
Rapid Locomotion via Reinforcement Learning
Gabriel B. Margolis*1, Ge Yang*1 2, Kartik Paigwar1, Tao Chen1, and Pulkit Agrawal1 2

1MIT Improbable AI Lab 2NSF AI Institute for Artificial Intelligence and Fundamental Interactions
Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract—Agile maneuvers such as sprinting and high-speed
turning in the wild are challenging for legged robots. We present
an end-to-end learned controller that achieves record agility for
the MIT Mini Cheetah, sustaining speeds up to 3.9m/s. This
system runs and turns fast on natural terrains like grass, ice, and
gravel and responds robustly to disturbances. Our controller is a
neural network trained in simulation via reinforcement learning
and transferred to the real world. The two key components are (i)
an adaptive curriculum on velocity commands and (ii) an online
system identification strategy for sim-to-real transfer leveraged
from prior work. Videos of the robot’s behaviors are available
at https://agility.csail.mit.edu/.

I. INTRODUCTION

Running fast on natural terrain is challenging. Different
terrains exhibit different characteristics, ranging from variable
friction and softness to sloped and uneven geometry. As
a robot attempts to move at faster speeds, the impact of
terrain variation on controller performance increases [6, 12].
Some physical considerations only begin to influence the
robot’s dynamics at high speeds, including the enforcement
of actuator limits [9, 10, 15], the regulation of large contact
forces [21], and body control during flight phases [10, 21].
One possibility is to resolve these issues by making targeted
improvements to the hand-designed models used in model-
based control. Impressive progress has been made in this
direction [5, 6, 9, 10, 11, 12, 15, 21]. However, in model-based
control, the robot’s behavior and robustness are dependent on
the creativity and investment of the human designer, who must
invent simplified reduced-order models that allow the robot to
infer the appropriate actions under the constraint of real-time
computation.

How can we perform real-time control in complex envi-
ronments where efficient reduced-order models may not exist
or are currently unknown? One possibility is to optimize the
robot’s actions with respect to a full physics model. The
problem is that trajectory optimization with a full model is not
possible in real-time for a complex task such as fast running
on natural terrains. An alternative is to amortize the cost of
trajectory optimization by learning a direct mapping from
sensory observations to actions (a policy) using high-reward
trajectories sampled from the full model. Reinforcement learn-
ing (RL) provides a way to learn such a policy. In this
approach, the human designs a set of training environments
and reward functions to specify a set of tasks. RL algorithms

* Equal contribution. Authors are also affiliated with Computer Sci-
ence and Artificial Laboratory (CSAIL), the Laboratory for Information
and Decision Systems (LIDS), and the MIT-IBM Watson AI Lab at MIT.
Correspondence to {gmargo, geyang}@csail.mit.edu

3.9 m/s

3.4 m/s

5.7 rad/s

Icy Terrain
Fig. 1: An end-to-end learned controller enables the MIT Mini
Cheetah to execute: (a) fast sprinting at 3.9m/s (top); (b)
a rough terrain 10-meter sprint at 3.4m/s; (c) high-speed
spinning indoors; and (d) robust spinning on an icy patch.
All behaviors are realized by a single neural network that is
trained in simulation and deployed zero-shot in the real world.

automatically discover the policy that maximizes reward across
these environments and tasks. Because the RL framework
does not require a human engineer to design accurate and
efficient reduced-order models, it is less reliant on human
effort. Consequently, RL offers a scalable controller synthesis
scheme for complex tasks in challenging environments. Recent
works have successfully employed RL to learn locomotion
controllers [23, 24, 27, 29, 35, 37].

Our goal is to construct a system that can traverse terrains at
a large range of linear and angular velocities. This corresponds
to a multi-task RL setup where running with each combination
of linear and angular velocity constitutes a separate task. Akin
to prior work, we found that when the robot is trained to
walk with a narrow range of commanded velocities, a multi-

ar
X

iv
:2

20
5.

02
82

4v
1

 [
cs

.R
O

]
 5

 M
ay

 2
02

2

https://agility.csail.mit.edu/
mailto:gmargo@csail.mit.edu,geyang@csail.mit.edu

task policy can be successfully learned [23, 24]. However,
increasing the range of commanded velocities to include high
speeds results in training failure. This issue is reminiscent of
difficulty in learning multi-task policies via RL on a broad set
of tasks [16]. To understand the reason for failure, consider
the naive approach of training a multi-task RL policy by
uniformly sampling from all tasks. If most of the tasks are
challenging or infeasible, the agent will not gather significant
reward, and the training will fail. This is the case in high-speed
locomotion: learning to run at rapid velocities from scratch is
difficult because physical considerations such as centrifugal
force constrain the combinations of linear and angular speed
that are realizable.

Training can be made easier by initially providing simple
tasks to the agent and then slowly increasing their complexity
using a curriculum [4]. Curriculum learning has been lever-
aged for training robotic systems in the past [25, 28, 35, 41].
Manual curriculum design can fail when the difficulty or fea-
sibility of tasks is not known in advance. For omnidirectional
running, manual curriculum design involves finding feasible
linear and angular velocity combinations that satisfy physical
constraints and ranking velocity commands based on their
difficulty. Task difficulty is a function of both the system
dynamics and the optimization algorithm, making manual
curriculum design tedious and problem-dependent. Instead,
we implement an automatic curriculum strategy that expands
the set of tasks while respecting the physical constraints of
locomotion. The proposed strategy yields significant perfor-
mance improvements in learning omnidirectional high-speed
locomotion.

When deployed in the real world on flat ground, our learned
policy sustained a top speed of 3.9m/s, the highest reported
speed for this robot (first row of Figure 1). On uneven outdoor
terrain covered with grass, our robot achieved an average speed
of 3.4m/s for a 10m dash (second row of Figure 1). The same
policy can spin the robot at 5.7 rad/s on flat ground and also
enables the robot to spin on the more challenging icy terrain
(bottom row of Figure 1). We observed additional emergent
behaviors during our experiments, including recovery from
tripping and compensation for a malfunctioning motor. These
results are reported qualitatively, and corresponding videos
highlight the diversity of responses that emerge from end-to-
end learning.

Our policy uses a minimal sensing suite, consisting only
of gyroscope and joint encoders, and is therefore suitable for
any typical robot quadruped, including relatively inexpensive
commercially available robots. Overall, our system performs
rapid locomotion both indoors and outdoors and successfully
negotiates challenging terrains and disturbances. Our work fills
a gap in the literature. We show that reinforcement learning
can be used to learn locomotion controllers that simultaneously
achieve linear and angular high-speed behaviors and operate
on diverse natural terrains.

πIMU

Joint Encoder

Past Actions

Command Velocity

Motor Command

Fig. 2: Our controller is a learned mapping from sensory inputs
to desired joint positions. We parameterize it as 5-layer neural
network πθ with parameters θ optimized in simulation.

II. EXPERIMENTAL SETUP

Hardware: We use the MIT Mini Cheetah [20] as our experi-
mental platform. The robot stands 30 cm tall and weighs 9 kg.
It is equipped with 12 quasi-direct-drive actuators capable of
maximum output torque of 17Nm. The robot’s sensor suite
consists of joint position encoders and an inertial measurement
unit (IMU). Our neural network controller runs at 50Hz on
an onboard NVIDIA Jetson TX2 NX computer.
Simulation: We use the IsaacGym simulator [26] and code
adapted from the open-source repository in [35]. We collect
400 million simulated timesteps using 4000 parallel agents for
policy training. This is roughly equivalent to 92 real-time days,
which we can simulate in under three hours of wall-clock time
using a single NVIDIA RTX 3090 GPU.

