Lat(Λi,j , CRT) ∣
Lon(Λi,j , CRT) ≥ r ×Lon(Λi,j , CRT) ∣
Lat(Λi,j , CRT) ≥ r ×Lon(Λi,j , CRT) ∣
Area(Λi,j) ≥ r∣Area(Λi,j) ≥ r ×Area(Λi,j)

CRT ∶∶= LM ∣ RM ∣ TM ∣ BM ∣ CT

where i ≥ 0, and the grammar starts from Φ0,0.
The time and frame constraints of STPL are represented in the
form of τ −x > r and F −x > n, respectively. The freeze time
quantifier x.ϕ assigns the current frame i to time variable x
before processing the subformula ϕ. The Existential quantifier
is denoted as ∃, and the Universal quantifier is denoted as
∀. The following syntactic equivalences hold for the STPL
formulas ψ and ϕ using syntactic manipulation. ∀{id}@x.ϕ ≡
¬(∃{id}@x.¬ϕ), ψ ∧ ϕ ≡ ¬(¬ψ ∨ ¬ϕ), � ≡ ¬⊺ (False), ψ →
ϕ ≡ ¬ψ ∨ ϕ (ψ Implies ϕ), ϕ R ψ ≡ ¬(¬ϕ U ¬ψ) (ϕ releases
ψ), ϕ R ψ ≡ ϕ R (ϕ ∨ ψ) (ϕ non-strictly releases ψ), ◇ψ ≡
⊺ U ψ (Eventually ψ), ◻ψ ≡ ¬◇¬ψ (Always ψ). All the other
operators with ⋅̃ on them are with frame intervals, that is in
◻̃s
I , ◇̃s

I , Ũs

I , ◯̃s
I , ŨI , and ◯̃I the interval I is over frame

interval.
For parsing a formula using the above grammar, there are

two production rules Φf
i and Φq

i,j in which we can use the
initial production rule after increasing the index i (i.e., Φi+1,j).
The index i is to force scope for the use of freeze time
variables. For example, if in the scope of a variant-quantifier
operator we use x0, then the index will increases to 1 to avoid
use of x0 in the scope of the next variant-quantifier operator.
The index j is used as a pointer to each quantifier operator
to track the scope of object variables. For example, in the
formula φ ≡ ∃id0.◻ (∃id1.∃id2.(ϕ1)∨ϕ2), we have i = 2 and
j = 0 while parsing the subformula ϕ1, whereas, in ϕ2, we
have i = 0 and j = 0. Thus any function in ϕ1 with object
variables in it will use the production rule Λ2,0. Thus, the
allowed object variables in ϕ1 are id0, id1 and id2. However,
while parsing the subformula ϕ2, we use Λ0,0 in which the
only allowed object variable is id0.

APPENDIX B
APPENDIX: COMPLEXITY ANALYSIS OF STE FORMULAS

Here the assumption is that we use the linked-list data struc-
ture to represent a spatial term T as a union of a finite number
of unique subsets. We can compute V(τ1 Us

I τ2,D, t, τ, ϵ, ζ)
recursively as V(τ2,D, t, τ, ϵ, ζ) ∪ (V(τ1,D, t, τ, ϵ, ζ) ∩
V((τ1 Us

I τ2),D, t+1, τ, ϵ, ζ)). For each until formula in each
row of Table VI (starting from the row l = 1), for each time
step t, we use the recursive evaluation function to calculate the
maximum number of bounding boxes as a result of computing
the formula. The maximum number of bounding boxes that
can be produced by τ1 ∪ τ2 is equal to the total number of
boxes in the two spatial terms (i.e., ∣τ1∣ + ∣τ2∣). Additionally,
the maximum number of bounding boxes that can be produced
by τ1 ∩ τ2 is equal to the product of number of boxes in the
two spatial terms (i.e., ∣τ1∣× ∣τ2∣). Consequently, the maximum
number of bounding boxes that can be produced at each time
step t for the above until formula is ∣V(τ2,D, t, τ, ϵ, ζ)∣ +
∣V(τ1,D, t, τ, ϵ, ζ)∣ × ∣V(τ1 Us

I τ2,D, t + 1, τ, ϵ, ζ)∣.

A. Formulas with Exponential Time/Space Complexities
As it is stated in the first and second rows in Table VI, the

number of needed operations grow as in arithmetic sequences.

32

l tn tn−1 tn−2 tn−3 tn−4 . . .
0 1 1 1 1 1 . . .

1 1 1(1+1)
= 2

1(1+
1(1+1))
= 3

1(1+
1(1+
1(1+1)))
= 4

1(1+
1(1+ 1(1+
1(1+1)))) =
5

. . .

2 1

2(1+1)
= 4,
2 ≤

4 ≤ 3!

3(1+
2(1+1))
= 15,
22 ≤

15 ≤ 4!

4(1+
3(1+
2(1+1)))
= 64,
23 ≤

64 ≤ 5!

5(1+
4(1+ 3(1+
2(1+1)))) =
325, 24 ≤
325 ≤ 6!

. . .

3 1
2(1+1)
(1+1)
= 8

3(1+
2(1+1))
(1+
2(1+1)
(1+1))
= 135

4(1+
3(1+
2(1+1)))
(1+
3(1+
2(1+1))
(1+
2(1+1)
(1+1)))
= 8,704

5(1+
4(1+ 3(1+
2(1+1))))
(1+
4(1+ 3(1+
2(1+1)))
(1+
3(1+
2(1+1))
(1+ 2(1+1)
(1+1)))) =
2,829,125

. . .

