Analysis of a Simplified Hopping Robot

A paper submitted to the
International Journal of Robotics Research

Daniel E. Koditschek and Martin Biihler !

Center for Systems Science
Yale University, Department of Electrical Engineering

May 20, 1988

LThis work is supported in part by the National Science Foundation under grant No, DMC-8552851,
a Presidential Young Investigator Award held by the first author.



Abstract

We offer some preliminary analytical results concerning simplified models of Raibert’s hopper.
We represent the task of achieving a recurring hopping height for an actuated “ball” robot
as a stability problem in the setting of a nonlinear discrete dynamical system. We model the
properties of Raibert’s control scheme in a simplified fashion, and provide conditions under which
the procedure results in closed loop dynamics possessed of a globally attracting fixed point —
the formal rendering of what we intuitively mean by a “correct” strategy. The motivation for
this work is the hope that it will facilitate the development of general design principles for
“dynamically dexterous” robots.
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1 Introduction

This paper presents a preliminary analysis of the limiting behavior of 2 “hopping ball” controlled
by sensory feedback to achieve a stable periodic motion in the earth’s gravitational field. We take
as inspiration and as point of departure, the pioneering work of Marc Raibert whose successful
implementation of simple yet appropriate control procedures has resulted in working physical
prototypes of stable hopping, running, and cantering gaits [5]. The most striking feature of
these control algorithms is their minimal dependence on “higher level” intelligence and elegant
reliance upon the intrinsic physical characteristics of actuators and masses. An understanding
of the capabilities and limits of such approaches to robot task specification and control seems
essential to the reliable construction of “dynamically dexterous robots” in general.

This last phrase we understand to mean the problem of robotic interaction with incompletely
actuated environments (i.e., the absence of a continuous control input at every degree of me-
chanical freedom) whose dynamical structure changes in response to the robot’s actions. In our
understanding, there are (at least) three significant directions of inquiry in the exploration of
any robotic task domain. The first is a formal representation of the environment, and a formal
“encoding” of the specified tasks within that representation. The second is the construction of
control laws along with a proof that they accomplish the specified task. The third, and most im-
portant, is an experimental program which motivates and corrects or verifies the formalism. At
the present time, robotics research in each of these categories flourishes only for purely geomet-
ric task domains such as navigation among fixed or moving obstacles. Task domains involving
geometry and static forces such as peg insertion and other compliant tasks claim a growing share
of attention. However work in any aspect of fully dynamical task domains is relatively rare.

Our paper focuses on the first and second aspect of this important but under-represented area
of robotics, building on the significant contributions that Raibert and his colleagues have made
in the second and third, That is, we attempt to account in some measure for the experimental
success of Raibert’s control strategies by adopting a formal representation of the task domain.
Such a project, of course, is guaranteed to encounter the inevitable conflict between physical
accuracy and analytical tractability, and it is just this tension which the paper explores, Apart
from its academic interest — perspective in “hindsight” — this effort to understand the operating
principles of an existing robot informs independent work that we are pursuing in the analysis and
control of a throwing, catching, and juggling robot [1,4]. Our ultimate goal lies in a unified body
of theory for robotics in intermittent dynamical environments which explains and is supported
by representative experiments,

Specifically, this paper presents an initial exploration of certain analytical techniques from
the theory of nonlinear discrete dynamical systems applied to the robotic domain of interest.
The analysis relies upon exact integration of each “piece” of the robot-environment dynamical
interaction. From these pieces we build a discrete “return” map for points on a fixed “section”
in the phase space of the underlying continuous-time dynamics. Most relevant features of the
qualitative behavior of the continuous system may be captured by the analysis of the resulting
{(one dimension smaller) discrete dynamics. In particular, we concentrate upon the global stabil-
ity of a unique periodic orbit — a formalization of our intuitive sense of what would constitute




a successful hopping strategy.

In Section 2 we present a class of greatly simplified models of the robot in its environment
based as closely as possible upon the insights and discussion in {5]. The models are simulated
and compared in relation to physical experiments (as reported in [5]), to each other, and to
the analytical results of Sections 3 and 4, which constitute the chief contribution of the paper.
The highlights of this analysis are summarized in Theorem 1 of Section 3.2 and Theorem 2 of
Section 4. The former states that a linear-spring based hopper, when subjected to a simplified
version of the Raibert control scheme in a fairly accurate version of the true environment, is
guaranteed to have a globally attracting stable periodic limiting trajectory. The latter states
that an inverse-law-spring based hopper, when subjected to a closer approximation of the true
Raibert control scheme in a trivialized version of the environment, will always have a periodic
trajectory, but that this may be unstable, and, if it is, must evince a “doubly looped” trajectory
in phase space — a “limping gate”! — whose stability properties remain to be established.

We are certainly encouraged by the degree to which these models admit a tractable analysis,
while maintaining a reasonable resemblance to the physical phenomena which they purport to
capture. While a variety of more sophisticated analytical issues suggest themselves, we are
inclined toward circumspection about their relevance in the absence of more careful validation
with respect to the physical apparatas.

