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Abstract

In this article we consider the problem of task-directed
information gathering. We first develop a decision-theo-
retic model of task-directed sensing in which sensors are
modeled as noise-contaminated, uncertain measurement
systems, and sensing tasks are modeled by a transforma-
tion describing the type of information required by the
task, a utility function describing sensitivity to errvor, and
a cost function describing time or resource constraints on
the system.

This description allows us to develop a standard condi-
tional Baves decision-making model where the value of
information, or payoff, of an estimate is defined as the
average utility (the expected value of some function of
decision or estimation error) relative to the current proba-
bility distribution and the best estimate is that which max-
imizes payoff. The optimal sensor viewing strategy is that
which maximizes the net payoff (decision value ninus
observation costs) of the final estimate. The advantage of

this solution is generality—it does not assume a particular

sensing modality or sensing task. However, solutions to
this updating problem do not exist in closed form. This
motivates the development of an approximation to the
optimal solution based on a grid-based implenientation of
Baves' theorem.

We describe this algorithm, analvze its error properties,
and indicate how it can be made robust to errors in the
description of sensors and discrepancies between geomet-
ric models and sensed objects. We also present the results
of this fusion technique applied to several different infor-
mation gathering tasks in simulated situations and in a
distributed sensing syvstem we have constructed.

1. Introduction

As sensor-based robotics systems are cmployed in
increasingly complex, real-world situations, the vol-
ume and complexity of information required for ade-
quate performancc will incrcasc substantially. To
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effectively gather and use sensor information,
robotic systems will need the capability of making
intelligent choices about the deployment of sensing
capabilities and computational resources. Develop-
ing algorithms flexible enough to handle a wide vari-
ety of sensing problems and situations is a crucial
step in the process of building intelligent systems.

The purposc of this article is to present a mathe-
matical framework for describing geometric sensing
problems and develop mcthods for computing the
solutions to these problems. Our solutions include
both the strategy or plan for gathering sensor infor-
mation and the integration of scnsor observations
into a consistent geometric description. Further-
more, by cxplicitly representing the costs of infor-
mation gathering and the effect of decision errors,
we arc able to determine how much information to
gather. Throughout this article, the emphasis is on
techniques that are independent of a particular sens-
ing modality or a particular sensing problem. The
former implics that, by definition, we solve the multi-
sensor fusion problem. The latter implics that the
samc techniques can be employed in a diverse sct of
applications and thercfore provide a unified treat-
ment of many different sensor-based systems.

We define geometric sensing problems as those
requiring a description of the shape, extent (size),
and position (the last is taken to include both trans-
lational and rotational position components) of
objects. An unrestricted environment containing sev-
eral objects will require several distinct gcometric
descriptions. Furthermore, there may be constraints
among the descriptions, (e.g., the position of an
object on a table depends on the position of the
table, or the shapes of two interlocking picces must
fit together). A consistent geometric description is
one that can account for all observed scensor data
and gecomeltric constraints by onc or more assign-
ments of shape, cxtent, and position. The data
fusion problem is to construct a consistent gcometric
description from sensor data.
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Examples of geometric sensor fusion problems
abound in the robotics literature. For example, com-
puting a consistent map of the environment based on
sensor observations is a core problem in mobile
robotics (Brooks 1985; Durrant-Whyte 1988; Giralt
et al. 1984; Moravec 1988). These maps usually
include an explicit representation of position and
sometimes use a description of shape or extent.
Many recognition systems use very refined descrip-
tions of shape and extent to classify observed
objects relative to a database of models (Allen 1988;
Brooks 1981). Task level programming systems
(Lozano-Pérez 1985) use more complex geometric
specifications for planning and performing grasping
and manipulation. In particular, computing the sta-
bility of a grasp or the initial lift vector for an object
requires quantities such as a centroid or weight
(Trinkle 1987)—quantities that, given appropriate
prior information about density, can be computed
from geometric descriptions.

As this last example illustrates, one geometric
form may be suitable for describing the data, but the
application requires information in another form.
However, the information needed by the application
can be often expressed as a function of the geomet-
ric parameterization. We note that these functional
descriptions can describe gualitative (propositional)
properties about the environment and thereby facili-
tate applications that manipulate representations
syntactically (Brooks 1981; Stansfield 1987). That is,
a proposition can be represented by an indicator
Sunction mapping the parameters of a geometric
description into truth values. Similarly, parameter-
based classification can be represented by describing
the function mapping parameter values to object
classifications.

The choice of what is observed and how it is
observed clearly affects the efficiency of fusion with
respect to a particular task. Furthermore, sensor
applications vary in their sensitivity to decision
error, which in turn affects the number of observa-
tions needed to obtain an adequate geometric
description. The purpose of sensor planning is to
enhance the performance of sensor fusion by tailor-
ing the choice and number of observations to the
given task and current operating conditions. How-
ever, fusion and planning must be tempered by the
cost of gathering and fusing information. In some
cases, it is better to allow the possibility of an incor-
rect decision or action than to spend the additional
resources needed to improve the quality or accuracy
of a decision. An optimal sensor strategy is one that
has the maximum ner value.

The idea of using active probing and adaptation is
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not new in the robotics area (Aloimonos [987;
Bajcsy 1985; 1988). For example, Allen (1988) used
a tactile probe to gather visually occluded surface
information for the purposes of object recognition.
Stanstield (1987) extended this paradigm by consid-
ering categorical models. Grimson (1986) and Hutch-
inson et al. (1988) consider the problem of determin-
ing the optimal sensor placement for disambiguating
the pose of polygonal objects. Cameron (1989)
describes a system that uses decision-theoretic prin-
ciples to compute a plan of observation for deter-
mining the type and pose of objects from tactile
probe data.

Many sensor data fusion and sensor planning sys-
tems have the common characteristic that they were
designed to work efficiently for specific applications
(typically recognition) using specific sensors. How-
ever, the information required by even simple tasks
can be highly varied and ranges from very simple
measurements by simple sensors to the determina-
tion of relatively complex quantities using multiple
information sources. The goal of our work is to
build flexible systems that can work with several
sensors and sensing tasks based on a description of
both sensor and sensing task in a suitable language.
In this article we first focus on describing a general
framework for describing sensors, models, and
tasks. We then use decision-theoretic principles to
define optimal solutions to the sensor planning and
fusion problems and, finally we develop computa-
tional algorithms that approximate these optimal
solutions.

The next section presents a mathematical frame-
work for describing geometric models, sensor
models, and task models and illustrates its use with
some simple examples. Section 3 briefly introduces
the decision-theoretic principles we use and
describes the decision-theoretic interpretation of
sensor models and task models. Following that, sec-
tion 4 discusses how these decision-theoretic meth-
ods can be implemented using a grid-based represen-
tation of probability densities. Section 5 is a
mathematical and simulation-based analysis of
approximation error and robustness of the methods.
In section 6 we present some experimental results
and close with a discussion of the limitations and
open problems of this methodology.

2. Describing Sensors and Sensing Tasks

In overview, we describe sensing tasks by first

defining one or more parametric, geometric repre-
sentations for observed objects. We then describe
how the available sensors image those objects and
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how tasks make usc of information contained in a
representation. The advantage of this organization is
that it separates the description of the sensor from
the sensing task and thereby enhances thc modular-
ity of the system. That is, it allows (1) thec addition
or delction of sensors obscrving an object indepen-
dent of sensing task as long as the available sct of
scensors can supply the required information and (2)
the addition or deletion of tasks using the informa-
tion stored in a model independcnt of how the infor-
mation was obtained.

The cffectiveness of this framework depends
heavily on the choice of a parametric representation.
The use of a particular parametric model fixes the
“‘vocabulary™ of data modcling and hence is highly
application dependent. The complexity of a paramet-
ric model should reflect the question that we scek to
answer with the model: a model with only a few
dcgrees of freedom provides significantly more data
compression and is generally faster to compute than
a morc flexible modcl, but the flexible model is able
to fit a wider varicty of obscrvations and may bring
out important aspects of the data that a simple
model cannot express. Thus an important issuc is (o
find a concisc, computationally cfficient modcl that
adequately describes the data for a given applica-
tion.

For examplc, when manipulating and positioning
intcgrated circuits (IC), a paramctric modcl of poly-
gons consisting of a position in spacc and thrce size
parameters is probably adcquate. A single mobilc
camera can observe corners and lincs, and these fea-
turcs can be used to dctermine the size and position
of the IC. Solina (1990) considers the problem of
postal sorting and manipulation. This domain is
morc complicated and rcquircs a morce flexible
model and a richer sourcc of sensor information.
Consequently, he used a supercllipsoid representa-
tion augmented with bending and twisting and
rccovercd modcl parameters based on lascr-range
data of cxposcd object surfaces. In both cases, we
have a parametric modcl (polygons or supcrellip-
soids in space) and observable fcatures (corners and
lines or surface points) that can be used to dcter-
minc thc modcl parameters.

Sensor tasks should dcscribe the relevant aspects
of the rclationship between the model and the appli-
cation using sensor information. This information is
used to determine the way the scnsors should
observe an object. For cxample, classifying an
object as large, small, round, or square is indepen-
dent of location. Hence a classification task can be
thought of as focusing on the subsct of the model
parameters describing shape and size, and the opti-

mal scnsing strategics concentrate on refining an
cstimate of those paramecters to the precision
requircd to distinguish objcct types. Conversely,
manipulating the objcct requires good location infor-
mation so that a gripper can safely grasp the object.
In this case the sensors must focus on the location
of the object instead of (or in addition o) its shape,
and they will probably have to acquire more and/or
different information to obtain a description with the
rcquired accuracy.

In the remainder of this scction we describe a
mathematical form for gcometric, scnsor, and task
models and provide some concrete examples to illus-
trate their use. Durrant-Whyte (1988) and Richard-
son and Marsh (1987) provide a more cxtended dis-
cussion of gcometric models and statistically-based
scnsor modcels. Berger (1985) is an cxcellent refer-
cnce for the underpinnings of the statistical decision
models on which our task models arc based.

2.1. Geometric Models

Our basic gcomcetric modeling primitives arc para-
mctric, gcometric surface descriptions of the follow-
ing form:

ell; s, x) = g(p,x) =0, peE P, xc ¥, geb

(1

In this description, p is a vector of paramcters that
describes the essential structure of the system and x
is a vector of obscrvable characteristics or fcatures
of the object. In the case of gcometry, p can be
decomposcd into a vector representing location, [,
and a vector describing size and shape, s. Thus the
function g(-,) is a description of the relationship
between the parameterization of a physical or geo-
metric structure in cuclidcan three-space and its
observable characteristics.

The function g is itself taken from a sct 6. The
intent is that ‘G contains a family of gcometric sur-
faces that have (dimensionally) the same parametcri-
zation and arc csscntially a deviation from a given
“idecal™ type. That is, it is unrcasonable to expect
geometric idealizations to agree with rcal surfaces.
Normally, each set of observed features would
determinc a slightly differcnt value for the describing
paramcters. We refer to such a family as an enve-
lope of models. The definition and cxtent of an
cnvelope defines what constitutes an acceptable
modecl variation. In the simplest casc (and the one
considcred in this article) we simply describe the
deviation required to fit the model to the data. How-
ever, more complex schemes are certainly possible.
For example, Leyton (1988) has developed an exten-
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sive theory of continuous deformation processes for
describing model variation.

In this article, we require that (1) can be rewritten
in the following explicit form:

g(p.c)=x,pEP, cEC xEX g €. (2

In general, the relationship between parameters
requires the introduction of ‘‘helper’” parameters, c,
for explicit solution. We hereafter refer to the
parameters in ¢ as correspondence parameters,
because, by fixing their value, we fix the ‘‘corre-
spondence’’ between observed features and
unknown parameters. In those cases where there is
already a unique relationship between parameters
and observables, the vector ¢ is of dimension zero.

