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Abstract

Parts orienting, the process of bringing parts in initially unknown
orientations to a goal orientation, is an important aspect of auto-
mated assembly. The most common industrial orienting systems are
vibratory bowl feeders, which use the shape and mass properties of
parts to orient them. Bowl feeders rely on a sequence of mechanical
operations and typically do not use sensors. In this paper, we de-
scribe the use of partial information sensors along with a sequence
of pushing operations to eliminate uncertainty in the orientations of
parts. We characterize the shorter execution lengths of sensor-based
plans and show that sensor-based plans are more powerful than sen-
sorless plans in that they can bring a larger class of parts to distinct
orientations.

We characterize the relation among part shape, orientability, and
recognizability to identify conditions under which a single plan can
orient and recognize multiple part shapes. Although part shape
determines the results of the actions and the sensed information,
we establish that differences in part shape do not always lead to
differences in part behavior. We show that for any convex polygon,
there exists an infinite set of nonsimilar convex polygons that behave
identically under linear normal pushes. Furthermore, there exists an
infinite set of nonsimilar convex polygons whose behavior cannot be
distinguished even with diameter sensing after each push. We have
implemented several planners and demonstrated generated plans in
experiments.

1. Introduction

A parts orienting system has to bring randomly oriented parts
to desired orientations for subsequent assembly. Vibratory
bowl feeders are the most common industrial systems for ori-
enting parts (Boothroyd, Poli, and Murch 1982; Riley 1983).
Although very effective, bowl feeders are not reconfigurable
and have to be designed by skilled craftsmen, a process that

The International Journal of Robotics Research
Vol. 18, No. 10, October 1999, pp. 963-997,
©1999 Sage Publications, Inc.

can take a couple of months to handle a new part or to discover
that the part cannot be oriented. So there is a need for flexible
parts orienting systems whose capabilities can be character-
ized in advance. Our approach is to use knowledge of the part
geometry and mechanics of the manipulation operations along
with partial sensor information to flexibly generate orienting
strategies with simple hardware elements. This can reduce
changeover costs and time to market for new products.

Most orienters and feeders use a variety of mechanical op-
erations to change the state of the part (Boothroyd, Poli, and
Murch 1982; Shirai and Saito 1989; Peshkin and Sanderson
1988a; Mirtich et al. 1996; Goldberg 1993). These include
shaking the parts, capturing parts in nests, using fences and
cutouts to align or reject parts, aligning parts on a conveyor
against stationary or moving fences, and parallel-jaw grasp-
ing. The mechanical operations serve to sequentially reduce
the uncertainty in the part orientation. Inexpensive and ro-
bust sensors, such as LED sensors currently used to verify
part presence, can aid this process by reducing the number
of orienting steps required. This translates into systems with
faster cycle times and fewer orienting stages.

We use sensors that provide partial information on part ori-
entation in combination with mechanical operations to reduce
uncertainty in the part orientation. We focus on a particular
implementation where a polygonal part on a moving conveyor
belt contacts a stationary fence and rotates into alignment with
it. The part is made to repeatedly align itself against the fence
by being picked up, rotated, and dropped off upstream by a
robot with a suction device. An LED sensor then measures
the aligned part diameter at the fence. A sequence of such
push-align operationsis executed until the part’s orientation
is determined (Figure 1). We analyze these operations both
with and without sensing of the resting diameter of the part.
The principal results of this paper are the following:

1. Sensor-based and sensorless plans using a sequence
of push-align operations always exist to orient any
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polygonal part up to symmetry in its push-diameter and
push functions (introduced in Section 3).

2. We prove bounds on the worst-case length of sensor-
based orienting plans and present implemented plan-
ners to generate minimum length plans.

3. We show that even with sensing, differences in part
shape do not guarantee parts can be distinguished dur-
ing orienting. We identify conditions under which mul-
tiple part shapes can be oriented and recognized with a
single sensor-based plan.

In our system, the orienting actions bring the part to a finite
set of states and the sensors provide only partial information
on part orientation. Our results have a direct bearing on a
broader class of orienting systems that includes the passive
fence-orienting system of Wiegley et al. (1996), the sensorless
1JOC single-degree-of-freedom fence of Akella et al. (1997),
and the parallel-jaw grippers of Rao and Goldberg (1994).

1.1. Outline of the Paper

This paper focuses on the use of partial sensor information
with manipulation operations to orient and recognize polygo-
nal parts. We show that with inexpensive LED sensors, parts
can be oriented faster, the orientable class of parts is larger,
and a single plan can orient different part shapes. The paper
is organized as follows. After a discussion of related work
in Section 2, the first half of the paper concentrates on the
problem of orienting a single part of known shape. Section 3
describes the assumptions made and the class of actions we
use. The radius function, push function, and push-diameter
function used to predict the results of push-align operations
are described, and a procedure to generate actions for a set
of states is presented. After a brief description of sensorless
orienting in Section 4, our sensor model is discussed in Sec-
tion 5. Section 6 concentrates on sensor-based orienting of a
single part. It describes an AND/OR search algorithm to find
plans with minimum worst-case length, and proves bounds
on the lengths of orienting plans and the completeness of the
search-based planner. The section also presents the alterna-
tive bottom-to-top algorithm to find minimum length plans
and bounds its running time. Section 7 shows that sensor-
based strategies are more powerful than sensorless strategies
in that they can orient a larger class of parts.

Section 8, which forms the bulk of the latter part of the pa-
per, concentrates on the orienting and recognizing of multiple
part shapes. We first elucidate the relation between part shape
and the radius, push, and push-diameter functions. Although
the mapping from the set of part shapes to the set of radius
functions is one-to-one, the mappings from the set of part
shapes to the set of push functions and the set of push-diameter
functions are many-to-one. Since an infinite set of nonsimilar
polygonal parts can share the same push-diameter function,

necessary and sufficient conditions for a single sensor-based
plan to orient and recognize parts from a known set of parts are
identified. Section 9 briefly discusses the implemented plan-
ners and experiments conducted to verify generated plans.
Section 10 concludes with a summary of our results and a
discussion of future work. Portions of the work reported in
this paper appeared earlier in Akella 1996 and Akella and
Mason 1998a.

2. Related Work

2.1. Pushing and Grasping

Pushing is a commonly used manipulation operation. The
motion of a pushed object depends on its geometry, the pres-
sure distribution between the object and the support surface,
the nature of contact between the pusher and the object, and
the motion of the pusher. Mason (1986) analyzed the mechan-
ics of robotic pushing operations. He developed a procedure
to determine the instantaneous motion of a pushed object with
a known support pressure distribution, and he derived rules to
predict the rotation direction of a pushed object with an un-
known pressure distribution. Mani and Wilson (1985) used
the pushing rules of Mason to derive an Edge Stability Map
for straight-line pushes and developed a system to orient parts
with a sequence of fence pushes at different angles. Peshkin
and Sanderson (1988b) found the locus of centers of rota-
tion of a pushed object for all possible pressure distributions
over an enclosing circle centered at the object center of mass.
These centers of rotation provide bounds on the rate of rotation
of an object being pushed. From the center of rotation corre-
sponding to the slowest rotation, they calculated the minimum
push distance guaranteed to align the object with the fence.
Balorda and Bajd (1994) used a two-finger tool to reduce the
positional uncertainty of an object by pushing it. They dis-
cuss the effect of finger configurations on accurate positioning
of the object. Brost (1992) presents a numerical integration
procedure that returns the initial configurations that guarantee
the linear pushing motion of a polygon will bring a contacting
polygon to a goal equilibrium configuration.

Grasping, typically with a parallel-jaw gripper, is prob-
ably the most common mode by which robots manipulate
objects. Brost (1988) developed an algorithm to plan grasps
with a parallel-jaw gripper that are robust to bounded un-
certainties in object orientation. As an intermediate result,
using the pushing rules of Mason, he developed the push sta-
bility diagram to describe the possible motions of an object
being pushed by a fence. Goldberg (1993) simplified Brost’s
model for parallel-jaw grasping by using only pushes nor-
mal to the face of the gripper and extended Brost’s results by
analyzing multistep strategies to orient an object by grasp-
ing. He developed an algorithm to generate sensorless multi-
step orienting plans for polygonal objects using a frictionless
gripper. This algorithm is provably complete, that is, it is
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guaranteed to generate a plan to orient any polygonal object
(up to symmetry). Furthermore, it is guaranteed to return the
shortest plan. Chen and Ierardi (1995) showed these plans to
reorient an object by grasping areO(n) in length, wheren is
the number of edges of the object. Using Brost’s push stability
diagram, Deacon, Low, and Malcolm (1993) perform search
to find the minimum number of linear pushes to orient a part
without sensors, for a given coefficient of friction between the
fence and part. Rao and Goldberg (1995) present algorithms
for orienting curved planar parts by grasping. In recent work,
van der Stappen, Goldberg, and Overmars (1996) characterize
the number of sensorless orienting actions for a part in terms
of its eccentricity rather than the number of equilibrium ori-
entations. Their analysis, which includes nonpolygonal parts,
shows that with increasing eccentricity, the number of orient-
ing steps decreases.