. .

TABLE VI: DP-based complexity analysis for spatio-temporal
until operator with different levels of nesting. At l = 0 we have
τ = σ(Id); At l = 1: we have τ Us

I τ , and τ Us
I τ ; At l = 2:

we have (τ Us
I τ) Us

I (τ Us
I τ); Finally, at l = 3: we have

((τ Us
I τ) Us

I (τ Us
I τ)) Us

I ((τ Us
I τ) Us

I (τ Us
I τ)).

Thus, the time complexity which is the summation of numbers
in the rows, are linear and polynomial functions of the number
of the time steps for the first and second rows, respectively.
Moreover, the space complexity for the first and the second
rows are constant and linear functions of number of the time
steps, respectively.

In the following, we calculate an upper bound and a lower
bound for the maximum number of bounding boxes that can
be produced for the third row (level 2) of the until operator.
We use the function f2(t) to denote the maximum number of
bounding boxes that are produced at the time step t for the
until formula (τ Us

I τ) Us
I (τ Us

I τ).

n

∑
t=1
f2(t) =

1 + 2(1 + 1) + 3(1 + 2(1 + 1))+
4(1 + 3(1 + 2(1 + 1))) + 5(1 + 4(1 + 3(1 + 2(1 + 1)))) + . . .

+ n(1 + (n − 1)(1 + (n − 2)(. . .1 + 2(1 + 1))) . . .) (21)

We repetitively use the inequality (a+1)b > a(1+ b) for b > a
to derive the following inequality from the above equation

n

∑
t=1
f2(t) < 1 + 3! + 4! + 5! + 6! + ⋅ ⋅ ⋅ + (n + 1)! (22)

where n ≥ 2. Therefore, we have
n

∑
t=1
f2(t) < n × (n + 1)! < (n + 2)! (23)

Next, we calculate a lower bound for the maximum number
of bounding boxes that can be produced for the level 2 of
the until operator. We repetitively use the inequality 2(b+1) <

a(1+2b) for a ≥ 2 to derive the following inequality from Eq.
(21)

n

∑
t=1
f2(t) > 1 + 21 + 22 + 23 + 24 + ⋅ ⋅ ⋅ + 2(n−1) (24)

where n ≥ 2. Therefore, we have
n

∑
t=1
f2(t) > 2n (25)

This time inequality suggests that the time/space complexity
for any formulas with more than one level of nesting can be
exponential.

B. Best Complexity for the Worst Formulas

We can repeat the above method to calculate a lower bound
for each row of the table by using the inequality ar+1 < ar(1+
b) for b > a in each summation of the elements of rows to
derive the below inequality

n

∑
t=1
f0(t) +

n

∑
t=1
f1(t) + ⋅ ⋅ ⋅ +

n

∑
t=1
fl(t) >

n + n(n + 1)
2

+ 2n − 1

2 − 1
+ 3n − 1

3 − 1
+ ⋅ ⋅ ⋅ + l

n − 1

l − 1
>

n + n(n + 1)
2

+ 2(n−1) + 3(n−1) + ⋅ ⋅ ⋅ + l(n−1)

− (1 + 1

2
+ 1

3
+ ⋅ ⋅ ⋅ + 1

l − 1
)

> 2(n−1) + 3(n−1) + ⋅ ⋅ ⋅ + l(n−1)

where n ≥ 2. Therefore, we have
n

∑
t=1
f0(t) +

n

∑
t=1
f1(t) + ⋅ ⋅ ⋅ +

n

∑
t=1
fl(t) > l(n−1) (26)

This concludes the complexity of the algorithm to be
Ω(∣φs∣(∣ρ̂∣−1)).

	I Introduction
	II Preliminaries
	II-A Data-object Stream
	II-B Topological Spaces
	II-C Image Space Notation and Definitions
	II-D Spatio-Temporal Logic MTLS4u

	III Problem Definition
	III-A Assumptions
	III-B Overall Solution

	IV Spatio-Temporal Perception Logic
	IV-A STPL Syntax
	IV-B STPL Semantics
	IV-B1 Spatio-Temporal Functions
	IV-B2 Semantics of Temporal Operators
	IV-B3 Semantics of Past-Time Operators
	IV-B4 Semantics of Spatio-Temporal Operators

	IV-C MTL/STL Equivalences in STPL

	V Case Study
	V-A Object Quantifier Examples
	V-B Examples with Time Constraints
	V-C Examples of Space and Time Requirements with 2-D Images
	V-C1 Basic Spatial Examples without Quantifiers.
	V-C2 Basic Spatial Examples with Quantifiers.

	V-D Examples of Space and Time Requirements with 3D environment
	V-D1 Missed classification scenario
	V-D2 3D occlusion scenario

	VI Monitoring Algorithm
	VI-A Algorithm-1
	VI-B Algorithm-2
	VI-C Algorithm-3
	VI-D Algorithm-4
	VI-E Correctness and Complexity Analysis
	VI-F A Polynomial Time/Space Fragment
	VI-F1 Example
	VI-F2 Example
	VI-F3 Example
	VI-F4 Example
	VI-F5 Example
	VI-F6 Example

	VII Experiments and Results
	VIII Related Works
	IX Conclusions
	Appendix A: Appendix: STPL Future Syntax
	Appendix B: Appendix: Complexity Analysis of STE formulas
	B-A Formulas with Exponential Time/Space Complexities
	B-B Best Complexity for the Worst Formulas