I"This phrase was coined by Raibert in a personal conversation.
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2 Modeling and Simulations

In this Section, we construct a greatly simplified model of the hopper dynamics given in equation
(4) based upon the discussion in Raibert’s book [5]. Not surprisingly, it turns out that different
simplifying assumptions concerning the hopper’s actuators have significant implications for sub-
sequent analytical tractability. In the second part of this Section we highlight the theoretical
results whose formal proof constitutes the heart of the paper. In the last part of this Section,
we illustrate the meaning of these results by presenting a variety of simulations of the model in
contrast to the empirical data reported by Raibert.

2.1 A Model for a Vertically Hopping Robot

In the sequel we shall attempt to denote scalar quantities by greek letters, and vector quantities
by roman letters. For example,

X

X

will denote the “state” of a one degree of freedom mass position, y, and velocity, ¥, with respect
to the “x coordinate system”.

A
T =

Our abstraction of the vertical hopper consists of a body of unit
mass {¢t = 1) and a leg of zero mass subject to viscous friction,
4, as depicted in Figure 1. The leg is *actuated” by some kind of
energy storage mechanism, a device which exerts force in relation
to position, ©(x). The actuator is “controlled” by an adjustable
“spring-constant” n(x, x, ) which multiplies the spring law, ¢ .
We will find it useful to make a conceptual distinction between
the “robot™ — the nature of the spring mechanism, g, and its

feedback control strategy, n — and the “environment”® — the
[ § friction in the leg, the force of gravity, the location of ground,
etc.

In Raibert’s hopper, the energy storage element is a pneumatic
cylinder. Boyle’s law states that the pressure of a fixed mass
08— of an {ideal) gas is inversely proportional to its volume. Thus
the pneumatic cylinder gives rise to the nonlinear inverse-law

spring,

Figure 1: The simplified hop-

per model ent (X} = 1/x.

To gain further analytical insight we will consider a linear spring law, ¢y, as well. Control
input is implemented by connecting the cylinder to a constant supply pressure, and then turning
the valves open or closed as a function of state feedback and time,.
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Specifically, Raibert divides the time of one complete vertical hop into four phases: com-
pression, thrust, decompression and flight phase, The first three phases where the foot touches
the ground are also called stance phase. At touchdown (¢4, 2:4), an initial pressure exists in the
leg, fixing the spring constant during compression, #y. Starting at bottom ({3, 73), a condition
defined by xs(ts) = O, the control valves are opened, the constant supply pressure is connected
to the leg cylinder for a fixed time §; — “the thrust phase” — resulting in a constant force 7,
the product of the supply pressure and the cross section of the pneumatic cylinder. In equations
(1) and (2), this will be modeled as a continuous adjustment of the spring constant, which we
denote 7, such that the product 5y yields the constant force 7 over the entire course of the
thrust phase. At the end of the thrust phase, {t,, 2.}, the valves are closed once again, defining
a new effective spring constant, n2, for the duration of the subsequent decompression phase .
The new spring law constant, 72 is, necessarily, a function of the body position at the end of
the thrust-phase xe. The decompression phase occurs after thrust phase until liftoff, (¢, z).
Finally, the flight phase is the time from liftoff until the next touchdown. In this phase, the leg
has no contact with ground, friction is zero and gravity is the only force present. Throughout
this paper we make the assumption that liftoff and touchdown occurs at the same hight,

Xtd =Xt > X»

and for the linear spring x; = xeq = 0 and x3 < 0 as well. In the latter case the position of the
body with the spring relaxed is denoted by xg.

To summarize, for the nonlinear robot, ¢,,, the effective feedback control law may be spec-
ified as

1 if ¥ <0,x < x4 compression
S I ift e (ty,ta) thrust
it (X2 X, 1) = g = TXea X > 0,xa < X < xi decompression (1)
0 otherwise flight,

and this would be analogous, in the case of a linear robot, ¢y, to the feedback law,

m if ¥ <0,¥ < v compression
1) = Xr:-x if t € ({p,te) thrust @)
XX, t) = M2 = o= if X > 0,Xa < x < x; decompression
otherwise flight,

The forces exerted by the robot upon the environment may now be written as

A .
Fr =X- TI(XaXst‘) ’ P(X)'

At the same time, the environment interacts with the robot in response to the position and .
velocity of the latter. Namely, during the stance phase, viscous friction applies an opposing force
to the motion of the leg, which disappears during flight., The gravitational constant, g, opposes
upward motion everywhere. The forces exerted by the environment npon the robot might now
be represented by the “strategy”,

A .
Fe=—g—a(x)7X,
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where

3 b it x < x1= xta stance
olx) = { 0 otherwise flight. )

Coupling the dynamical structure of the environment to the robot, F. = F,, now gives our
model,

X+o()vx —nlx.xt)elx)+9=0. {4)

2.2 Preview of Formal Results

First, we offer the result of an analysis of the linear spring version of (4) in the complete
environment, F,. We examine a “simplified” version of the control law, #;, where the spring
constant is unchanged before and after the thrust phase, and the touchdown and liftoff points
lie on the same axis. This simplification affords rather strong analytical results. We will show
that the “return map” for an energy-like quantity in the phase plane may be represented as:
K
P41 = (903‘ + K%) e K0 exp {KD arctan (m'{.‘m) } , (5)
VPi
where K7 is a parameter measuring the thrust at each bounce, and Kp essentially measures

the damping ratio of a spring-mass-damper system. Moreover, we assert the following strong
conclusion about the limiting behavior of this system.