III. METHOD

Our goal is to learn a policy πθ(.) with parameters θ that
takes as input sensory data and velocity commands and gives
as output joint position commands (see Figure 2), which are
converted into joint torques by a PD controller. The command
(vcmd
t) includes the longitudinal (vcmd

x) and lateral (vcmd
y) linear

velocities and the yaw rate (ωcmd
z).

A. Control Architecture

Observation Space: The robot’s sensors provide joint angles
qt ∈ R12 and joint velocities q̇t ∈ R12, measured using motor
encoders, and gori

t ∈ R3, which denotes the orientation of the
gravity vector in the robot’s body frame and is measured
using the IMU. As detailed in Section III-C, the policy πθ(·)
takes as input a history of previous observations and actions
denoted by ot−H:t where ot = [qt, q̇t, gori

t , at−1]. Because we
are learning a command-conditioned policy, the input to the
policy is xt−H:t where xt = ot

⊕
vcmd
t . During deployment,

the body velocity command vcmd
t is specified by a human

operator via remote control.
Action Space: The action, at ∈ R12, assigns joint position
commands for a PD controller. The proportional gain is 20,
and the derivative gain is 0.5. We chose these low gains to
promote smooth motions and did not tune them during our
experiments.
Reward Function closely follows [35] with task reward terms
for linear and angular velocity tracking, as well as a set
of auxiliary terms for stability (velocity penalties on body

Term Min Max Unit

Ground Friction 0.05 4.00 -
Ground Restitution 0.00 1.00 -
Payload Mass -1.0 3.0 kg
Body Center of Mass -0.10 0.10 m
Motor Strength 90 110 %

Forward Velocity Command (vcmd
x) var. var. m/s

Lateral Velocity Command (vcmd
y) var. var. m/s

Angular Velocity Command (ωcmd
z) var. var. rad/s

TABLE I: The first set of rows report the ranges of the domain
parameters we randomize. The policy is tasked to follow a
range of velocity commands that are generated via curriculum
strategy described in Section III-D.

roll, pitch, height), smoothness (joint torque and acceleration
penalties, action change penalty, footswing duration bonus),
and safety (penalty on self-collision, penalty on joint limit
violations). We found that the robot tends to sink its body at
high speeds and lean into its heading. This motivated us to
introduce penalties on the robot’s body height and orientation.
The details of the reward function are in Table VI (Appendix).

B. Teacher-Student Training

We train a locomotion policy in simulation and transfer it
to the real world without fine-tuning. Because the real-world
terrain and some of the robot’s parameters are not precisely
known, it is common practice to train πθ(.) by randomizing
simulation parameters denoted here as dt. We randomize the
body mass, the center of mass, motor strength, ground friction,
and ground restitution in the ranges reported in Table I.

One possibility is for the policy to learn a single behavior
that works across all the randomized parameters. This learning
procedure is commonly referred to as domain randomiza-
tion [38, 39]. Let the resulting policy be πDR(xt). While
πDR(xt) can cross the sim-to-real gap [38, 39], the learned
behavior is conservative [38, 42] because there is no mecha-
nism for the policy to adapt to different domain parameters.
For instance, from the same starting state, it makes sense to run
on ice in a manner different from running on grass. However,
πDR(xt) has no mechanism for doing so.

To prevent the policy from being conservative, one approach
is to include the domain parameters dt as part of the policy
input [7]. The policy πT (xt,dt), commonly referred to as a
teacher policy, is trained using an RL algorithm to maximize
the expected sum of rewards. Direct knowledge of the domain
parameters provides πT (xt,dt) with the ability to adapt to
different domains. However, this policy cannot be deployed
on a real robot since dt cannot be directly measured using
onboard sensors. To overcome this limitation, one can deploy
a student policy, πS(xt, x[t−h:t−1]) that is trained to mimic
the teacher’s action via behavior cloning [34]. The main idea
is that accurately matching the teacher’s actions forces the
student to implicitly infer domain parameters (dt) from a
state history of h time steps, x[t−h:t−1]. Therefore, the student
policy is said to perform online system identification.

Module Inputs Hidden Layers Outputs

Enc. (gθd) dt (12) [256, 128] zt (8)
Adapt. (hθa) x[t−h:t−1] (42× 15) [256, 32] zt (8)
Body (πθb) xt (42), zt (8) [512, 256, 128] at (12)

TABLE II: Network architecture for encoder gθd ,
adaptation module hθa , and policy body πθb . The
teacher policy is πT (xt,dt) = πθb(xt, gθd(dt)), with
parameters θb, θd optimized using PPO. The student policy,
πS(xt, x[t−h:t−1]) = πθb(xt, hθa(x[t−h:t−1])) reuses θb from
the teacher and θa is optimized using supervised learning.

Teacher-student training enables the agent to specialize its
behavior to the current dynamics dt, instead of learning a
single behavior that works across different dt. This so-called
implicit system identification approach has been previously
developed in a number of works involving object re-orientation
with a multi-finger hand [8], self-driving cars [7] and loco-
motion [23, 24, 27, 29]. Like work applying student-teacher
learning to blind walking [23, 24], our teacher policy observes
dt, the dynamic properties of the robot and terrain. The student
learns to infer them from x[t−h:t−1], the history of joint angles,
and IMU readings.

C. Policy Optimization

1) Teacher Policy: We construct the teacher policy,
πT (xt,dt), as a composition of two modules gθd and πθb ,
such that πT (xt,dt) = πθb(xt, gθd(dt)). The first module gθd
is the encoder,

zt = gθd(dt) , (1)

which compresses dt into an intermediate latent vector zt. The
second module πθb is the policy body,

at = πθb(xt, zt) , (2)

which predicts an action from the latent zt and observation
xt. Each module is parameterized as a neural network with
ELU activations and architecture described in Table II. We
optimize the teacher’s parameters θd, θb together using PPO
[36] to maximize the future discounted reward,

max
θb,θe

Eπθb,θe
[∞∑
t=0

γtrt
]
. (3)

2) Student Policy: The student policy πS(xt, x[t−h:t−1]) =
πθb(xt, hθa(x[t−h:t−1])) imitates the teacher’s behavior dur-
ing deployment without access to dt. The student policy
is constructed by replacing encoder gθd(dt) with an online
identification module [23, 24],

ẑt = hθa(x[t−h:t−1]) , (4)

which estimates the latent ẑt from state history x[t−h:t−1]. We
train the identification module so that its predictions ẑt match
the encoder’s output zt = gθd(dt) as closely as possible. To

this end, we optimize parameters θa using supervised learning
on on-policy data, using the loss function

Lθd =
(
hθa(x[t−h:t−1])− gθd

(
dt)
)2

= (ẑt − zt)2 . (5)

When this loss is low, the latent representation zt is shared
between the teacher and the student, so the student can reuse
the teacher’s policy body module as at = πθb(ẑt, xt) to select
actions without further training.

The optimization procedure closely follows that of [23, 24]
with a few minor differences: (1) We use a shorter history
of h = 15 observations, small enough for the adaptation
module to run in real-time synchronously with the policy
body; (2) We train the adaptation module simultaneously with
the teacher using on-policy data. We found that the robot’s
ability to run at high speed was not sensitive to these design
choices, which made training and deployment easier. Table II
gives the architecture of each component of the system. PPO
hyperparameters are listed in Table V (Appendix).

