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This paper investigates the use of voting as a conflict-resolution teckensor data fusion, spatial placement, robot programming,

nique for data analysis in robot programming. Voting represents atarget classification, learning.

information-abstraction technique. It is argued that in some cases

a voting approach is inherent in the nature of the data being an .

lyzed: where multiple, independent sources of information mustat:)[é Introduction

reconciled to give a group decision that reflects a single outcom

rather than a consensus average. This study considers an exaﬁgnsmg systems are fundamental to robot control and pro-

ple of target classification using sonar sensors. Physical mode@¥@mming. In multisensor systems, diverse geometric, spa-
of reflections from target primitives that are typical of the indoortial, and physical information is acquired from the environ-
environment of a mobile robot are used. Dispersed sensors take dgent, through the deployment of multiple sensors, for exam-
cisions on target type, which must then be fused to give the singiée (Durrant-Whyte 1987; Luo and Lin 1987). Increasingly,
group classification of the presence or absence and type of a targsystems of multiple-sensoodesare being exploited, as by
Dempster-Shafer evidential reasoning is used to assign a level @ghong, Mori, and Chang (1990). In sensor nodes, sensing
belief to each sensor decision. The decisions are then fused by t&ugmented by processing and communication capabilities.
means. Using Dempster’s rule of combination, conflicts are reso"’eﬂ']erefore, local processing of sensor data, and in some cases

through a group measure expressing dissonance in the sensorviey&al decision making, takes place. Numerous advantages

This evidential approach is contrasted with the resolution of Sensal. ..Le: processing of data before transmission. as ooposed
conflict through voting. It is demonstrated that abstraction of the - P 9 ’ PP

level of belief through voting proves useful in resolving the straigh{—O bulk tran_sfer of raw data, means more‘9°mp?‘0t messages
forward conflicts that arise in the classification problem. Conflict&@n be delivered, with extraneous material being removed
arise where the discriminant data value, an echo amplitude, is moRfior to transmission. Local processing canresultinincreased
sensitive to noise. Fusion helps to overcome this vulnerability: igpeed of operation, which is important in real-time robotics
Dempster-Shafer reasoning, through the modeling of nonparamepplications; operations may be performed more efficiently
ric uncertainty and combination of belief values; and in voting, byn parallel at every node rather than in parallel in software
emphasizing the majority view. The paper gives theoretical and ext a single, central, processing site. Increased speed of data
perimental evidence for the use of voting for data abstraction anggnsfer is possible where there is communication between
conflict resolution in areas such as classification, where a strong, o sensing nodes. Increased reliability can be achieved by

argument can be made for techniques that emphasize a single oty o1\ ing processing and communication activities to sens-

come rather than an estimated value. Methods for making the voltne_g sites. These are general advantages; the degree to which

more strategic are also investigated. The paper addresses the r{E' ise is d d he desi £ 1h itiol q
duction of dimension of sets of decision points or decision makefS'€Y arise Is dependent on the design of the multiple-node

Through a consideration of combination order, queuing criteria foSyStém. Multisensor systems fall into a taxonomy based on
more strategic fusion are identified. processing and communication complexity. In the simplest