Theorem 1 The dynamical system 5 has a unique, globally attracting fized point on the domain
A
D = (0,00).

This states that the linear spring based hopper, when subjected to a simplified version of
the Raibert control scheme in a fairly accurate version of the true environment, is guaranteed
to have a globally attractive stable periodic limiting trajectory.

Of course, in general, nonlinear differential equations resulting from the inverse spring law do
not admit closed form integration, and we are forced to strip away a number of crucial aspects
of the full nonlinear model in order to achieve an integrable system. Specifically, we remove the
viscous friction forces and gravity during the stance phase and let the time of thrust go to zero.
Again, assume that touchdown and liftoff points lie on the same axis. Similarly to the linear
case, we obtain a discrete map between successive bottom points,

xin = xi(X) T, (6)
Xj

Here the constant x* = /7, the quotient of the fixed spring constant during compression
and the constant force during thrust phase, is the unique fixed point of this discrete map.
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Theorem 2 The system (6} has a unique ﬁmed point on the domain D = (0 Xi}, which is locally
asymptotically stable f and only if x* € D £ (xi/e?,x1)- If x* is not a local attractor, t.e.,
x* € (0,x:1/e?) 2 Do, then there exists af least one orbit of period two, i.e. a fized point of
g 2 fof, which is not a fized point of /.

The latter states that an inverse-law-spring based hopper, when subjected to a closer ap-
proximation of the true Raibert control scheme in a trivialized version of the environment, will
always have a periodic trajectory, but that this may be unstable, and, if it is, must evince a
“doubly looped” trajectory in phase space {i.e. there must be a period-two orbit of the discrete
dynamical system), whose stability properties remain to be established,

2.3 Simulations

This section is intended as a rough validation of the simplifying assumptions about the hopping
robot built into these models. We seek to suggest that their relevance to the physical phenomena
and to each other is suﬂimently great to motivate their subsequent analysis in Sections 3 and 4,
below.

As a first cut check on the validity of our general model, we compare the various simulations
with a plot of the physical system lifted straight out of Raibert’s book — Figure 2. Starting
at top, the vertical hopper goes through touchdown (note.the counterclockwise direction) and
compression to bottom. Some part of the trajectory until liftoff constitutes the thrust phase,
which is not clearly distinguishable in this plot. After liftoff, the hopper completes the cycle
at the top. The same sequence of events attaches to our simulation plois — Figures 3 through
10 — with the exception that they evolve in a clockwise fashion. Our figures depict, as well,
transient trajectories: dashed trajectory leaves from initial conditions outside the closed curve
and a solid line trajectory leaves from inside at the solid dot.

In Section 3, two versions of the linear robot model will be examined, and the environment
model left intact. First, in Section 3.2, we consider the “simplified” case wherein the new spring
constant during decompression is identical to that during the compression portion of the stance
phase. Next, Section 3.3, considers the “complete” linear robot model as specified in equation
(2). Figure 3 dépicts a few typical trajectories of this model. For these parameter settings,
reported in Table 1, the model bears striking resemblance to the experimental data shown in
Figure 2. Perturbing the parameter settings does not greatly affect this resemblance. Next,
consider Figures 4 and 5 — a depiction of trajectories from the simplified linear system with two
sets of parameters as given in Table 1. While the transition between thrust and decompression
phase seems exaggerated here relative to the earlier figures, the resemblance is still clear. To get
some qualitative feeling for the undesirable artifacts introduced by the simplified linear model,
the reader should note that our setting for gravity departs from reality in the simulation plotted
in Figure 4, while the simulation plotted in Figure 5 has closer parameter values to those of
Figure 3 yet presents a more distorted phase portrait.
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Figure 7 depicts some sample trajectories of the complete robot-environment pair. There
are some differences with the experimental data, Figure 2. In particular, these trajectories do
not have the same symmetry. However, qualitatively, the plots seem to correspond for reason-
able initial conditions, even under reasonable parametric perturbations. The word reasonable
deserves some further attention here. For sufficiently large initial velocities, the simulated ball
may impact with such great kinetic energy that the reaction spring force potential at the bottom
point exceeds the simulated fixed supply pressure feeding the valves. We presume that this “po-
tential energy dissipation regime”, while not always easy to avoid in simulation, is most likely
an artifact, and would not occur in a physical experiment,

Section 4 presents a formal treatment of the nonlinear problem. Here, the attempt at ana-
lytical tractability suggests significant changes in both the robot and environment models. In
particular, we reduce the thrust interval to zero in the robot model while still maintaining the
effective change of spring constant and thus of the total system energy at the bottom . We alter
the environment by removing the force of gravity during stance. A still greater departure from
the real environment is the removal of the viscous friction term during stance as well. This evi-
dently implies that all energy dissipation occurs in the presumably spurious potential-dissipation
regime. Nevertheless, a glance at Figure 6 shows that it is not terribly unlike any of the other
plots.