Example 1 The location of the object restricted
to a plane can be expressed relative to an arbi-
trary base coordinate system using homogeneous
transforms (Paul 1981) as:

IJT()(“ = "To(r\’o; Yo; (p) = trans (X0, Yo, 0) rot (zo, ay).

The simplest parameterization of rectangular 3D
box is to describe the relative positions of the cor-
ners:

0 ay a0 0 0 a, u

a a 0 0 a ar O

0 0 0 a3 ay uay a3l
| [ T R T R

M(a) = R(u\, uz, a3) =

-_—cCc o

The full geometric description of an arbitrarily
sized rectangle can now be expressed as:

B(l, a) = "To(DM(a).

In order to focus on a single feature, we add an
index as a correspondence parameter and define a
new function as:

gol,a, ¢) = B(, a)lc], c€{l,2,...,8. (3)

This model can, in principle, be used to describe
any sort of object that is topologically equivalent
to a box provided some model deviation is
allowed for. For example, Figure 1 illustrates a
(planar) nonrectangular object described (within €)
by a box located at (xq, yo), rotated aq, of size a,
by a». In this example, observation of the horizon-
tally aligned corners determine one description,
and observations of the vertically aligned corners
determine a second (smaller) description. Any
combination of three corners reveals the discrep-
ancy and forces some type of model deformation.

It is important to note that because (3) only refers
to corners, the geometry of the model is only
restricted at the corners and says effectively nothing
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(%o, Yo)

Fig. 1. A rectangular box that has been fit to a nonrec-
tangular object.

about the surfaces and lines between them. Continu-
ous correspondence parameters are generally
required in order to ensure model fit at all boundary
points.

Example 2 Pentland (1986) introduced super-
quadrics as a modeling primitive, and Solina
(1990) developed a least squares algorithm for
recovering superellipsoids (convex superquadrics)
from range data. Superellipsoids are described by
a parametric equation of the form:

o, CPCr
_ (lzC?,'SZ?
Lq(av Y: mn, UJ) - (I}S-,YII ’
1
Osnsg,05w55,0<%sh

where C, = cos (x), S, = sin (x), and an
enclosed volume is described by reflecting this
surface into the other seven octants. The vector a
= la,, a2, as] can be interpreted as the size of the
superellipsoid, the vector ¥ = |y, ¥:] governs the
shape of the superellipsoid, and the angles 7 and
w are correspondence parameters.

The full transformation of an arbitrary super-
quadric can be expressed as:

g1, a, ¢) = *To(1)S(s, ¢)
where s = [a; v]*, ¢ = (1, w]".

By sweeping over n and w, we describe the entire
object surface and consequently enforce model
constraints at all surface points.

There is another fundamental difference between
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the correspondence parameter in example | and the
correspondence parameters in this example. In the
case of a rectangle we can, by suitablc bookkeeping,
determine the proper value of the correspondence
parameter for each observation; that is, we can usu-
ally determine which corner we are looking at up to
an arbitrary symmetry. In the casc of superellip-
soids, the parameter is continuous and, depending
on the sensor and its imaging geometry, may have to
be considered as an unknown along with the other
system parameters. Howcever, this additional param-
cter carries no information about the observed struc-
ture itself and changes from observation to observa-
tion. Consequently, in the proccss of inverting the
object/sensor relationship we must somehow
account for these additional degrees of frecdom.

2.2. Sensor Models

In our formulation, a sensor is considered to be both
the hardware and software used to extract specific
properties or features of observed surfaces. These
sensors generally lack perfect resolution in the fol-
lowing two senses:

1. Statistical noise. The physical design of the
transducer and its attendant elements lead to
corruption of the sensor signal that can be
modeled using probability measures.

2. Quantization and model uncertainty. The
design of the sensor and the associated algo-
rithms have a limited resolution, mechanical
backlash, or other uncertainties that may not
be well modeled using statistical methods.

A complete model of a sensor would include a
description of the effect of all influences on the out-
put of the sensor. What constitutes an adquate scn-
sor model depends largely on how it will be applied
(Hager and Mintz 1989a). In this article, we employ
a sensor model of the form:

i = H(x;, wi, ) + Vix;, w;, e).

4
XNEX, weW, HeI, @)

Viev.
The intent here is that H describes the ideal rela-
tionship between obscrved features and scnsor
observations. The behavior of H depends on the
world geometry (through the features, x;) and the
choice of sensor control parameters w;. There may
be additional calibration parametcrs, e, influencing
the imaging properties of the sensor.

In practice, H is almost never known with com-
plete certainty. Slight variations in the actual behav-
ior of the sensor cause it to depart from the ideal-

ized model in unpredictable ways. These variations
arise from modeling (systematic) errors, mechanical
backlash, quantization, and communication delay, to
name a few sources. Most previous work in fusion
has assumed that the idealized model is good
enough—that the variations are small enough not to
warrant an explicit accounting. However, Hager and
Mintz (1989b) demonstrated that, in some circum-
stances, even small model variations can cause
unpredictable system performance and consequently
must be accounted for. Hence we explicitly allow H
to vary within an envelope 3 and require fusion
methods to tolerate such variations.

Observations may be corrupted by additive noise
with propertics that also vary with both the
observed parameters and the control parameters.
Again, instcad of assuming a single description for
Vi, we take the view that V; € V where V is a speci-
fied class of random variables. The intent is that we
usually are not in a position to state a single model
of statistical noise, though we can usually place
bounds on the form of its distribution. In this article
we assume that V; is bounded—its probability den-
sity does not have tails extending to infinity (note
that this assumption cxcludes Gaussian noise
models), and V; is independent of V; for i # .

Example 3 The description of a monocular vision
sensor obscrving the outlines of surfaces is easily
described using projective gcometry. That is, sup-
posec the object is described by My, or M, as given
in examples 1 and 2. A sensor above a table with
motion in x, y, height, and rotation is described by
the transform

PTw) = "Tlxc. yo, ey a)")
= trans (x.. v., h.) rot (z. a.).

The effects of perspective can be modeled by a
function of the form:
P Xz
1" - [)'/Z] .

These can be combined to give a nominal scnsor
model of the form:

H(p, w, ¢) = P("T(w) " 'g.(p. ©))
where

P(lx, v, z.

x € {b, s}.

The statistical characteristics of sensor observa-
tions can be modeled using standard techniques
(Box and Jenkins 1976) and the set of sampling
distributions described by suitable means, e.g. two
bounding histograms. The variability in the model
can described by two tolerance parameters, €, and
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€,, describing the deviation in sensor outputs from
the nominal model. Because V is bounded, these
parameters can be discovered over a series of test
runs of the system.

Notation: In the sequel, we will use the shorthand
notation H(p, w, ¢) for H(g(p), w, e) in those cases
where the distinction between H and g is not crucial
to the development. Similarly, we will often sup-
press the parameters w and ¢ when we are only con-
cerned with H as a function of p.

2.3. Task Models

Information gathering and fusion, within our geomet-
ric framework, consists of choosing a parametric
representation and determining the values of the
unknown model parameters. As stated at the outset,
our work fundamentally rests on the tenet that this
is a purposeful, directed activity—the priorities of
the current goal should influence the information-
gathering process. This can be viewed as a way of
optimizing the use of limited computational
resources. Instead of gathering all possible informa-
tion about the environment, the system should con-
centrate on those geometric aspects that are the
most relevant or have the highest value for the cur-
rent application. '

This may be an open-ended interaction: attempt-
ing to gather information may depend on further
information-gathering tasks. The dynamics of this
process is be governed by what information we are
seeking, the value we place on that information, and
the costs associated with the search. This point of
view naturally suggests a decision-theoretic
approach (Berger 1985). We use utilities 1o reflect
the value of information, quantify the costs of infor-
mation processing, and consider the problem of
maximizing the net gain of information. We note
that this is, in essence, the basis for the study of
experimental design (Fedorov 1972; Mendenhall
1968; Silvey 1980).

Geometric Transformations

Robotic tasks often use information in a form differ-
ent from or independent of a given geometric para-
meterization. For example, as noted in the introduc-
tion, when lifting an object, an estimate of center
gravity may be needed to compute the initial lift
vector. Under appropriate assumptions about den-
sity, the center of gravity can be computed from the
object shape and size. Therefore for this task the
sensor system should concentrate on obtaining a
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good estimate of size and shape parameters so as to
produce a good estimate of center of gravity.

To express these relationships, we introduce some
ancillary transformations, /(p), indicating how
requested information is related to model geometry.
For example, it the requested information is volume
and we are using a rectangular representation, we
can relate the description of a rectangle (see exam-
ple 1) to its area by:

I(p) = Il; a) = a\azas.

We note the following two special cases of [ as
being of particular interest:

L. The projection function. In this case I restricts
attention to a subset of the parameter space.
For example, we may only be interested in the
shape description of an object, even though the
geometric model includes position information.

2. The indicator function. In this case, I encodes
a proposition. It is then possible to formulate
the problem so that the result of estimation is
an indication of whether that proposition is
true, false, or not completely decidable (true
with probability ¢ and false with probability
I — 1) based on the available sensor informa-
tion.

The latter form is of particular interest for those
who model information using logic or similar qualita-
tive descriptions. It implies that we can use the
same framework to determine quantitative (point-
based) quantities and qualitative (propositional)
quantities.

Utilities

Any application using sensor information must con-
front the fact that error-free point estimates are not
possible. Sensor uncertainty, sensor resolution, and
bounded computational resources limit the accuracy
of any sensor-based judgment. Sensor-based systems
must therefore be able to tolerate some error. The
types of errors that can be tolerated may vary con-
siderably between applications and may have sub-
stantial effect on the information-gathering process.
For example, gripping an object 2 cm wide using a
parallel gripper with an opening of 5 cm implies that
relative position accuracy within = 1.5 cm will
ensure a successful grasp. It would be a waste of
time and effort to refine a position estimate past this
level. By the same token, a peg-in-hole method
using compliance may be characterized by a bias
toward one-sided errors, and a smoother, more
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graccful performance degradation as the correct esti-
malte of rclative position varies from its truc valuc.

Conscquently, an important element of an infor-
mation requcst is some quantification of the cffcct of
crrors on task performancce. Therefore we require
that an information request make refcrence to a
function u(p, p), where p is an cstimate of the
unknown parametcrs, and interpret this function as a
decision-theoretic wutility. We note that « can be
extended to a function of the form w(p, a), wherc a
represents a generic action from a sct of possiblc
actions #. A variety of utility/cost formulations have
appcared in the literature. The most common utility
formulation is the guadratic utility, though others
such as the one-zero utility have also becn consid-
cred.

The following examplc illustrates three different
tasks, all using the same basic representation but
focusing on different parts of the paramcter vector
with different accuracy rcquircments.

Example 4 Consider a parallel gripper with jaw
travel between 2 cm (minimum closing distance)
and 4 cm (maximal opening distance) manipulating
boxes on a table. The geomeltric representation is
defined in example |, where positions arc
restricted to the planc of the table, and the scnsor
description is given by example 3. To manipulate
the object, the system must make three decisions:

1. Is the box of a manipulable size?

2. What is an approach vector that will place
the gripper around the box?

3. Given that the box is in the gripper, what is
a rcasonable lifting force for moving the box?

For the first question, we definc a mapping that
determines what values of length and width
parameters represent manipulable objects:

{p) — {

ycs il ay or ay is between 2 and 4 cm,
no otherwise.

Then, if we assume that the conscquences of both
types of wrong decisions (trying to manipulate an
unmanipulable object or deciding not to attempt
an object that is in fact manipulable) arc cqual, we
can definc a utility as:

W(I(p). a) = {l: Ip) = a,

. € P,
0; otherwise, P

a € {yes, no}.
In some circumstances, the cffects of onc crror
may be more detrimental than the other. For
example, the time lost trying to manipulate some-
thing that is not manipulablc may be morc costly
than just leaving it undisturbed and looking for a

more suitable object. In this casc, we would
adjust the weights so that the casc (no, yes) has a
valuc between 0 and 1.