2.2. Parts Feeding

Our long-term goal is to develop parts feeders for use in in-
dustry. Riley (1983) provides a good introduction and survey
of the area of industrial automatic assembly. Vibratory bowl
feeders have been in widespread industrial use since their in-
troduction in the 1940s. Boothroyd, Poli, and Murch (1982)
describe parts feeding and orienting devices for automated
assembly, including bowl feeders. The SONY APOS sys-
tem (Shirai and Saito 1989) relies on vibration and shape to
orient parts. Parts are made to flow over a vibrating pallet
with nests designed to trap only parts in the correct orien-
tation. Brost (1991, 1992) demonstrates the use of shape
constraints to orient a part by designing a nest to “catch” the
part. Caine (1994) considers the design of interacting part
shapes to constrain motion and applies it to a vibratory bowl
feeder track. Berkowitz and Canny (1996) use a dynamic
simulator to perform a series of simulated experiments to se-
lect bowl feeder gate parameters. Christiansen, Edwards, and
Coello (1996) use genetic algorithms to identify sequences
of bowl feeder gates that improve feeding efficiency. Krish-
nasamy, Jakiela, and Whitney (1996) analyze the effect of
shape and vibration parameters on the energy of parts and
hence their efficiency of entrapment in an APOS-like vibra-
tion system. Zumel and Erdmann (1997) use a frictionless
two-palm manipulator to bring polygons in an unknown ini-
tial orientation to a goal orientation. Each palm has a single
degree of freedom, and the manipulator relies on gravity to
manipulate parts without grasping. Erdmann (1996) devel-
oped a two-palm manipulation system that uses a sequence of
nonprehensile operations such as sliding to rotate an object.

In early work on orienting parts using the task mechanics,
Boothroyd et al. (1972) analyzed the statistical distribution of
the natural rest states of objects with and without bouncing and
rolling after impact. Grossman and Blasgen (1975) developed
a system that brought objects to a finite number of orientations
in a tilted tray, where their orientation was determined by a

tactile probe. Erdmann and Mason (1988) explored the use
of sensorless manipulation strategies to eliminate uncertainty
in the configuration of a part in a tray by repeated tilts of the
tray. They implemented a planner that used knowledge of the
mechanics of sliding to predict the results of actions. Natara-
jan (1989) focused on the computational issues related to the
automated design of sensorless parts feeders. By assuming
deterministic transitions of an orienting device and mono-
tonicity conditions, he was able to derive polynomial-time
algorithms for certain classes of object orienting problems.
Eppstein (1990) extended Natarajan’s results by presenting a
more efficient algorithm that is guaranteed to find the shortest
reset sequences for monotonic automata. He also extended his
technique to certain classes of nonmonotonic automata. Erd-
mann, Mason, and Vanecek (1993) described a polynomial-
time planner for the problem of orienting a polyhedral part by
tilting a tray with infinite friction surfaces.

Singer and Seering (1987) analyzed the effects of impacts
and oscillatory motions on a part and determined conditions
for its reorientation. Their goal was to identify impacts and
oscillatory motions that can change the initially unknown state
of the part to a desired goal state. Böhringer, Bhatt, and Gold-
berg (1995) used a vibrating plate to position and orient parts
sensorlessly. The vibrations generate a force field, and parts
move to nodes of the vibratory force field. Swanson, Bur-
ridge, and Koditschek (1995) analyzed the motion of a part
subjected to a vibratory juggling motion and indicated condi-
tions under which all initial orientations of the part acquired
a unique stable motion.

Peshkin and Sanderson (1988a) described the orienting ef-
fect of a fence on a pushed object in terms of its configuration
map, which maps all initial orientations of the object to all
possible resulting orientations. They used these configura-
tion maps to find a sequence of fences to automatically orient
a sliding part. Brokowski, Peshkin, and Goldberg (1993) de-
signed curved fence sections to eliminate uncertainty in the
orientations of parts being oriented by the fences. Wiegley
et al. (1996) developed a complete algorithm to find the short-
est sequence of frictionless curved fences to orient a polygo-
nal part. Akella et al. (1997) developed an actuated sensor-
less one-joint fence system to orient parts on a conveyor by
combining drift motions of a part on the conveyor with fence
pushing motions.

2.3. Sensor-Based Manipulation

Grossman and Blasgen (1975) describe a system that orients
parts by a combination of tilt, vibration, and probing opera-
tions. A part is dropped into a tilted tray that is then vibrated.
The part comes to rest in one of a finite set of orientations,
which are discriminated using mechanical probing operations
at points specified by an operator. Sanderson (1984) used po-
sitional entropy measures to determine the relative efficiency
of mechanical operations and sensor operations for mechan-
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ical assembly tasks. Taylor, Mason, and Goldberg (1988)
approached automatic planning of sensor-based manipulation
programs as a game-theory problem where the goal of the
robot is to achieve a specified task state. The robot chooses
actions, nature chooses sensor readings, and planning is per-
formed by searching the game tree. Uncertainty in the robot’s
world model, control errors, and noisy sensors are explicitly
modeled. Using an AND/OR search tree, they applied this
framework to the tasks of orienting an object by tray tilting
and orienting an object by parallel-jaw grasping. Rao and
Goldberg (1994) described optimal and suboptimal strategies
to orient and recognize a part from a known set of parts by
grasping it and sensing the jaw diameter. They also showed
that for the class of planar polygonal parts, the shape of a
part cannot be uniquely recovered from its diameter function
since there is an infinite set of parts with the same diameter
function. Govindan and Rao (1994) presented an algorithm
for determining the minimum length plan to recognize and
orient a part by parallel-jaw grasping where the jaw diameter
is sensed after each grasp. They conjectured that finding the
minimum length grasp plan is NP-hard. Arkin et al. (1998)
recently showed that computing the minimum length grasp
plan to recognize parts is NP-hard, and gave a polynomial
time approximation algorithm that generates plans within a
log factor from optimal.

Erdmann (1995) explored the advantages of using sensors
tailored to the task and actions so they can be used in feedback
loops. Canny and Goldberg (1994) advocated the use of sim-
ple, inexpensive sensors and actuators for industrial automa-
tion tasks. Donald, Jennings, and Rus (1995) analyzed the
information requirements of manipulation tasks performed
by cooperating mobile robots in terms of information invari-
ants. A key question they explored is determining how much
information is provided by the task mechanics, sensors, state
information, communication, and computation.

2.4. Pose Determination and Object Localization

Much research has been devoted to the problem of recogniz-
ing an object from a known set of objects and determining
its pose. We restrict our discussion to cases where the sen-
sor data are incomplete and multiple sensory operations are
required. Gaston and Lozano-Perez (1984) introduced the
Interpretation Tree as a structure to recognize and localize
polyhedral objects in the plane using tactile sensors. Grim-
son and Lozano-Perez (1984) used local measurements of
three-dimensional positions and surface normals to recognize
and locate objects with 6 degrees of freedom. The local con-
straints used, such as distance between points and angles be-
tween the surface normal vectors, are very effective in pruning
invalid interpretations. Ellis (1992) found paths for a tactile
recognition probe to uniquely determine the pose of a 2D ob-
ject in the presence of sensed data error given initial tactile
data.

There is also related theoretical work on determining the
shapes and poses of polygons by geometric probing. Cole
and Yap (1987) discussed the number of probes necessary to
determine the shape and position of a polygon. Skiena (1989)
described a variety of probing models and provided a list
of open problems in probing. Alevizos, Boissonnat, and
Yvinec (1989) presented results on determining the shape of
a simple polygon by a minimal number of probes. Wallack,
Canny, and Manocha (1993) discussed the use of cross-beam
sensors to determine the orientation of an object by measuring
its diameter at three angles. Jia and Erdmann (1995) exam-
ined the issue of finding the minimum number of sensing
points required to distinguish between a finite set of poses of
a known set of polygonal shapes.

2.5. Completeness

For a given task, we select a set of actions and determine what
combination of the actions, if any, can solve the task. An in-
teresting aspect of the orienting task described here is that a
solution always exists for the selected class of actions, and
furthermore, we can always find it. Such tasks, which always
have a solution for any instance of the problem, have been
termed solution-complete by Goldberg (1995). Other exam-
ples of solution-complete problems include sensorless orient-
ing of parts by parallel-jaw grasping (Goldberg 1993), con-
trollability of a sphere in rolling contact with another sphere or
a plane (Li and Canny 1990), and controllability and motion
planning for nonholonomic mobile robots in the obstacle-free
plane (Barraquand and Latombe 1993). Goldberg describes
a modular fixturing problem for polygonal parts (Zhuang,
Wong, and Goldberg 1994) that is not solution-complete, but
for which a complete algorithm, an algorithm guaranteed to
return a solution if it exists and report failure otherwise, exists
(Brost and Goldberg 1996). Characterizing tasks in this man-
ner and developing complete algorithms to solve them enable
us to identify and guarantee capabilities of robot systems.

3. Action Model

We assume that a singulated part in an unknown initial ori-
entation drifts on the conveyor belt until it contacts a fence
placed perpendicular to the direction of motion (Figure 1).
On contacting the fence, the part rotates into alignment with
one of its stable edges against the fence. An LED sensor
measures the resting diameter, or width, of the part perpen-
dicular to the fence, which provides only partial information
on the orientation of the part. The robot has to find and ex-
ecute a sequence of push-align operations to orient the part.
Each operation consists of an action followed by the sensor
measurement of the diameter of the aligned part. The action
consists of the robot picking up an aligned part at the fence
using a suction cup, translating upstream from the fence, ro-
tating the part through a chosen angle, and releasing the part
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back on the conveyor for it to be aligned at the fence. Orient-
ing a part amounts to identifying the part edge that is aligned
against the fence (Figure 2).

The result of a push depends on the part geometry, support
pressure distribution, contact friction, and length and direction
of the push (Mason 1986; Peshkin and Sanderson 1988b). Al-
though the support pressure distribution is usually unknown,
for a uniform coefficient of support friction the rotation result-
ing from a push can be determined from the center of mass
location. In analyzing our system, we make the following
assumptions:

1. All parts are polygons. Since the parts contact a flat
fence, nonconvex polygons are treated by considering
their convex hulls.