We may now consider the relationship of the simulations to the formal results of the foilowing
two sections. There, the chief concern is to find conditions under which the robot will “settle
down” to a periodic trajectory. In the terms of the formalism, this corresponds to a “stable
attracting fixed point” of the derived discrete map. The simulations of the simplified linear
robot model, Figure 4 and the simplified nonlinear model, Figure 6, reflect the fact that both
systems have unique attracting fixed points, conditions for which are given, respectively, by
Theorem 1 and Theorem 2. Again, the trajectories of the simplified nonlinear model, Figure 6,
and of the complete nonlinear model, Figure 7, exhibit surprising resemblance. In particular,
both show trajectory crossing, and the characteristic “double loop” trajectories — a period two
orbit of the discrete dynamical system predicted by Proposition 4.3 . For the simple nonlinear
system, Figure 10 depicts unstable motion around the period one orbit and at the same time,
we can see in Figure 8 a period two orbit of the same system,
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Figure Initial Liftoff | Thrust { Thrust | Friction | Initial | Gravit. | Spring
Position Pos. | Time | Force | Constant | Spring | Const. | Relax.
Const. Position
x(0) Xt b T v " g Xo
3 091 | 0.98 0.5 0.05 41.86 2,33 46.5 10 1
4 0.44 | 0.5 0 0.05 41.86 0.58 46.5 5 0.1
5 -0.16 | -0.18 0 0.05 41.86 2.33 46.5 10 0.215
6 0.12 | 0.14 | 05 0 41.86 0 581 | 0/10 | N/A
7 0.8 0.9 0.5 0.01 41.86 2.33 5.81 10 N/A
8 0.02 0.5 0 41.86 0 2.33 0/10 N/A
9 0.2 0.24 0.5 0 41.86 0.06 4.186 10 N/A
10 0.056 | 0.06 0.5 0 41.86 0 2.33 0/10 N/A

Table 1: Simulation Parameters
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3 Analysis of a Linear Model

This section offers an analysis of the linear spring version of (4} in the complete environment,
F,, as defined in Section 2.1, We proceed by building a return map for iterates of an
energy-like quantity in the phase plane. This “normalized” energy is defined and its desirable
properties are presented in Section 3.1, We examine in Section 3.2 a “simplified” version of the
control law, #, in some detail, for this simplification affords rather strong analytical results.
Namely, we present a complete analysis of all possible periodic trajectories, as summarized in
Theorem I, Finally, in Section 3.3, we consider the full linear robot model, F,, as defined in
Section 2.1. We show that there is no fundamental difference in the two cases by building a
return map for the same quantity using nearly identical methods. However, the the resulting
discrete dynamical system is considerably messier, and its qualitative properties remain to be
established.

3.1 Normalized Energy for Translated Focal Linear Systems

Consider the autonomous planar dynamics,
&= Az + b, (7}

a linear system forced by a constant disturbance input. In the “focal” case where A € R?*?
has complex conjugate eigenvalues (we will assume they have negative real part),

spectrum{A) = {—¢ + iw, —0 — iw},
there is a new coordinate system achieved by a translation and change of basis,
A -
y=W(z+ A7),

with respect to which the dynamical system is linear,

¥ = Ay,
and
A=WAW ! = —oT +wd.
constitutes the “normalized form” of A, Here, I is the identity matrix and J = —J7 is the unit

skew symmetric matrix of IR?*?,
ai 0 1
I [ ol ] .

In the new system, we may define the “normalized energy” to be
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and the “normalized angle” to be
= arctan(yz/w1},

yielding the normal polar coordinate system system

1‘? = —2¢"
g =w
whose solutions may be parametrized by @ as
9(0) = 9(60) exp {ziwi’—{e - oo]}. (8)

In particular, suppose A is specified in phase canonical form,

a0

-3v O 0 1 Kk 3 (9)
AR R P

=141+ JP.
The system is focal if 42 < 4k in which case P has a real “square root”
P =W,
given by
K %q’

Now, if y = Wz, it follows that
i
§y=WAz = [~ 51+ WJWT] y

is, indeed, the normalized system, since

wWIw? = J\k — 42 /4.

We have, then,

Note that while the traditional “mechanical energy” — the total kinetic plus potential energy
— of this system is given by
A k 0

our “normalized” energy is expressed as

a(m)é[m+A-1b]T[ cooed ] [+ A1)

B2

v 1

in the disturbed phase canonical coordinate system.

