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Abstract 1. Introduction 

The manipulator trajectory tracking control problem revolves 
around computing the torques to be applied to achieve accu- 
rate tracking. This problem has been extensively studied in 
simulations, but real-time results have been lacking in the 
robotics lilerature. In this paper, we present the experimental 
results of the real-time pe$ormance of model-based control 
algorithms. We compare the computed-torque control scheme 
with the feedforward dynamics compensation scheme. The 
feedforward scheme compensates for the manipulator dy- 
namics in the fiedforward path, whereas the computed-torque 
scheme uses the dynamics in the feedback loop for lineariza- 
tion and decoupling. The parameters in the dynamics model 
for the computed-torque and feedforward schemes were esti- 
maled by using an identification algorithm. Our experiments 
underscore the importance of including the ofldiagonal 
terms of the manipulator inertia matrix in the torque compu- 
tation. This observation is further supported by our analysis 
of the dynamics equations. The manipulator control schemes 
have been implemented on the CMU DD arm 11 with a sam- 
pling period of 2 ms. 
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The manipulator control problem revolves around the 
computation of the joint torques required to track the 
desired joint position, velocity, and acceleration trajec- 
tories. This problem has been studied extensively in 
the robotics literature and many schemes have been 
proposed (Bejczy 1974, Brady et al. 1982, Freund 
1982, Gilbert and Ha 1984, Horowitz and Tomizuka 
1980, Liegois et al. 1980, Raibert and Horn 1978, 
Seraji 1986, Slotine 1985, Tourassis 1985). Although 
many simulation results have been presented, real-time 
implementation and performance evaluation of 
model-based control schemes on actual manipulators 
has not been performed. The main reasons for this are 
that ( I )  the high gear ratios and the dominant friction 
effects in commercial geared manipulators make them 
unsuitable for real-time performance evaluation; (2) 
the computational requirements of the Newton-Euler 
algorithm are still beyond the reach of commercially 
available microprocessors (Kanade et al. 1984) for 
high sample-rate control; and (3) it has been difficult 
to obtain an accurate model because research in this 
area has been lacking. 

One of the goals of the CMU directdrive arm I1 
(Schmitz et al. 1985) project is to demonstrate the ef- 
fect of full dynamics compensation on the real-time 
trajectory performance tracking of manipulators by 
overcoming the above-mentioned difficulties. To over- 
come the hurdle posed by the computational require- 
ments, we have customized the Newton-Euler algo- 
rithm and achieved a computational cycle of I .2 ms. 
This permits us to implement control algorithms at 
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high sampling rates of up to 830 Hz. We have also 
proposed numerical (Khosla 1986) and symbolic algo- 
rithms (Khosla and Kanade 1986, Neuman and 
Khosla 1985) to estimate the dynamic parameters of a 
manipulator. Further, we have implemented the iden- 
tification algorithm to experimentally estimate the 
dynamic parameters of the six-degrees-of-freedom 
CMU direct-drive arm 11. The estimated parameters 
were used to implement and evaluate the performance 
of both the computed-torque and feedforward control 
schemes. 

The above developments have allowed us to imple- 
ment and evaluate the real-time performance of ad- 
vanced manipulator control schemes. The experimen- 
tal results of the real-time implementation and 
evaluation of model-based control schemes were pre- 
sented recently, wherein the performance of the com- 
puted-torque and the independent joint control 
schemes was compared (Khosla and Kanade 1986). 
We have also experimentally evaluated the effect of the 
control sampling rate on the performance of model- 
based schemes (Khosla 1987). 