2. The part shape is known, and the center of mass of the
part is at a known position in its interior.

3. All motions are in the plane and are quasi-static.

4. The fence is normal to the conveyor motion direction.

5. All frictional interactions are described by Coulomb
friction.

6. The coefficient of friction between the part and the con-
veyor surface is uniform.

7. All bodies in contact are perfectly rigid.

When a part on the moving conveyor contacts the station-
ary fence, it is being pushed normal to the fence face. Viewed
from a frame fixed in the conveyor, this is exactly alinear nor-
mal push, where a moving fence pushes a part in a direction
normal to the fence face. The part rotation due to such a push
can be predicted using the radius function (Goldberg 1993).
The part comes to rest on the fence with only stable edges
aligned with the fence. An edge isstableif the orthogonal
projection of the center of mass onto the edge lies in the in-
terior of the edge. An edge isunstableif the projection of
the center of mass onto the edge lies outside the edge, and is
metastableif the center of mass projects onto a vertex of the
edge.

When the part contacts the fence, it takes a certain amount
of time to rotate into alignment with the fence. For a known
constant conveyor velocity, we can find an upper bound on
the time required for the rotation using the results of Peshkin
and Sanderson (1988b). During the initial alignment, if the
part center of mass lies exactly on the fence normal during the
push, the alignment time is unbounded. A practical solution
is to empirically determine a time bound within which the
part is aligned with high probability. When the part may
come to rest on a metastable edge, we can perform additional
small rotations of the part to perturb its orientation and cause
alignment on a neighboring stable edge.

3.1. Radius Function, Push Function, and Push-Diameter
Function

The rotational behavior of a part being pushed can be predicted
from its radius function, push function, and push-diameter
function, which we now describe. To determine the result of
a push-align operation, we follow Goldberg (1993) in using
the radius function. The radiusr of a polygon at an orien-
tationφ is the perpendicular distance from a reference point
in the polygon to a supporting line of the polygon with ori-
entationφ. The radius function describes the variation in the
radius as the supporting line is rotated (Figure 3). Without
loss of generality, we assume the supporting line orientation
is measured relative to a stable edge.

DEFINITION 1. Theradius function of a polygon is a map-
ping r : 71 → R from the orientationφ of a supporting line
of the polygon to the perpendicular distancer from a refer-
ence point in the polygon to the supporting line. We specify
this reference point to be the center of mass of the polygon.

When the center of mass is the reference point and the
fence is the supporting line, the local minima of the radius
function correspond to stable edges of the part. Akink in the
radius function is a point with a discontinuity in slope that is
not a local minimum of the radius function. A kink corre-
sponds to an unstable edge or metastable edge of the part. A
part being pushed against a fence rotates to achieve a mini-
mum radius. Each local minimum determines a convergent
orientation, and each local maximum determines a divergent
orientation. A push has the net effect of mapping the entire
interval between two adjacent divergent orientations to the
enclosed convergent orientation. The radius function has a
period of 360◦. Symmetry in part shape leads toperiodicity
in the radius function with a period less than 360◦.

The push function(Goldberg 1993) describes a normal
push (Figure 4). It is a monotonic step function with a period
of 360◦. We use the push functions of parts to find sensorless
orienting plans.

DEFINITION 2. Thepush function is a mappingp : 71 →
71 from the initial orientation of the fence relative to the part
to the final orientation of the fence relative to the part after a
push, assuming the part orientation is held constant.

DEFINITION 3. A symmetric push function has a periodT ,
0< T < 360, such thatp(φ + T ) = (p(φ)+ T ) mod360.

DEFINITION 4. The diameter function of a polygon is a
mappingw : 71 → R from the orientationφ of a pair of
parallel supporting lines of the polygon to the perpendicular
diameterw of the part between the supporting lines.

Thepush-diameter function(Figure 5) describes the part
diameter resulting from a push. The diameter is the maximal
width of an aligned part measured normal to the fence. The
push-diameter function is a step function with a period of
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Fig. 1. Schematic overhead view of a part on the conveyor during a push-align operation, shown from left to right. The
conveyor motion is “downward.” The robot first picks up a part and rotates it through a chosen angle before placing it on the
conveyor. The part then drifts on the conveyor into contact with the fence. The part rotates into alignment with the fence and
its diameter is then sensed.

Fig. 2. A sensor-based plan to orient an isosceles right triangle, which has stable states with nonunique diameter values. Each
node contains a set of indistinguishable states. Goal nodes, shown shaded, have a single state. The sensor value shown at a
node indicates the diameter value for the set of states at that node.
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Fig. 3. The radius function for the rectangle with its center of mass indicated by the black dot. The radius function is the plot
of the part radiusr as the fence orientationφ is varied, and wraps around at 360◦. The four minima of the radius function
correspond to the four stable edges of the rectangle. Based on Goldberg (1993).

360◦ and is used to generate sensor-based orienting plans that
measure part diameter after every push.

DEFINITION 5. Thepush-diameter function is a mapping
d : 71 → R from the initial fence orientationφ to the perpen-
dicular part diameterd resulting from a push, for a constant
part orientation. That is,d(φ) = w(p(φ)).

Let S be the set of stable orientations, where each stable
orientation corresponds to a local minimum of the radius func-
tion. By construction,S = {φs |φs = p(φ), 0 ≤ φ < 360}.
DEFINITION 6. A periodic push-diameter function has a pe-
riod T , 0< T < 360, such thatd(φ) = d(φ + T ). Else the
push-diameter function is consideredaperiodic.

DEFINITION 7. A part has aquasi-symmetricpush-diameter
function d if there exists a periodT , 0 < T < 360, such
that d(φ) = d(φ + T ), and there exists at least one stable
orientationφs ∈ S such thatp(φs +T ) 6= (φs +T ) mod360.

DEFINITION 8. A part has asymmetric push-diameter func-
tion d if there exists a periodT , 0 < T < 360, such that

d(φ) = d(φ + T ), and for everyφs ∈ S, p(φs + T ) =
(φs + T ) mod360.

These characterizations of the push and push-diameter
functions will be used in Section 6.2. Note that symmetry
of the push-diameter function does not imply symmetry of
the push function, and symmetry of the push function does
not imply symmetry of the push-diameter function.

3.2. Finding Representative Actions

Using knowledge of a part’s rotational behavior, we identify a
set of orienting actions. To compute actions, it is convenient
to consider the polygon orientation relative to a fixed line, the
fence.

3.2.1. Resting and Action Ranges

Theresting rangeof a stable orientation of a part is the set of
initial orientations for which the part comes to rest in that sta-
ble orientation (Figure 6). The stable orientations correspond
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Fig. 4. The push function for the rectangle of Figure 3. The horizontal and vertical axes represent the initial and resulting
relative orientations respectively. Based on Goldberg 1993.

to the minima of the radius function, and the resting ranges
are obtained from the enclosing left and right maxima of the
stable orientations on the radius function.

A push-align action corresponds to an angle, in the interval
[0, 360), that the part is rotated through before being pushed.
The task mechanics dictate that actions can be grouped into
equivalence classes where all member actions of a class have
the same result.

DEFINITION 9. Theaction range of a stable edgeei with
respect to a destination edgeej is the interval of rotations for
which the part transitions fromei to ej . That is, every action
in an action range results in the same final state when applied
to a given initial state.

Each edge of a part withn stable edges hasn action ranges.
Consider the range of actions to transition from start statesi
to destination statesj , where statesi corresponds to edgeei
(Figure 7). Let the stable orientation of statesi beψi , and
the right and left limits of the resting range of statesj beρj
andλj , respectively (see Figure 8). Each push-align action is

identified by the angle by which the robot rotates the part. The
entire range of counterclockwise rotations from the left limit
atλj to the right limit atρj enables the transition from statesi
to statesj . So the action range specified by the open interval
(λj − ψi, ρj − ψi) is an equivalence class for the transition
from statesi to statesj . That is, any counterclockwise rotation
θ ∈ (αmin, αmax), whereαmin = λj − ψi andαmax = ρj
−ψi , causes a deterministic transition from edgeei to edge
ej . We compute these action ranges for the transitions from
si to every other state. Proceeding in this manner and taking
care to handle angle wraparound at 360◦, we determine the
action ranges for the different states (Figure 9).

3.2.2. Overlap Ranges for a Set of States

From the action ranges of the individual states, we can deter-
mine the action ranges for a given set of states. We overlap
the set of intervals corresponding to the action ranges from a
set of individual states to obtain another set of intervals, the
overlap ranges(Figure 9). A set ofk stable states of a part
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Fig. 5. The push-diameter function for the rectangle of Figure 3. The function plots the stable diameter value resulting from
a push-align operation for each initial relative orientation of the part. The xs indicate stable orientations of the part.

Fig. 6. Resting ranges of the rectangle of Figure 3. The xs indicate stable orientations of the rectangle for each resting range,
and the vertical bars indicate the limits of each resting range. This diagram corresponds to a slice of the push stability diagram
of Brost (1988) along the 90◦ pushing direction.
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Fig. 7. The rectangle transitions from edgeei to edgeej for anyθ ∈ (αmin, αmax).

Fig. 8. The action range for the transition from statesi to statesj is computed from the resting ranges. The action range is
(λj −ψi, ρj −ψi), whereψi is the stable orientation of statesi , andλj andρj are the left and right limits of the resting range
of statesj .

Fig. 9. Action ranges for an indistinguishable set of states of the rectangle, with the resulting stable states shown. The
corresponding overlap ranges are shown at the bottom along with sets of resulting stable states for three selected ranges.
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with n stable states haskn overlap ranges. The overlap ranges
are also equivalence classes. For the given set of initial ori-
entations, any action chosen from an overlap range gives the
same resulting set of orientations. For each overlap range, we
select the middle of the interval to be a representative action,
and thus havekn representative actions to choose from.

There is always an action to get from any state to any other
state. The set of representative actions covers the interval
[0, 360) except for the finite number of overlap range end-
points. As long as each overlap range has nonzero extent, a
deterministic action can be found to the left or right of the
endpoint, and this does not affect the covering of the action
space. To guarantee robustness of the actions to uncertainty,
we can specify a minimum size for the overlap ranges. When
there are overlap ranges smaller than the minimum size, we
cannot guarantee that there is always a representative action
to get from any state to any other state, or that a plan exists.