[ ol
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3.2 Vertical Hopper with Fixed Linear Spring

Now consider the following simplification of the linear version of system 4. Assume that the
spring constant is unchanged before and after the thrust phase,

m == K, (10)

and that it has been chosen, along with the relaxation position, xg, to place the zero potential
energy position exactly on the ordinate of the original coordinate system,

k= g/xo. (1)

Moreover, due to energy conservation during flight, xy¢ = —x1, such that
Tyg = & = 0
id { _Xl B

The resulting vector field during stance is given by equation (7) with the entries of A as
specified in {9) and disturbance given by

b=[ 0 ]:0.
kKXo~ g

During the flight phase, the hopper experiences a constant acceleration due to gravity, g, and
during the thrust phase, both a constant force, 7, as well as a force proportional to velocity
due to friction, .

At time tp, the bottom of the stance phase, suppose the hopping ball is at state

A _—
xbm{ é\b]

It follows that the normalized energy at this point is
) DY — T P a2 a2
'(9,5 = ‘19((1,5) = :LbPiLb = KXp = ?bb.

According to our model, the hopper next experiences a fixed thrust and viscous damping over
the period of time, & 2 ter — £y with the result that

Tt = Xp -+ X4,
N IO Tlvé — 1+ e”""'s‘]/')f2
* Xt T[1 - e7 "%/ ’

y;m[$j1=W2,¢

where

hence,
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It foliows that
Ju = 0wy tar)
= [ — o’ +9F
= [ — VB + 47,
The trajectory during decompression between ¢, and # is governed by the linear system solved
in equation (8) with the result that

2
O 2 Pwp) = P exp {—;0 [6e: — 311} ’

where, under the assumption that xp > vy,

Py A y2 (1)
—-————-—\/1_9_._ 1/)1) , 8; = arctan (yl(tl)) .

Note, importantly, that since we have assumed zero disturbance, b = 0, and liftoff on the
ordinate,
— 0 ‘
T = I )

volte) _ Vr —
y1 (&) v
is independent of ¥;, and #; is identical for each cycle.

A
#.y = ® — arctan (

the ratio,

In flight, the hopper is subjected to a constant negative acceleration due to gravity, and we

may suppose that x;q = —ay, hence, yg = — 1, and vyq = v;. Between {4, and &y, the energy
evolves, again, according to (8), with the result that at the next bottom we have
ﬁb,nezt = = dqexp {—%’[gtd - ab]}

= ?9]8){1){_250‘}

= Dy exp {“""%,q“gel}

= ([ = VA" + 9}) exp { -2 [r - arctan («r‘f‘—w)}}
2 f(9y).

Thus, we obtain a first order discrete nonlinear dynamical system in the normalized energy at
successive bottom points,

i1 = f(ﬁj)- (12)
According to the assumptions made in the course of the derivation, the iterates of this scalar

system, {¥,}7°, starting from the initial conditions Jg & #|ap{0)] describe exactly the future

“bottom points” in phase space,
—\/9;/k
(336)1 { J/ } y

0
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providing ¥; > 7.

We are now in a position to provide conditions on the parameters which guarantee that the
hopper tends toward a stable periodic motion from all initial conditions. In the sequel, it will
be useful to shift the origin of the discrete system 12, by defining

A 2
p= [\/5 - llbf] )
and then viewing f as the product f) fo where

filp) 2o+ 47

expresses the energy gained during the thrust phase, and

fo{w) L% exp {%} arctan (f’/?_i—) }

v

expresses the energy lost to friction during a single cycle. Note, once again, that the domain
upon which this system is well defined may be written as

pL {0, 00}

in the translated ¢-coordinate system.

Proposition 3.1 The dynamical system 12 has a unigque fized point on the domain, D, defined
with respect to the p-coordinate system.

Proof: Define the “ratio map”,

r(e) £ fp)/e.

Since f{p) = ¢ if and only if 7(p) = 1, it suffices to show that r is strictly decreasing and
attains values both greater than and less than unity on P. For r is continuous on P, and
this would imply the existence of a unique unity crossing of r, which, in turn, implies a
unigue fixed point of f.

Letting ry 2 f1/e, so that r = r fo, we have

2ex

lim rp =1, lim fo=¢g w,
P00 p—oo

and it is clear that » achieves values less than unity for sufficiently large values of its
argument. Moreover,
+ . —ax
lim r; = oo, lim fo=¢ w,
=0 p—0

and r certainly achieves values greater than unity on D as well.
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Finally, to see that r is monotone down, note that both ry and fy are strictly positive
and both are monotone down on D. Thus,

dr drlf "
dtp_ dp 2 Tl'("i“(;a

being the sum of two negative numbers is itself negative.

df2

£

It turns out that the unique fixed point guaranteed by the previous result may be shown to be
a local attractor, and, moreover, is globally attracting on the entire domain, D. In order to
show this we will make use of the following two facts about f.

Lemma 3.2 The discrete map, f{p), s monotone increasing on the domain

()

and monotone tncreasing on tls complement,

Do = RY — Dy,
Proof: First note that '
dfs, _ _gp . _2o¥ 1
O v N
=-f2- %/fl
£ —fa fol
But J 4
L = pE-nlta Is/h)
= foll - f3},

hence g{; > 01f and only if

\/‘,B > m/),/w,

as stated.
3

Lemma 3.3 If the magnitude of the derivative of f is greater than uniiy,
4
dp
then the ratio map must be greater than unity as well,

r(p) > L.