case, sensors may relay data directly to a central processing
The International Journal of Robotics Research podg. Incr.easmg the complexity of communication, nOd?S
Vol. 18, No. 4, April 1999, pp. 401-413, in hierarchical systems may process some data locally prior
©1999 Sage Publications, Inc. to communicating to a central site (Chong, Mori, and Chang
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1990). Eliminating the central processor altogether, individusion for target classification, and draws a comparison with
ual sensor nodes can operate autonomously, on the basisusion based on evidential reasoning. In the work presented,
communicated information, as in some decentralized systemata abstraction through voting is employed as a means of
(Durrant-Whyte, Rao, and Hu 1990; Grime, Durrant-Whytegzombining diverse sensor information in robot localization or
and Ho 1991). This paper is concerned with a problem thatvigation problems. In particular, the problems of resolv-
is common to systems of multiple sensor nodes—obtainingag conflicts where multiple, dissenting decision makers are
group decision on the basis of the combination of individugdresent is considered. Thus, the paper is concerned with the
views. highest level in the taxonomy of sensor systems—the case
Individual sensor views must be combined so that a comthere individual nodes hold decision-making power. The
sistent and coherent system outcome is determined. This ostope of this work is wider in the sense that abstraction is
come may be an estimate, say of a robot’s position or of@ten useful in determining single outcomes from conflict-
target’s velocity. A consequence of having multiple decisiomg respondents. In this case, the respondents are multiple
makers is that conflicts can arise. These conflicts may be daensor nodes, but the essence of the problem is that of resolv-
dependent, predicated on the diversity of views in the sensiingg conflict between data points that support different out-
system, or in more-complex sensing scenarios, owing to proemes. Comparison is made between the voting approach
cessing diversity—tactical differences in the decision-makingnd Dempster-Shafer evidential reasoning.
strategies of the sensor nodes. Fusing diverse sensor data i¥he paper looks also at ways in which the fusion tech-
a fundamental requirement of multisensor systems. Numaeriques can be made more strategic through the extraction of
ous fusion methods exist, but these can broadly be dividéaformative decision points. Order is used to determine sen-
into parametric and nonparametric approaches. In parametsimr nodes thatimprove the rate at which a preset belief value is
methods, a model of the process and of the observations @tained. The nodes are queued according to selected criteria,
be adduced and/or an underlying probability distribution is agacluding similarity in level of belief and physical separation.
sumed. The models derived are employed to estimate the stalese groups act as logical sensors with preference orders on
ofthe system or environmentunder observation. For examptarget type. Comparisons are made with a randomly gener-
sensor estimates may be combined using Bayesian methaated fusion order. Results using Dempster fusion are again
In nonparametric methods, no assumptions about distributioontrasted with the results of the combination of sensor beliefs
are embedded in the fusion process. This can yield greatbrough voting. An analogy between this approach—data or-
robustness in certain situations; for example, where noisedsring until breakdown of the fused result—and learning is
nonadditive or non-Gaussian, or where the system model daegplored in Section 4, which discusses the incorporation of
not adequately represent the process. Nonparametric metbting strategies in robot programming. All methods are ver-
ods based on voting have been applied widely in reliabilitified by experiments with a practical sonar system.
problems. An example is their use to achieve fault tolerance In the experimental work on target classification, multiple
in satellite systems (Takano et al. 1996). Other applicatiosgnsor agents, located in a rectangular room containing tar-
include voting-based algorithms such as the Hough transfomet primitives, combine their views to determine target type.
(see, for example, Duda and Hart 1973). A majority-votingonar sensors that make use of time-of-flight and amplitude
scheme for fusing features in 3-D object recognition is pretata are employed. Conflict resolution is a particular concern
sented by Mao, Flynn, and Jain (1995). Some application of this type of problem. A unique group decision is required;
voting has been made to the analysis of sonar data; for exatherefore, the fusion strategy must be able to incorporate or
ple, for underwater target recognition (Foresti et al. 1997) arekclude variant views. Sonar time-of-flight data is often sen-
for data analysis using neural networks (Tan and Teow 1998jtive to physical conditions, and conflicting responses by the
Examples of applications in robotics exist (Sukthankar 1998gnsor respondents are common in experimental systems. In
Rosenblatt 1997; Toye and Leifer 1994). However, althougiddition, although the strategies of the sensor nodes are the
potentially a very powerful approach, voting methods haveame at each site, differences in views arise owing to geo-
not been widely exploited in robotics. graphical diversity. The next section describes the Dempster-
Klein (1993a, 1993b) has applied voting fusion to targebhafer belief assignment used by the sensors, and the un-
detection and discusses Dempster-Shafer evidential reasderlying mass function that is used for target differentiation.
ing in contrast to this. Evidential reasoning (Shafer 1976) r&onflict resolution through voting is then implemented for the
quires no a priori information. This method has been appliegsbnar decisions on target type in the experimental room.
to robotics by several researchers recently (Murphy 1996; Pa-
gac, Nebot, and Durrant-Whyte 1996; Reece 1997). A co® Conflict Resolution through Voting
cise description of the Dempster-Shafer approach appears in
Krause and Clark’s (1993) book. Multisensor systems exploit sensor diversity to acquire a
This paper is concerned with the application of nonparavider view of a scene or target under observation. This diver-
metric methods based on voting to the problem of multisenssity can give rise to conflicts, which must be resolved when the
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the point at which it enters the vote, a sensor could influence
the outcome in its favor. Alternatively, the vote could gen-
erate an outcome that no voter prefers. Harary, Norman and
Cartwright treat the problem, which is related to Arrow’s im-
possibility theorem (Arrow 1951), in terms of tournaments
on digraphs. Modifying an example of Harary, Norman, and
Cartwright (1965) to reflect a sensing scenario, three sensors
might make observations of a target that can be of type plane
(P), corner (C), edge (E), or cylinder (Cyl). Let each have
: a different preference ordering for the four outcomes, deter-
mined by the level of belief apportioned to each target type.
PLANE CORNER Where a cycle exists, the final outcome of pairwise votes on
the target types may favor sensors that enter their first choice
later in the voting process. For example, for the following

NN

Fig. 1. Target primitives modeled and differentiated in thi

study. i
sensor preferences over the possible outcomes:
i o ) o Group 1P, C, E, Cyl;
system information is combined to take a group decision or Group 2 C, E, Cyl, P; and
to form a group value or estimate. The way in which conflict Group 3E, Cyl, P, C,

is resolved is encoded in the fusion method. In Dempster- L
Shafer evidential reasoning, each sensor’s view or belief &CYcle exists:

tied to a belief measure or basic probability assignment. A P—C
priori information is not required, and belief is assigned only 0 {
to those values for which the sensor maintains a view. There- Cyl <~ E

fore, Ighorance In view can be represen?ed explicitly. Co_nfhca'{nc? pairwise votes taken in the following order will favor
between views is represented by a conflict measure thatis used .

. ; . choice P:
to normalize the sensor belief assignments.