We now compute the time taken to generate the represen-
tative actions for a set ofk states. For each of thek states, we
can determine the action ranges to each of then stable states
in O(n) time. The action ranges can be viewed as a list of
ordered range limits. Thekn overlap ranges can be computed
by merging the sorted action range lists for thek states into
one sorted list, which can be done inO(kn logk) time. So
the time to find the representative actions for a set ofk states,
Ta(k, n), isO(kn logk).

3.3. State Transition Graph

We can represent the orienting problem for a given part by
a directed graph, thestate transition graph(Figure 10). The
vertices of the graph are the stable orientations of the part.
Each directed arc contains the action range for the state tran-
sition from the state at its tail to the state at its head. The
sensed value at each vertex depends on the sensor resolution
and sensor noise. The planning problem consists of search-
ing this graph to find a sequence of actions to determine the
orientation of the part. For sensor-based orienting, we have to
determine the current state of the part based on the executed
actions and measured sensor values. For sensorless orienting,
we have to find a sequence of actions to bring any initial part
state to the same final part state.

An alternative representation of the problem is as a finite
state machine where the machine outputs a signal based on
the state to which it transitions. In fact, the problem of finding
the minimal length orienting plan is the same as finding the
minimal lengthadaptive homing sequenceof a finite state ma-
chine. See the textbook by Kohavi (1978) for an introduction
to finite state machines.

4. Sensorless Orienting

To orient a part without sensors, we must find a sequence of
push-align actions that brings all possible initial orientations

of the part to the same final orientation. An action consists of
rotating the part by a chosen angle before it is made to contact
the fence. We have implemented a planner that performs
breadth-first search to find minimum-length sensorless plans
(Figure 11). (See Rich and Knight (1991) for an introduction
to search techniques.)

In fact, there is a polynomial-time algorithm to find the
shortest sequence of push-align actions to bring all initial
orientations to the same final orientation. Goldberg (1993)
developed a polynomial-time algorithm to find the shortest
sequence for sensorless orienting of a polygon by frictionless
parallel-jaw grasping. This can be applied to the push func-
tion to obtain a minimum length sensorless plan for orienting
the part by pushing. Chen and Ierardi (1995) showed that
for a part withn stable edges, the algorithm is guaranteed to
find a solution ofO(n) steps inO(n2) time. When the push
function has a period of symmetry less than 360◦, the part can
be oriented only up to symmetry.

5. Sensor Model and State Distinguishability

To generate sensor-based plans, we have to consider the abil-
ity of the sensor to distinguish the stable states of the part.
Our sensor measures the diameter of the aligned part, and this
provides only partial information on the part orientation. The
sensor consists of a linear array of LEDs arranged perpen-
dicular to the fence at the side of the conveyor, with a cor-
responding parallel array of phototransistors on the opposite
side of the conveyor. The resolution of the sensor is deter-
mined by the spacing of the LEDs. When a part is aligned
with the fence, we can determine its diameter up to the resolu-
tion of the sensor by identifying which LED–phototransistor
pairs are blocked by the part. Two stable orientations of the
part that have diameters that are beneath the resolution of the
sensor are indistinguishable.

The discriminability of the sensors depends on their reso-
lution and noise characteristics. By determining the range of
sensor values consistent with each state, we can capture the
effect of sensor resolution and sensor noise. Two states with
overlapping sensor ranges are consideredindistinguishable,
and two states whose sensor ranges do not overlap aredis-
tinguishable. Using this model for the sensor, we can group
states with overlapping sensor ranges.

DEFINITION 10. An indistinguishable setis a set of states
where each state is indistinguishable from at least one other
state in the set. We refer to a set of indistinguishable states
with k elements as ak-indistinguishable set.

Note that some of the states in ak-indistinguishable set
may be pairwise distinguishable. This is because the indis-
tinguishability relation is not transitive due to sensor noise.
Consider three statesa, b, andc with increasing diameter val-
ues such thata andb are indistinguishable, andb andc are
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Fig. 10. State transition graph for an isosceles right triangle. The state transition graph is a directed graph whose edges
correspond to action ranges and vertices correspond to stable orientations of the part.

Fig. 11. Sensorless plan to orient a quadrilateral. Each node contains a set of stable states, and each arrow represents an action.
The goal node, shown shaded, contains a single state.
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indistinguishable. These states form a three-indistinguishable
set. Howevera andc will be distinguishable if their diameter
values differ sufficiently.

6. Sensor-Based Orienting

We now consider generating an orienting plan when the diam-
eter of the part is measured after every push. When the part has
a unique diameter value for every edge, a single push-align op-
eration can determine the part orientation (Figure 12). When
the part has several orientations with the same sensed diame-
ter value, we need a plan consisting of a conditional sequence
of push-align operations to orient the part. Branching during
plan execution is determined by the sensed diameter value.
The sensor data reduce the set of possible states to those con-
sistent with the sensed value and the executed sequence of
actions. For eachk-indistinguishable set of states to be dis-
tinguished, we find the representative actions as described in
Section 3.2. The number of states the robot eliminates after
each action depends on the actual part orientation, the num-
ber of states with the same diameter value, and the applied
action. Whether the part can be oriented uniquely depends
on the characteristics of its push-diameter function. If the
part has at least one diameter with a unique value or its push-
diameter function is aperiodic, it can be oriented uniquely.
We will show that the length of the plan is never greater than
2m−1, wherem is the maximum number of indistinguishable
states.

We present two algorithms to find orienting plans that are
optimal in the sense that they minimize the worst-case, or
maximum, number of operations to orient a part. The first uses
breadth-first AND/OR search, and the second is the bottom-
to-top algorithm. Both are exponential-time algorithms that
find optimal sensor-based orienting plans. We will show that
sensor-based plans are usually shorter and never longer than
sensorless plans. Note that other optimality criteria such as
minimizing the expected number of orienting operations can
be useful, particularly when the expected number of opera-
tions is significantly smaller than the worst-case number of
operations. The expected number of operations depends on
the initial distribution of part orientations and the shape of the
part.

6.1. AND/OR Search

Our first method to find an orienting plan is to perform
breadth-first AND/OR search. (See Rich and Knight (1991)
for a description of AND/OR graphs and the similar AO* al-
gorithm.) The root node corresponds to the set of all possible
orientations of the part. A node in the search graph contains
the set of orientations consistent with the push-align opera-
tions along the path from the root to the node. Each alterna-
tive (OR) push-align operation corresponds to a link. When
a push-align operation is applied at a node, all stable orienta-

tions that can result are generated and classified into sets of
indistinguishable states. The time to groupk resulting states
into indistinguishable sets,Tg(k), isO(k logk) since it takes
O(k logk) time to sort the states by diameter values andO(k)

time to traverse the sorted list of states. The AND link from a
node for a given operation points to a set of child nodes where
each child node contains a set of indistinguishable states.

Search begins at the root node, which contains the set of all
possible initial part orientations. The first push-align opera-
tion results in a set of nodes that are the indistinguishable sets
of stable states. The search explores the nodes in a breadth-
first manner by applying the representative actions for their
constituent states to generate their child nodes. A node is
solved if it is a goal node with a single state or when all its
child nodes from an operation are solved. When a node is
solved, its parent nodes are updated. Search terminates when
the root node is solved or all nodes have been explored. The
generated plan consists of a conditional sequence of opera-
tions to determine part orientation (Figure 13). The search
process is exhaustive, but it need be performed off-line only
once for each part.

6.2. Plan Length

The time taken to orient a part depends on the plan length,
which is the worst-case number of operations required to ori-
ent the part. This depends on the part geometry, and in par-
ticular, the uniqueness of the diameter values of the stable
states and the degree of symmetry of the part. We will use
the termdiameter valueto refer to the part diameter when the
part is in a stable orientation on the fence and use it inter-
changeably with sensor value. We now prove bounds on the
worst-case lengths of plans in terms ofm, the maximum num-
ber of stable states with an indistinguishable diameter value,
andn, the number of stable edges of the part, for the different
polygon classes shown in Figure 14. The polygon classes are
characterized by the following features:

1. All states having unique diameter values: Any state the
part comes to rest in can be identified uniquely from
its sensed diameter value. Therefore, a single step is
sufficient to orient such a part.

2. Some states with unique diameter values: Group the
states into indistinguishable sets. Assume that after the
initial alignment, the part is in a state that belongs to an
m-indistinguishable set. Consider performing an action
of θ on all states in the indistinguishable set (Figure 15).
Since the part has at least one state with a unique diame-
ter value, there is some value ofθ and at least one initial
state for which the resulting state is a unique diameter
valued state. This action reduces the number of possi-
ble states by at least one. In the worst case, we have
remaining a set ofm− 1 states to be distinguished. We
recursively continue this process on the resulting set of
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Fig. 12. A part with unique diameter values at its stable orientations can be oriented in a single step. The arrows linked by an
arc represent a push-align operation. The diameter value of each stable edge is shown at its corresponding node. Compare
with the four-step sensorless plan of Figure 11.

Fig. 13. A plan generated by the AND/OR search planner to orient the rectangle of Figure 3.
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Fig. 14. Example polygons belonging to classes with different worst-case plan length characteristics.m is the maximum
number of indistinguishable states,n is the number of stable edges of the polygon, andp is the number of periods of the
push-diameter (or push) function.
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Fig. 15. Action and overlap ranges for indistinguishable states of the isosceles right triangle.

states, grouping them by diameter value, and for each
indistinguishable set, eliminating at least one state with
each action, until we are left with a single state. Since
each action reduces the number of states by at least one,
the maximum number of actions to orient the initial set
of states is no greater thanm. Since every other ini-
tial set of states is of sizem or smaller, the worst-case
number of steps to orient a part ism.

The number of steps to orient a part at execution time
can range from 1 up tom, depending on the initial state.
The actual maximum length of a plan depends on the
part shape and can be less thanm.