In the case of determining an approach vector,
wc introducce a sct of possible approach vectors,
V', and describe the problem choosing a suitable
vector. Then, assuming a suitable collision detec-
tion algorithm is available, we can describe the
problem using just a utility as:

wp,v) = {(I)’

if gripper would encompass,
otherwisc,

pEP, vEV.

Both of the above cxamples have a gcometric con-
straint that Icads to a 0-1 type of formulation.
That is, cither the constraint is satisficd and the
action succeeds, or the constraint is not satisfied
and the task fails.

Computing a weight to facilitate picking up the
objcct is a task that is morc tolerant of small
crrors. It suffices to have a “*close’ cstimatc of
weight and to assume that the control algorithms
will adapt on-linc. Thus we describe this task as a
transformation from object descriptions with den-
sity d to weight given by:

I(p) = I(x, y, a, a,, dz, a3]) = d a, 4z dx
and a quadratic utility:
u(l(p), [(p)) = —U(p) — I(p))°.

The effect of the quadratic utility should be con-
trasted with the 0-1 utility. Namely, the 0-1
cxpressces a tolerance interval within which the task
succeeds and variations have no cffect on perfor-
mance, and outsidc this interval the task simply
fails. The quadratic utility e¢xpress a pcrformance
degradation with no notion of success or failurc.

The Cost of Gathering Information

An cstimatc can ncarly always be refined by using
more observations and morc computation. Therefore
the value of an estimate (in terms of its utility) must
be weighed against the cost of gathering the informa-
tion nceded to makce the estimate. What factors con-
stitute costs and the tradc-off between those factors
can be a complex and involved problem in its own
right (Kcency and Raiffa 1976). In our work, we
concentrate on fime costs. The time costs involved
in the process of gathering and aggregating informa-
tion arc:

1. Timc to sclect a contyrol scquence.
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2. Time to move to the specified configuration.
3. Time to gather and integrate new information.

These costs may depend on many factors, including
the choice of sensor control parameters, the values
of the unknown parameters, the organization of the
sensor system, and the external constraints imposed
by the geometry of the current situation. Typically,
costs have been taken to be a linear function of sam-
ple size. These formulations have given rise to a
number of results in linear-quadratic-Gaussian and
linear regression experimental designs (Fedorov
1972).

In the most general setting, we denote the time to
change from a sensor configuration w, to w, ., by

(..\(wn, Wi+, P)

To simplify the notation, we assume the current
position is known and use the simpler form ¢(w, .,
p) to represent the cost of taking another observa-
tion. We note that cost formulations in the literature
do not usually depend on p, the unknown parameter.
In fact, the effect of p on the cost of executing an
action may yield information about its value. For
example, the amount of time it takes to move to the
other side of an object yields information on its size.

Example 5 A natural model for time costs is a
deadline model. In this case, we specify a nominal
maximum time and also how important it is to
meet that deadline. One possible deadline descrip-

tion is:
o + tlw, p)\”
c(w, p) = (%&)) , h=1 (5)
»

where 1, is the deadline for the sensing task, ¢, is
the current elapsed time, #(-,)) is the time taken to
execute w when the unknown parameters are p,

and h is a factor governing how ‘‘hard’’ the dead-
line is. For large A, the deadline acts as a barrier,
whereas for & = 1 the cost growth is strictly linear.

3. Review of Bayesian Techniques for Data
Fusion and Experimental Design

In this section we summarize the basic principles of
decision theory and illustrate decision-theoretic solu-
tions using the examples of the previous section.
For a more complete reference see Berger (1985).
For other applications of decision theory to robotics
problems, we refer the reader to Cameron (1989),
Coles et al. (1975), Durrant-Whyte (1988), and
Jacobs and Kiefer (1973).
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3.1. Data Fusion

A standard Bayesian decision-making framework
takes the following general form (Berger 1985): For
a fixed sensor model (i.e., the uncertainty envelope
contains only one geometric model and one sampling
density), the sensor model gives rise to a conditional
probability distribution:

fAz|p,w,e) = flz — H(p, w, e)). (6)

Assume w and e are known (for simplicity we no
longer explicitly indicate them). Given a prior den-
sity, 1, over unknown model parameters, Bayes’
theorem describes how to compute the new proba-
bility density over the unknown parameters:

fdz | p)ymip)
Jofdz | p)mip) dp’

This updating process can be iterated over time
using independent observations, over sensor con-
figuration by adjusting w, and over sensors by sub-
stituting different sensor descriptions into (6). Con-
sequently, the basic representation of parameter
uncertainty is the probability density of the param-
eters. We note that in the case of bounded sampling
densities, this update can also include the elimina-
tion of portions of the parameter space. Hence this
expression includes the incorporation of error bound
information, as well as probabilistic information.

mplz) = (7

3.2. Decision Making

In Bayesian decision theory, decisions are made by
finding that action or estimate that has the maximal
expected payott relative to the current parameter
uncertainty. In other words, given a density, o, on
P and a utility, u, we can compute the expecred
payoff of a decision p as:

oo, 5) = E7lulp, p)) = [ ulp, p) dn(p).
The optimal decision is that having the maximum

expected payoff:

[ J—

p* = arg max p(w, p).
p
Alternately, in the case of a nontrivial transforma-
tion, /, we have:

o, 1(p)) = ETLu((p), 1(p))].

The optimal decision is then /(p*). For convenience
we define, for a fixed task, the following two func-
tions:

The International Journal of Robotics Research



&m - I(p*),
r(m = p(m, &m)).

The first is simply a decision rule mapping probabil-
ity distribution representations to decisions, and the
second is the payoff of a decision with respect to a
given distribution.

Example 4 (cont.) The decision rule for the first
task would be whichever of yes or no has higher
probability of being correct, and the payoff is the
probability of being correct. If the weights are
changed, then the payoff becomes weighted prob-
ability, and the optimal decision is the choice with
highest weighted probability. Note that this deci-
sion only requires knowledge of either length or
width to an accuracy of 2 cm—relatively little
information.

The decision rule for the second task is the vec-
tor with highest probability of succeeding, and the
payoff is that probability. This requires knowledge
of one size parameter and object location.
Because observation errors arc bounded, it is pos-
sible to determine a vector of probability one, in
which case there is no point in proccssing morc
observations (for this task).

The decision rule for the final task is the aver-
age (conditional mean) weight, and the payoff is
the negated variance of the estimation error. In
this case, the task requires information on all
three size parameters, and in most cases, more
observations result in a better (lower mean-square
error) estimate.

As this example illustrates, the task descriptions
of the last section indicate the appropriate decision
space, provide the means for making a decision
when uncertainty exists, and describe the value of
processing additional observations.

3.3. Choosing Viewpoints and Features

We consider the problem of choosing scnsor control
parameters in terms of the theory of experimental
design (Fedorov 1972; Mendenhall 1968). Experi-
mental design is concerned with the problem of
maximizing the information gained from an experi-
ment under cost constraints. We assume we have
some set of experimental actions, s, and some deci-
sion rule 6. We attempt to find the action or
sequence of actions that maximizes the net payoff
(average utility minus experimental costs) of a deci-
sion made by 6.

There are two different perspectives on solving an

experimental design problem. The first perspective
corresponds to off-line planning. That is, before any
data is taken, we select both the optimal number of
samples and the optimal sensing strategy. This, of
course, has the disadvantage that sensor behavior is
not tailored toward individual circumstances.
Instead, the optimal strategies arc those that, when
averaged over all anticipated situations, result in the
best (in the sense of net payoff) final decision.

It is important to note that such strategies (1)
dcpend critically on prior information (that is, if any
prior assumptions werc incorrcct, then the resulting
sensing strategies are nonoptimal); and (2) depend
critically on the type of sensing task (that is, we
would need to compile lists of sensing strategies
indexed by the type of information to be gathered,
the utility function, the cost, and the prior informa-
tion).

These points suggest that batch rules are most
appropriate when sensor models and prior distribu-
tions are well known, there arc a small number of
possible sensing tasks, or when the net payoff of a
decision is essentially independent of obscrvations.
A well-studicd example of the last case is optimizing
cxperimental parameters in the context of lincar
regression under Gaussian noise (Fedorov 1972).
Several different optimization criteria, including the
determinant, trace, and maximum eigenvalucs of the.
variance-covariance matrix, have been documented
(Silvey 1980). Within the control literature, Miiller
and Weber (1972) consider the probiem of finding
the measurcment system design maximizing a suita-
ble norm of the obscrvability or controllability of a
system lincar in both state and control. The norms
they discuss arc the trace, determinant, and maxi-
mum cigenvalue of the observability matrix. Mchra
(1974) combines and exiends these results to include
time-varying systems and randomized designs.

The sequential experimental design problem is to
incrementally choose the sequence of measurements
maximizing the net value of the final decision online.
Scquential procedures arc appropriate when the
range of situations faced by the system is large, the
unknowns and control parameters are coupled, and
there is large variation in the cffect of obscrvations
on unknown parameters. For example, in estimating
rotations it often turns oul that some viewing posi-
tions immediately constrain angle, whereas others
give very little rotation information. Similarly, when
estimating sizc with a monocular camera, the infor-
mation gained about size depends on knowledge of
the viewing distance (to fix the aspect ratio) and
knowledge about rotations (to determine the effect
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of foreshortening). If the prior information about
position and rotation is poor, it is difficult to antici-
pate which points of view and selection of features
will yield the best estimate of rotation and/or posi-
tion. In some cases, the first measurement may suf-
fice. In others, three or four measurements may be
required. Hence for the class of general geometric
sensing tasks that we have outlined, we advocate
online sequential procedures for choosing viewpoints
and sample size.

The difficulty is that for general sampling densities
and payoff functions, the optimal strategy is highly
dependent on the number of observations (look-
ahead) the system uses. For example, when the rela-
tionship between unknown parameters is highly cou-
pled, a one-step look-ahead is sometimes not enough
for adequate system performance; there may be no
single observation that has positive net value, but
there may be a sequence of two or more that do (the
example of a monocular camera estimating distance
is a case in point). In general, the optimal procedure
may use a number of samples, N, which is a random
variable that cannot be bounded. A significant
amount of theoretical work in experimental design
has been devoted to the study of finite horizon
approximations and their relationship to the optimal
procedure. Because we are working in a time-con-
strained application, we use a fixed sample size n-
step look ahead approximation (Berger 1985).

The Sensor Action Space

Within the above paradigm, the simplest approach to
sensor observation planning is to identify the set of
available sensing actions, 4, with the a priori sup-
plied control space W. Recall that the latter set rep-
resents all information-gathering alternatives avail-
able to the system, and accordingly may describe a
large variety of sensing alternatives. In general,
these actions correspond to (1) the selection of pro-
cessing parameters (¢.g., thresholds), (2) the selec-
tion of sensor position or configuration, and (3) the
selection of features to observe. Exactly what
actions are available depends on the details of the
sensor, the geometry of the situation, and the pre-
dictability of observation. In general, the constraints
imposed by the structure of the sensor and its inter-
action with geometry must be treated individually
for each sensor. For example, Cowen (1988) details
the computation of feasible actions for a vision sen-
sor for objects in a known position. Hutchinson et
al. (1988) discuss similar computations for a multi-
sensor system consisting of laser range sensors and
vision sensors.
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The effect of uncertainty is to decrease the pre-
dictability of the effects of action, which may, in
turn, lead us to alter the size or structure of the
action set. For example, given an object in a known
pose and known position, the features observable
from any point of view are predictable, and view-
point selection can be done in an object-centered
coordinate system. This means that the space of
actions can be identified with the set of viewable
features, and viewpoint can be coupled to feature
selection. Conversely, if the object is in an unknown
pose, then the outcomes of actions (observed fea-
tures) are no longer predictable because of limited
sensor scope. That is, not only is the type of infor-
mation that will be observed unpredictable, but we
are no longer guaranteed to observe anything—sen-
sor control is open-loop.