In this paper, we compare the computed-torque 
scheme with the feedforward dynamics compensation 
scheme. Other researchers have also addressed this 
problem and evaluated the real-time performance of 
the model-based schemes (Leahy et al. 1986, An 
1986). Both the computed-torque and the feedforward 
schemes use the full dynamics model of the manipula- 
tor but in different paths of the control loop: The feed- 
forward scheme compensates for the manipulator 
dynamics in the feedforward path, and the computed- 
torque scheme uses the dynamics in the feedback 
loop. By injecting the torque as a feedforward signal, 
the feedforward scheme effectively linearizes the ma- 
nipulator system about a given trajectory. However, it 
does not achieve exact decoupling. In contrast, the 
computed-torque scheme, by utilizing the dynamics 
model in the feedback loop, achieves both linearization 
and decoupling. The control schemes have been im- 
plemented on the CMU DD arm I1 with a sampling 
period of 2 ms (or a control sampling rate of 500 Hz). 

This paper is organized as follows. The manipulator 
control schemes that have been implemented and 
evaluated are presented in Section 2. The design of the 
controller gain matrices is outlined in Section 3. In 
Section 4, we delineate and analyze the results of our 

real-time implementation. In Section 5 ,  we draw our 
conclusions. 

2. Manipulator Control Techniques 

The dynamics of a manipulator are described by a set 
of highly nonlinear and coupled differential equations. 
The complete dynamic model of an Ndegreewf-free- 
dom manipulator is 

‘S = D(8)e + h(8, 8) + g(8), (1 )  

where r is the N-vector of the actuating torques; D(e) 
is the N X N positiondependent manipulator inertia 
matrix; h(8, e)  is the N-vector of Coriolis and centrifu- 
gal torques; g(0) is the N-vector of gravitational 
torques; and e, e, and 0 are N-vectors of the joint 
accelerations, velocities, and positions, respectively. 

We have implemented and compared the perform- 
ance of the computed-torque and feedforward com- 
pensation control schemes. In order to evaluate the ef- 
fect of approximating the positiondependent inertia 
matrix D(8) by a constant diagonal inertia matrix J, 
we have also implemented the reduced feedforward 
compensation scheme. In the sequel, K, and K are the 
constant and diagonal position and velocity feedback 
gain matrices, respectively; 8 and 6, are the measured 
and reference joint position vectors, respectively; and 
the dot denotes the derivative with respect to time. 

Compuled- Torque Control Scheme (CT) 
This scheme, depicted in Fig. 1, utilizes nonlinear 
feedback to decouple the manipulator. The control 
torque 7 is computed by the inverse dynamics equa- 
tion in ( I ) ,  using the commanded acceleration instead 
of the measured acceleration e, as 

where - indicates that the estimated values of the dy- 
namics parameters are used in the computation. 
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Fig. 1.  Block diagram of 
computed-torque conrrol 
scheme. 

K .  

-9 

Fig. 2. Block diagram of 
feedforward compensation 
control scheme. 

-q 

K ,  

Feedfonvard Dynamics Compensation Scheme (FED) 

If the dynamics model of a manipulator is exact, then 
the application of joint torques computed from ( 1) by 
using the reference trajectory will accomplish trajec- 
tory tracking. In practice, however, the presence of 
modeling errors creates the need for a feedback con- 
troller to compensate for the small deviations in tra- 
jectory tracking. The feedforward dynamics compen- 
sation technique, depicted in Fig. 2, is based on the 
premise that the gross torque for trajectory tracking is 
provided by using the inverse dynamics model in ( I )  
in the feedforward path. This control signal is then 
augmented with the signal derived from linear inde- 
pendent joint controllers, which are assumed to correct 
for the small deviations in trajectory tracking. The 
control torque T is therefore 

rJ lnvcrsc Arm 1 

4 1  I 

where T is the N-vector of applied control torques and 
J is the N X N diagonal matrix of link inertias at a 
typical position. 

on the assumption that the joint drive system is a 
torque-controlled device. To ensure that the above 
assumption is satisfied, we have identified the charac- 
teristics of the joint drive systems. The CMU DD arm 
I1 has very little friction and is driven by brushless dc 
torque motors with amplifiers that control motor cur- 
rent rather than voltage or speed. 