3. Multiple nonunique diameter values and an aperiodic
push-diameter function: Assume that the initial state
belongs to the largest indistinguishable set of sizem.
The overlap ranges of states with the same diameter
value (Figure 16) always contain some action with dis-
tinguishable outcomes since the push-diameter func-
tion is aperiodic and has multiple diameter values. We
can therefore reduce the size of the largest resulting
indistinguishable set by at least one. This property, ap-

plied recursively to the resulting set of states, shows
that the maximum number of steps to orient a part in
this case is no greater thanm.

The minimum number of steps to orient a part is always
2 or greater since there is no state with a unique diameter
value.

4. Multiple nonunique diameter values and a quasi-
symmetric push-diameter function: The push-diameter
function is quasi-symmetric, which means the stable
orientations of some of the indistinguishable sets of
states are not periodically spaced. First consider the
case when no stable orientation is spaced an integer
number of periods from another stable orientation. This
implies there is always an action to distinguish any two
indistinguishable states. Such a part can be oriented in
a maximum ofm steps.

The worst case occurs under the following conditions.
Assume there is only one state that differs from its
indistinguishable states in having an aperiodic sta-
ble orientation, and that this state belongs to anm-
indistinguishable set. Also assume the part is initially
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Fig. 16. Selecting distinguishing actions from the overlap ranges of the indistinguishable states of the rectangle.
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in anm-indistinguishable set that does not include the
aperiodic state. Execute the smallest action that causes
a transition to them-indistinguishable set that contains
the aperiodic state. Since the action ranges of the ape-
riodic state differ from those of the other states, execute
the smallest action that can distinguish it. If the part was
in the aperiodic state, its orientation is now determined.
Otherwise in the worst case, we have(m−1) remaining
indistinguishable states. We recursively continue this
process of eliminating each state from consideration by
a two-step process. Form initial states, a maximum of
1 + 2(m− 1), or 2m− 1 steps can orient the part.

The minimum number of steps to orient a part is always
2 or greater since there is no state with a unique diameter
value.

5. Multiple nonunique diameter values, a symmetric push-
diameter function, and a symmetric push function: Let
p be the number of periods of the push-diameter func-
tion. Since we can orient the part only up to sym-
metry, for each indistinguishable set of sizek we ef-
fectively havek/p states to consider. We can trans-
form our problem to the case of an asymmetric push-
diameter function of period 360/p with n/p states.
Such a push-diameter function may have all unique
valued states, or some states with unique diameters,
or multiple nonunique diameter valued states and be
aperiodic or quasi-symmetric. It follows that the maxi-
mum number of steps to orient the part up to symmetry
is 2m/p − 1, and the minimum number of steps can
be 1.

6. Multiple diameter values, a symmetric push-diameter
function, and an asymmetric push function: Since the
push-diameter function is symmetric and the push func-
tion is asymmetric, there is at least one pair of neighbor-
ing indistinguishable states whose action ranges differ
from a corresponding pair of states an integer number
of periods away. Call this the asymmetric pair and this
set of indistinguishable states the asymmetric set. Prov-
ing the length bound requires consideration of several
cases. The worst case occurs when the part is initially
in the asymmetric set, and it is anm-indistinguishable
set. The strategy is to reach the asymmetric pair of
states since for some action their transitions differ from
the other pairs in the asymmetric set and can be used to
distinguish the states. So the smallest action to get to
one of the asymmetric states is executed, and then the
smallest action that can distinguish that state from the
corresponding states is performed. In the worst case,
we will have (m − 1) states remaining to be distin-
guished. This process is continued until all states are
distinguished. Therefore, the maximum number of ac-
tions to determine the part orientation is 1+ 2(m− 1),
or 2m− 1.

The minimum number of steps to orient a part is always
3 or greater since there is no state with a unique diameter
value and we need multiple actions to distinguish any
state.

7. An asymmetric push function and all states with the
same diameter value: When all states have the same di-
ameter value, this is identical to the sensorless orienting
problem since the sensor provides no useful informa-
tion. Using a backchaining algorithm (Goldberg 1993),
we can show that a plan always exists for any part with
an asymmetric push function. The maximum length
of the plan is 2n − 1 steps (Chen and Ierardi 1995).
Here the minimum number of steps and the worst-case
number of steps to orient the part are identical.

8. A symmetric push function and all states with the same
diameter value: This case again corresponds to the sen-
sorless orienting case. Since there is symmetry in the
push function, the part can be oriented only up to sym-
metry. If p is the number of periods of the push func-
tion, we can transform the problem to one with a push
function of period 360/p andn/p states. The maxi-
mum number of steps to orient the part up to symmetry
is then 2n/p − 1. Here the minimum number of steps
and the worst-case number of steps to orient the part
are identical.

6.3. Completeness

The search-based planner is complete. For each indistinguish-
able set explored during search, the procedure to generate
representative actions (Section 3.2) returns a set of actions
that cover the action space. The search procedure of Sec-
tion 6.1 guarantees that all representative actions of an ex-
plored indistinguishable set are applied to it. The planner
performs breadth-first search, and the termination conditions
ensure that the planner either finds a solution to orient the
part uniquely when one exists or finds a solution to orient
the part up to symmetry otherwise. The maximum depth of
the search tree is 2m − 1, wherem is the size of the largest
indistinguishable set. These conditions guarantee complete-
ness of the planner. The search procedure is exponential in
complexity.

6.4. Bottom-to-Top Algorithm

We now present a dynamic programming style algorithm to
find the minimum length plan to orient a part, and analyze
its worst-case time complexity. We find the shortest plan by
first finding the best action for each possible indistinguish-
able set, and then identifying the shortest sequence of actions
for each of the initial indistinguishable sets. The best action
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for an indistinguishable set minimizes the maximum action
length of the resulting child indistinguishable sets. The action
length of an indistinguishable set is the smallest number of
actions guaranteed to distinguish it and is one plus the maxi-
mum action length of its child indistinguishable sets from its
best action. Theni states that share theith sensed diameter
value have 2ni corresponding indistinguishable sets. The al-
gorithm begins by finding the best actions to distinguish the
smallest indistinguishable sets, with 2 elements. (In case of a
tie, select the action with a smaller rotation.) We find the best
actions for all 2-indistinguishable sets over all sensor values.
We then find the best actions for all 3-indistinguishable sets.
We continue to sequentially work on larger indistinguishable
sets until we find the best actions for all the indistinguishable
sets. Since the child indistinguishable sets are smaller or of
the same size as their parent indistinguishable set, by proceed-
ing from the smallest to the largest indistinguishable sets, at
each level we know the best actions for all the child indistin-
guishable sets. Once all the initial indistinguishable sets have
been processed, we work backward to create a conditional
plan using the best actions.

We assumed above that every indistinguishable set has
some action that results in smaller sets to be distinguished.
For some polygons and for somek, everyk-indistinguishable
set may not have an action that leads to smaller child indis-
tinguishable sets. In such cases, we perform a second pass
to select the best actions for the unresolved indistinguishable
sets. We perform the second pass only when at least onek-
indistinguishable set has an action that leads to smaller indis-
tinguishable sets. If nok-indistinguishable set has an action
that leads to an indistinguishable set of smaller size, the part
is orientable only up to symmetry.

Consider theni states corresponding to theith sensed
diameter value. A subset ofk of these states forms ak-
indistinguishable set, withkn representative actions. The
time taken to find the representative actions,Ta(k, n), is
O(kn logk). The result of an action for a given orienta-
tion of the part is determined by computing its orientation
after the specified rotation, identifying the resting range to
which it belongs, and determining the resulting orientation.
This is anO(logn) operation for each action and each state.
So the time taken to find the result of an action onk states,
Tr(k, n), is O(k logn). For each of thekn representative
actions, compute the result in timeTr(k, n) and group the re-
sulting states in timeTg(k). The comparison time to select
the best action isO(kn). The timeT (k) to find the best ac-
tion for ak-indistinguishable set isTa(k, n) + (kn)(Tr(k, n)

+Tg(k)) + O(kn). The time to find the best actions for all
k-indistinguishable sets with theith sensed diameter value is
{Ta(k, n) + (kn)[Tr(k, n) + Tg(k)] + O(kn)}Cnik . When a
second pass is required, the increase in the running time is
bounded by a constant factor.

The time to compute the best actions over all subsets and
all sensor values is

∑
i

ni∑
k=2

{Ta(k, n)+ (kn)[Tr(k, n)+ Tg(k)] +O(kn)}Cnik

=
∑
i

ni∑
k=2

{O(kn logk)+ kn(O(k logn)+O(k logk))

+O(kn)}Cnik

=
∑
i

O(nn2
i 2
ni logn).

Sincem is the maximum number of states with the same
diameter value and the maximum number of indistinguish-
able sets of sizek is n/k, the worst-case time complexity of
the algorithm isO(n2m2m logn). See the example plan in
Figure 2 generated by the implemented algorithm.

7. Are Sensorless and Sensor-Based Strategies
Equivalent?

We have seen that sensor-based plans are usually shorter and
never longer than sensorless plans. Are sensorless and sensor-
based plans equivalent in their ability to orient any part? Can
a sensorless system orient any part that a sensor-based system
can orient? It turns out that a sensorless system may not be
able to orient a part that a sensor-based system can orient—
adding a partial information sensor increases the power of
the system. We illustrate with an example (Figure 17). Con-
sider an equilateral triangle. It can be oriented only up to
symmetry in its shape by both sensorless and sensor-based
plans. Using a construction described in Theorem 4 (follow-
ing in Section 8.2), we can generate another polygon with
the same push function as the equilateral triangle but whose
push-diameter function is not symmetric. A sensorless ori-
enting plan will be able to orient the part only up to symmetry
in its push function, whereas a sensor-based plan can bring
the part to a distinct orientation. Thus sensor-based plans can
not only reduce plan length but also orient certain parts that
sensorless plans cannot.