An abstract means of analyzing sensor data is to combine E versus G~ C WiflS,
the views of sensors in a vote, for example by making the C versus Cyl> C wins,
group decision on the basis of simple majority. The level of C versus P~ P wins.

belief (as in Dempster-Shafer methods) or degree of uncer- g the sensing problem considered here, a two-way deci-
tainty (Bayesian methods) is completely abstracted to givesgyn is required. Planes and corners, as illustrated in Figure 1,
binary output. Awealth of voting strategies exists (see, for €Xprm the set of target primitives encountered by the mobile
ample, Kimand Roush 1980), and itis possible to encapsulgghot. Sonar sensors scan the room, making decisions about
information such as strength of belief in the voting procesgarget types at each viewing angle. While these decisions may
Abstracting information is a useful tool for conflict resolu-no|q information about level of belief, and the final decision
tion. Voting, in its simplest form, has the advantage of beingyay include some marker of strength of belief, the eventual,
computationally inexpensive and, to a degree, fault tolerankquired outcome is a single decision for each target encoun-
In cases where the decisions to be made by the sensing sys{gfa: in effect, a Boolean value as opposed to an estimate.
themselves abstract the data, it may be more efficient to efnjs work hypothesizes that in such cases, abstraction is a
ploy the instrument of a vote in preference to the fine tuningsefyl tool for fast combination of the sensor data. Even
of parametric information. This is useful in the example Ofyhere this is not the case, the gains in employing parametric
target classification considered here. _ methods may be marginal by comparison, and in some cases
Drawbacks of voting include problems of consistency (Arpytcomes may be degraded because of the emphasis given
row 1951). The discrimination algorithm employed by th§g sensors with strong, but misplaced, levels of belief. Ab-
sensors here is mutually exclusive over target type. FOr motgraction through voting is a leveling system, and offers the
complicated decision-making scenarios, preference ordefgyantage of rewarding replicated views. This may be sig-
could exist over the possible target types, based on strengfiicant for certain problems. It is argued here that in many

of belief. Such preferences admit the possibility of ordefstances, the classification of environmental features is one
dependent outcomes in the vote. A problem of order that capch problem.

arise in voting is that of cyclical majorities (see, for example,

Kim and Roush 1980.; and Harary, Norman, and Cartwngl}l_ Algorithm for Plane/Corner Differentiation
1965). A cycle can arise in the preference order of the sensor
group, such that the preference relationship is not transitivehe classification algorithm employed by the individual sonar
In such a case, the order of voting is important. By delayingensor nodes is the plane/corner differentiation algorithm de-
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Fig. 2. Plane and corner amplitude characteristics.

rived by Barshan and Kuc (1990). The basis of the algdhe k404 bound; all other cases are classified as unknown.
rithm is a realization that, in resolving target types, amplitud&€herefore, the differentiation algorithm is mutually exclusive
differentials are significant. The plane and corner amplitudan target type, a feature which makes it a particularly strong
characteristics are provided in Figure 2 as an example. The a&ndidate for abstraction through voting.
gorithm is detailed in the work by Ayrulu and Barshan (1998),
and an extension to other target primitives, based on time-of- .
flight and amplitude differentials, is given by Ayrulu (1996 (52 Experimental Setup

To emphasize the decision procedure, a summary is prEse two fusion methods were tested on amplitude data ac-
sented here in the form of rules. Each sensing unit consigfaired in experiments using scanning sonar sensors. The sen-
of two horizontally spaced transducer pairs, labele@hdb.  sors acquire data from scans of a room, making unilateral de-
Amplitudes are denoted, with the subscript representing thecisions on target type at each of several viewing angles. These
transmitter and receiver, in that order. For examglg, de- decisions are then fused to yield the group decision. The data
notes the signal amplitude detected atue to a pulse from.  was collected at Bilkent University Robotics Research Labo-
Ideally, A, and Ay, should be identical. Characteristic am-ratory, in a small (1.0-nx 1.4-m) rectangular “room” created
plitudes are shown in Figure 2. The algorithm discriminatelsy partitioning off a section of a laboratory. The test area was
on the basis of amplitude differences. To enhance robustnegsibrated by lining the floor space with metric paper, to al-
in decision making, amplitude differences are considered sifgw the sensors and targets to be positioned accurately. The
nificant only if they exceed a lower bourido 4, where the room offers an uncluttered environment, with specularly re-
factork, is a multiple of the amplitude noise standard deviaflecting surfaces. Sensor nodes occupy the 15 sites shown in

tion, o4: Figure 3. The transducers used are Panasonic sensors (Pana-
sonic 1989), with an aperture radiusof= 0.65 cm and a

plane-differentiation algorithm resonant frequency of, = 40 kHz; the resulting beamwidth

if [Agq(0)—Aup(0)] > kaoaand[Ap,(0)— A (0)] > kaca is 6, = 54°. The transducer’s transmission and reception

thenplane characteristics are distinct. In the experimental setup, a trans-

elsecorner or unknown; mitter and a receiver are vertically closely spaced. Two such
corner-differentiation algorithm pairs form a single logical sensing unit. A typical unit is

if [Agp(0) — Aua(0)] > kaoa Or [Agp(0) — App(0)] > kaoca  shown in Figure 4. The horizontal center-to-center separa-

thencorner tion of the transducers i = 24.0 cm. The sensing unit is

elseunknown. mounted on a small 6-V stepper motor with step siZ.0

The stepping action is controlled through the parallel port of

From these rules, it can be seen that each decision involhes IBM-PC 486, with the aid of a microswitch. The sensor
only a two-way choice. Differentiation is achieved when thelata is acquired using a DAS-50 A/D card with 12-bit reso-
discriminant data value, the difference in amplitudes, exceehligion and 1-MHz sampling frequency. The echo signals are
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occluded region

¢ = 284°

Fig. 5. Range readings of the sensor located-#1, 0.1) m
in the rectangular room.