However, if the sensor has detected the object,
then a closed-loop control model can be used. For
example, if an object is in an unknown position but
the sensor has observed some feature known to lie
on the object, we can couple the sensor position to
observations and again work in an object-centered
coordinate system. Moreover, if we have some
information about the topology of the viewed object,
we can navigate over the surface of the object. This
increases the reliability of feature detection and also
increases knowledge about interfeature correspon-
dence (for example, it allows us to solve for the cor-
respondence parameter in example 1). In the remain-
der of this article we focus on the closed-loop model
and refer to Hager and Mintz (1987) where we dis-
cuss the open-loop model.

To employ a closed-loop model, we must describe
the relationship between the full control vector of
the system, w, the unknown parameters, p, and a
reduced control space, . In this article, we
assumed that this relationship can be expressed in
the form:

Lip,a)=w, peEP, weEW, aE A

where a is a sensor action and w is the sensor con-
figuration that would result by taking sensing action
a when the state of the world is p.

Example 6 For example, we can express the
restriction of sensor motion in a plane (parameters
X, Yo, ) to a planar, object-center, polar coordi-
nate system with parameters («, r) by:

Xo + rcos(a) Xe
yo + rsin(a) | = | yo
. .

This form is used later in this article to describe a
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camera coupled into an object-centered coordinate
system using image fecdback.

In this context, we note that it is important to dif-
fercntiate between an external control loop, which
maintains a particular sensor/world rclationship, and
the model of that relationship, which is cxpressed by
L and used for sensor planning.

In a complex system, several such constraints
could be available to the system. For cxample, one
such constraint might implement tactilc compliance,
another may implement curvature-bascd exploration,
and another may implement visual tracking. By
intelligent choice of these feedback constraints, the
complexity of the search process may be signifi-
cantly reduced.

Formulating the Sensor Control Problem

The decisions of how much information to gather
and how to gather it are based on the expected gain
in payoff from an observation relative to the cost of
gathering and processing that obscrvation. This
trade-off is expressed by:

n(m, a) = E"[Ef(r(m,) — r(m) — cOr,p)|w
= Lip,a),pll, a€d. (8)

Note this covers the case where there is no control
constraint by identifying s and ‘W and dcfining
L(p.a) = a.

This quantity is the expected net gain from an
observation (averaged over current paramecter uncer-
tainty and sensor observation uncertainty) minus the
expected cost of processing the next obscrvation.
The best choice of a is that maximizing this quantity
(which depends on w through [, as derived from the
sensor model). If the resulting net gain is ncgative,
then cost of gathering and processing an obscrvation
is larger than the gain in information, and the system
should stop taking observations and make a final
decision.

For a given cost formulation ¢(-), an optimal sam-
pling plan relative to a prior  is a vector of actions
a that satisfies:

n(m, a*) = max n(m, a). )
Example 4 (cont.) Based on the previous discus-
sion, we can qualitatively describe the sensing
strategies for each of the three example tasks.

The sensing actions for the first task concen-
trate on localizing either length or width. So, for
example, observing the corner located at the ori-
gin yields no information—the expected marginal

gain is 0. The best sensing strategics arc thosc
that measurc the Iength of onc side. Depending on
the type of scnsor, it is entircly possible that the
location paramecters arc left untouched.

The sccond task requires location, somce orien-
tation information, and at lcast onc of width or
height. The last will have been determined by the
last task, but focation and orientation may not
have been. If not, the obvious strategy is to local-
ize the corner at the origin of the coordinate sys-
tem, as it gives direct location information.

The third task is again independent of location
but requires the height, Iength, and width. Thus
the expected marginal payoff of the corner at the
origin is 0, and the gain of observing a corner
rises depending on the number of size parameters
it determincs. Conscquently, given that location
was established in the previous example, the best
corner to observe is clearly that with objcct posi-
tion |a,, az, asz], as it depends on all three
required paramelers.

3.4. Discussion

These methods have the intuitive appeal of mathe-
matical simplicity, clarity and gencrality. In essence,
by describing the sensor, the geometric representa-
tion, and the task, we determine the solution to a
problem. Howcever, this philosophy has the follow-
ing drawbacks:

I. The computation of Bayes' thecorem requires a
represcntation for probability distributions that
can adequately represent updates from nonlin-
car, coupled, non-Gaussian scnsors and is also
computationally tractable.

2. The computation of a decision and its payoff
requires the cvaluation of an integral, as well
as a maximization.

3. Computation of optimal scnsor control values
requires two additional integral evaluations and
a maximization.

4. Bayes' thcorem is formulated for known scnsor
models and so must bc modificd to account for
model uncertainty.

One way out of thesc difficultics is to restrict
attention to those cascs where the updating proce-
dure is cffectively calculable, and to approximate
problems with no cffectively computable solution by
those that do. This is, in effect, the route taken by
those who use the extended Kalman filter (EKF) to
implement sensor data fusion, for example Ayache
and Faugeras (1988), and Durrant-Whyte (1988), to
list just two. However, as demonstrated in Hager
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(1988), the EKF only suffices as an approximate
solution in a restricted range of cases—roughly
those where prior uncertainty and model uncertainty
are small.

In the next section we develop an approximation
method that is appropriate for a wider variety of
cases. This method is based on approximating the
prior probability distribution using a grid-based rep-
resentation and formulating Bayes’ theorem for this
representation.

4. Grid-Based Conditional Bayes Analysis

The generality and computability of the methods
described in the last section depend largely on the
representation of probability distribution functions.
The problem is to find a class of probability distribu-
tions that is flexible enough to describe both prior
and posterior distributions after updating with a non-
linear, coupled sensor description; can be easily
transformed and integrated to accommodate a vari-
ety of task descriptions; and is still computationally
tractable. We adopt, for our implementation, the
class of probability distributions that can be
described by piecewise-constant density functions.
Intuitively, such densities are defined by choosing a
partition of the parameter space and defining a prob-
ability associated with each set.

Densities that are not inherently piecewise-con-
stant are approximated by a piecewise-constant den-
sity. For example, Figure 2 illustrates the approxi-
mation of three different.densities by a piecewise-
constant density function. From this we see that
piecewise-constant densities can represent skewed,
multimodal, and bounded distributions. Further-
more, Bayes’ theorem, estimate calculation, and
payofl calculation for this class of distributions are
all relatively simple. Before proceeding 1o the gen-
eral case, we illustrate the basic steps with the fol-
lowing example.

Referring to Figure 3, we consider a prior density

Fig. 2. Approximation with piecewise-constant prior densi-
ties.
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Fig. 3. An example of a scalar update.

with support on the interval from —b to b, as shown
on the upper left. Given an observation z = 0.0 with
uncertainty described by a scaled (—b/2 to b/2) ver-
sion of the prior density, we compute the posterior
density by:

1. Computing fq, f(z | p) dp for each element ()
of a partitioning of the parameter space. These
values are written under the density on the
upper right.

2. Multiplying the prior value for each partition
element by the value calculated in the last step
and normalizing the result, giving the density
on the lower left.

3. Repartitioning and interpolating from the old
partition to the new partition. We note that the
values in the figure are approximate. The true
values are 12/115, 1/5, 9/23, 1/5, 12/115.

Referring to Figure 4, we show how the process
changes for the scalar system z = p* + V. Namely,
we first project the density on p through the system
description p* to compute a probability description
on the range space of h. We then apply the process
described in the previous example to the trans-
formed density and retlect the computed probabili-
ties back onto the original partition. So, if we were
to update as described in the previous example, we
would compute a distribution with smaller support if

3/9 3/9

2/9 2/9 2/9 2/9
1/9 1/9 1/9 1/9

L T T T
-b 0 b -3 o

Fig. 4. The projection of a density with respect to the
Sunction h(p) = p*.
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b > 1 and larger support it b < 1. If b = 1, only the
calculated probabilities change.

4.1. General Grid-based Probability Density Updating

In generalizing to n dimensions, the basic process
remains unchanged, though the management of the
partition and the computation of the projection
become more difficult. As notation, we adopt the
convention that time is indicated by a superscript,
and partition element indices are indicated by a sub-
script. The only exception is observations, wherc
time indices continue to be shown as subscripts. (2.,
a=1,2,...,n,is agiven finite partition of P, A*
is the vector of probability values for each set, and
the two together define the piecewise-constant den-
sity 7.

Given an observation zx . ; and making use of the
conditional independence of the z given p, we can
apply Bayes’ theorem (7) to #*:

fn_ S | p) d(p)
MU= Ay =

[, S 19y dep)
> (10)

[ faei i drtip)

i fn fzeer | p) d7(p)

Because 7*(-) is a piecewise-constant function, the
following equality is now valid:

L’_ fzisr | pdTi(p) = af fn’_ f(zer [ p)dp  (11)

where af = A¥/u(2).' Let - denote inncr product.
We can now rewrite (10) in an iterative form:

X = @),
st = [ S| pdp, (12)
al = Mlp(e), (13)
Nt = 9B (14)
a- - Xx

Note that the actual computation of Bayes’ theorem,
(14), only requires a parallel multiply, a sum of vec-
tor elements, and a vector multiplication by a scalar.
In terms of the previous example, A? is the vector of
initial probabilities shown on the upper right of Fig-
ure 3, x° are the values written under the histogram

1. The function u is interpreted as a generalized volume measure,
also known as Lebesgue measure.

on the upper left, and A' arc the values given on the
histogram on the lower left.

When the observation system is not described by
a simple identity, we must compute the value of an
integral expression depending on the function
describing imaging geometry:

xk = J;z‘ f(Zi'+| — H(p)) dp.

Wec approximate this expression by linearizing H for
cach grid clement and computing this integral piece-
wisc for cach grid clement. By a change of variable
and defining | L | to be the Jacobian of the function
H, which must now be fully determined and evalu-
ated at the center point of the grid element, we
derive the following approximation:

v Fv(k)
Xi =
L]

where (& = {z;v1 — H(p) | p € ).
However, the Jacobian term is the ratio of the area

of differential elements before and after the mapping
H, which in turn is approximately the ratio

w(£%)/ u(€2;). Substituting this into (13) and adjusting
(12) accordingly yiclds the following modificd forms:

xi = Fu({k)

where (% = {z;., — H(p) | p € N} (12a)
ab = ). (13a)

Expression (12a) requires the computation and
representation of the sets H((2),i = 1,2, ... n. We
refer to this collection as the range grid. In general,
the exact form of a projected set is difficult to repre-
sent, so in practicc we approximate the projection
using a rectangular representation. In this case, the
value of the integral can be detecrmined though sim-
ple table lookup. In general, the choice of what to
use as an approximation and how to compute it is
governed by the ease of computing that particular
representation, the accuracy of the representation,
and the easc with which (12a) can be computed.
Because these propertics change from application to
application, the behavior of a particular approxima-
tion to (12a) must be carefully understood.

Example 7 We construct the matrix

_[cos (@ —sin (6
| sin (0) cos (0) | °

which can be interpreted as a rotation of the
parameter space through an angle 8 about the ori-
gin. The observation system is described by

z=Hp + V,

Hager and Mintz 297



where H is as given, and p and V are vectors of
mutually independent, bounded random variables.
Referring to Figure S, on the upper left we see a
domain grid of rectangular elements. Each ele-
ment (2; has an associated probability A, = P(p €
£);) computed from a given prior probability distri-
bution. These values, together with the values
1(£2,), define the vector a* given by (13a).

When an observation is made, the domain grid
is projected through the sensor description, H.
The form of H above leads to a projected grid of
the form depicted on the upper right of Figure 5.
One method for computing this projection is to
evaluate a point on the middle of each border of a
domain element and construct the bounding box of
these points. The grid in the lower left is the
resulting range grid. Note that because of repre-
sentation errors, there are gaps in the range grid.
Another possibility would be to project the cor-
ners of the grid elements in which case the range
grid elements overlap each other.

Given an observation, z;, we compute the prob-
ability of the intersection between each range grid
element and the same space of the observation
(expression (12a)). Because we are using a rectan-
gular representation for projected grid clements,
this value is now easy to compute using a lookup
table of probabilities. The result is the vector x*.