8. Orienting and Recognizing Multiple Part
Shapes

We now consider the problem of orienting any part from a
known set of parts using the same plan. During product
changeovers or when different parts are processed on the same
line, parts with different shapes may have to be oriented by the
same feeder (Figure 18). Consequently, we ask the following
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Fig. 17. The equilateral triangle on the left can be oriented only up to symmetry by both sensorless and sensor-based plans.
The heptagon on the right has the same push function as the equilateral triangle, but its push-diameter function is not
symmetric. Therefore, it can be brought to a distinct orientation using the sensor but oriented only up to symmetry in its push
function without the sensor.

question: Can our parts-orienting system orient multiple part
shapes with a single plan?

There are two aspects to this problem. The first is orienting
the input part, which means bringing each part shape to a
selected orientation. The second is recognizing the input part,
which is identifying the shape that has been oriented. To orient
and recognize multiple part shapes, we need to elucidate the
relation between part shape and the radius, push, and push-
diameter functions.

8.1. Part Shape and the Radius Function

The rotational behavior of a pushed part depends on its shape
and can be determined from its radius function. We therefore
determine the properties of the radius function in relation to
part shape. We prove that a radius function uniquely defines
a convex polygon, where the polygon’s shape is specified by
the relative locations of its vertices and center of mass. Note
that all nonconvex parts with the same convex hull have the
same radius function.

A valid radius function is the radius function of some poly-
gon, and is a piecewise sinusoidal function of period 360 de-
grees. Consider the variation in radius as the supporting line
is rotated from an edgeei to its counterclockwise neighbor-
ing edgeei+1 (Figure 19). Let the distance from the center of
mass to their common vertexvi+1 bedi+1 and the orientation
of the line joining the center of mass and the common vertex
be δi+1. The radiusr at an orientationφ is then given by
r = di+1 sin(φ−δi+1), φi ≤ φ ≤ φi+1. Changes in the sinu-
soids occur only at minima and kinks of the radius function.
Minima correspond to stable edges, and kinks correspond to
unstable and metastable edges of the part. This suggests that

we can recover the shape of a part from the minima and kinks
of its radius function. A valid set of minima and kinks is a set
of minima and kinks associated with a valid radius function.

LEMMA 1. Two valid radius functions are identical if they
have the same set of minima and kinks.

Proof. It is sufficient to show that the orientations and radius
values of the minima and kinks determine the value of the ra-
dius function everywhere. Each minimum or kink is specified
by its orientationφi and radiusri . Order the minima and kinks
by their orientations and consider successive pairs. Each such
minimum-minimum, minimum-kink, or kink-minimum pair
specifies the endpoints of a sinusoidal segment of the radius
function. Consider a pair[(ri, φi), (ri+1, φi+1)] correspond-
ing to the endpoints of a sinusoidal segment. The radius
r of the sinusoidal segment at an orientationφ is given by
r = di+1 sin(φ − δi+1), φi ≤ φ ≤ φi+1. So

ri = di+1 sin(φi − δi+1) and
ri+1 = di+1 sin(φi+1 − δi+1).

We solve fordi+1 andδi+1 to obtain

δi+1 = tan−1
(
ri sinφi+1 − ri+1 sinφi
ri cosφi+1 − ri+1 cosφi

)

di+1 = ri

sin(φi − δi+1)
.

From the polygon geometry,|φi − φi+1| ≤ 180, and this
implies there is a unique solution forδi+1 anddi+1. Therefore,
the pair[(ri, φi), (ri+1, φi+1)] uniquely defines a sinusoidal
segment. We can perform this computation for each pair of
successive minima and kinks to uniquely determine the radius
function. �

 © 1999 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Akella and Mason / Using Partial Sensor Information to Orient Parts 983

Fig. 18. Can these two parts be oriented using the same plan?

THEOREM2. Two convex polygons are identical if and only
if they have identical radius functions.

Proof. We show that a valid radius function is consistent with
a single polygon. We present a proof in the form of a pro-
cedure to construct a convex polygon from a radius function.
The edges of the polygon define the minima and kinks of the
radius function, with every edge corresponding to a minimum
or a kink. The polygon is defined by the relative locations of
its vertices and center of mass. Choose a point as the center
of mass (see Figure 20). The minima of the radius function
give the orientations of the lines along which the stable edges
lie and their distances from the center of mass. The kinks
give the orientations and distances of the lines along which
unstable and metastable edges of the part lie. Draw these
lines, each of which contains a polygon edge. Since the edge
orientations provide the ordered sequence of edges, compute
the intersections of lines containing adjacent edges to find the
vertices of the polygon. Each pair of adjacent lines intersects
at a single point, and by construction the set of minima and
kinks yields a single convex polygon. So there is a 1-to-1
mapping between a convex polygon and the set of minima
and kinks of its radius function.

If the polygons have identical radius functions, they have
identical sets of minima and kinks, and the polygons are iden-
tical by the above construction. To see the “only if” part,
assume two different radius functions map to two identical
polygons. Lemma 1 implies the two radius functions have
different sets of minima and kinks. These sets of minima and
kinks map to two polygons that are not identical, leading to a
contradiction. Therefore, the two polygons are identical only
if they have identical radius functions. �

We now generalize Theorem 2 to proving that two convex
polygons have the same radius function if and only if they
have the same shape. That is, we wish to treat all polygons
generated by rotating a given polygon as the same shape. Two

partsPA andPB with radius functionsrA(φ) andrB(φ) are
said to have the same radius function if there exists an angle
α such thatrA(φ) = rB(φ + α). If rA(φ) = rB(φ + α), let
the partPA rotated counterclockwise byα degrees have the
radius functionr

′
A(φ). Thenr

′
A(φ) = rB(φ). So without loss

of generality, we assume thatα is zero.

THEOREM 3. Two convex polygons have the same radius
function if and only if they have the same shape.

Proof. The “if” part of the theorem is obvious. That is, two
convex polygons have the same radius function if they have
the same shape.

We prove the “only if” part using proof by contradiction.
Assume there are two convex polygonsPA andPB with radius
functionsrA(φ) andrB(φ), respectively, such thatPA andPB
have different shapes andrA(φ) andrB(φ) are identical radius
functions. Using the radius functionrA(φ), constructPA as
described above. Similarly, constructPB from rB(φ). Since
rA(φ) andrB(φ) are the same, the sets of minima and kinks of
the radius functions for the two parts are the same, and the two
constructions yield the same shape, leading to a contradiction.
Therefore, two convex polygons with different shapes cannot
have the same radius function. �

Note that the radius function is a support function of a
polygon, and prior results (Santaló (1976), for example) show
that there is a 1-to-1 mapping between a smooth convex shape
and its support function.

8.2. Part Shape and the Push Function

Since the push function is used to generate sensorless ori-
enting plans, the relation between part shape and the push
function determines if multiple part shapes can be oriented
by the same plan. The push function of a convex polygon, in
contrast to the radius function, does not map to a unique part
shape. Different part shapes can have the same push function.
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Fig. 19. Variation in the radius as the fence is rotated. Minima of the radius function correspond to stable edges, and kinks
correspond to unstable and metastable edges. The radius function is uniquely determined by and can be reconstructed from
the set of minima and kinks.
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Fig. 20. Reconstructing the shape of a part from its radius function. The orientations and radius values of edgese2 ande5 are
shown in the figure.
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THEOREM4. For every convex polygon, there exists an infi-
nite set of nonsimilar convex polygons having the same push
function.

Proof. We present a constructive proof that, given any convex
polygon, we can always generate another nonsimilar convex
polygon having the same push function. The proof relies on
showing that we can always generate a new transition vertex
from any transition vertex of the given polygon without alter-
ing the push function. Atransition vertexis a polygon vertex
at which a local maximum of the radius function occurs; ev-
ery polygon has at least one transition vertex. We show that
we can generate an infinite set of new transition vertices for
each original transition vertex, and can therefore generate an
infinite set of convex polygons with the same push function.

Consider a transition vertexV of a polygon with incident
edgesei and ej (Figure 21). Let the edges be defined by
the line segmentsVEi andVEj , respectively. Draw the line
segmentVC that connectsV to the polygon center of mass
C. Draw the perpendicular lines to the edgesei andej from
C to obtain pointsPi andPj , respectively. IfPi is in the
interior of the segmentVEi , thenei is a stable edge. When
the perpendicular does not intersect the edge in its interior, the
edge is unstable, as in the case ofPj andej , or metastable.
A local maximum of the radius function occurs at vertexV
when the supporting line is perpendicular toVC. Call this
line l⊥.

Our construction splices in two new unstable edges to the
convex polygon that meet at a new transition vertex such that
the modified convex polygon has the same push function as
the given polygon. Pick a pointQi in the interior of bothVPi
andVEi . Draw a line perpendicular toCQi throughQi to
intersectVC at the pointRi . Ri lies in the interior ofVC
sincePi andEi lie on the same side of the linel⊥. Any line
segment with one endpoint in the interior of the segmentVRi
and withQi as the other endpoint will form an edge whose
included angle withCQi is greater than 90◦. Such an edge
is unstable since the perpendicular projection of the center of
massC cannot lie in its interior. A similar construction gives
the pointsQj andRj for the edgeej , and another set of line
segments that can form unstable edges.

We now pick a pointT in the interior of the segment formed
by the intersection ofVRi andVRj to be the new transition
vertex. The line segmentsTQi andTQj identify the new
unstable edgesui anduj , respectively. Adding these unstable
edges to the polygon does not change the stable orientations
of the polygon and the push function.

We must also prove that there is no change in the divergent
orientations of the push function, which correspond to local
maxima of the radius function. When the supporting line is in
contact withT , the maximum radius value occurs when the
line is perpendicular toCT . This linel

′
⊥ is parallel tol⊥, and

so this maximum occurs at the same orientation as the original
divergent orientation corresponding to vertexV . To establish

that T is a transition vertex with this divergent orientation,
we prove that this maximum radius value, length(CT ), is the
locally maximal radius of the modified polygon. We show
that length(CT ) is greater than the radius values of the edges
ei , ej , ui , anduj , and that the radius values of edgesui and
uj are greater than those of edgesei andej , respectively.