D. Curriculum Strategy

The agent learns a velocity-conditioned policy by attempting
to track different velocity commands during training. To this
end, the longitudinal and yaw velocity commands vcmd

x , ωcmd
z

during episode k are sampled from a probability distribution
pkvx,ωz (·, ·). The lateral velocity command vcmd

y is sampled sep-
arately from a small uniform probability distribution because
longitudinal and yaw speed are sufficient for omnidirectional
locomotion. Without a curriculum, there is no change in the
sampling procedure from episode to episode:

pk+1
vx,ωz (·, ·)← pkvx,ωz (·, ·) . (6)

When velocity commands are sampled uniformly from
a small range (vcmd

x ∈ [−1.0, 1.0], ωcmd
z ∈ [−1.0, 1.0])

at the start of training, the agent can learn to track them
[17, 23]. However, when commanded velocities are sampled
uniformly from a large distribution (vcmd

x ∈ [−4.0, 4.0],
ωcmd
z ∈ [−5.0, 5.0]), we found that learning fails (Figure 3).
The reason for failure is that locomotion at high speeds is

challenging, and if most of the commands are high-velocity,
the agent fails to gather enough reward. This problem may
be mitigated if we first expose the agent to low-velocity
commands and gradually increase the desired speed via a
curriculum [4]). Some works use a curriculum where the
commands are updated on a fixed schedule, as a function of
the timing variable k. This update rule f takes the form:

pk+1
vx,ωz (·, ·)← f

(
pkvx,ωz (·, ·), k

)
. (7)

A fixed schedule requires manual tuning. Moreover, if
the system designer modifies the environment or learning
algorithm, the agent’s learning speed will be different, which
would necessitate re-tuning the curriculum schedule. Rather
than advancing the command curriculum on a fixed schedule,
we automatically update the curriculum using a reward-based
rule [2, 25, 28, 41]. One possibility is to maintain independent

distributions over command dimensions pvx(·), pωz (·) such
that pvx,ωz (·, ·) = pvx(·)pωz (·), and to specify the update rules
fv , fω for each component separately:

pk+1
vx (·)← fv

(
pkvx(·), rvx

)
, (8a)

pk+1
ωz (·)← fω

(
pkωz (·), rωz

)
, (8b)

where rvx and rωz are the velocity tracking rewards as detailed
in Table VI. We refer to this approach as the Box Adaptive
curriculum because the probability density function in the vx-
ωz plane is shaped like a box.

If vx and ωz are chosen independently, then commands
with both high linear and angular velocity will be sampled
equally as often as commands with just one large velocity
component. However, due to the effects of centrifugal force at
high speeds, simultaneous running and turning are much more
demanding than fast straight-line running or spinning in place.
A curriculum that independently increases the linear and an-
gular velocities might fail to discover some behaviors because
most high-speed commands are infeasible. This motivates us
to use a curriculum strategy that models the joint distribution
over linear and angular velocity commands:

pk+1
vx,ωz (·, ·)← f

(
pkvx,ωz (·, ·), rvx , rωz

)
. (9)

We refer to this as the Grid Adaptive curriculum.
Having described the form for the two curriculum strategies,

we will now provide the detailed update rules. For both
strategies we initialize pkvx,ωz (·, ·) as a uniform probability
distribution over (vcmd

x ∈ [−1.0, 1.0], ωcmd
z ∈ [−1.0, 1.0]). We

represent distribution pkvx,ωz (·, ·) as a discrete grid with res-
olution [0.5m/s, 0.5 rad/s] centered at [0m/s, 0 rad/s]. To
control the growth of the sampling distribution, we define a
success threshold, γ, with constant value between 0 and 1.

1) Box Adaptive Curriculum Update Rule: At episode k,
the linear and angular velocity commands for the agent are
sampled independently: vcmd

x ∼ pkv (·), ωcmd
z ∼ pkωz (·). If the

agent succeeds in this region of command space, we would
like to add neighboring regions to the sampling distribution,
potentially increasing the difficulty of future commands. Sup-
pose the agent receives rewards rvcmd

x
, rωcmd

z
in its attempt to

follow vcmd
x , ωcmd

z . Then we apply the update rule

pk+1
vx (vn

x)←

{
pkvx(v

n
x) rvcmd

x
< γ ,

1 otherwise.
(10a)

pk+1
ωz (ωn

z)←

{
pkωz (ω

n
z) rωcmd

z
< γ ,

1 otherwise.
(10b)

which increases the probability density on neighbors vn
x of

vcmd
x and ωn

z of ωcmd
z . Here, neighboring commands are defined

as the adjacent elements in the (discretized) domain of each
marginal distribution: vn

x ∈ {vcmd
x −0.5, vcmd

x +0.5} and ωn
z ∈

{ωcmd
z − 0.5,ωcmd

z + 0.5}. Suppose vcmd
x or ωcmd

z is among
the most challenging commands in one of the distributions,

0.0 0.5 1.0 1.5
Error Threshold [m/s] + [rad/s]

0

20

40

60

80

C
om

m
an

d
A

re
a

[m
·ra

d/
s2]

No Curriculum
Box Adaptive
Grid Adaptive

(a) Command area vs. error threshold

-5

0

5

No Curriculum Box Adaptive Grid Adaptive

-5 0 5
vx [m/sec]

-5

0

5

z [
ra

d/
se

c]

-5 0 5 -5 0 5
0.0

0.5

1.0

1.5

2.0

2.5

Tr
ac

ki
ng

 E
rr

or
,

z
Tr

ac
ki

ng
 E

rr
or

, v
x

(b) Heatmap of converged tracking error for curricular strategies.

Fig. 3: (a) Forward and angular velocity tracking performance. The Grid Adaptive curriculum tracks a larger range of velocities
than the Box Adaptive curriculum for all error thresholds. (b) Velocity tracking error in the forward axis (top) and yaw axis
(bottom); darker is better. In each heatmap, the x-axis varies the forward velocity command between [−6, 6m/s] and the y-axis
varies the yaw rate between [−6, 6 rad/s]. From left to right: No Curriculum fails to learn meaningful velocity control; its
heatmaps correspond to a robot jittering in place, as its tracking error is equal to the command. Box Adaptive curriculum learns
to control the robot but excludes extremes of the command space. Grid Adaptive curriculum covers a larger command area by
accounting for the combined impact of running and turning speed on task difficulty.

and the reward threshold is met. In that case, this update will
result in that distribution expanding.

2) Grid Adaptive Curriculum Update Rule: At episode k,
the linear and angular velocity commands for the agent are
sampled from the joint distribution: vcmd

x ,ωcmd
z ∼ pkvx,ωz (·, ·).

As before, if the agent succeeds in this region of command
space, we would like to increase the difficulty by adding
neighboring regions to the sampling distribution. However, the
distributions of vcmd

x and vcmd
y are no longer constrained to be

independent. This enables us to revise our update with a new
definition of the neighboring commands. Upon termination
of an episode with command [vcmd

x ,ωcmd
z] where the agent

received rewards rvcmd
x
, rωcmd

z
, we use the following update:

pk+1
vx,ωz (v

n
x,ω

n
z)←

{
pkvx,ωz (v

n
x,ω

n
z) rvcmd

x
< γ or rωcmd

z
< γ,

1 otherwise.
(11)

This update adds probability density to the neighboring
velocity commands [vn

x,ω
n
z] of [vcmd

x ,ωcmd
z], if those com-

mands have not already been added. Here, neighboring com-
mands are defined as neighbors in the 4-connected grid do-
main of pkvx,ωz (·, ·), which is a discrete grid with resolution
[0.5m/s, 0.5 rad/s]. If [vcmd

x ,ωcmd
z] is among the most chal-

lenging commands in the joint distribution, and the reward
threshold is met, this update will result in the distribution
expanding locally.