H

-
h-“-:_-_-
A

Fig. 4. Configuration of the Panasonic transducers in the re T L]
sonar system. The two transducers on the left collective (0 0)
constitute one transmitter/receiver. Similarly, those on tr ’
right constitute another.
processed on an IBM-PC 486 ugia C language program. . -

From the time of transmission, 10,000 samples of each ec

signal are collected and thresholded. The amplitude informgig. 6. A typical map of planes and corners in the room,

tion is extracted by finding the maximum value of the signabtained from the sensor at the center of the room. Planes

after the threshold value is exceeded. are shown with circles and corners are shown with crosses
As an example, the range readings of the sensor node {aroughout the scan. When a decision cannot be made (un-

cated at (—01,01) m (Sensor node 2) are given in Figure 5(nown)’ no mark is made on the map.
The physical limitations of the hardware prevent any sensor

from covering the entire angular rangegofinstead, rotation
is over the range0< ¢ < 284 . A typical map of the plane In Dempster-Shafer theory, a frame of discernmeny,
and corner locations, obtained by one of the sensors, is shorepresents a finite universe of propositions, and a basic prob-
in Figure 6. ability assignmenty:, maps the power set 6f to the interval

[0, 1]. The basic probability assignment satisfies the follow-

2.3. Dempster-Shafer Evidential Reasoning ing conditions:

The sensors are assigned beliefs using Dempster-Shafer ev- m@) = 0, 1)
idential reasoning, and their opinions are combined using Z m(A) = 1 2)
Dempster’s fusion rule (Shafer 1976). Dempster-Shafer the- ACQ

ory is based on the use of belief functions. These are set func-

tions that assign numerical degrees of support on the basisfo$et that has a nonzero basic probability assignment is termed
evidence, but allow for the expression of ignorance: belief focal element.

can be committed to a set or proposition without commitment The belief or total support that is assigned to a set or propo-
to its complement. sition A is obtained by summing the basic probability assign-
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ments over all subsets df: I, I>, andI3 are indicators of the conditions given below:
_ 1 if [Awa(8) — Aup(0)] > kaoa
Bel(A) = ) m(B). ® = and[A(0) — Aap(©)] > kaoa,
Bea 0 otherwise;
Evidence that does not suppoftdirectly does not neces- L = { é 'fth[A“’?(e). — Aaa(0)] > kaoa.
sarily support its complement. The plausibility4f denoted otherwise,
PI(A), expresses the amount of evidence for propositions that , ~ _ 1 if [Awp(0) — App(0)] > kaoa, )
do not support the complement af 3 0 otherwise.

_ Mass that is distributed neither gonor toc is here assigned
PI(A) = 1— Bel(A). 4 1o atype termed “unknown.” This remaining belief represents
ignorance, or undistributed probability mass:

Each propositionA is therefore associated with a belief
Bel(A), which represents the evidence directly supporting m(u) =1—[m(p) +m(c)]. 9)
it, and a plausibilityPI(A), representing evidence that fails
to support the negation of. Evidential reasoning is defined .
by Shafer (1976). A concise description, with appllcatloné
can be found in the work of Krause and Clark (1993).

The assignments for the target-classification problem AeE,
made as follows. The uncertainty in the measurements of each’

Dempster’s fusion rule applies where independent opin-
ons are to be combined. Given two sources with belief func-

= {fi. mi(f}iy = {p, ¢, us ma(p), ma(c), ma(w)},

sonar pair (sensor node) is represented by a belief functidh2 = {g;. mz(g/)} ={p, ¢, u; ma(p), ma(c), ma(u)},
having target type dieatureas a focal element with the basic (10)
probability assignment (or mass assignment) associated

with this feature: consensus is obtained as the orthogonal sum

BF =BF1 & BF>

= {hie, me(hi)Voy = {p, ¢, us me(p), me(c), me(u)}
(11)

BF = {feature m(feature} . (5)

The mass function is the underlying function for decision

making using the Dempster-Shafer belief assignment. It ighich is both associative and commutative. The sequential
defined here according to the algorithm outlined above, arémbination of multiple bodies of evidence can be obtained
is thus dependent on a difference in signal amplitudes; thér » sensor pairs as

greater the amplitude difference, the higher the degree of be-

lief. The structure of mass assignment is chosen to be con- BF = (((BF1® BF,) ® BF3)...® BF),). (12)
sistent with theand/or rules of the differentiation algorithm.

The planarand rule is represented by a product; the cornel/Sing Dempster's rule of combination:

or rule is given by a summation. The mass assignment levels : ]
are scaled to fall in the interval [0,1]. The basic probability  ;,(1;) = L Lin=fing, MM (s, (13)
assignment is described below, wherép) andm(c) corre- 1-X th:f,-mg,:w ma(fi)ma(g;)

spond to the plane and corner assignments, respectively: ]
where )" th:ﬁmg,_:@n’”_(fi)mz(gj) is a measure of con-

[Apa(0) — Aup(@)1[App(©0) — Ay (6)] flict. The consensus belief function representing the feature

m(p) = , fusion process has the measure
P lmaX[Aaa(@) — Aap (@)1 max{Apy(0) — Aup(0)] P
6 m(p) = m1(p)m2(p) +mi(p)ma(u) + ml(u)mz(p)
) p)= 1 — conflict
I [A(L7(9)_Aaa(0)]+l [Aa7 9)_A ;(6)]
Lol A ) A T L mal){anb(Qg)l_Abb(g)] m(e) = ma(c)ma(c) + ml(C)mz(.M) + ma(u)ma(c) ’
m(c) = {if I #0o0rl3 #0, . (N 1 — conflict
else 0 m(u) _ ml(”)mZ(u) (14)