> 1
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Proof: First note that if ¢ € Dy, then, following the proof of Lemma 3.2 , the
derivative could never have a magnitude greater than unity since it is the product of two
functions, fz, and |1 — f3] whose magnitude is smaller than unity on that interval, Thus,
it remains to prove the result on Py.

Assuming the contrary, i.e. if
/4
1 <h@ |
= fa ll - tbtU/J@I
=g |1 = o/ /w),
while r < 1, then it must also be true that

b= i
v+ Y7

on Dy, But
12 2
SUPpep, = Y1 O /40.)2

occurs at Pmaz = Y7 /2w?, thus the last fraction can never be greater than unity, and
the contrary assumption has been shown to generate a contradiction.

The reader who is familiar with the analysis of discrete dynamical systems will note that the
previous result already assures us that the unique fixed point is locally asymptotically stable.
The following more general argument lays the groundwork for the final demonstration in
Theorem 1 that condition gives global results as well.

Proposition 3.4 If the continuously differentiable scalar map, f € C[IR], has a unique fized
point, ©*, on some interval, D C IR, and admits the bound

d
Li<h
do
on D, then ©* is a stable aftractor of the discrete dynamical system,

L+l = f(ij), (13)

whose domain of attraction includes D.

Proof: We will show that N
Ap) 2 lp - o]

3
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is a global Lyapunov function for system (13) at ©* over the entire domain D. Since ) is
clearly positive definite at the fixed point, and radially unbounded on P, it will suffice to
show that the function has has a negative definite first difference along the iterates of
system.

To see this is so, note

M) = Ai(e) =) -] - lo— o)
== 9’ - 20" (f - p)
=/ -} + ¢~ 2¢%).

Form the partition, D = D_ U Dy where D_ is the open interval to the left of ©* and Dy is
the open interval to the right. Now observe that the first term of this product is sign
definite on D — {p*} or else there would be another fixed point on the interval. In
particular, the term must be strictly positive on D_, and strictly negative on Dy, or else
the derivative bound would fail at ©*. Thus the proof is complete if we can show that
the second term has strictly opposing sign on those intervals,

Suppose, to the contrary, that (f + ¢ — 2¢*) is positive or zero at some point, 5 € D_,
i.e.

flpo) = 20" — o + ¢,
for some ¢ > 0. Then, according to the mean value theorem, there must be some point,

& € (o, p*) at which
gf_ o = Jle*)—L(#)
©

pt-p

— £ (20"~ ]

- pr-p

— popt—e

pr-p

=1 £

=-1-Z=,
in violation of the hypothesized bound. A similar observation applies to the other
interval.
]

These technical results, now afford a global picture of the hopper’s limiting behavior,
expressed as follows.

Theorem 1 The dynamical system 12 has a unigue, globally attracting fized point on the
domain D.

Proof: The unique fixed point guaranteed in Proposition 3.1 lies in a domain, Dy,
where, according to to Lemma 3.3 , the derivative of f is bounded in magnitude by
unity. It follows, from Theorem 1, that the fixed point is asymptotically stable, and
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includes Dy in its domain of attraction. We may conclude the proof by showing that f

c e A . . .
maps the remaining interval, D, = Rt — Dy into [, and, hence, the entirety of D is
attracted to its unique fixed point.

First note that f is monotone down on Dy, according to Lemma 3.2 . Moreover,

f{®) > © on Dy, since Lemma 3.3 guarantees that » < 1 only in Dy, Now identify the
the common boundary point of the two intervals as, ¢, € D, N Dy. We observe that if
© € Dy, or equivalently,

P S Pey
then

we < flpe) < fle),
or, equivalently, f{©) € D;.

3.3 Vertical Hopper with Shifting Linear Spring Constants

We next consider the full linear version of system 4. Namely, the spring constant after touch
down and before the bottom point is some quantity fixed in advance,

A
n =K,

while its value after thrust and before liftoff is a function of the thrust force, 7, and the
position in the phase plane at time of end-thrust, x. given as
N A T
n2(f) = ————.
X0 — Xet{7)
We assume again that the touchdown/liftoff points lie on the same axis. Similarly, we will still
assume that the fixed spring constant and relaxation point have been adjusted to coincide with
this axis, i.e,
m = g/ xo,

and the normalizing coordinate transformation before thrust is the same,

1
7 1y
yE2EW(+A%); bEo; Wéi[l 2 ]

vinig o 7 —y</4

However, the since the effective spring constant after thrust changes with each cycle, we shall
require a different coordinate transformation for each new second stance phase,

: i
i — v 1 12 R
ng(x-f—c); cB A= {Q/WU) '\U]; ve [ () 2 4].

0 V12(7) 0 nalg} —




3.3 Vertical Hopper with Shifting Linear Spring Constants 21

It will be convenient in the sequel to denote the normalized energy in the y-coordinate system
. . . . i .. N

as ¥, and the corresponding quantity in the z-coordinate system as & . Similarly, the primed

version of all other symbols defined in the y system will denote their z counterparts.