E. Evaluation Metrics

The controller is tasked to track body velocity commands.
Consider a command: (vcmd

x ,ωcmd
z) corresponding to a point in

the vcmd
x -ωcmd

z plane. We discretize this plane into a grid with
resolution [0.5m/s, 0.5 rad/s] with grid cell indices denoted
as i, j. Then, for each grid cell, we define the tracking error
εij as the root mean square deviation, averaged over trials in

that grid cell:

εij [vcmd
x] = Evcmd

x ∼[i−1,i],ωcmd
z ∼[j−1,j]

√
Et(vcmd

x − vtx)2 , (12a)

εij [ω
cmd
z] = Evcmd

x ∼[i−1,i],ωcmd
z ∼[j−1,j]

√
Et(ωcmd

z − ωtz)
2 ,
(12b)

where vtx,ωtz are the forward and yaw velocity of the robot
measured at time t. In our experiments, we compute tracking
error from 5 trials per grid cell.

Measuring either the longitudinal or yaw velocity in iso-
lation does not provide a complete picture of controller
performance. Instead, we want a metric that captures the
combinations of longitudinal and yaw velocity that the robot is
able to track. To this end, we constructed an aggregate metric
that captures the diversity of commands the controller can
actuate given some maximum error tolerance. For a certain
error threshold ε0, we define the command area as the area
of the region in the vcmd

x -ωcmd
z plane for which the tracking

errors satisfy

εij [vcmd
x] + εij [ω

cmd
z] < ε0. (13)

The dimension of the command area is m/s · rad/s. In-
tuitively, if one controller has a larger command area than
another, the former can achieve a greater range of speeds
while remaining below the same error threshold ε0. When we
report the command area, we evaluate policies trained with
five random seeds and indicate their standard deviation using
an error bar.

IV. RESULTS

A. Curriculum Learning Enables High-Speed Locomotion

Figure 3(a) visualizes the tracking error (see Section III-E)
of the policies learned from the three command sampling
strategies as heatmaps in the vcmd

x -ωcmd
z plane. The shading

on each heatmap corresponds to tracking error, with darker

Robot RL? Froude Speed Leg L
(-) m/s cm

Park et al. C2 7.1 6.4 59
Ours, Ji et al. MC Y 5.1 3.9 30
Kim et al. MC 4.6 3.7 30
Unitree A1 2.8 3.3 40
Kumar et al. A1 Y 0.8 1.8 40
Hwangbo et al. ANYmal Y 0.5 1.5 50

TABLE III: Measure of Agility: Comparison between the
Froude numbers of various prior works. MC = Mini Chee-
tah; C2 = Cheetah 2. We are the first to demonstrate that
reinforcement learning (RL) achieves agile locomotion with
Froude number ≥ 1 (along with concurrent work Ji et al.).

shades indicating lower error. We observe that the policy
trained without any curriculum fails to learn. This is because
the robot’s random exploration at the start of training rarely
results in fast body motion. Hence, the reward almost always
remains small, providing minimal learning signal.

The performance of the system is improved substantially
by implementing the Box Curriculum. The agent first learns
to track well in the small initial command distribution, then
gradually increases its capability as the commands become
larger.

Using the Grid Curriculum, the performance of the policy
further improves, as evidenced by the larger command area.
It achieves this by maintaining a full joint distribution over
linear and angular velocity, thereby modeling their interaction.
When high linear and angular velocities are combined, a body
experiences a centrifugal force which must be countered by
frictional force to remain on the desired path. This force
balance induces a constraint on maximum combinations of
linear and angular velocity such that the two vary inversely
[ωz ∼ 1/vx] when the constraint is active. This phenomenon is
in agreement with the apparent inverse shape of the command
area boundary shown in Figure 3b, which suggests that the
robot has reached a physical limit on its ability to turn at
high speed. The Grid Curriculum can limit itself to sampling
combinations of linear and angular speed that are jointly
feasible. In contrast, because the Box Curriculum samples
linear and angular velocity independently, it will frequently
generate infeasible high-speed tasks that hinder learning.

B. Real-world Testing

Video of all experiments described in this section is view-
able on the project website: https://agility.csail.mit.edu/.

Indoor Running To evaluate how fast our robot can run in
the real world, we ramped the velocity command to 6.0m/s.
We conducted this experiment in a motion capture arena to
accurately estimate the robot’s running speed (Figure 1, top).
We found that policies trained with a system identification
module and grid curriculum sustained an average speed of
3.8m/s across multiple seeds (Table IV), with the highest
sustained speed of 3.9m/s among the three seeds. This is
higher than the previous record of 3.7m/s reported for a

vcmd
x vx (Sim) vx (Real)

With System ID (πθST) 6.0m/s 5.46 3.81± 0.09 (3)
W/o System ID (πθDR) 6.0m/s 5.07 2.49± 0.07 (2)

TABLE IV: Quantifying the sim-to-real gap in the maximum-
velocity regime. Velocity on the real robot is measured using
a precise motion capture setup.

model-predictive control algorithm on the same robot [21].
Together with concurrent work [18], this is substantially faster
than previous applications of RL to legged locomotion.

The maximum attainable speed is intimately tied to the
robot’s hardware properties, such as its weight, motor strength,
and leg length. Although there is no perfect way to compare
agility across different robot designs, Froude number [3]
normalizes a robot’s speed by its leg length and has been
used to measure agility across robot platforms in the past [30].
Table III compares the Froude numbers across different
quadrupeds and controllers. Along with the concurrent work
of Ji et al. [18], our method is substantially more agile than
previous applications of reinforcement learning.

While our robot successfully performs rapid locomotion in
the real world, there exists a sim-to-real gap as reported in
Table IV. The results reveal that online system identification
leads to better tracking of the velocity command of 6.0m/s
in simulation (speed of 5.46m/s with and 5.07m/s without
system identification), and also reduces the sim-to-real gap
(average speeds of 3.81m/s with and 2.49m/s without system
identification). While prior work demonstrated that sim-to-real
gap can be mitigated at low velocities [23, 24], our results
show that these findings also hold true at high speeds.

Some of the remaining sim-to-real performance gap may
result from an inaccurate selection of simulated terrain and
robot parameters for evaluation. For example, the configuration
used for simulated evaluation might overestimate the robot’s
effective motor strength or the ground friction, resulting in a
different maximum speed. On the other hand, some aspects of
the real-world dynamics are probably not captured under any
configuration of the simulator. This type of sim-to-real gap
could result in suboptimal real-world top speed. The relative
contributions of these factors to the sim-to-real performance
gap remains uncertain.

Outdoor Running Outdoor terrain presents multiple chal-
lenges not present in indoor running, among which are changes
in ground height, friction, and terrain deformation. Under these
variations, the robot must actuate its joints differently to reach
high speed than it would on flat, rigid terrain with high friction,
such as a treadmill or paved road. To test if our system can
run on outdoor terrains, we conducted an outdoor dash across
an uneven grassy patch as shown in Figure 1 (second row).
We record an outdoor 10-meter dash time of 2.94 seconds,
corresponding to an average speed of 3.4m/s.