We conducted the open-loop small-signal fre- 
quency-response analysis and identified the continu- 
ous-time transfer function of each ioint. Since our 

The application of the above control laws is based 

sampling period of 2 ms is about 16 times smaller than 
the dominant mechanical time constant of the system, 
we assume that the effects of sampling are not evident 

(3) = &e,)& + i&,, 8,) + %(e,) 
+ J[K,(ed - 6) + KAe, - 411, 

in the input-output response of the system. This as- 
sumption is indeed supported by the experimental 
results. The identified transfer functions are depicted 
in Table 1. 

where the first three terms are the feedforward com- 
pensation torque, the last term is the torque due to the 
feedback controller, and J is the N X N diagonal ma- 
trix of link inertias at a typical position. 

Reduced FeedJorward Compensation Scheme (RFED) 

The reduced feedforward compensation scheme, de- 
picted in Fig. 3, has been implemented to demonstrate 
the effect of approximating the positiondependent 
inertia matrix by a constant diagonal matrix. The con- 
trol torque is computed by substituting the constant 
diagonal inertia matrix J instead of D(8,) in the first 
term in (3). Thus the torque applied to the joints at 
each sampling instant is 

(4) 
‘C = J[K,(B, - e) + K,(& - e)  + &I 

+ W d ,  4,) + %(&I, 

3. Controller Design 

The performance of the control schemes presented in 
the previous section can be compared only if the same 
criteria are used for design of the controller gain ma- 
trices. Fortunately, this is possible because the gain 
matrices K, and K, are the same for all three control 
schemes in this paper. Khosla and Kanade ( 1986) give 
a detailed procedure for choosing these gain matrices 
and establishing an equivalence between the gains of 
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Fig. 3. Block diagram of 
independent joint control 
scheme. 

I I 

the nonlinear computed-torque scheme and the linear 
independent joint control scheme. For expository 
convenience, we outline the criteria for the selection 
of the gain matrices for the computed-torque scheme. 
In our experiments, we used these gain values for im- 
plementing and evaluating the performance of the 
RFED and FED schemes also. 

3.1. Design of Gain Matrices for Computed-Torque 
Scheme 

The basic idea behind the computed-torque scheme is 
to achieve dynamic decoupling of all the joints using 
nonlinear feedback. If the dynamic model of the ma- 
nipulator is described by (1) and the applied control 
torque is computed according to (2), then the following 
closed-loop system is obtained: 

Table 1. Transfer Functions and Gains of 
Individual Links 

Joint ( j )  Transfir Function ( l/Jls2) k ,  k* 

40.0 12.6 
1 

1 2 . 3 ~ ~  

1 
2s2 

I 
0 . 2 5 ~ ~  

1 
0.007~~ 

1 
0.006~~ 

1 
0.0003~~ 

1 

58.0 15.2 - 2 

400.0 40.0 3 

2800.0 106.0 4 

1200.0 69.3 5 

3000.0 110.0 6 

Substituting (6) in ( 5 )  gives the following closed-loop 
characteristic equation for all the joints: 

s2 + k,is + kpj = 0, (7) 

where kvj and kpj are the velocity and position gains 
for thejth joint. 

Since we do not want any joint to overshoot the 
commanded position or alternately the response to be 
critically damped, our choice of the matrices K, and 
K, must be such that their elements satisfy the condi- 
tion: 

kDj=2Jka; for j -  1, . . . , 6. (8) 
where ui is the commanded acceleration signal, and 
the functional dependencies on 0 and 8 have been 
omitted for the sake of clarity. If the dynamics are 
modeled exactly, that is, fi = D, 
the decoupled closed loop system is 

= h, and g = g, then 

e = ui. ( 5 )  

The commanded acceleration signal is typically com- 
puted as (Khosla and Kanade 1986) 

U i  = K,(8, - 6) + K,(dd - e)  + ed.  (6) 

Besides, in order to achieve a high disturbance rejec- 
tion ratio or high stiffness, we must also choose the 
position gain matrix IC, as large as possible, which 
gives a large KO. 