Following the derivation in the previous section, suppose

Zp = [ —.6\1’}

Tep = Tp + X4,

at time &y, so that 9, = g7,

as before, and ’

Dot = (e — V/0s) + 9.
The analysis must now depart from the earlier example, since the simple solution {8) during
decompression relies upon the shifting z coordinates.

We first form the expression for 19; as a function of ¥y, This obtains from

19;, = [@es + c]T P fe + c]T
n2 /2 l { A(Xe — xo) ]

= [F(X — x8)s x4} w2 1 ‘i

—7/{% = x8) 71/2 ] { F(Xe - Xs) ]

= [F(Xt ~ xb)s Xt} { v/2 1 Xt

= 3{(Xe — xo) + Xi

= 7%~ (3/ /0O + xP

A
= fl(ﬁb)s
where
AL, . .
7= A(yxe — 57)
2 1-g/r
. A
Xt = Xt~ Xo.

Since the liftoff state,
2 = U[H:I + C],

lies on an affine line instead of a line through the origin in the 2z coordinate system, 3;, the

angle of liftoff in the z coordinate system is not a constant over each cycle, and the analysis is
. . « ! . N -

simplified by parametrizing ¢ according to time,

9y = Dy exp {~20(t — ta)}.

For the time elapsed during decompression is, of course, the same in the y and z coordinate
systems, and, in the y system, % = w implies

_ B ‘ Wy o y2(t)
t— to = =~ [rr — arctan (m) arctan (‘y1(t1))] 3
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as in the previous section. Thus, we have

ﬁ; = &1(9) exp {[n — arctan (\/—6—":‘_?) — arctan (ﬂf :: )] ’}
—g 62(195).

After liftoff, we must express the normalized energy of the z coordinate system, 19;, as a
normalized energy in the y system. This may be readily accomplished as follows. Note that

T, _ 2
O = a; Pay = xi.
Moreover,

9, =lz+c Pz + T

/(% — x) /2

= llo/n (& = 1) = xo, x| T / ] [ (9/2)(% = ) = Xo

Xi
~ . . .2
=% = xo+ XF — xo(ki — 29) — 225
2
=% = (7 /s + 91— Xo(v/Tr — 29) - R YN oS

where
A )
7= (/1) (% - 9),s

and the other symbols are defined above. Thus, # is related to 1.9; and 9 as

' ' 2
9 = xo/Or =9+ (v /\/"7—1)\/{9;)2;-—(1/)(\/:7;)\/3?
Fay I
= ES(ﬁI)ﬁbL

and this may be readily solved by applying the quadratic formula,
1 A .
Vi = 5 (xot X8+ 46) 2 catol, 00,
where we have discarded the second negative root.

During flight, touchdown, and next bottom, the arguments are identical to those of the
previous section, and we have

Ty = (Eal€2(95), 95])% exp {mi"_\é‘:’)‘.—‘:ﬁ}
F(95)-

e

In principle, this case yields to the same analysis as in the previous section. It is quite clear,
however, that the qualitative properties of f would be considerably more difficult to determine,
No attempt is made to do so in the present paper.
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4 Analysis of a Simplified Nonlinear Model

In this section, we undertake an initial analysis of the nonlinear robot actuator. In so doing,
we immediately encounter the limitations of the techniques of Section 3, for these require
explicit integration of the underlying continuouns-time dynamical system. Of course, in general,
nonlinear differential equations do not admit closed form integration, and we are forced to
strip away a number of crucial aspects of the model developed in Section 2.1 in order to
achieve an integrable system.

After a brief discussion of the altered model and appraisal of alternative analytical techniques
in Section 4.1, we will proceed with the analysis of the “stripped down” nonlinear model in
Section 4.2,

4.1 Simplified Nonlinear Models and Alternative Analytical Approaches

The question naturally arises as to whether the immediate appeal to discrete dynamics is the
source of difficulty. Unqguestionably, certain versions of the models explored in this paper seem
amenable to a qualitative analysis of the underlying continuous-time periodic orbits in the
tradition of planar dynamical theory [3,2] — a body of techniques which do not require
explicit integration of the vector field. However, in the face of a multiply discontinuous vector
field, there are technical problems applying the standard tools. This is swiftly comprehended,
for example, by a glance at the simulated trajectories of Figures 8 and 9 where the crossing of
trajectories through each other belies the uniqueness of solutions. Indeed, for the models with
shifting spring constant there is no single well-defined vector field at a point in the portion of
the plane associated with the decompression phase. Analysis of the continuous dynamics
would require passage to a phase space of higher dimension than two, and such powerful tools
as the Poincaré-Bendixson Theorem would no longer be of use [3].

Therefore, consider a variation on the model 4 wherein both the environment is altered,

F, “*“9“* [1 - 0’(,\’)]9,

to remove the viscous friction forces and the force of gravity during stance phase, and where
the robot is altered by letting the time of thrust, §, go to zero,

71 i x <0,x < Xxud
(XXt =4 ne=1xs HX>0,x <xXi=Xu
0 otherwise.