Yaw Control We evaluate our controller’s yaw velocity
control in the lab setting as shown in Figure 1 (third row). The
robot accelerates to a maximum yaw rate of 5.7 rad/s, then

https://agility.csail.mit.edu/

0.0 0.5 1.0 1.5
Error Threshold [m/s] + [rad/s]

0

20

40

60

80

C
om

m
an

d
A

re
a

[m
·ra

d/
s2]

Student
ST

Teacher
TR

Domain Randomization
DR

Fig. 4: Online system identification reduces tracking error,
particularly at high speeds. The command area increases as
the error threshold is relaxed for teacher, student, and domain-
randomized policies.

stops safely. This is 90% of the fastest yaw rate recorded on
the Mini Cheetah using a model-based controller, at 6.28 rad/s
[5]. However, the model-based records were achieved using
two different controllers for linear [21] and angular [5] ve-
locity. In contrast, a single policy achieved all indoor and
outdoor running and spinning results in our work. To challenge
the controller’s spinning skills, we brought the robot outside
after a snowstorm and piloted it onto an icy patch, illustrated
in Figure 1 (bottom). The robot maintained stability while
spinning as its feet frequently slipped on ice.

Response to Terrain Changes and Hardware Failures
We tested our system in a diverse set of challenging real-world
scenarios: (1) ascending a steep incline made of small pebbles.
(2) maintaining balance despite a mechanical blockage to one
motor. (3) tripping at high speed, flying upside down, and
landing on its feet. (4) recovering via a change in gait after
tripping over a small barrier. We present these qualitative
results in the accompanying video.

We also deployed the model-predictive controller from [21]
in scenarios (1) and (4), which were the most convenient to
replicate. Unlike our learned controller, the baseline did not
recover from (1) slipping down the gravelly incline and (4)
tripping over the barrier. While these results highlight the
robustness of policies, we want to emphasize that we are
not claiming that such (or even more) robustness cannot be
achieved with model-predictive control. Our claim is simply
that by freeing the human from the tedious task of refining the
robot’s model or behavior, the RL paradigm offers a scalable
alternative to obtain robust behavior in diverse conditions.

C. Ablation Studies

1) Impact of Online System Identification: System identifi-
cation can become both more critical and more challenging as
locomotion speed increases; this has been previously suggested
by studies of model-based control systems [6, 12], but has
not been explored in the context of reinforcement learning.
We evaluate this hypothesis in the teacher-student setting by
quantifying (1) the benefit of access to privileged information
when learning to run at high speeds, and (2) the ability
of the student policy to retain the performance gains using
only available sensor data. We compare teacher, student, and

0.0 0.5 1.0 1.5
Error Threshold [m/s] + [/s]

0

20

40

60

80

C
om

m
an

d
A

re
a

[m
·

/ s2]

No Noise
4.0 cm
6.0 cm
8.0 cm

(a) Command area vs. error threshold

None 4 cm 6 cm 8 cm
Terrain Noise [cm]

0

10

20

30
= 0.3

C
om

m
an

d
A

re
a

[m
·

/ s2]

(b) Slice along ε = 0.3

Fig. 5: (a) Increasing the magnitude of terrain roughness
during training shrinks the range of commands the robot can
successfully track – the command area – on flat ground.
This reflects a trade-off between robustness to rough terrains
and top speed on flat ground. (b) Histogram comparing the
command area at error threshold ε = 0.3, which corresponds
to the gray vertical line on the left.

domain randomized policies as described in Section III-B in
the high-speed regime. All policies are trained under the same
randomization of the privileged state (Table I).

We find that access to privileged information yields in-
creased performance across all speeds, with the greatest benefit
at high speeds. Figure 4 plots the command area (Section
III-E) for the three policies as the threshold for error increases.
The privileged teacher πT trained with access to environment
parameters attains a strictly larger command area than the
policy πDR trained with only the robot state. Using the online
system identification module, we show that the student policy
πS can nearly match the teacher’s performance. The student’s
ability to imitate the teacher is consistent across all speeds.

2) Impact of Rough-Terrain Training: One might hypoth-
esize that for a system to operate on rough terrains, it must
also be trained on rough terrains. The strategy of training on
rough terrains has been applied successfully in prior works
[23, 24, 37] to enable robust locomotion on diverse terrains.
We find that despite training only on flat ground, our policy
is sufficiently robust to deploy on various outdoor terrains.
Moreover, for a blind policy, there is a trade-off between speed
on flat ground and robustness on uneven terrain. Figure 5
reports the decrease in performance brought on by introducing
terrain roughness when training a high-velocity locomotion
policy.

V. RELATED WORK

Model-based Control for Locomotion Seminal work in the
field used simplified models and hand-specified gaits to make
legged robots balance and move dynamically [14, 19, 32].
Subsequent works introduced expanded models with layered
control architectures capable of operation on subsets of rough,
soft, and slippery terrains [6, 12, 22, 30, 31, 33].

Recent innovations have addressed specific limitations of
simple models with respect to high-speed running. Whole-
body control [10] enables simultaneous modeling of robot
dynamics and kinematic constraints in real-time. By framing

the whole-body control task as one of regulating ground
reaction forces, [21] formulated a controller capable of running
at speeds up to 3.7m/s on the Mini Cheetah. Regularized
Predictive Control [5] additionally applied learned heuristics
within a model-based framework, which expanded the robot’s
ability to spin at high speeds and make tight cornering turns.

Reinforcement Learning for Locomotion [38] combined
model-free reinforcement learning with dynamics randomiza-
tion to learn fast trotting and bounding controllers for the
Minitaur robot to move at a fixed speed and direction on
flat ground. Extending this approach, [17] trained a velocity-
tracking controller for the ANYmal robot for speeds up to
1.5m/s, and [40] applied sim-to-real reinforcement learning
for agile locomotion on the Cassie biped. Followup works
expanded ANYmal’s robustness by training on diverse terrains
using the teacher-student learning paradigm [24, 29, 35].
The mechanical design of the ANYmal robot is thought to
limit it from running at higher speeds. [13, 23] investigated
the capability of model-free controllers to efficiently traverse
diverse terrains on the Unitree A1, a small robot with similar
size, actuation, and cost to the Mini Cheetah. Although the
A1’s built-in MPC controller has a maximum running speed
of 3.3m/s, these learning-based works only demonstrated the
robot running up to maximum speed 1.8m/s.

Concurrently with our work, Ji et al. [18] also trained agile
running policies for the Mini Cheetah robot using reinforce-
ment learning. Unlike our work, [18] used a fixed-schedule
curriculum on forward linear velocity only. In agreement with
our results, [18] concluded that online system identification
improves sim-to-real transfer in the high-speed locomotion
setting. Instead of learning as we did to implicitly adapt
to different environments, [18] learned to explicitly estimate
robot state components such as body velocity and contact
probability.

Curricula for On-Policy Reinforcement Learning Prior
works have shown that a curriculum on environments can
enable the discovery of behaviors that are challenging to learn
directly using reinforcement learning [4]. [2] demonstrated an
Automatic Domain Randomization strategy in which domain
randomization scales are increased based on agent perfor-
mance. Curricula on environments have also been demon-
strated in locomotion context; [24, 29, 35] applied a cur-
riculum on terrains to learn highly robust walking controllers
on non-flat ground. [41] notably evaluated terrain curriculum
strategies, including adaptive curricula, in the setting of step-
ping stone traversal with a physically simulated biped.