1 — conflict”

where A,,(0) denotes the maximum value over time of Disagreementinthe consensus of two logical sensing units
Agp(r,0,d,t), which is the signal transmitted hyand re- is represented by the “conflict” term in the equations above.
ceived byb. Definitions of A,,(0) and A, (0) are similar. Thus, it represents the degree of mismatch in the fusion of
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Fig. 7. Belief assignments by the sensors located at (0,0) lig. 8. Results for Dempster’s rule (a) and simple majority
(a) and ¢0.1,0.1) m (b). voting (b) using an arbitrary order of fusion.

features perceived at two different sonar sites. The meast
evaluating conflict is expressed as

conflict= m1(p)ma(c) + mi(c)ma(p). (15)
After discounting this conflict, the beliefs can be rescaled ar pg;c:;tr:%:
used in further data fusion processes. decisions
Examples of basic probability assignments by individue
sensors are given in Figure 7. During a scan, each sen:
estimates the range and angle of the target under observati
The values for a target are weighted by the beliefs assigned ) . ) ) ) _ )
the estimates. When only a single logical sensor is employe 2 C ¢ . S
a high degree of uncertainty is observed. The aim of fusic number of sensor pairs
is to reduce this uncertainty.
Belief levels with a single sensor and after fusion over 16ig. 9. Correct decision percentage with Dempster’s rule

sensors are given in Table 1 for the 6 targets when the targé@@shed line) and the simple voting algorithm (solid line),
are along the line of sight. versus the number of sensors employed in the fusion process

when an arbitrary order of fusion is used.

Tt s s e e

2.4. Simple Majority Voting

Independent sensor opinions can also be combined in a vatee percentage of correct decisions is plotted as a function of
In this case, conflict is resolved through some form of majothe number of sensor pairs used; plots are given in Figure 9.
ity decision. For the sake of comparison, the sensors’ beliefd/hen the decisions of all of the sensors are fused, the correct
which are later abstracted, are the probability assignmendscision on target type is made for all targets. However, the
of the Dempster-Shafer approach. Beliefs could have beeraximum percentage of correct decisions achievable is below
assigned in other ways; for example by learning assignmerit80%, because at certain viewpoints during a scan the targets
using decision trees (Utete, Barshan, and Srinivasan, in prepaay not be visible. When the decisions of 15 pairs are fused
ration). However, belief abstraction rather than belief assignsing Dempster’s fusion rule, the correct decision percentage
ment is the focus of this work. improves to 86.75%. With simple majority voting, using the
The sensors’ beliefs about target type are counted as voteame ordering as for the Dempster’s fusion rule case, the num-
and the majority vote is taken as the outcome. The resultsloér rises to 87.50%. It can be noted that after simple voting
fusing beliefs by simple majority vote and using Dempster'usion from about five pairs, the correct decision percentage
rule of combination are compared. The opinions of all 15emains approximately constant around 81%, indicating re-
sensors are initially combined, from site 1 to site 15, withdundancy in the number of sensors employed. When a single
out regard to intermediate fused results. Results after votisgnsor is used, only about 15% of its decisions are correct.
over 15 sensors are given in Table 2 for the 6 targets whéaie outstanding 85%, the incorrect and unknown decisions,
they are along the line of sight. Results after fusion are prean be attributed to noise, choicekgf, and complete uncer-
vided in Figure 8. To illustrate the accumulation of evidencdainty that occurs when the target is not visible to the sensor.
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Table 1. Single Sensor Beliefs versus Fusion over 15 Sensors Using Dempster’s Rule

¢ =513° ¢ = 104.4° ¢ = 1404° ¢ = 1755° ¢ = 2304° ¢ = 2835°
Sensor 1 m(p) = 0.260 m(p) =0 m(p) =0.167 m(p)=0 m(p) = 0.684 m(p) =0
m(c) =0 m(c) = 0.509 m(c) =0 m(c) =0.618 m(c)=0 m(c) = 0.429
m(u) = 0.740 m(u) = 0.491 m@u) =0.833 m(u)=0.382 m(u)=0.316 m(u) = 0571
Dempstersrule m(p) =0.9988  m(p) = 0.0002 m(p) =10 m(p) =0 m(p) = 0.9999 m(p) =0
(all 15 sensors) m(c) = 0.0007 m(c) = 0.9992 m(c) =0 m(c) =0.993 m(c)=0 m(c) =10
m(u) = 0.0005 m(u) = 0.0005 m(u) =0 m(u) =0.007 m(u) =0.00001 mu)=0
Table 2. Simple Majority Voting Results over 15 Sensors
¢ =513° ¢ = 104.4° ¢ = 1404° ¢ = 1755° ¢ = 2304° ¢ = 2835°
Majority voting  v(p) = 12/15 v(p) =1/15 v(p) =10/15 w(p) =3/15 v(p) = 14/15 v(p) = 2/15
(all 15 sensors) wv(c) = 2/15 v(c) = 10/15 v(c) = 3/15 v(c) =11/15 w(c) =0/15 v(c) = 12/15
v(u) = 1/15 v(u) = 4/15 v(u) =2/15 v(u) =1/15 v(u) = 1/15 v(u)=1/15
3. Strategic Voting est belief). The objective is to determine whether strength