We prove the radius is locally maximal at vertexT with
respect to edgesei andui (see Figure 22). The radius value of
edgeei , ri , is equal to length(CPi). Let the radius of edgeui
berui . The radius of segmentQiRi is length(CQi). Consider
a line rotating about the pointQi , with its initial orientation
alongQiRi , the perpendicular to the lineCQi . The radius of
the line is proportional to the cosine of the angle it is rotated
by, with the maximum at its initial orientation. Therefore,
length(CQi) > rui > ri . From 4CQiT , length(CT ) >
length(CQi), which implies length(CT ) > rui > ri . Sim-
ilarly, we can show length(CT ) > ruj > rj . Therefore,
the vertexT corresponds to a local maximum of the radius
function.

The new vertexT is a transition vertex while the vertices
Qi andQj are not. Therefore, the new polygon with vertices
Qi , T , andQj replacing the vertexV is a convex polygon
with the same push function as the given convex polygon.
Since there is an infinite set of choices forQi ,Qj , andT , we
can generate an infinite set of polygons having the same push
function as the original polygon. �

See Figure 23 for an example of nonsimilar parts with the
same push function. The part at the bottom was constructed
from the part at the top using the above construction. The
following corollary is a direct consequence of Theorem 4.

COROLLARY 5. A sensorless plan to orient a given polygon
can orient the infinite set of polygons sharing the same push
function.

8.3. Part Shape and the Push-Diameter Function

When orienting multiple part shapes, we would like to know
if differences in part shape always lead to recognizable dif-
ferences in part behavior. We show that different part shapes
can have the same push-diameter function.

Two push-diameter functionsd1 andd2 are considered the
sameif all the following conditions are satisfied, and they are
considereddifferentotherwise:

1. ∃α such that d1(φ) = d2(φ + α), 0 ≤ α < 360.

2. ∀φs1 ∈ S1, ∃φs2 ∈ S2 such thatφs2 = (φs1+α) mod
360, whereS1 andS2 are the sets of stable orientations
of d1 andd2, respectively.

3. ∀φs1 ∈ S1, ∃φs2 ∈ S2 such thatκ(φs1) − φs1 =
κ(φs2)−φs2 andφs1 −ω(φs1) = φs2 −ω(φs2), where
κ(φsi) andω(φsi) are the counterclockwise and clock-
wise divergent orientations corresponding toφsi .
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Fig. 21. Generating a new polygon with the same push function as the given polygon. The edgesei andej of the original
polygon, drawn bold, meet at the transition vertexV . The construction splices in unstable edgesui anduj so the new vertices
Qi andQj and transition vertexT replace vertexV .

These conditions state that two parts are considered to have
the same push-diameter function if their push-diameter func-
tions are phase-shifted copies of each other, with the stable
states of the two parts having the same phase-shifted orienta-
tions and their phase-shifted divergent orientations specifying
identical resting ranges for the stable states. For the remain-
der of the paper, we assume without loss of generality that the
phase shiftα is zero.

THEOREM 6. For every convex polygon, there exists an in-
finite set of convex polygons having the same push-diameter
function.

Proof. For two parts to have the same push-diameter func-
tion, the orientations of their stable edges and the divergent
orientations specified by their transition vertices must be iden-
tical. The identical diameter values of the stable edges also
impose constraints on the vertices defining the diameters. Our
proof is constructive and revolves around modifying one or
more transition vertices or diameter-determining vertices of
the given polygon. Adiameter-determining vertexof a sta-

ble edge is the vertex with the largest perpendicular distance
to the edge. Each stable edge of a convex polygon has one
or two diameter-determining vertices. Every polygon has at
least one transition vertex. We classify convex polygons as
follows.

1. Polygons with at least one transition vertex that is not
also a diameter determining vertex.We can use the
construction of Theorem 4 to modify this vertex and
generate an infinite set of polygons with the same push
function as the original polygon. Since the modified
transition vertex is not diameter determining, no sta-
ble edge diameters change and these polygons have the
same push-diameter function as the original polygon.

2. Polygons whose transition vertices are all diameter-
determining vertices.We classify these polygons as
follows.

• Polygons with every stable edge having a single
diameter-determining vertex.If the polygon is

 © 1999 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on August 10, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


988 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 1999

Fig. 22. Establishing that a local maximum of the radius function occurs at the new transition vertexT .

Fig. 23. Two parts with the same push function. The push-diameter functions of the two parts differ.
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a regular polygon with its center of mass at its
geometric center, use the construction of Theorem
4 to modify every vertex identically to generate
another polygon with an identical push function
and a push-diameter function that is a shrunken
copy of the original push-diameter function. Now
uniformly expand the modified polygon by the
required amount to obtain a polygon with the same
push-diameter function as the original polygon.
See example in Figure 24.

In the general case, not all polygon edges are sta-
ble and not all diameter-determining vertices are
transition vertices. Given a nontransition vertex,
we can splice in new unstable edges to create a
new nontransition vertex without modifying the
push function, using a similar construction to that
in Theorem 4. We use the constructions for tran-
sition and nontransition vertices to modify every
diameter-determining vertex so that the diameter
of each stable edge is reduced by the same per-
centage. Now expand the truncated polygon by
the desired percentage so that the new polygon
has the same push-diameter function as the origi-
nal polygon. We can thus generate an infinite set
of polygons with the same push-diameter func-
tion.

• Polygons with at least one stable edge whose di-
ameter is determined by two vertices.Since the
diameter-determining vertices of the chosen sta-
ble edge are equidistant from the stable edge, they
are the vertices of a paralleldiameter-determining
edge. This diameter-determining edge may be
stable, unstable, or metastable. When either of
the diameter-determining vertices determines the
diameter of only the chosen stable edge, it can be
modified using the appropriate construction for a
transition or nontransition vertex. Since a vertex
may be diameter determining for more than one
edge, we have to consider all possible cases.

The chosen stable edge and its parallel diameter-
determining edge will be called the diameter-
determining pair. The clockwise (CW) neighbor-
ing edge of the stable edge and the CW neighbor of
the diameter-determining edge form a pair (CW
neighboring pair). Similarly, the counterclock-
wise (CCW) neighboring edges of the stable edge
and the diameter-determining edge form a CCW
neighboring pair. For a given neighboring edge
pair, let the interior angle between the chosen sta-
ble edge and its neighboring edge from the pair
beσ and the interior angle between the diameter-
determining edge and its neighboring edge from
the pair beδ.

(a) The neighboring edge pairs of the diameter-
determining pair consist of parallel edges.
The diameter-determining pair may have one
or two pairs of neighboring parallel edges.
Select a diameter-determining vertex belong-
ing to one of the pairs of neighboring paral-
lel edges. Using the appropriate construc-
tion for a transition or nontransition vertex,
this vertex can be modified without altering
the push function. This vertex is diameter
determining for the chosen stable edge, and
its neighboring edge from the selected pair
if it is stable. Since both these edges have
two diameter-determining vertices, the push-
diameter function does not change when the
vertex is modified. See Figure 25 for two ex-
ample parts in this class that share the same
push-diameter function.

(b) The diameter-determining pair has at least
one neighboring edge pair that consists of
nonparallel edges.Consider the neighboring
edge pair that consists of nonparallel edges.
If both pairs have nonparallel edges, compute
σ andδ for each and select the pair with the
minimum value of(σ − δ).
If σ < δ, select the diameter-determining
vertex that belongs to the diameter-deter-
mining edge and its neighboring edge from
the selected pair. From the geometry of
the convex polygon, this vertex can be di-
ameter determining for only the stable edge
and can be modified without affecting the
push and push-diameter functions. Ifσ >

δ, select the vertex belonging to the stable
edge and its neighbor from the selected pair.
From the polygon geometry, it is either not a
diameter-determining vertex or is a diameter-
determining vertex only for stable instances
of the diameter-determining edge. In either
case, we can modify it without changing the
push-diameter function.

For each case, we can generate an infinite set of
polygons with the same push-diameter function
by modifying the appropriate vertex.

Hence there is an infinite set of polygons with the same
push-diameter function as the original polygon. �

Since different part shapes can share the same push-
diameter function, given a valid push-diameter function we
cannot uniquely reconstruct the part from which it was gen-
erated. The following corollary is a direct consequence of
Theorem 6.
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Fig. 24. A regular polygon modified to generate another polygon with the same push-diameter function.

Fig. 25. Two parts with the same push-diameter function. Their push functions are also identical.
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COROLLARY 7. A sensor-based plan to orient a given poly-
gon can orient the infinite set of polygons sharing the same
push-diameter function.

Let SPpf be the set of parts with the same push function as

a partP and letSPpdf be the set of parts with the same push-
diameter function as the partP . Since two parts with the
same push-diameter function share the same push function,
SPpdf ⊆ SPpf . Any sensorless plan that can orient partP can

orient any partQ ∈ SPpf , and any sensor-based plan that can

orient partP can orient any partR ∈ SPpdf .

8.4. Orientability and Recognizability of Multiple Parts

We wish to orient and recognize any part from a known set
of parts using a single plan. Theorems 4 and 6 show that
parts with different radius functions can share the same push
function and can also share the same push-diameter function.
Therefore, when orienting multiple part shapes, differences
in part shape do not guarantee that the parts can be identified.
When can we guarantee that any part from a known set of parts
can be oriented and recognized using the same plan? Here
we identify conditions for a set of parts to be orientable (up to
symmetry in their push-diameter functions) and recognizable.
We begin by considering pairs of parts and then extend our
results to a set of parts.

DEFINITION 11. Two parts are said to bedistinguishableif
there exists an action sequence such that the output strings of
stable diameter values for the two parts differ.