Student-Teacher Training Learning with a privileged
teacher has been leveraged for robotics in a number of
previous works. [23, 24] applied this approach to the task of
blind walking. The teacher policy observed dt, the dynamic
properties of the robot and terrain, and the student learned
to infer them from x[t−h:t−1], the history of joint angles and
IMU readings. [27, 29] used the same approach to incorporate
terrain geometric information into a locomotion policy. In
these works, dt was a ground-truth geometric heightmap of the
terrain. In [29], the student policy observed a noisy heightmap.

In [27], the student policy observed a forward-facing depth
image. [8] applied the teacher-student training approach to
the task of object reorientation using a dexterous five-fingered
hand. In this work, dt included the true position of the object
as well as the ground-truth state of the hand’s fingers. The
student policy learned to imitate the teacher using point cloud
observations and noisy joint angle readings that could be
obtained in the real world.

VI. DISCUSSION

This work has shown that a neural network controller trained
fully end-to-end in simulation can push a small quadruped
to the limits of its agility, achieving omnidirectional mobility
competitive with well-engineered model-predictive controllers
in the regime of high speed. Because our controller uses
minimal sensing, we can implement it on a low-cost robot [20]
with commercially available analogues [1]. Therefore, our
method can be readily tested and built upon by others using
relatively accessible materials.

Our controller achieves a Froude number of 5.1, which is the
highest reported on the Mini Cheetah but lower than the fastest
published system, the Cheetah 2 [30]. The Froude number
does not capture the impact of any mechanical differences
between robots except leg length. We can only speculate
whether the agility of alternative platforms comes from im-
proved analytical controllers or hardware differences such as
motor strength and weight distribution.

Instrumentation and repeatability limited our ability to char-
acterize the robot’s outdoor performance fully. We cannot use
motion capture to record the robot’s state outdoors as we
do in the lab. Also, it is unsafe and impractical to record a
large number of high-speed trips or flips on a real robot. This
constrained our analysis of the robot’s outdoor behavior to be
more qualitative while we performed our quantitative analysis
in the laboratory setting.

The behaviors we demonstrate in this work are diverse but
still limited relative to the full space of possible locomotion
tasks. The system we demonstrate has only been trained to
control the robot’s body velocity in the ground plane. Other
categories of behavior such as jumping, crouching, chore-
ographed dance, and loco-manipulation were outside the scope
of this work and would potentially require a very different
task specification. Our system also does not use vision, so in
general, it cannot perform tasks that require planning ahead
of time, like efficiently ascending stairs or avoiding pitfalls.

Finally, we emphasize that while our system demonstrates
high speed, its distinctive locomotion gait should not be
interpreted as generally “better” than the many possible al-
ternatives. On the contrary, many users of legged robots
wish to optimize for objectives beyond speed, such as energy
efficiency or minimization of wear on the robot. Body speed
alone is an underspecified objective, meaning that there may
be many equally preferable motions that attain the same speed.
Combining learned agile locomotion with additional speci-
fications such as auxiliary objectives or human preferences
remains a promising direction for future work.

ACKNOWLEDGMENT

The authors thank the members of the Improbable AI
Lab and the Biomimetic Robotics Laboratory for providing
valuable feedback on the project direction and the manuscript.
We are grateful to MIT Supercloud and the Lincoln Labo-
ratory Supercomputing Center for providing HPC resources.
The Mini Cheetah robot used in this work was donated by
the MIT Biomimetic Robotics Laboratory and NAVER. The
Biomimetic Robotics Laboratory also provided hardware sup-
port for the robot. This research was supported by the DARPA
Machine Common Sense Program, the MIT-IBM Watson AI
Lab, and the National Science Foundation under Cooperative
Agreement PHY-2019786 (The NSF AI Institute for Artificial
Intelligence and Fundamental Interactions, http://iaifi.org/).
This research was also sponsored by the United States Air
Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished un-
der Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the United
States Air Force or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes, notwithstanding any copyright notation
herein.

REFERENCES

[1] Unitree Robotics, A1, 2022, https://www.unitree.com/
products/a1, [Online; accessed Apr. 2022].

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej,
Mateusz Litwin, Bob McGrew, Arthur Petron, Alex
Paino, Matthias Plappert, Glenn Powell, Raphael Ribas,
et al. Solving Rubik’s cube with a robot hand. arXiv
preprint, 2019. doi: 10.48550/arXiv.1910.07113.

[3] R McN Alexander. The gaits of bipedal and quadrupedal
animals. Int. J. Robot. Res. (IJRR), 3(2):49–59, June
1984. doi: 10.1177/027836498400300205.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and
Jason Weston. Curriculum learning. In Proc. Int. Conf.
Mach. Learn. (ICML), pages 41–48, Montreal, Canada,
June 2009. doi: 10.1145/1553374.1553380.

[5] Gerardo Bledt, Matthew J. Powell, Benjamin Katz, Jared
Di Carlo, Patrick M. Wensing, and Sangbae Kim. MIT
Cheetah 3: Design and control of a robust, dynamic
quadruped robot. In Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), pages 2245–2252, Madrid, Spain,
October 2018. doi: 10.1109/IROS.2018.8593885.

[6] Will Bosworth, Jonas Whitney, Sangbae Kim, and
Neville Hogan. Robot locomotion on hard and soft
ground: Measuring stability and ground properties in-
situ. In Proc. IEEE Int. Conf. Robot. Automat. (ICRA),
pages 3582–3589, Stockholm, Sweden, May 2016. doi:
10.1109/ICRA.2016.7487541.

[7] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. Learning by cheating. In Proc. Conf. Robot

Learn. (CoRL), pages 66–75, Virtual, November 2020.
doi: 10.48550/arXiv.1912.12294.

[8] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for
general in-hand object re-orientation. In Proc. Conf.
Robot Learn. (CoRL), pages 297–307, London, UK,
November 2021. doi: 10.48550/arXiv.2111.03043.

[9] Matthew Chignoli, Donghyun Kim, Elijah Stanger-Jones,
and Sangbae Kim. The MIT humanoid robot: Design,
motion planning, and control for acrobatic behaviors.
In Proc. IEEE/RAS Int. Conf. Humanoid Robot. (Hu-
manoids), pages 1–8, Munich, Germany, July 2021. doi:
10.1109/HUMANOIDS47582.2021.9555782.

[10] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake.
Whole-body motion planning with centroidal dynamics
and full kinematics. In Proc. IEEE/RAS Int. Conf.
Humanoid Robot. (Humanoids), pages 295–302, Madrid,
Spain, November 2014. doi: 10.1109/HUMANOIDS.
2014.7041375.

[11] Yanran Ding, Abhishek Pandala, and Hae-Won Park.
Real-time model predictive control for versatile dynamic
motions in quadrupedal robots. In Proc. IEEE Int. Conf.
Robot. Automat. (ICRA), pages 8484–8490, Montreal,
Canada, May 2019. doi: 10.1109/ICRA.2019.8793669.