) ) ] of belief forms a natural selection for sensor nodes. This is
In this section, the sensors are ordered—essentially, placed,if, ogous to dimensionality reduction in pattern recognition

a queue—on the basis of a selected criterion. Fusion 0CCYfSyda and Hart 1973), where, among a large number of fea-
in the determined order. Dempster's fusion rule is indepelyres more informative ones, or those with large variances,
dent of order (Krause and Clark 1993). For a fixed group ofye selected to improve the efficiency of the classification pro-
nodes, the resulting belief will be the same, independent gfg | 4 similar fashion, in this study, those sensors with
the order in which the beliefs are combined. However, by, e peliefs are fused first. The objective is to select, from
varying order, it is possible to achieve a preset belief level i 5,65 of decision makers, a parsimonious set of accurate
a shorter time. The aim is to determine the more informas, herts that can achieve a given bound on the correct decision
tive nodes in the fusion process. Order can also be varied{g. A threshold can be set on the belief level so that the
eliminate redundant or less informative sensors, thus allo‘ﬂjsion process is limited to sensors that exceed this level.

ing the preset targeted belief level to be reached using fewer 116 results of maximum-toward-minimum belief fusion
nodes. The problem of order is not negated by parallelismgye jjjystrated in Figure 10 for the two methods. Here, the fu-
as it can arise through network structure. In networks thafyn process begins with the sensor that has the highest belief
do not allow direct communication between all nodes, propgs 5 target type, and continues in the direction of decreas-
_ganon delays affect the transfer of information. This rn_ean_;hg belief. The performances of the two fusion methods are
in effect, that through the network’s structure, a decision isymparaple, and the average correct-decision percentage is
being made to serve potentially more informative nodes first,,nd 85%. The zigzag pattern in the voting results arises

(Utete 1995). Looking at the problem another way, thesgi, the switch between odd and even numbers of decision
nodes become more informative because they are served fifghyears.

the situation can be viewed as a problem of synthesis as well g comparison purposes, at each viewing angle, fusion

as of analysis. The other aspect of order is its use t0 extraglq performed only with those five sensors that possess the

a parsimonious set of informative nodes. This process mﬂ}'%hest belief levels. Clearly, these need not be the same five

be repeated for different sensing scenarios, and thus differglll,sors at each step throughout the scan. Using the Dempster-
criteria. Heuristics based on ordering are important in ordingl, 5¢er approach, the results were 84.62% correct on average,
optimization methods (Ho 1994), and the extraction of parsfyhjje yoting gave 79.91%. Similarly, both fusion methods
monious deC|S|on_sets is related to the problem of determinigg, o again applied to compare the performance of the five
criteria for clustering data (Pearl 1988). sensors with the lowest belief levels. In this case, Demp-
3.1. Ordering Strategies ster's rylg yieId; only 3.42% correct Qec.isio.r?s, Whgreas sim-
ple majority voting gives 65.81%. This significant difference
The order of combination of beliefs is varied in a number oih performance indicates that voting is insensitive to belief
ways. The fusion order is first generated by taking the level édvels and can be more robust when high uncertainty prevails
belief as the criterion of node informativeness. The nodes afeurney 1994a, 1994b). Since voting emphasingmnbersof
placed in order, based on increasing belief level, irrespectiveters supporting an outcome, as opposed tetrength of
of target type. In making group decisions, the sensor nodbsliefof voters, which is significant in Dempster fusion, this
evaluate their decisions relative to those of the group. Startimgsult is expected.
with the sensor with the highest belief, nodes are added to the A metric is also defined based on the physical distance rel-
fusion list in the order of smallest distance in belief (highative to an arbitrary origin. Starting with a randomly selected
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Fig. 10. Decision fusion from maximum toward minimum be¥ig. 11. Average percentage of correct decisions versus the
lief with Dempster’s rule (dashed line) and the simple majoritgtarting sensor in fusion with Dempster’s rule when the de-
voting (solid line), versus the number of sensors employed @isions of sensors are fused according to maximum distance
the fusion process. (solid line) and minimum distance (dashed line).

node, the beliefs are fused in the order of greatest physic@nsor. In Figure 11, results for Dempster’s fusion rule us-
separation. The starting node selects for fusion the nodejag maximum- and minimum-distance criteria are compared.
greatest separation. The next node selected is the one whRgge that, as should be expected, the results for maximum-
distance is greatest from the two nodes that have already cogitrd minimum-distance fusion are identical for a single sen-
bined their beliefs. In this method, the objective is to acquirgor and also when all 15 sensors are included in the fusion
a comprehensive view of the room more quickly. Distancgrocess. For the case of 15 sensors, since Dempster’s fusion
measures other than physical separation, for example corréigte is commutative and associative, the end result is the same
tion, could be used. Similarly, a minimum-distance criteriojyhen the same 15 sensors are used but sorted differently based
can be established. on minimum- and maximum-distance criteria. The concern
Distance calculations are made as follows. Suppose affghwith intermediate results. In the intermediate fused stages,
fusion overn sensors, the average and y-positions of the ' the maximum performance difference is about 10% between

group are minimum- and maximum-distance fusion. In Figure 12, a
; similar plot is given for simple majority voting. In this case,
Xay(n) = } in’ (16) note that the average percentage of correct decisiqns is ml_Jch
n i larger than the Dempster-Shafer result for up to five or six
" sensing nodes. The maximum difference is 25%, which oc-
Yau(n) = 1 Z yi. (17) curs when two sensors are used. The effect of choosing the
ni—= maximum or minimum distance appears to be insignificant
for voting. After fusion over six sensors, the performances of
Then + 1" sensor is chosen such that the distance the two methods become comparable.
In Figure 13, sensors are eliminated one at a time from
[xn41 — xav(n)]? + [Vnt1 — yav(n)]2 (18) the group, and the performances of the two methods are com-