Original Partition Projection
H
—_—
Midpoint Corer
Representation Representation

Fig. 5. An illustration of two different methods for com-
puting the projection of elements of the parameter space
grid.
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These vectors can now be combined using (14) to
produce the new vector of probabilities on the
original domain grid, and the process repeats.

In the above example, we noted it is possible to
obtain a range grid that has *‘gaps’ or “‘overlaps’
as a result of projection errors. Numerically the
effect of such projection errors depends on the mag-
nitude of the errors in relation to the size of the sup-
port set of the sampling distribution. Very small pro-
jection errors change the value of (12a) and (13a)
slightly but do not affect the final outcome in a sig-
nificant way. However, a large gap could lead to a
situation where the observation falls on a gap, and
the sampling distribution does not have large enough
support to intersect a range grid element. In this
case (12a) will yield a vector of zeros, and the
update will fail. More generally, we see that if there
is any gap in the representation, it is possible that
the true parameter value will be excluded from the
support of the conditional density.

Hence, in order for the method to function cor-
rectly, it must be the case that an approximate pro-
jection, (Y, of a grid element i contains the true pro-
jection:

H(() C  where H(Q) = {H(p) | p € Q.

In this case we can guarantee that any parameter
vector that is a possible candidate for having gener-
ated the data will not be excluded. We have recently
discovered a principled way of ensuring this condi-
tion holds using interval analysis (Moore 1966). For
example, when using the midpoint projection, we
scale the partition elements (making it a finite cover-
ing) until the criterion is satisfied. The updating rule
remains unmodified, though (12a) is computed using
the covering rather than the partition. In the case
above, for example, a rotation of 45° requires an
expansion of grid elements by a factor of 0.5 to
account for projection errors. The resulting range
grid is equivalent to the results of projecting the cor-
ners of the grid elements.

Finally, when the output vector of the system is of
lower dimensionality than the input vector, we use
exactly the same process, though these expressions
are only approximately correct for this case.

4.2. Adding Robustness

We now consider the effects of variation in the dis-
tribution of V as a result of the influences of the
parameters we are estimating, the choice of control,
and unmodeled variations. In the statistical litera-
ture, this problem is called model robustness;, Huber
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(1981) presents a number of results related to this
issuc.

First we need a definition and a simplc rclated
result:

DEFINITION 1:  Given (wo unimodal measurcs
and m; centered about the origin, we say m is af

P
least as peaked as m; (Sherman 1955), denoted m =
. if, for all A €A,,, (A, the class of compact, con-
vex, symmetric scts in 9" centered about the ori-
gin),

m(A) = m(A).

For example, a Gaussian distribution, F, on ¥ is at
Icast as peaked as another Gaussian, F,, if F| has a
smaller variance.

THEOREM |: Let # be a quasiconcave function
bounded from above and symmetric about the ori-

gin, and 7 and m, be two continuous distribution

»
functions unimodal about the origin such that 7 <
. Then E™[u(x)] = E™[u(x)].

The implication is that any approximation c¢rrors
should lead to distributions less pecaked than the
exact result. Similarly, a robust algorithm should
yield a result no more peaked than the modeling
uncertaintics warrant.

Classes of Probability Distributions

We first consider the cffects of parameter depen-
dence and variation of the density describing the
random variable V. We first note that, by consider-
ing the possible range of sampling distributions and
their associated uncertainty over the parameter
space, we can construct the set of all possible sam-
pling densities. Based on the above theorem, the
worst case sampling distribution is that one that
leads to the least peaked posterior distribution. The
general problem of isolating worst casc distributions
is unsolved, but several special cases can be cited.
For example, in the case of a Gaussian prior and a
class of Gaussian sampling distributions, the worst

case distribution is the lcast pcaked member. Similar

results hold for uniform distributions. Zeytinoglu
and Mintz (1988) have shown that, for the case of a
0-1 loss under suitable restrictions, the minimax
solution maximizing over the unknown parameters
and a class of sampling densities while minimizing
over the class of monotone decision rules uses the
upper envelope of the class of sampling distribu-
tions. The upper envelope of a family of distribu-
tions is no more peaked than any member of the

family. Thesc observations suggest that a rcasonablc
approach to model robustness for quasiconcave utili-
ties is to choose a distribution no more pcaked than
any member of the class of possible sampling distri-
butions.

If there is a large variation of sampling densitics
over the range of unknown paramecters, this
approach could lcad to a significant performance
degradation by not incorporating the distributional
information over unknown parameters. However,
wc have not found this to be the case in practice.

Accommodating Model Variation

We now turn to the problem of making the updating
method robust to modcling errors in the mcasure-
ment system model H or geometric model g. We can
consider two types of errors: systecmatic and nonsys-
tematic. Systematic errors are unknowns that remain
constant over the course of taking data. This type of
crror can be best handled by augmenting the param-
eter vector with the systematic crror parameters and
performing estimation in the larger space. That is,
from a theoretical viewpoint, there is no difference
between paramcters of interest and systemaltic error
parameters.

Nonsystematic variation may arise from two
sources: variations in the sensor system itself or dis-
crepancies between the subject and the gcometric
model. This distinction is important: the former is an
crror that must be tolerated by fusion, whercas the
latter may be an important source of information
about the suitability of the model. When updating,
the effect of both of these variations is to increcasc
the size of a range grid clement. That is, for a ‘‘per-
fect’” sensor model, the observations expected for a
set of parameter values ) is H{g({}), w, e). How-
ever, if the sensor modcl or gecometric model has
some variation in addition to the model parameters,
the sct of possible observations is cnlarged by this
uncertainty, and conscquently the following relation
must hold betwceen a parametcer space subset, {2,
and its approximatc projection (% :

2 U Hed), we i=1...n

HeEH g%

To keep the computation of this expression simple,
we approximate the enlargement of range grid cle-
ments with a vector of tolerancc parameters, ¢. So,
for example, if we are representing range grid cle-
ments by bounding boxes parameterized by a vector
of minimal elements [ and a vector of maximal ele-
ments u, then the enlarged range grid element is
defined by I — e and u + ¢.
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To estimate model variation, we decompose ¢ into
the tolerance component resulting from the sensor
model variation (which we assume is known) and
the component resulting from geometric mode]
variation: ¢ = ¢, + ¢,,. We then note that for any
given ¢,,, there is an associated posterior probabil-
ity. That is, ¢,, parameterizes a class of posteriors:
m({);; e,,). Observe that there is a minimal value of
&m, €1, that is either 0 or a positive number such that
choosing a component of &,, to be smaller than the
corresponding component of g causes the posterior
distribution to become inconsistent (it places 0 mass
everywhere). Given that Fy is a distribution taking
values in [ —d, d] and the sensor tolerance is ¢, it
can be shown that there is an upper bound on the
observed tolerance given by ¢, = ¢, + 2d + 2¢,.
We further observe that larger values of ¢ lead to
less peaked distributions. Therefore m({2;; &) pro-
vides an ‘‘upper bound’’ on the true probability dis-
tribution, and m({}; ¢,) provides a ‘‘lower bound.”’
In those cases where ¢, — g is small, using ¢, pro-
vides a reasonable (pessimistic) estimate of ¢,,,.

4.3. Estimation and Payoff Computation

The transformation functions / are divided into three
types: reductions of the parameter space, transfor-
mations to a discrete space, and transformations to a
continuous space. Reductions of the parameter
space require intcgrating out over the unwanted
dimensions. This is easily done by summing the cle-
ments of the grid along these dimensions and placing
the results in the lower dimensional grid. For dis-
crete transformations, the probability of each of the
discrete alternatives is tabulated over the grid. In
most cases, this is simply summing the probability
contained in the inverse projection of each element.
Continuous transformations require a projection sim-
ilar to that used for (12a). The resulting grid is used
as a representation of the transformed density func-
tion.

The best estimate of geometric parameters is that
which maximizes the expected payoff. Computing
such an estimate directly—that is, by maximizing
payoff over all values of the parameter space—is
generally too complex to perform quickly. In some
cases the optimal estimate can be solved for
directly; for example, in the case of a quadratic loss,
the conditional mean is known to be the optimal
estimate of parameters. In those cases where opti-
mal estimate or decision is difficult to express in
closed form, we take the approach of approximating
the optimal estimate with some combination of rela-
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tively simple statistics such as mean, mode, median,
or higher moments of the transformed distribution. -

Payoffs are computed by integrating the task util-
ity or loss over the transformed grid. This is usually
a relatively simple operation as, because of the
nature of the grid, the integral becomes a weighted
sum of integrals of the utility or loss over a grid ele-
ment. That is:

f{) u(p, pydn(p) = > a; fﬂi u(p, p) dp.
i=1
These integrals usually have relatively simple
closed-form solutions, and so payoff computation is
inexpensive.

4.4. Implementing Sensor Search

From a computational standpoint, (8) is expensive to
compute. It requires two integrations of a computed
function with respect to (possibly vector) variables.
In the grid-based method, integration is carried out
by evaluating the integral on each grid element and
multiplying by the probability mass associated with
that element. Therefore on a scalar machine, this
has superexponential complexity; on a parallel
machine it would be exponential. Furthermore, we
would eventually like to carry out planning and
fusion on different machines. If these machines are
connected via a network, the communication of a
complete grid carries a substantial communication
overhead. Thcrefore we would like to reduce the
size of the representation as much as possible.

In most robotic applications, the effects of sensor
observation uncertainty are relatively small com-
pared with the accuracy generally needed for eftec-
tive task performance. What is more relevant, at
least initially, is obtaining sensor observations that
overdetermine the underlying model parameters.
Stated another way, the most important aspect of an
observation is its effectiveness at reducing gross
geometric uncertainty, rather than its statistical
effect on the posterior distribution. Moreover, in the
grid-based method we can determine when this is
true by the following simple rule: when the sample
space corresponding to an observation is smaller
than the smallest range grid element, the statistical
properties of observations will have almost no effect
on the updated distribution.

Example 8 To illustrate this point, consider the
simple scalar example of a sensor system
described by
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Furthermore, let p € [—10d, 10d]. We note that,
in this case, the domain grid and the range grid
are identical, because H is the identity function.

If the number of elements in the domain grid is
n = 10, then any sensor observation will eliminate
at least n — 2 grid elements. In this case, the
value of the parameter space reduction through
elimination of grid elements is generally more
important than the final probabilities of the
remaining elements. In fact, if # — 1 elcments are
eliminated, then any probabilistic information is
below the resolution of the grid anyway.

In cases where geometric uncertainty is large rela-
tive to sensor uncertainty (i.e., the above rule
holds), we simplify (8) by removing the inner expec-
tation and computing;:

n(m, w) = E"[(r(my,) — r(w) — c(p, w) | z
= H(p,w, e)]. (8a)

That is, we do not averagc over the random variable
V of the sensor model.

On the other hand, when the system has a set of
observations that overdetermine the underlying
gcometry, the effect of parameter variation becomes
small. In this case, we can fix p at a value g,
remove the outer expectation of (8), and consider
only the effects of sensor noise and modeling crror:

n(w, wy = E[(r(my) — r(m) — c(p,w) | w. pl.  (8b)

The amount of computation required for the
remaining expression may still be prohibitive. In the
case of large geometric uncertainty, we can further
simplify the computation by disregarding the fine
structure of the remaining integrals and restricting
our attention to actions with relatively large net
gains. That is, instcad of evaluating the integrand at
each grid element, we pick some subset of the
parameter space, B C P, and find the average value
for those points. Of course, the effectiveness of this
procedure depends on a good choice of elements in
9 and insensitivily to minor variations in payoff. In
a sense, this approximation can be viewed as a
hypothesize-and-test approach. The value of a
hypothesis gencrator is a trade-off between the cost
of generating and evaluating the points in 93 and the
quality of those points.