Notice that this model with “instantaneous thrust phase” still incorporates the qualitatively
important feature of changing the spring constant for the subsegent decompression phase.
However, equation (4) can now be written as

o 1
X= 7]23(—3
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which can be integrated easily.

In fact, on any domain where neither ¥, nor ¥ vanish we may either solve this system for x; as
a function of yq, and initial conditions, g,

= -2, (14)

or since this function is invertible, for y; as a function of yq,

xi = xoexp {5 x3 - 31} - (15)

It is clear that both functions are well defined even when 25 has a zero component,

4.2 Analysis of the Simplified Model

Starting at the bottom point

and applying (14) gives
v Xt _ Xi
i =2n2In = = 2rxpIn ~. (16)
Xb Xb

’

Note that this map, from bottom position to liftoff velocity, is not monotone, but exhibits a
maximum at y = x;/e. This results in the trajectory crossing between bottom and liftoff
points as which can be observed in figures 6- 10.

During flight, the hopper is subjected to a constant negative acceleration due to gravity with
no losses due to friction. As liftoff and touchdown positions are identical, also the kinetic

encrgy at liftoff and the subsequent touchdown are equivalent, and thus x?, = x%.
From touchdown to bottom, applying (15), yields
22
Xbnext = XidEXP _ﬁ“,“]"i
— v ex X{
= X{exp {—ﬁ‘;}

= x;exp{—%iln %}

-

(17)
(from {16))
—ar X

= v &
- Xl(xb

2 f(x).
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Proposition 4.1 The dynamical system (17} has a unique fized point on the domain

JaX
D= (0,x1).
Proof: From (17), equating x = f{x), results in the unique solution for y € D:
_m_
X = T X

It is important to note here, that the fixed point, v, is explicitly given by the quotient of the
two system parameters, 3,7, the initial spring constant during compression and the thrust
force. In the sequel x* and It will be used interchangeably.

Proposition 4.2 The unique fized point, x*, of (17) is locally asymptotically stable if and
only +f

Fa
x* € D1 = (xi/ed x)-

Proof: A necessary and sufficient condition for the scalar difference equation (17) to
be locally stable at x7, is that the (scalar) jacobian of the equation,

d Xt Xty Xty -
—f=={1 - In=){=} x",
ax x*( X)(X)

evaluated at y*

d Xt
d_xf lxt: 1~ 1In X*’

have magnitude less than unity,

il—ln’\% <1,

’

leading to the conditions,
xi/et < x* < xu

as stated.
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This result shows that, unlike the linear case, an asymptotically stable fixed point may not be
globally attracting, and, moreover, not all parameter settings give rise to even a locally
attracting fixed point. Motivated by the plots in Figures 8, 10 we are led to suspect that the
absence of “period-one” attractors is associated with the appearance of the more complicated
double loop characteristic of a higher period orbit. This, in fact, turns out to be the case, as
shown in the following result.

Proposition 4.3 If the fized point of (17), s not a local attractor, i.e.,

A
X* € (O:XI/EQ) = D(),

then there exists at least one orbit of period two, 1.e. a fized point of

g2 fof,

which 13 not a fized point of .

Proof: Evidently, g(x*) = x*, since a fixed point of f (a “period one” orbit) is
necessarily a fixed point of every higher period orbit. Since x* is the unique fixed point
of f, according to Proposition 4.1 , it will suffice to find conditions under which g has at
least two distinct fixed points. Equivalently, defining the “ratio map”,

>

0 & 100
(x} = ”

it suffices to find two distinct unity crossings of 7.

Since
. TY f‘
fim — X In & = 0,
x=0 X

it follows that limy_o f = 1, hence limy_.g ¢ is a bounded number, and we have

lim ¢ = oo.
x—0

Moreover, since x* is a fixed point of g, we have

r(x*) =1
Thus, it will suffice to show that

dr Jx*> 0

dy X7

for this would imply the existence of a second unity crossing of 7(x), on the interval
{0, x*} under the conditions derived above.
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This follows since & , |
Ll = (S8 - 1) e
= ROE oy - Ix /r0) = 1]
= (@& k) - 1]

X
> 0,

i

according to the hypothesis that x* is an unstable fixed point of f.

Combining the previous results now yields the second central contribution of this paper.

Theorem 2 The system (6} has a unique fized point on the domain D 2 {0, x1}, which is
locally asymptotically stable if and only of x* € Dy 2 (xi/€%,x0). If x* is not a local attractor,
ie, x* €(0,xi1/e%) = Dy, then there exists at least one orbit of period two, i.e. a fized point of
q 2 fof, which is not a fized point of {.

There are obviously many more complicated behaviors that we might expect to occur in this
model. Note, in particular, that we have not yet given any conditions for the stability of the
period two orbit, even though its visibility in the simulations is a certain measure of local
stability. However, before venturing into an analysis of these more sophisticated analytical
issues, we feel that the models should be validated more carefully with regard to the
underlying physical system.
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