In practice, however, the choice of the velocity gain 
K, is limited by the noise present in the velocity mea- 
surement. The dependence of the velocity gain on the 
noise may be a serious drawback if the velocity is ob- 
tained by numerically differentiating the position mea- 
surements. In our system, we use 16-bit resolvers to 
obtain the position measurements of each joint. The 
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Fig. 4. Schematic diagram 
of 3-dof DD arm II.  
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velocity is obtained by using tachometers that are 
incorporated in the resolver-todigital (R/D) con- 
verters boards. Since the R/D boards compute the 
velocity by integrating a signal that is proportional to 
the acceleration, the velocity measurements are relu- 
tively noise free. 

We determined the upper limit of the velocity gain 
experimentally. We set the position gain to zero and 
increased the velocity gain of each joint until the un- 
modeled high-frequency dynamics of the system were 
excited by the noise introduced in the velocity mea- 
surement. This value of K, represents the maximum 
allowable velocity gain. We chose 80% of the maxi- 
mum velocity gain in order to obtain as high a value 
of the position gain as possible and still be well within 
the stability limits with respect to the unmodeled high- 
frequency dynamics. The elements of the position gain 
matrix K, were computed to satisfy the critical d a m p  
ing condition in (8) and to achieve the maximum 
disturbance rejection ratio. The elements of the veloc- 
ity and position gain matrices used in the implementa- 
tion of the control schemes are listed in Table 1. 

-0.50.0 

-2.00. 

-4.00 

4. Experiments and Results 
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Fig. 5.  Desired trajectories 
for joint 1.  

Fig. 6 .  Desired trajectories 
for joint 2. 
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4.1. Trajectory Selection and Evaluation Criteria 

Since the DD arm I1 is a highly nonlinear and coupled 
system, it is impossible to characterize its behavior 

from a particular class of inputs, unlike linear systems 
for which a specific input (such as a unit step or a 
ramp) can be used to design and evaluate the con- 
trollers. Thus an important constituent of the experi- 
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Table 2. Maximum Tracking Errors for T1 

CT RFED FED 

Pos Error Vel Error Pos Error Vel Error Pos Error Vel Error 
Joint No. (rad) (rad/s) (rad) (rad/$ (rad) (rad/s) 

1 0.082 0.35 0.03 0.20 0.036 0.40 
2 0.1 1 0.55 0.18 0.88 0.13 0.58 
3 0.008 0.008 0.026 0.23 0.056 0.2 

mental evaluation of robot control schemes is the 
choice of a class of inputs for the robot. Khosla ( 1986) 
gives the criteria for selecting the joint trajectories. 

For evaluating the performance of robot control 
schemes, we used the dynamic tracking accuracy. This 
is defined as the maximum position and velocity 
tracking error along a specified trajectory. 

4.2. Real-Time Results 

We have implemented the control schemes CT, FED, 
and RFED, presented in Section 2, and evaluated 
their real-time performance on the six-degrees-of-free- 
dom CMU DD arm 11. Because of lack of space, we 
present our results for a simple but illustrative trajec- 
tory used to evaluate the above-mentioned control 
schemes. 

The trajectory is chosen to be simple and relatively 
slow but capable of providing insight into the effect of 
dynamics compensation. In this trajectory only joints 
1 and 2 move while all the other joints are com- 
manded to hold their zero positions and can be envi- 
sioned from the schematic diagram in Fig. 4. Joint 1 is 
commanded to start from its zero position and to 
reach the position of 1.5 rad in 0.75 s. It remains at 
this position for an interval of 0.75 s, after which it is 
required to return to its home position in 0.75 s. Simi- 
larly, joint 2 is commanded to start from its zero posi- 
tion and to reach the position of - 1.5 rad in 0.75 s. It 
remains at this position for an interval of 0.75 s, after 
which it is required to return to its home position in 
0.75 s. The points of discontinuity, in the trajectory, 
were joined by a fifth-order polynomial to maintain 

the continuity of position, velocity, and acceleration 
along the three segments. The desired position, veloc- 
ity, and acceleration trajectories for joints 1 and 2 are 
depicted in Figs. 5 and 6, respectively. The absolute 
value of the maximum velocity and acceleration to be 
attained by joints 1 and 2 are 2 radfs and 7.5 rad/s2, 
respectively. 