Choosing the maximal information vicwpoint or
description vector is a process of evaluating possibil-
ities and choosing the point with the maximum net
information gain. There are two types of actions to
be considered: discrete and continuous. Discrete
spaces must be dealt with in an intelligent combina-
toric fashion. Continuous spaces can either be dis-

cretized or handied through a continuous minimiza-
tion procedure.

For the problems we have considered, we maxi-
mize (8) over the allowed set vicwpoints for each
feature and choose the feature/viewpoint pair with
the highest rating overall. The ‘maximization method
we use is a variation on well-known golden section
search algorithms (Press et al. 1986). As such, these
techniques are very weak—they use no information
about the sensing system other than the evaluation
of the current points in the action set and an initial
bound on the maximum. This is an advantage from
the point of view of generality but a disadvantage
from the point of view of cfficiency. As suggested in
earlier works (Hager 1987; 1988), sensor control
should properly be placed in the sensor, and more
sensor-specific information should be used to
enhance the control process of each sensor.

S. Analysis of Approximation Errors

In this section, we first present some basic, qualita-
tive mathematical analysis of the behavior of the
grid-based method, based on the notion of peaked-
ness presented in the last section. These idcas will
be used to evaluate the error characteristics of the
method, its sensitivity to prior assumptions, and its
ability to deal with envelopes of models. We then
present some Monte Carlo simulation results for
several example problems in order to verify the per-
formance quantitatively.

5.1. Mathematical Error Analysis

Because the sampling distribution is bounded, one of
the cffects of Baycs’ thcorem is to eliminate por-
tions of the paramcter space that arc incompatible
with sensor observations. Consequently, the updat-
ing algorithm acts as a “‘root finder’" until the
remaining parametcrs are compatible with the obser-
vations up to observation uncertainty. After a few
more observations, the grid does not contract with
any great frequency, and most of the change in the
posterior is the result of conditioning cffects. We
refer to this state as the steady state of the system
and analyze the crrors when it is in steady statc. For
the most part, this analysis is independent of partic-
ular choices of observation systems and so is quali-
tative rather than quantitative.

Single-Step Updating Errors

The error in updating is attributable to the approxi-
mation
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f-Qi f(zisn | p) dalp) = a; fﬂi fzis v | p) dp.

The denominator of the updating rule serves as a
scaling factor. We assume that the difference
between the true denominator and the approximated
one is small. This leads to an approximation error
(up to scaling) of the form:

ekl = fﬂi f@isr | p) du(p) — at j-Qi flzeer | p) dp

= fﬂ; fzier | PUAp) — ab) dp. (15)
In order to be concrete, we consider the magni-
tude of first-order errors in a scalar system (all of
the results can be generalized to nonscalar sys-
tems). Partition elements are parameterized as {2 =
im; — d, m; + d], and we assume f,(-) is a piecewise-
linear function of the form f (p) = a; + b{p —
m;). Substituting into (15) and simplifying, we get:

miit+d
et = b L_d fsr | p)p = m)) dp.
Expanding f(z«+. | p), adopting the change of
variable p = p — m;, and defining v = z — m; leads
to:
I
ekt = bt

W Svlv — pp dp.
We can further simplify by exploiting the symme-
try of the integral and write:

d
= b [ - p) - S P dp. (16

This representation makes it clear that the magni-
tude of the error is related to (1) the local slope of
the prior density function (b%); (2) the local asymme-
try of the sampling distribution (the effect of the dif-
ference in (16)); and (3) the size of intervals ().

0.012

O T

-0.016
-0.8 z 1.0

This suggests that, as is expected, a finer grid
reduces error, and less peaked prior distributions
lead to smaller errors. Thus a good gridding scheme
attempts to grid finely in areas where the prior den-
sity changes rapidly, and coarsely in other areas.
This keeps the error magnitude relatively constant
throughout the grid.

Example 9 To give a graphic illustration of the
sign and magnitude of errors, consider the case
where fy and 7 are described by symmetric trian-
gle distributions parameterized by the width w as:

(p,w) =1 —|pw>] —w=p=w
We fix = = 1(-, 1), partition the parameter space
into four equal regions numbered (left to right)
from | to 4, and vary fy = 1(-, w) for values of w
between 0.5 and 0.7. Figure 6 shows ¢;, i = 3, 4
for three values of w while varying z. This shows
the immediate effects of updating errors. Note
that for z near 0, the error for element 3 is posi-
tive, while the error for element 4 is negative,
indicating that the true distribution is more peaked
than the approximation. As z moves to the right,
the trend reverses. However, the peak of the pos-
terior distribution is also moving so that the
approximated final distribution is again less
peaked than the true final distribution.

Figure 7 shows the expected error averaging
over z while varying p. Again the result is that the
approximated distribution is less peaked than the
final distribution for almost all values of p. In par-
ticular, if we average these curves with respect to
F,, we get a positive value for element 3 and a
negative value for 4,

This example illustrates another very important
property of this method: for unimodal prior and
sampling distributions, the expected error is positive

- QT

-0.025
-0.6 z 14

Fig. 6. Updating errors as a function of z for element 3 (left) and elemenr 4 (right) with values of w = 0.7 (solid),

w = 0.6 (dashed) and w = 0.5 (dotted).
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Fig. 7. Updating errors as a function of p for element 3 (left) and element 4 (right) with values of w = 0.7 (solid),

w = (.6 (dashed) and w = 0.5 (dotted).

ncar the center and negative near the tails. This
implics that, on the average, the approximated pos-
terior is no more peaked than the true posterior.
This result is not surprising, as a histogram repre-
sentation of a unimodal distribution tends to be less
pcaked than the original distribution. Nonetheless,
this is an extremely important property; it implies
that the method has some built-in robustness to
modeling assumptions.

Error Propagation

For simplicity assume the elements of thc domain
grid arc uniform size so that the factors u({2) drop
out (i.e., a¥ = A¥). Let  be the rrue kth stage
(updated) prior, and nf = #(£2). This is, nis the
correct probability associated with grid element 4.
We consider crrors of the form:

/\:\[ f(Zk+l‘l7) dp
k+1 Y S .
SN[ S o dp

— k+1
C; = "N - ] -

i

We can rewrite the final term as a combination of
the corrcct probability nf and the effcct of previous
crrors c¥:

Ui j”_ S| p) dp

> fn Mz | p) dp

k+1 _ A+
¢ ="M -

ot fn, i | p) dp

PN fn_ S| p) dp

+

We again assume that the difference between the
denominators is not substantial. Now, by gathering

the first two terms together into the single-stage
probability error ¢f*"' and multiplying the top and

bottom of the final term by A%, we get:

+ (,"

(,’/.\‘+| . (A’/\+|>
K
2t J”,f(z“' | p) dp A

with ¢f = 0.

(17)

This is a nonlinear, stochastic, difference equation
with the following qualitative behavior: the term ef
tends to be positive ncar the center and negative
near the tails, so the cumulative crrors tend to flat-
ten the distribution. Furthermore, in arcas of
incrcasing mass [(A¥* '/A¥) > 1], so previous crrors
have an increasing weight—effectively “‘damping™
the rapid update and adding robustness.

Other Sources of Error

Interpolation is a source of error both before the
updating algorithm rcaches stecady state and, to a
lesser degree, when it is in steady state. However,
this crror is generally inconsequential. Morcover any
errors that arc introduced make the interpolated dis-
tribution less peaked than the idcal distribution.

Another source of error is the imperfect represen-
tation of the range grid pointed out earlicr. That is,
wc approximate the clements of the range grid,
which leads to overlap among the elements. How-
ever, the enlargement of grid elements to account
for representation error acts, in a sense, as an added
model uncertainty and incrcascs the tendency of
updating to flatten the posterior. In other words, in
cases where this error is large, the procedure is also
very robust to error. We note that the propagation
of all of these errors follows (17).
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5.2. Simulation Evaluation of Sensor Data Fusion

We have implemented this method on scalar proces-
sors using a regular rectangular gridding of the initial
parameter space and a rectangular bounding box
representation of the range grid. The construction of
the range grid uses the midpoint projection heuristic
(described in example 7) with a scaling parameter
indicating the fraction of a domain grid element
(e.g., a factor of 0.2 indicates that the grid element
should be enlarged to 1.2 times its original size and
then projected). Modeling error is handled through
additive fitting parameters as discussed previously.
For a more concise description of the algorithms and
data structure manipulation, we refer the reader to
Hager (1988).

In the remainder of this section, we present a
number of problems and tests of the algorithms on
simulated problems. The emphasis of these tests is
to evaluate the types of approximation errors
incurred in typical problems.

Comparison with the Optimal Estimator

Here we compare the behavior of the grid-based
method to the known optimal solution to the linear-
quadratic-Gaussian estimation problem. The obser-
vation system is that described in example 7. We
use a mean square error performance criterion:

u(p,p) = —ELIp - p I’

It is well known that the optimal estimate, in this
case, is the conditional mean. When the observation
system is linear and the prior and sampling densities
are independent and Gaussian, the mean square
error is independent of the values of observations.
Figure 8 shows the theoretically expected value of
the estimation error,? and three simulations using
grid resolutions of five, 10, and 15 elements per
dimension. These data illustrate the convergence of
the technique to the optimal solution and verity the
error analysis, which predicts the method will
increasingly overestimate errors with coarser grids.
Because H is orthonormal, the error is also inde-
pendent of the choice of the rotation angle, 0. How-
ever, we use the representation scheme presented in
Figure 5 of the previous section, so we should use
an expansion factor that depends on the angle of
rotation. We tested the estimation performance for
values of the scale factor from 0 and 0.5. The per-

2. We note that the actual sumpling“ and prior distributions for the
simulation have been clipped at +4.0. However, the dilference in
mean square error between the clipped and unclipped distribution
is less than 0.01%.
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Fig. 8. The observed mean square error for grids of 5, 10,
and 15 elements and the optimal expected error.

formance was nearly identical to that shown above.
Hence in this case, statistical updates are relatively
insensitive to the value of this parameter. More gen-
erally, as long as the projection errors are small
relative to the sampling density, the resulting updat-
ing errors are inconsequential.

Nonlinearities and Updating Errors

At this time, the implementation can only estimate
model parameters or subsets of the model param-
eters by reducing the parameter space. General
transformation of parameters is not yet imple-
mented. Consequently we cannot examine the
behavior of all of the example problems directly, but
we can test the ability of the method at localizing all
or some of the parameters of the rectangular model
(see example 1). To do this, we simulated taking
monocular camera observations of individual corners
of the block. At each iteration, we moved the sensor
30° clockwise about the object and observed the
next corner. In this way we obtain a mix of corners
and sensor observation positions. The sampling den-
sity is a triangle sampling density with width of one
pixel. The prior distribution is uniform, and the eval-
uation function is the 1-0 utility. This utility leads to
a payoff that is the probability of capturing the
unknown parameters within an interval. The esti-
mate is taken as the distribution mode.

Figure 9 shows the performance of the estimator
for estimating the 2D position and orientation of a
block of known size. The tolerance intervals in the
1-0 utility are 2 mm on position and 2° of angle; the
left graph is the performance of a five-element,* grid
and the right is the performance of a seven-element

3. When we say ‘‘n-element grid,”” we mean n grid elements per
dimension.

The International Journal of Robotics Research



\'

v e T RO O T
e == T PO ONTT

(=]
(=]

0 Iterations 20 0 Iterations 20

Fig. 9. Rotation and position of a known-size block for
resolutions of five and seven elements. The dotted curve is
the actual frequency of the correct answer over many sim-
ulated trials, and the solid line is the expected probability
calculated by the estimator.

grid. What is important to note is that the calculated
payoff (probability) is below the actual frequency of
capturing the parameters as predicted from the error
analysis. Naturally, the seven-clement grid has
somewhat better performance than the five-element
grid.