[12] Shamel Fahmi, Michele Focchi, Andreea Radulescu, Ge-
off Fink, Victor Barasuol, and Claudio Semini. STANCE:
Locomotion adaptation over soft terrain. IEEE Trans.
Robot. (T-RO), 36(2):443–457, April 2020. doi: 10.1109/
TRO.2019.2954670.

[13] Zipeng Fu, Ashish Kumar, Jitendra Malik, and Deepak
Pathak. Minimizing energy consumption leads to the
emergence of gaits in legged robots. In Proc. Conf. Robot
Learn. (CoRL), pages 928–937, London, UK, November
2021. doi: 10.48550/arXiv.2111.01674.

[14] Andrei Herdt, Nicolas Perrin, and Pierre-Brice Wieber.
Walking without thinking about it. In Proc. IEEE/RSJ
Int. Conf. Intell. Robot. Syst. (IROS), pages 190–195,
Taipei, Taiwan, October 2010. doi: 10.1109/IROS.2010.
5654429.

[15] Alexander Herzog, Stefan Schaal, and Ludovic Righetti.
Structured contact force optimization for kino-dynamic
motion generation. In Proc. IEEE/RSJ Int. Conf. Intell.
Robot. Syst. (IROS), pages 2703–2710, Daejeon, Korea,
October 2016. doi: 10.1109/IROS.2016.7759420.

[16] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech
Czarnecki, Simon Schmitt, and Hado van Hasselt. Multi-
task deep reinforcement learning with popart. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 3796–3803, 2019.

[17] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario
Bellicoso, Vassilios Tsounis, Vladlen Koltun, and Marco
Hutter. Learning agile and dynamic motor skills for
legged robots. Sci. Robot., 4(26):aau5872, January 2019.
doi: 10.1126/scirobotics.aau5872.

[18] Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and
Jemin Hwangbo. Concurrent training of a control policy
and a state estimator for dynamic and robust legged lo-

https://www.unitree.com/products/a1
https://www.unitree.com/products/a1
https://arxiv.org/abs/1910.07113
https://journals.sagepub.com/doi/10.1177/027836498400300205
https://journals.sagepub.com/doi/10.1177/027836498400300205
https://dl.acm.org/doi/10.1145/1553374.1553380
https://ieeexplore.ieee.org/abstract/document/8593885
https://ieeexplore.ieee.org/abstract/document/8593885
https://ieeexplore.ieee.org/abstract/document/8593885
https://ieeexplore.ieee.org/document/7487541
https://ieeexplore.ieee.org/document/7487541
https://ieeexplore.ieee.org/document/7487541
https://arxiv.org/abs/1912.12294
https://arxiv.org/abs/2111.03043
https://arxiv.org/abs/2111.03043
https://ieeexplore.ieee.org/abstract/document/9555782
https://ieeexplore.ieee.org/abstract/document/9555782
https://ieeexplore.ieee.org/document/7041375
https://ieeexplore.ieee.org/document/7041375
https://ieeexplore.ieee.org/abstract/document/8793669
https://ieeexplore.ieee.org/abstract/document/8793669
https://ieeexplore.ieee.org/document/8957061
https://ieeexplore.ieee.org/document/8957061
https://arxiv.org/abs/2111.01674
https://arxiv.org/abs/2111.01674
https://ieeexplore.ieee.org/document/5654429
https://ieeexplore.ieee.org/abstract/document/7759420
https://ieeexplore.ieee.org/abstract/document/7759420
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://ieeexplore.ieee.org/document/9714001
https://ieeexplore.ieee.org/document/9714001

comotion. IEEE Robot. Automat. Lett. (RA-L), 7(2):4630
– 4637, April 2022. doi: 10.1109/LRA.2022.3151396.

[19] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi
Fujiwara, Kensuke Harada, Kazuhito Yokoi, and Hirohisa
Hirukawa. Biped walking pattern generation by using
preview control of zero-moment point. In Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), volume 2, pages 1620–
1626, Taipei, Taiwan, September 2003. doi: 10.1109/
ROBOT.2003.1241826.

[20] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini
Cheetah: A platform for pushing the limits of dynamic
quadruped control. In Proc. IEEE Int. Conf. Robot. Au-
tomat. (ICRA), pages 6295–6301, Montreal, QC, Canada,
May 2019. doi: 10.1109/ICRA.2019.8793865.

[21] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo
Bledt, and Sangbae Kim. Highly dynamic quadruped
locomotion via whole-body impulse control and model
predictive control. arXiv preprint, 2019. doi: 10.48550/
arXiv.1909.06586.

[22] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés
Valenzuela, Hongkai Dai, Frank Permenter, Twan
Koolen, Pat Marion, and Russ Tedrake. Optimization-
based locomotion planning, estimation, and control de-
sign for the atlas humanoid robot. Auton. Robot., 40(3):
429–455, July 2015. doi: 10.1007/s10514-015-9479-3.

[23] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra
Malik. RMA: Rapid motor adaptation for legged robots.
In Proc. Robot.: Sci. and Syst. (RSS), Virtual, July 2021.
doi: 10.48550/arXiv.2107.04034.

[24] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning quadrupedal
locomotion over challenging terrain. Sci. Robot., 5
(47):eabc5986, October 2020. doi: 10.1126/scirobotics.
abc5986.

[25] Richard Li, Allan Jabri, Trevor Darrell, and Pulkit
Agrawal. Towards practical multi-object manipulation
using relational reinforcement learning. In Proc. IEEE
Int. Conf. Robot. Automat. (ICRA), pages 4051–4058,
Virtual, May 2020. doi: 10.1109/ICRA40945.2020.
9197468.

[26] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong
Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa,
et al. Isaac Gym: High performance GPU-based physics
simulation for robot learning. arXiv preprint, 2021. doi:
10.48550/arXiv.2108.10470.

[27] Gabriel B Margolis, Tao Chen, Kartik Paigwar, Xiang
Fu, Donghyun Kim, Sangbae Kim, and Pulkit Agrawal.
Learning to jump from pixels. In Proc. Conf. Robot
Learn. (CoRL), pages 1025–1034, London, UK, Novem-
ber 2021. doi: 10.48550/arXiv.2110.15344.

[28] Tambet Matiisen, Avital Oliver, Taco Cohen, and John
Schulman. Teacher–student curriculum learning. IEEE
Trans. Neural Net. Lrn. Sys., 31(9):3732 – 3740, Septem-
ber 2019. doi: 10.1109/TNNLS.2019.2934906.

[29] Takahiro Miki, Joonho Lee, Jemin Hwanbo, Lorenz

Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
robust perceptive locomotion for quadrupedal robots in
the wild. Sci. Robot., 7(62):abk2822, January 2022. doi:
10.1126/scirobotics.abk2822.

[30] Hae-Won Park, Patrick M Wensing, and Sangbae Kim.
High-speed bounding with the MIT Cheetah 2: Control
design and experiments. Int. J. Robot. Res. (IJRR), 36(2):
167–192, March 2017. doi: 10.1177/0278364917694244.

[31] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and
Rob Playter. Bigdog, the rough-terrain quadruped robot.
IFAC Proceedings Volumes, 41(2):10822–10825, March
2008. doi: 10.3182/20080706-5-KR-1001.01833.

[32] Marc H Raibert. Legged Robots That Balance. MIT
press, 1986.

[33] Ludovic Righetti and Stefan Schaal. Quadratic pro-
gramming for inverse dynamics with optimal distribu-
tion of contact forces. In Proc. IEEE/RAS Int. Conf.
Humanoid Robot. (Humanoids), pages 538–543, Osaka,
Japan, November 2012. doi: 10.1109/HUMANOIDS.
2012.6651572.