LEMMA 8. Two parts that have the same push-diameter func-
tion are orientable but are not distinguishable.

Proof. Since the two parts have the same push-diameter func-
tion, their action ranges are identical and hence their mechan-
ical behavior is identical. The diameter values of correspond-
ing states are also identical. Therefore, there is no action
sequence that can distinguish the parts. However, the same
orienting plan can be used for both parts. �

When can two parts be oriented and distinguished? From
Lemma 8, a necessary condition is that their push-diameter
functions be different. When two parts with different push-
diameter functions have the same diameter value for all their
stable states, the sensor provides zero information and this is
equivalent to the sensorless case. Even if we can orient the
parts, we cannot tell them apart. A simple example is two
squares of the same size with their centers of mass at different
points. Therefore, a second necessary condition is that either
the parts have different diameter values or at least one of
the parts has multiple distinct diameter values. A sufficient
condition for two parts to be orientable and distinguishable is
that each part have at least one unique diameter value.

THEOREM 9. Two parts with different push-diameter func-
tions are always orientable and distinguishable if|D| > 1,
whereD is the set of distinct diameter values of all stable
orientations of the two parts.

Proof. Since|D| > 1, there are multiple distinct diameter
values. When one or both parts have some diameter values
unique to them, we can distinguish the parts by bringing them
to the corresponding stable orientations.

Consider the other case when both parts have the same set
of multiple diameter values. Since the push-diameter func-
tions of the two parts differ, there is at least one pair of states
whose action ranges differ. The most difficult distinguisha-
bility case occurs when the two parts have almost identical
push-diameter functions. We will treat the case when each
part has the same two diameter values (see Figure 26); the
argument can be extended to parts with more than two iden-
tical diameter values. It is hard to tell the parts apart because
every state in one part is paired with a corresponding state in
the other part. Since the action ranges of at least one pair of
states differ, there is some action for which the parts transi-
tion from this pair of states to two states that are not paired.
This causes the parts to go “out of phase.” Once the two parts
are in states that are not paired, there is an action sequence
guaranteed to bring the parts to distinguishable states.�

LEMMA 10. Distinguishability of parts is not transitive.

Proof. We prove this with an example. Consider three parts
PA, PB , andPC . Let the push-diameter functions of parts
PA andPB differ such that the parts are orientable and dis-
tinguishable. Similarly, let partsPB andPC be orientable
and distinguishable. However, partsPA andPC can have
the same push-diameter function, in which case they are not
distinguishable. �

DEFINITION 12. A set of known partsP is said to berecog-
nizableif there exists an action sequence to distinguish every
member of the set from every other member of the set.

Lemma 10 implies that a necessary condition for any set
of parts to be recognizable is that every pair of parts be
distinguishable.

THEOREM 11. For a given set of partsP , if every pair of
parts is orientable and distinguishable, then any subset of parts
S ⊆ P is orientable and recognizable.

Proof. Since every pair of parts can be oriented and distin-
guished, no two parts have the same push-diameter function.
Therefore, each part has a state whose action range differs
from at least one state in every other part. As in Theorem 9,
we can show that an action sequence always exists to rotate
parts “out of phase” with the others one at time and use this
to recognize them. �
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Fig. 26. Resting ranges of two parts with almost identical push-diameter functions. All states with the same character
are indistinguishable states. In both cases, the parts can be distinguished. (a) Resting ranges of the two parts are
identical, but stable orientations differ. The two parts have one pair of states with different action ranges. (b) Resting
ranges of the two parts differ, but stable orientations are identical. The action ranges of every corresponding pair of states differ.

8.5. Sensor-Based Orienting and Recognition of Multiple
Parts

We have extended the bottom-to-top planner of Section 6.4
to generate orienting plans for multiple parts by making two
modifications. First, a state is now encoded by the part it be-
longs to in addition to its stable orientation and diameter value.
Second, indistinguishable sets now consist of states with the
same sensed diameter value over all parts. The representative
actions are found from overlap ranges generated using the ac-
tion ranges of states belonging to these indistinguishable sets.
An example plan is shown in Figure 27.

8.6. Sensorless Orienting of Multiple Parts

A natural question is, can multiple parts be oriented by sen-
sorless strategies? The answer is yes for certain cases. When
a set of parts all have the same push function, the same plan
can orient all the parts. By Theorem 4, for every part there
exists an infinite set of parts with the same push function, and
they can all therefore be oriented by the same plan. See Fig-

ure 23 for two example parts. We cannot recognize the parts,
however.

For parts with different push functions, a breadth-first
search planner can be used to find a sensorless plan when
one exists. An alternative approach is to generate individual
plans for each part in the input set and to execute them sequen-
tially. As long as all actions are chosen to be deterministic
for all the parts, at the end of the executed sequence each part
shape will be in a known orientation. However, such plans
will be long, and we need subsequent sensing operations to
identify the oriented part.

9. Implementation

We have implemented planners to generate orienting plans
for convex polygonal parts using AND/OR search and the
bottom-to-top algorithm in Common Lisp. Given a part shape
and sensor noise, the planners return a plan to orient the
part uniquely when possible, and up to symmetry otherwise.
These planners have been tested on several parts including
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Fig. 27. A sensor-based plan to orient two part shapes. It was generated by a modified version of the bottom-to-top planner.
For clarity, we indicate the range of sensor values corresponding to each set of states by the average of the sensor values.

those shown in Figure 28. Example plans generated by the
AND/OR search planner and bottom-to-top planner are shown
in Figure 13 and Figure 2, respectively.

We timed the AND/OR search planner and bottom-to-top
planner on a Sparc ELC. Traversing top to bottom and left
to right in Figure 28, the AND/OR search planner took an
average of 0.064 secs, 0.116 secs, 0.096 secs, 0.042 secs,
0.084 secs, and 0.142 secs, respectively, to generate a sensor-
based plan. The bottom-to-top planner took an average of
0.060 secs, 0.112 secs, 0.078 secs, 0.048 secs, 0.096 secs,
and 0.210 secs for the same parts.

We have implemented and demonstrated orienting of sin-
gulated parts using an Adept 550 robot and a conveyor belt.
To pick up a part, the robot uses a suction cup. We imple-
mented both sensor-based and sensorless orienting plans for
four parts. The parts and the fence were made of delrin. We
selected the two parts of Figure 18 for further experimentation
and ran 20 trials using a sensor-based plan and 10 trials using
a sensorless plan. For the right triangle, 17 of the 20 trials
with the sensor-based plan and 8 of the 10 trials with the sen-
sorless plan succeeded. For the 8-gon, 19 of the 20 trials with
the sensor-based plan and all 10 trials of the sensorless plan
succeeded. All observed failures occurred when the suction
cup made insufficient surface contact with the part to pick it
up. Since the robot picks up a part at an unknown point on the
part, rotating the part causes bounded but unknown changes

in the position of the part along the fence. To a lesser ex-
tent, the part also slides along the fence. These variations in
part position along the fence occasionally lead to the observed
failures. The frequency of failures for a part depends on the
sequence of rotations in the plan. An array of suction cups
can be used to eliminate such failures.

We also tested the sensor-based plan of Figure 27 to orient
and recognize the parts of Figure 18. We ran 20 trials, 10 with
each part. The triangle was successfully oriented and recog-
nized all 10 times, and the 8-gon was successfully oriented
and recognized 9 times. The single failure occurred due to a
pickup failure with the suction cup.

10. Conclusion

In this paper, we characterized the advantages of using simple
and inexpensive LED sensors with manipulation operations
for parts orienting. We showed that the sensors reduce the
number of orienting steps fromO(n) for sensorless orienting
toO(m), wheren is the number of stable states andm is the
maximum number of indistinguishable states. This reduces
execution time and the number of stages in a pipelined orient-
ing process. Sensor-based plans are also more powerful than
sensorless plans in that they can orient a larger class of parts.
Furthermore, the sensors permit a feeder to orient multiple
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Fig. 28. Sample part shapes on which planners were tested.

part shapes with a single plan, leading to increased flexibility.
We presented implemented AND/OR search and bottom-

to-top algorithms to find minimum length plans. They are
both exponential-time planners but need be run off-line only
once for each new part. We characterized the relation between
part shape, orientability, and recognizability to identify con-
ditions under which a single plan can orient and recognize
multiple part shapes. Unlike a sensorless plan, the execution
time of a sensor-based plan may depend on the initial part
orientation. Nevertheless, the use of sensors can significantly
increase throughput since the maximum execution time for
sensor-based orienting is usually shorter than that for sensor-
less orienting and never greater.

Our results can potentially be extended to other orient-
ing tasks such as the fence-orienting system of Wiegley
et al. (1996), the sensorless 1JOC single-degree-of-freedom
fence of Akella et al. (1997), and the parallel-jaw grasping
work of Rao and Goldberg (1994). For example, sensing of
part diameter can substantially speed up the parts orienting
process and help in the orienting of different parts.

In this paper, we presented planning algorithms to orient
a single part shape, a finite set of known part shapes, and an
infinite set of part shapes with identical mechanical behavior.
Industrial parts are manufactured to tolerances, and orienting
a toleranced part involves generating a plan for an infinite
set of valid part shapes that do not have identical mechanical
behavior. We have therefore extended this work to incorporate
the effects of shape uncertainty and shown that parts can be
oriented despite the nondeterminism introduced by bounded
shape variations (Akella 1996; Akella and Mason 1998b).

Important extensions include treating more general part
shapes, such as 3-D parts and parts with curved edges, and
identifying techniques to singulate parts. It would be inter-
esting to characterize the completeness and execution length
properties of a broader set of orienting tasks that use nonde-
terministic actions. It would also be useful to characterize
the optimal sensor spacing to orient a set of parts, and to
develop planners that minimize the expected length of plans
when probability distributions of the initial part orientations
are available.
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