The left side of Figure 10 shows the curve for esti-
mating an unknown-position, unknown-size block
using a four-element grid. We see that convergence
is slowed slightly because of the coarser grid, but
that the additional size paramctcrs do not have more
than a minor cffect on convergence. The right side
of Figure 10 shows the performance on the problem
of determining three rotations and two translations
using a stereo camera. The model of error in image
location is the same as the above simulations, and
the distribution over distance is of the same form,
but spread over a range of =10 mm. Again, for both
of these cases, the payofl estimates are conservative
but are rcasonably close to the observed values, in

\.
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Fig. 10. The probability curves for an unknown position,

wunknown-size block (left) and unknown 3D-position block
(right) using a four-element grid. The dotted curve is the
actual frequency of the correct answer over many simu-

lated trials, and the solid line is the expected probability
calculated by the estimator.

spite of the coarse grid. We note that each of the
angles was originally constrained to lie in a 60°
range—far larger than the range that most linear
techniques can effectively handle (Hager 1988).

Effects of Grid Resolution on Bias

Naturally there is a relationship between the accu-
racy of estimates and the resolution of the grid. In
the case of a 1-0 utility, if the tolerance interval is
smaller than a grid clement, there are a number of
estimates with the same payoff. That is, if the width
of a grid element, w is larger than 2d, then the pay-
off of an estimate p is constant in an interval of
length w — 2d. Figure 11 shows the bias* of esti-
mates of a 0.2-unit confidence estimatc after three
observations for grids of resolution 3, 5, and 7. The I
prior is uniform, and the sampling noise is Gaussian.
Note that there is an obvious bias for the three-cle-
ment grid. The five-element grid displays almost no
bias, and the seven-clement grid has none. For this
problem, a fivc-element grid is probably sufficient.

Finally, Figure 12 compares the bias of estimates
after three observations and 30 observations. The
lack of bias in the latter is a result of the effects of
grid contraction. The width of grid clements
becomes smaller than the width of the estimate
interval, and the accuracy improves. This suggests
that the best grid size is one that, on the average,
has an end resolution at least as finc as the
requested tolcrance interval. Similar statcments hold
for the mean as an estimator, though the mean tends
to be less scnsitive to grid quantization.

Evaluation of Robustness

Thus far we have not given any quantitative indica-
tion of how our implementation of model robustness
behaves. One method of cvalating robustness is to
consider the variability of the sensor model as an
additional contamination and then determine what
distributions for this paramcter can be tolerated.
That is, we now consider the model:

z=H(p,w,e) + W+ V(p,w, e)

and attempt to determine acceptable distributions for
the random variable W modeling uncertainty in /7.
Analysis of this model indicates that there is no
consistent interpretation of our robustness method
directly as an independent random variable. How-
cver, through simulation analysis, we have been able
to determine what types of distributions can be tol-

4. Wec define bias as b(p) = El&2) | pl — p.
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Fig. 11. Estimation bias for grids of three, five, and seven elements.

erated. In all cases we have examined, these distri-
butions are less peaked than a uniform.

To be more precise, we have the following results:
consider dividing the (scalar) interval [ -2, 2] into
five equal subintervals. We assign a probability to
each subinterval; this yields a histogram representa-
tion of a sampling density. We then set a value of €
(the parameter describing model tolerance) and
determine what distributions can be tolerated in the
sense that calculated payoft is lower than true pay-
off. We represent this contamination using a five-
element histogram over the interval [ — ¢, €]. Table |
lists the values for the sampling and contaminating
distributions for three cases we have examined.

The values parameterizing the least-peaked con-
tamination are not unique, but they serve to illus-
trate the general trend: as the sampling density
becomes more peaked, the maximum contaminating
density that can be tolerated becomes less peaked,
but all are less peaked than a uniform distribution.
Furthermore, in the limit (as grid elements become
small), the distribution for W becomes uniform.
These two results suggest that the procedure is very
robust to modeling error, tolerating distributions less
peaked than a uniform, and the uniform distribution
is the limiting case.

05 / 0.5
AR 2l
-0.5 — 05—
-4.0 14 1.0 4.0 14 4.0

Fig. 12. Left, the estimation bias after three observations;
right, the estimation bias after 30 observations.
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5.3. Simulation Analysis of Sensor Planning

We have tested several heuristics for choosing the
points in ¢, the approximation set used in evaluat-
ing sensor viewpoints. In this section, we demon-
strate the behavior of three different approxima-
tions. The simplest heuristic is to evaluate marginal
gains at the current estimate

B = {p}
and assume that this represents a reasonable approx-
imation to the true marginal gain,

This expression is adequate to pick up large
uncertainties but tends to fail to fully evaluate the
effectiveness of a view; instead it picks a view that
is optimal for a very specific object-sensor relation-
ship. A more computationally expensive method,
but one that we have found to yield better results, is
to choose points on or near the border of the grid,
as well as the current best estimate. For example,

B = {p} U {p| pis a point near the border of P}.

This heuristic has the effect of finding viewpoints
leading to gross uncertainty reductions and also
more accurately evaluates the change in those
reductions over different possible object-sensor con-
figurations.

Finally, an even more computationally intensive
approach is to choose a set % that contains at least

Table 1. A Comparison of Sampling Density With the
Least Peaked Density to Which it is Robust

Sampling Distribution Contaminating Distribution

0.05 0.1 0.7 0.f 005 025 02 0.1 02 025
01 02 04 02 0.1 0.3 0.15 0.1 0.15 0.3
0.2 02 02 02 02 0.35 0.12 0.06 0.12 0.35
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one point for each element of the domain grid. This
corresponds to averaging over the cntire parameter
spacc.

Effectiveness at Representing Viewpoint Payoff

Figurcs 14, 15, and 16 show how the thrce mcth-
ods—using the current cstimate, using a subgrid
consisting of the best estimate and the grid corners,
and the full grid integration—comparcd over three
sample situations. The gcometric model is an
unknown position block, and the sensor model is a
monocular camera (see example 3) observing cor-
ners under perspective with observation noisc in the
range of one pixel. To simplify the presentation, we
have sct ay = 0 so that there are only four corners
to consider, and occlusion is not an issuc. (To pic-
ture the situation, imaginc observing an envelope
laying in a shelf just below eye level.) By conven-
tion, we fix the coordinate system at corner 0 and
number the remaining corners counterclockwise
(Fig. 13). The cost function is zero so that wc can
clearly see the calculated payoff values.

We assume the camera maintains a fixed distance
from the object and compute the payoff for cach of
the four corners as the camera rotates through 90°.
The solid lines represent the single-point, best-esti-
mate approximation; dashed lines indicate the
subgrid approximation; and the dotted line is the full
integration over the grid. The location of the ordi-
nate axis is the current sensor location; negative
angles go to the left and positive to the right. The

~Js

~
’

657 E

Fig. 13. An illustration of the simulation geometry. A
camera at orientation B observes corner 2 of a rectangle
located at point (X, y) with orientation a. As the simula-
tion proceeds, the camera observes other corners from
different positions and orientations.

Amowa

——0 T

-10 Angle 80 -10 Angle 80

Fig. 14. The payoff of different combinations of view-
points and corners after single view of corner 0 along the
X axis.

graphs corrcspond to corners 0, 1, 2, and 3 from
upper left to lower right. The abscissa corresponds
to (rclative) viewing angle, and the ordinate is the
expected payoff of an observation from that angle.

We first note that, as expected, the widest varia-
tion is in Figure 14, where only one view has been
taken, and large uncertainty still exists. However,
even in this case the approximation curves generally
follow the shape of the true curve, and most impor-
tantly, the current observation point has the lowest
payoff value. This indicates that the ncxt observa-
tion would be taken from another perspective as we
would hope.

Figure 15 shows the payoffs after two orthogonal
views of corner 0. In this case, position is well
established. Thus we see that corner 0 has a flat
payofl; this is expected, as it does not yield any

——O P

e T ]

-90 Angle 0 -90 Angle 0

Fig. 15. The payoff of different combinations of view-
points and corners after views of corner 0 along the x-axis
and y-axis.
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information on rotations. We also note that each
corner has its “‘optimal’’ viewpoint. This viewpoint
corresponds to the viewing angle where the (mono-
cular) observation of corner position is most sensi-
tive to rotation. We observe that the subgrid approx-
imation is clearly superior to the single estimate
approximation. This is because the single point
approximation assumes the object is in a specific
orientation and optimizes a plan for that orientation.

Finally, Figure 16 shows the payoffs after orthog-
onal views taken of corner 0 and corner 3. In this
case there is partial information on both rotations
and translations. Again, the most important point is
that both approximations do very well qualitatively,
though the subgrid approximation clearly outper-
forms the single point approximation. These obser-
vations suggest the subgrid approximation is gener-
ally adequate for this case.

Selection of Sample Size

The sampling procedure stops when there is no
viewpoint with positive expected marginal gain.
Thus another important evaluation criteria of a heu-
ristic is its ability to accurately approximate
expected marginal gain. Figure 17 shows the
expected marginal gain curve for the subgrid heuris-
tic and true marginal gain curve averaged over 100
runs for the system described above. We note that
the heuristic consistently underestimates the true
gain until the very end, where the approximation
error goes to zero. In practice, the heuristic is
“‘noisier’’ than the full integration.

These two observations led us to use a stopping
criterion that tends to sample past the projected
peak of the payoft curve. We implement this by

True gain

=

Computed gain

VAU
v

0 Observations 30

D) —pS=ommp
L.
—

Fig. 17. The true average marginal gain curve (lop curve)
and the projected average marginal gain (bottom curve).

stopping after rwo consecutive projections of nega-
tive marginal gain. Consider the utility/cost formula-
tion given in example 4. Figure 18 shows the stop-
ping performance when the exponent h is 1, the
estimate payoff is the probability of a correct
answer, the cost of an observation is the CPU time
taken to process it, and ?, is fixed at the time when,
on the average, the payoft curve reaches 80%. The
upper curve is the averaged subgrid payoff curve,
and the lower curve is the percentage of runs that
stopped at that point. We see that the stopping rate
peaks just past the top of the payoff curve as
expected. This indicates that, on the average, the
sampling procedure stops taking data when the
(true) marginal gain becomes negative.

The stopping behavior is, of course, atfected by
how costs are weighed against gains as governed by
the model given by (5). We illustrate this point in
Tables 2 and 3. In Table 2, we computed the aver-
age CPU time and final probability for a unit priority

Corner 0 Corner 1
IO _ o \ Net
y S " Payoff
t . B ~_ .-
R SO i ™\ A
Corner 2 v
# Terminatiophs
v N . \
Yy '
(f) A / J\/T\é\/\/\
f — /// TN~
-90 T T ange 0 w0 Augle Iy
0 Observations 30

Fig. 16. The payoff of different combinations of view-
points and corners after a view of corner 0 along the x-
axis and corner 3 along the y-axis, respectively.
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Fig. 18. The stopping rule behavior against a linear CPU
time—based cost function.
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Table 2. Stopping Rule Performance for a Unit
Priority

Deadline (CPU seconds)

1 2 10
h CPU Prob. CPU Prob. CPU Prob.
| 0.93 0.26 1.08 0.33 1.60 0.45
0.96 0.25 1.28 0.37 2.37 0.60
1.11 0.28 1.52 0.42 3.39 0.76

Table 3. Stopping Rule Performance for a Priority
of Five

Deadline (CPU seconds)

| 2 10
h CPU Prob. CPU Prob. CPU Prob.
1 1.29 0.37 1.78 0.48 1.97 0.53
3 1.14 0.32 1.65 0.45 2.85 0.67
8 1.16 0.32 1.74 0.47 3.64 0.79
(w = [ in the 0 — w utility). In this casc wc sec

that the effect of increasing the deadlines is to
increase probabilities, and the effect of increasing /
is to allow the estimation to proceed closer to the
deadline.’ In Table 3, we have increascd the priority
to w = 5. The increased value on information allows
the estimator to sample past the I-second deadline.
Thus the effect of increasing /1 is now to decrease
the probability as the estimator bccomes more decad-
line oriented for that valuc of ¢,.