[34] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proc. Conf. Artif. Intel.
Stat., pages 627–635, Ft. Lauderdale, FL, USA, April
2011. doi: 10.48550/arXiv.1011.0686.

[35] Nikita Rudin, David Hoeller, Philipp Reist, and Marco
Hutter. Learning to walk in minutes using massively par-
allel deep reinforcement learning. In Proc. Conf. Robot
Learn. (CoRL), pages 91–100, London, UK, November
2021. doi: 10.48550/arXiv.2109.11978.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint, 2017. doi: 10.48550/arXiv.
1707.06347.

[37] Jonah Siekmann, Kevin Green, John Warila, Alan Fern,
and Jonathan Hurst. Blind bipedal stair traversal via sim-
to-real reinforcement learning. In Proc. Robot.: Sci. and
Syst. (RSS), Virtual, July 2021. doi: 10.48550/arXiv.2105.
08328.

[38] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen,
Yunfei Bai, Danijar Hafner, Steven Bohez, and Vincent
Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots. In Proc. Robot.: Sci. and Syst. (RSS),
pages 1–9, Pittsburgh, Pennsylvania, USA, June 2018.
doi: 10.15607/RSS.2018.XIV.010.

[39] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In Proc. IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), pages 23–30, Vancouver,
BC, Canada, September 2017. doi: 10.1109/IROS.2017.
8202133.

[40] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais,
Jonanthan Hurst, and Michiel van de Panne. Learning
locomotion skills for Cassie: Iterative design and sim-
to-real. In Proc. Conf. Robot Learn. (CoRL), pages 1–

https://ieeexplore.ieee.org/document/9714001
https://ieeexplore.ieee.org/abstract/document/1241826
https://ieeexplore.ieee.org/abstract/document/1241826
https://ieeexplore.ieee.org/abstract/document/8793865
https://ieeexplore.ieee.org/abstract/document/8793865
https://ieeexplore.ieee.org/abstract/document/8793865
https://arxiv.org/abs/1909.06586
https://arxiv.org/abs/1909.06586
https://arxiv.org/abs/1909.06586
https://link.springer.com/article/10.1007/s10514-015-9479-3
https://link.springer.com/article/10.1007/s10514-015-9479-3
https://link.springer.com/article/10.1007/s10514-015-9479-3
https://arxiv.org/abs/2107.04034
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://arxiv.org/abs/1912.11032
https://arxiv.org/abs/1912.11032
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/2110.15344
https://ieeexplore.ieee.org/abstract/document/8827566
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://journals.sagepub.com/doi/full/10.1177/0278364917694244
https://journals.sagepub.com/doi/full/10.1177/0278364917694244
https://www.sciencedirect.com/science/article/pii/S1474667016407020
https://ieeexplore.ieee.org/abstract/document/6651572/
https://ieeexplore.ieee.org/abstract/document/6651572/
https://ieeexplore.ieee.org/abstract/document/6651572/
http://proceedings.mlr.press/v15/ross11a
http://proceedings.mlr.press/v15/ross11a
http://proceedings.mlr.press/v15/ross11a
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/2109.11978
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2105.08328
https://arxiv.org/abs/2105.08328
https://arxiv.org/abs/1804.10332
https://arxiv.org/abs/1804.10332
https://ieeexplore.ieee.org/abstract/document/8202133
https://ieeexplore.ieee.org/abstract/document/8202133
https://ieeexplore.ieee.org/abstract/document/8202133
https://proceedings.mlr.press/v100/xie20a.html
https://proceedings.mlr.press/v100/xie20a.html
https://proceedings.mlr.press/v100/xie20a.html

13, Osaka, Japan, November 2020. doi: 10.48550/arXiv.
1903.09537.

[41] Zhaoming Xie, Hung Yu Ling, Nam Hee Kim, and
Michiel van de Panne. ALLSTEPS: Curriculum-driven
learning of stepping stone skills. Computer Graphics
Forum, 39(8):213–224, November 2020. doi: 10.1111/
cgf.14115.

[42] Zhaoming Xie, Xingye Da, Michiel van de Panne,
Buck Babich, and Animesh Garg. Dynamics random-
ization revisited: A case study for quadrupedal loco-
motion. In Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), pages 4955–4961, Virtual, May 2021. doi:
10.1109/ICRA48506.2021.9560837.

https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14115
https://onlinelibrary.wiley.com/doi/full/10.1111/cgf.14115
https://ieeexplore.ieee.org/abstract/document/9560837
https://ieeexplore.ieee.org/abstract/document/9560837
https://ieeexplore.ieee.org/abstract/document/9560837

TABLE V: Training Parameters

Hyperparameter Value

discount factor 0.99
GAE parameter 0.95

timesteps per rollout 21
epochs per rollout 5

minibatches per epoch 4
entropy bonus (α2) 0.01

value loss coefficient (α1) 1.0
clip range 0.2

reward normalization yes
learning rate 1e-3

workers 1
environments per worker 4096

total timesteps 400M
optimizer Adam

APPENDIX

A. Training Parameters

The PPO training parameters used for all experiments are
provided in Table V.

B. Reward Function

The reward terms are provided in VI.

C. Measures of Agility

Benchmarking the agility of legged robots cannot be ac-
complished by comparing speed alone due to differences in
hardware. [3] proposed to characterize legged agility by the
nondimensional Froude Number, defined as Fr = v2

gl where
v is the body velocity, g is gravity, and l is the nominal
leg length. This was motivated by the dynamic similarity
hypothesis, which argues that animals move in a dynamically
similar fashion when they have speeds proportional to the
square root of their leg lengths [3]. We compile the estimated
Froude numbers of quadruped systems contemporary to this
work in Table III.

TABLE VI: Reward terms for task, stability, and smoothness.
Reward from [35] is adapted to our robot with minor changes.

Term Symbol Equation

rvcmd
x

: xy velocity tracking exp{−|vxy − vcmd
xy |2/σvxy} 0.02

rωcmd
z

: yaw velocity tracking exp{−(ωz − ωcmd
z)2/σωz} 0.01

z velocity v2
z -0.04

roll-pitch velocity |ωxy|2 -0.001
base height (h− h0)2 -0.6
base orientation |gori

xy|
2 -0.002

self-collision 1selfcollision -0.02
joint limit violation 1qi>qmax||qi<qmin -0.2

joint torques |τ |2 -2e-7
joint accelerations |q̈|2 -5e-9
action rate |at−1 − at|2 -2e-4
foot airtime

∑
tair ∗ 1new contact 0.02

	I Introduction
	II Experimental Setup
	III Method
	III-A Control Architecture
	III-B Teacher-Student Training
	III-C Policy Optimization
	III-C1 Teacher Policy
	III-C2 Student Policy

	III-D Curriculum Strategy
	III-D1 Box Adaptive Curriculum Update Rule
	III-D2 Grid Adaptive Curriculum Update Rule

	III-E Evaluation Metrics

	IV Results
	IV-A Curriculum Learning Enables High-Speed Locomotion
	IV-B Real-world Testing
	IV-C Ablation Studies
	IV-C1 Impact of Online System Identification
	IV-C2 Impact of Rough-Terrain Training

	V Related Work
	VI Discussion
	Appendix
	A Training Parameters
	B Reward Function
	C Measures of Agility