The position and velocity tracking curves for 
schemes CT, RFED, and FED are depicted in Figs. 
7- 10. The corresponding position and velocity track- 
ing errors in the three schemes for each joint are 
shown in Figs. 1 1 - 16. To give an idea of the relative 
performances, the maximum position and velocity 
tracking errors of each joint are depicted in Table 2. 
For the sake of brevity we have not included the graphs 
or tabulated the values of the errors of the last three 
wrist joints. 

To help us interpret the experimental results, we 
outline the dynamic equations for the first three de- 
grees of freedom of the CMU DD arm 11: 

(9) 

(10) 

( 1  1 )  

rI = dl181 + d12& + dl383 + hI33& + h1& 
+ 2h1234243 + 2hlt34143 + 2 h l 1 2 4 1 4 2 ,  

r2 = d2191 + d2282 + d2383 + h233& + h&& 
+ 2h2134143 - h2114?, 

r3 = d31el + d 2e2 + d3383 - h32& 
-2h3124ld2 - h3114?+g3. 

The coefficients d,,  h,, and gi are functions of the 
joint position vector 0 and are given by Khosla and 
Kanade (1985). 

The applied torque signals for the three schemes are 
shown in Figs. 17 - 19. Further, decomposition of the 
applied torques in CT into the inertial, the centrifugal, 
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Fig. 7. Position tracking of 
joint 1.  joint 2. joint I .  join[ 2. 

Fig. 8. Position tracking of Fig. 9. Velocity tracking o/ Fig. 10. I.’elocity tracking oj’ 
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and Coriolis, and the gravity components of joints I 
through 3 is presented in Figs. 20-22. First of all, we 
note that the applied torque for joint 1 has a profile 
similar to the desired acceleration ofjoint 1 except 
during the periods of constant speed (0.75 to 1 .O s and 
2.25 to 2.5 s) in the trajectory. This suggests that the 

inertial torque d,,8, dominates along most part of the 
trajectory. This is further supported by the profile of 
the inertial torque component in Fig. 20. The devia- 
tions observed in Fig. 20 are due to the Coriolis and 
the centrifugal components of the applied torque, 
which dominate during the period of constant velocity. 
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Fig. I S .  Velocity tracking 
errors of joint 2. 

Fig. 16. Velocity tracking 
errors of joint 3. 

Fig. 17. Applied torque of 
joint I. joint 2. 

Fig. 18. Applied torque of 
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120.00r 

30.00r 
c - C 

3 

-10.00- 

-20.00 - 

-30.00 I 
inertial coupling term 4,e2 dominates along most 
part of the trajectory. The gravitational torque in Fig. 
22 is due to the position errors and is negligible com- 
pared to the other torque components. It may be seen 

from Eq. ( 1  1) that the noniinear velocity dependent 
torque consists of both the Coriolis and the centrifugal 
components arising out of the movement of links 1 
and 2. 
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5. Conclusions and to underscore the need for including the o f f 4 a p  
nal elements of the inertia matrix in the torque com- 
putation. The latter has been considered to be impor- 
tant particularly in the case of directdrive arms where 
the inertial coupling effects are accentuated due to 
lack of gears (Asada et al. 1982). It has been demon- 

The aim of this paper has been twofold: to compare 
the performance of the feedforward dynamics com- 
pensation scheme with the computed-torque scheme, 
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strated in our experiments and further supported by 
our  analysis that it is possible for the off-diagonal 
terms to completely dominate the diagonal terms of 
the inertial matrix in the computation of the joint 
actuating torques. In such an event, neglecting the off- 
diagonal terms may lead to  trajectory tracking errors. 
It must also be pointed out that if an exact model of 
the manipulator were available, then both the com- 
puted-torque and feedforward compensation scheme 
will give similar results. In such a circumstance, using 
the feedforward dynamics compensation may have 
some implementational advantages, because the feed- 
forward torques could be computed off-line and added 
on-line to the torques computed by the independent 
joint controllers. 
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