_ o o o pared after fusion over 14 sensors. The horizontal axis indi-
is maximized (or minimized) over the remaining sensors. Igates which sensor node is eliminated in the fusion process.
the next step, the new averageandy-positions can be found From the results, sensors 1, 6, 13, and 14 appear to be most in-

recursively: formative. This elimination method can be generalized from
" 1 individual sensors to groups, to enable the effect of elimina-
Xav(m + 1) = —— xay(n) + —— X411, (19) tion of certain groups of sensors to be studied.
n+1 n+1
n 1
)’av(n +1 = n+1 )’av(n) + m Yn+1- (20) 3.2. Grouping

The results of distance-based fusion are illustrated in Figur&¢rategies for grouping sensors during the fusion process are
11 and 12 for the two fusion methods. In both figures, the réavestigated. The sensor nodes are grouped on the basis of the
sults reflect averaging over the 15 possibilities for the startirgglected criterion. Fusion occurs first within the clusters. In



410 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / April 1999

<P,C,C>, the two corner decisions being taken by sensors on
either side of the line of sight.

A comparison is made between the simple majority vote
outcome and the decision reached when sensors group them-
selves according to minimum physical distance, fusing only
within groups of three. Following this, fusion takes place
based onthe results of each group. This comparative approach
investigates the importance of themberof voters support-
ing an outcome, which voting emphasizes, as opposed to the
strength of beliebf voters, which is significant in Dempster’s
fusion rule.

: : : s T a— Initially, five groups of three sensors are formed, based on
number of sensor pairs minimum physical distance: (1-2-3), (4-9-10), (5—6-13),
) . 7-8-11), and (12-14-15). The percentage of correct classi-
Fig. 12. Average percentage of correct decisions versus ti€tion within each group using Dempster’s rule of combi-
initial sensor in simple majority voting in which the decisions, ation was 52.14%, 49.57%, 48.29%, 52.56%, and 70.51%,
of the sensors are fused according to maximum distance (sqlikpectively. The total correct percentage after fusion over
line) and minimum distance (dashed line). the five groups was 86.75%. Using simple majority voting,
the same groups yielded 77.78%, 72.65%, 84.19%, 69.66%,
and 91.03%, respectively. Taking the majority vote in each
group as a vote, the total correct percentage of decisions af-

percentage
of correct
decisions

-
8

» ter voting over the five groups was 89.32%. Note that with
» voting, success rates of individual groups were much larger
»l than those achieved when Dempster’s rule was applied. The
wl overall average was also slightly higher.
petgcentag: w Further tests were performed, this time using three groups
Odef:(i):ir::s ” of five sensing nodes. The groups were selected as: a group
w of four nodes at minimum distance and one at the furthest
i distance (2—3-4-5-15); aline configuration (14—6—1-10-15);
N and a star configuration (1-14-15-8-12); (1-2—3-8-15); (7-
) 2-1-4-11); (13-5-1-3-9); (7-1-9-13-11); and (1-2—6-5-
2 4 [] 8 1 ‘vz . 14 15)
sensor eliminated The percentages for correct classification within each
Fig. 13. Fusion with Dempster’s rule (dashed line) and simp foup using .Dempsters fusion rule and using voting are
majority voting (solid line), versus number of the sensor th own below:
is eliminated in the fusion process. Sensor Grouping Dempster’s Fusion Rule  Voting
(2—-3-4-5-15) 63.25% 76.07%
-—-6—-1-10— 0, 0
this way, beliefs that support the same criterion are enhanc ldi 12_1;3_12 g%igéﬂ Si;goﬁ
prior to their fusion with the beliefs of dissenting sensors. (1-2-3-8-15) 58.97% 82 48%
The strategy investigated is to organize adjacent nodes oo g 4-11) 71'37% 76.92%
groups ofthree. The decisions of the nodes in each group fo 5 1-3-9) 63.68% 84.62%
a sequence of votes, whose order is determined by physi 9 13-11) 69..66% 801.34%

distance. Since the differentiation alg,orlthm. is mutually ex{1_2_6_5_15) 76.07% 85 04%
clusive on target type, a sensor node’s decision at each stép

allocates its total belief between a single target type or un-

known. By organizing the sensors, a group acts as a singdteall of these groupings, voting gives a higher total correct-
logical sensor with a preference order on target type. For egdecision percentage. The results also show the importance of
ample, a sensor that observes a planar target within its fieldgrouping: the group (1-14-15-8-12) gives a higher correct-
view should correctly identify the target based on amplitudéecision percentage than all 15 sensors.