6. Performance of the Method in a Real
System

In this section we describe the results of applying

the grid-based methods to several sensing problems.
The system is based on a real-time image processing
component that can follow and track brightness con-

5. The decision to continue is made based on current usage; thus
the estimator tends to sample one time past the deadline given.
Hence the seeming paradox in the lower left corner of Table 2,
where the deadline-oriented estimator passed the deadline.

tours. In the first experiments, we work with a static
camera and illustrate the behavior of the method
when sensor and model uncertainty must be taken
into account. The grid-based fusion algorithm and
sensor planning methods have also been incorpo-
rated into a distributed sensor system described in
Hager (1988) and Lee et al. (1989). The camera is
mounted on a robot controlled by a processor that
uses visual feedback to provide an object-centered
polar coordinate system. (Examples 1, 3, and 6
describe the geomctry of sensing and control for this
system.) A third processor performs fusion and sen-
sor planning. We use this system to test the sensor
planning methods.

This section is intended as a summary of results;
the interested rcader will find a more detailed list of
the experimental results in Hager (1988). Unless
otherwise noted, all distance units in this section are
in millimeters, and all angular measurements are in
degrecs.

6.1. Calibration

The accuracy of any result depends on how accu-
rately the focal length can be determined. We first
calibrated the system by placing a known-size sub-
ject at a known distance from the camera, estimating
the focal length of the lens, as well as the position of
the lower left corner of the subject. The object was
to obtain a probability one bracketing of focal length
within the tolerance given in column 3 of Table 4.
The scaling factor on the domain grid was set to 0.5,
and the uncertainty factor was 0.01. Table 4 pre-
sents the results of estimation. The primary observa-
tion is that, as expected, the smaller tolerance inter-
val required significantly more observations. We
also see the effects of grid quantization as the final
results take on one of only two values.

Table 4. The Results of Calibrating the Camera Focal
Length

Focal Length FL Tolerance Iterations

X Pos. Y Pos.

—-40.08 135.67 12.87 +0.2 18
—-39.57 135.57 12.95 +0.2

—39.58 135.57 12.95 +0.2

—40.08 135.85 12.87 +0.2 14
—40.13 13591 12.87 +0.05 46
—39.54 134.99 12.95 +0.05 20
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Set 1

Having determined these calibration parameters, we
then had the estimation and information-gathering
apparatus determine the left-to-right position and
size of a book. In this case, the tolerance was set at
+3 mm, and the scaling factor was set to 0, even
though there is coupling between x size and x posi-
tion. The results are presented in Table 5. These
results correspond, up to measurement error, with
the true parameters.

Next, we tipped the book, creating a gross model
discrepancy, and ran the system. It exhibited one of
two behaviors. If the only corners sensed were 0
and 2, then the system quickly returned a probabil-
ity | estimate of the wrong size. This is to be
expected, as these corners yield orthogonal informa-
tion and do not indicate the height discrepancy of
corner 3 or the position discrepancy between cor-
ners | and 0. On the other hand, if the system takes
information at either 1 and 0 or 3, it immediately
“*softens’’ the observation model to account for the
modeling discrepancy. The model tolerance grew to
0.64 mm (about 30 pixels), and at that point, there
was essentially ne information to be gained from
more observations relative to the requested estimate
tolerance.

We then accounted for this discrepancy by allow-
ing rotations about z axis (which points directly out
of the camera). The system parameters are the same
as the previous experiment, except we added a tol-
erance of = 1° on rotations, and the scaling factor
was 0.2. The results are presented in Table 6. We
note that, on the first trial, the system increased the
fitting tolerance to 0.02. Also, the number of obser-
vations required more than doubles with the addition
of this parameter. Part of this comes from the addi-
tional complexity of the system, and part from the
effects of grid quantization.

Set 2

The object of this set of experiments is to demon-
strate some of the effects of determinedness and
model error on estimation performance. In these
runs, we attached a fixed cost to each observation
(actually derived from the CPU time consumed by
the estimator) so that it stopped making observa-
tions when the expected gain in probability fell
below the cost of observation (a linear cost model).
We refer the reader to Hager (1988) for a more
detailed explanation of this strategy.

Again, consider estimating the position and size of
the object at a given distance. In Table 7, we show
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Table S. The Results Estimating the Size and Position
of an Object

X Pos. X Size Y Size Initial Corner  Iterations
—41.07 163.35 241.69 0 4
—41.00 163.10 241.69 2 7
—40.47 162.60 241.03 1 4
—40.45 162.56 241.08 3 9

the estimates, the uncertainty factor, and the final
probabilities. In particular, note that the final results
are with probability one, except in those cases
where the fitting tolerance moved up. In these
cases, the estimator ‘‘stalls’” and returns results that
are lower than probability one.

To demonstrate the effects of determinedness on
estimation performance, we fixed the height and size
parameters (as determined from the previous run)
and estimated the x position, distance, and rotation
of the object about the y (vertical) axis. The deter-
mination of rotation comes from perspective. There-
fore when the book is perpendicular to the camera,
there is no perspective information and rotation is
poorly determined. As rotations increase from this
zero point, the system becomes more determined.
Table 8 gives the experimental results. We note that
the convergence figures correspond with the above
argument and that the effects of increased fitting tol-
erance are seen on three of the runs.

6.2. Mobile Camera

The mobile camera system was tested with varia-
tions on the example problems used throughout this
article. Namely, we used monocular cues (corners
and lines) to compute the position and size of polyg-
onal (and superellipsoidal) objects. This forced the
system to choose viewpoints and features so that tri-
angulation and perspective combine to constrain the

Table 6. Estimating the Size, Position and Rotation
of a Rectangular Object

X Pos. X Size Y Size Rotation lterations
—-42.7 164.7 241.7 9.7 12
—42.2 162.5 242.2 9.7 19
—-42.3 163.7 241.8 9.6 24
—~42.2 161.9 2423 9.7 13
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Table 7. Estimation Results for a More Complex
Positioning Problem

X Pos. Y Pos. X Size Y Size Tolerance Probability

- 128.66 133.74 238.22 166.22 0.02 0.854
—128.66 133.74 238.82 165.91 0.01 1.00
—128.66 133.44 239.37 165.53 0.01 1.00
—129.39 133.10 239.52 166.81 0.02 0.714
- 128.05 133.36 239.11 166.00 0.01 1.00

gcometry of the object. All experiments were carried
out using a single-step look-ahead.

The experimental results indicated that the obscr-
vation selection algorithms found nearly optimal
strategies for simple problems. For example, for
simple triangulation problems the solution was to
use views with the widest possible scparation anglc
until the required estimate accuracy was reached.
For more complex problems, such as finding all six
parameters of a rectangle on a table, the strategics
were nonoptimal but still served to quickly constrain
the estimatc down to the level of sensor observation
uncertainty. The nonoptimality was not a result of
the approximations used in computing the strategies
but was simply due to the horizon effects of a one-
step look-ahead. In general, if n views would be

Table 8. Estimator Performance on a Series
of Rotations

X Pos. Z Pos. Rotation Probability  Tolerance

-134.7 792.5 0.0 50 0.01
—134.7 791.4 0.0 50 0.01
-134.7 792.5 0.0 50 0.01
—125.5 765.7 11.8 35 0.02
-126.5 766.8 13.2 53 0.01
—125.5 766.6 1.2 72 0.01
—126.8 766.8 11.0 9 0.01
-122.7 759.0 -22.1 39 0.02
—122.5 761.5 -23.2 63 0.01
—122.5 761.5 -23.4 60 0.01
-122.8 755.4 —-23.8 20 0.02
-127.2 817.7 —25.56 99 0.01
-127.5 816.4 —25.58 98 0.01
—-127.2 818.2 —25.52 99 0.01

nceded (o solve for the unknown parameters in the
ideal (no noisc or modcl uncertainty) casc, the sys-
tem used approximately 2n views to reducc the
bounds of an cstimatc to the level of sensor noisc
and model uncertainty. Part of this behavior is also
a result of the finite resolution of the grid.

Wec also observed that fitting tolerance had a sub-
stantial cffect on the performance of sensor scarch.
Namecly, in those cases where the fitting tolcrance
was quite high, the performance of the scarch proce-
dures degradcd. This appears to be causcd by the
fact that high tolerances decrease the discriminating
ability of the sensor and therefore make it more dif-
ficult to determine which obscrvations will yicld:
information relevant to the current task.

7. Discussion

We believe the process of information gathering will
play a central role in the development of intelligent
autonomous systems. Conceptually, information
gathering requircs a representation for information
with uncertainty, a method for describing sensors
and fusing sensor information into the representa-
tion, a method for deciding what type of and how
much sensor information is most fruitful to pursue,
and a method for delivering a final decision based on
the resulting observations.

From a practical perspective, the approach of
solving problems with specific sensors, models, and
methods has the advantage of allowing relatively
complete solutions to complex problems. However,
we argue that the information needed by robotic sys-
tems is highly varicd, and the only cfficient method
for gathering this information is to make thc systcm
task directed. Therefore we believe the first step in
the realization of information gathering is to build a
systecm that can handle a general class of informa-
tion gathering problems in a goal-dirccted fashion.

To this end, we have presented a decision-theo-
retic framcwork for describing gcometric scnsing
tasks. The advantage of this framcwork is its ability
to accommodate the many differcnt representations,
scnsors, and sensing tasks encountered in robotic
applications. In particular, this framework incorpo-
rates the notions of accuracy or value of informa-
tion, the cost of information, and the trade-off
between these quantitics.

The ability to efficiently and accurately manipu-
late probability representations is central to the real-
ization of this framcwork. The grid-based techniques
we have prescnted have the advantage of extreme
flexibility, as well as reasonable qualitative and
quantitative approximation characteristics. By suita-
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ble application of these methods, it is possible to
implement a wide variety of problems directly from
the framework as presented. We also showed how
this method is extended to uncertain sensor models
and discussed its robustness. We have implemented
this technique and demonstrated mathematically and
through simulation that it has stable and predictable
error properties for a wide range of problems.

The simulations and experiments we have carried
out indicated that the two fundamental concepts in
applying these methods are the method of gridding
and the type of modeling error allowed for. This is
particularly true in those cases where the statistical
noise level is fairly low, in which case sensor model
error can easily force the system into an inconsistent
situation, and poor grid representation can signifi-
cantly inhibit convergence. To date, most of the
practical limitations we have encountered are of
these two types. The gridding technique described in
this article is relatively rigid and works best for
those situations where the parameter vector is well-
determined by sensor observations. Similarly, the
additive method of accounting for modeling error
behaves poorly when modeling error is nonlinearly
related to the parameter vector.

These problems are the focus of our current
research. The current rigid gridding scheme makes
poor use of grid elements and requires global grid
reorganizations. These propertics also make it
unsuitable for parallel implementation. We are not
experimenting with methods for locally reorganizing
the grid elements. This has the advantage of increas-
ing the independence of grid elements and, when
done properly, increases the speed of convergence.
However, it introduces new problems in grid man-
agement that will need to be understood. With this
more flexible implementation, it will also be possible
to use a secondary gridding over arbitrary model tol-
erance parameters. We also hope to prove some
general convergence properties and thereby classify
more precisely the types of problems to which this
method is applicable.

The methods used to search for sensor plans are
essentially brute force, and in order to make them
practical, we use the approximations described ear-
lier. By knowing more about the measurement sys-
tem description, there may be ways of using more
high-level information about the geometry of sensing
to both speed up the process of predicting the
results of a sensor observation and reduce the size
of the search space. In particular, we are interested
in the possibility of learning strategies over time and
essentially implementing parts of the search process
using what amounts to a table lookup.
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We have recently defined an interface to the
implementation that insulates the user from the
details of grid manipulations (Hager 1990). The inter-
face is for the C language (Kernighan and Ritchie
1978), and the style resembles that of the RCCL sys-
tem (Hayward and Lloyd 1984). The interface facili-
tates a ‘‘task-oriented’’ programming style supported
by precompiled libraries of sensor descriptions,
parametric models, and task descriptions. In the
near future, we expect to modify the implementation
to conform to this interface and test the system in
interaction with task-level robot programming.
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