difference. When the target is at a large angular deviation The superior performance of voting is partly explained by
from the line of sight, the difference in amplitudes will beits relative insensitivity to outliers. Further fusion tests were
small and the target may be incorrectly identified as a coperformed using a group of four sensors that are in agreement.
ner. Therefore, a triad of sensors may generate a sequehtehis case, fusion with Dempster’s rule yields a slightly
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higher correct-decision percentage: 84.62% compared witlarticular problem are determined. Alternatively, by elimi-
83.33% for voting. At this point, a dissenting sensor is innating successive members of the decision group, the system
troduced and fusion is performed over the five node valuesan be reduced to a set of informative decision makers, whose
The voting percentage is stable at 83.33%, but fusion usimgembers can stand in for the group as a whole. Organization
Dempster’s rule shows a marked decline, from 84.62% taf the sensor system in this way, by analysis, is a means of
58.97%. This demonstrates the relative benefit of strength ektracting information from the observations such that a co-
belief where sensors are in agreement, as opposed to numbienent and consistent description of the environmentis formed
supporting an outcome. For small sets of sensors, unanimitjth the minimal number of nodes or decision points. This
is favored by feature fusion using Dempster-Shafer methods,of importance where decisions must be made in real time,
but the introduction of dissent motivates a more robust apr with little room for conflict, or where there is a possibility
proach. Significant improvement in decision accuracy can luf large outliers (for example, through sensor failure). Even

achieved using simple majority voting. where all sensors are used in the fusion process, the surrogates
form a natural means of validating the sensor decisions.
4. Discussion Validation through surrogates is a useful technique for sen-

sor systems of the dimension typically found in mobile robots.

The resolution of conflicting data from multiple sourcesis funThis is indicated by drawing an analogy to cross-validation
damental to a host of problems in robotics and sensing. Thisiislearning (Chmielewski and Grzymalabusse 1996; Turney
particularly the case in problems such as classification, whet894a, 1994b). Stability of voting in learning is investigated
a fused outcome must reflect the group’s consensus rattgrTurney (1994a, 1994b). In learning, using small data sets,
than a compromise value. The voting strategies implementede or more elements can be left out for testing, the bulk
provide means of resolving such issues, for example, whei the data being used for training (Napolitano et al. 1996;
determining features in map building by a mobile robot o©pper and Winther 1996). The process of cross-validation
identifying targets in localization problems. However, thean be performed leaving out one element or many, &s in
main extension of this work is to a system for programmingpld cross-validation (Turney 1994a, 1994b). By varying the
robots to learn about environmental features and system pgattitions of the data, in other words, leaving out a different
havior. element each time, the limitation in the size of the test data set

In the experimental work, planes and corners are identifiethn be overcome. In the sensor decision problem, a criterion
by mutually exclusive rules. The nature of the discriminatiosan be selected for the combination of the group views and a
algorithm (Barshan and Kuc 1990) makes it a good candilistance metric defined to relate the decision of a single sensor
date for voting fusion, since it partitions the data into two set® that of the group. The decision criterion essentially orders
based on target type. In situations involving a greater number queues the sensors. Initially, the views of all of the sen-
of choices, determining a fair voting strategy can be a problegors can be combined. Sensors can then be eliminated from
(Arrow 1951). This can make voting a less attractive strategthe decision process in the order determined by the decision
However, a voting approach may be the best solution, at leasiterion. If a sensor’s decision has little impact on the group
initially, in certain problems. Work by Dawes (1979) showslecision, this is reflected in insignificant change (or increase)
that counting (or voting) strategies can be the best startifgthe level of accuracy of the group determination of target
point in problems where reliable covariance estimates are ugpe when that sensor is eliminated from fusion. The point
available. This suggests a role for voting in sensor fusiomhere exclusion leads to a decrease in accuracy can be used to
as an indicator of the reliability of underlying assignmentsletermine when the exclusion of sensors can be terminated.
as learning is incorporated in a fusion process. The incdt-is arguable that in some cases, dissenting sensors should be
poration of learning can improve the performance of fusioaxcluded from the group decision. (For example, in the pre-
methods. Voting can be used to gauge such improvemenious section, a higher decision percentage was achieved for
Comparison of the performance of the fusion strategy relatithe sensor group (1-14-15-8-12) than for the total population
to that achieved through voting can be a guide to the extentdad 15 sensors.) The elimination strategy described above is a
which further learning must be incorporated. form of data validation, as it allows the group decision to be

Inherentin data analysis is some form of data compressidaken as the hypothesis (about target type, in the experimental
abstraction of the raw data so thatinferences may be drawn.drample given here). The surrogate decisions fostnedegic
doing this, a system is essentially determining a set of surrpartition of the sensor data, one which is learned through the
gates for the data or decision points. This principle lies behirahalysis process and which can be exploited to validate other
the selection of principal components (Maxwell 1977) or disensors’ decisions.
mensionality reduction (Duda and Hart 1973). The process The selection of a group of surrogates by criterion involves
of surrogate selection is made explicit in the organization bHgarning about the informativeness of the decision makers.
grouping as detailed above. By selecting a criterion for grouf-his information is used in subsequent fusion steps to deter-
ing and testing the fused results, the sensor surrogates for thime outliers and resolve conflicts. Learning can be applied
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to identify better grouping criteria for sensor nodes in fusiorferent sensors such as infrared and laser-ranging systems for
The elimination procedure detailed above presents an effenap building, target identification, localization, and tracking
tive strategy for fault-tolerant operation by allowing all ofapplications. The fusion method can also be enhanced by the
the sensor decision makers to be tested against the group imgorporation of learning. The use of learning for classifi-
pothesis with their exclusion. For the classification problentation of features from sonar data is being investigated in a
results demonstrated that the form of this test could profitablyork in progress (Utete, Barshan, and Srinivasan, in prepa-
be a vote on outcome drawn from decisions of the individuaation). Learning could assist also in the definition of more
sensor nodes. effective grouping criteria for the sensor nodes. Future work
will investigate learning strategies for more robust decision
making.
5. Conclusion
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