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Abstract

Programmabe force vecto fields can be used to control a variety of
flexible planar parts feedes such as massivef parallel microactua-
tor arraysor transversefvibrating (maaoscopig plates The®new
automation desigrs promie great flexibility, speedand dexterity—
we believe they may be employe to position orient, singulate sort,
feed and assemt# parts However, since they hawe only recently
bee invented programmirg and contolling them for manipulation
tasksis challengirg. When a part is placed on our devices the pro-
grammael vecta field induces a force and momen upan it. Over
time, the part may cone to red in adynamc equilibrium stae. By
chaining sequencegof force fields the equilibrium states of a part
in the field may be cascadd to obtain a desied final staie. The
resultirg strategies require no sensingand enjoy efficiert planning
algorithms.

This pape begins by describirg new experimenth devices that
canimplememnprogrammabéforcefields Inparticular, wedescribe
our progress in building the M-CHIP (Manipulation CHIP), a mas-
sively parallel array of programmabé micromotian pixels Both
the M-CHIP and othe microarray devices as wel as maaoscopic
devices such as transversel vibrating plates may be programmed
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with vecta fields and their behavia predicted and controlled using
our equilibrium analysis We demongtate lower bound (i.e., im-
possibility resulty on wha the devices canna do, and resuls on a
classificatio of contrd straegies yielding design criteria by which
well-behavd manipulatio strategies may bedeveloped We provide
suficiert conditiorsfor programmabéfieldsto inducewell-behaved
equilibria on every part placed on our devices We defire compo-
sition operatos to build compkx strategies from simpke ones and
shaw theresultirg fields are also wel behaved We discus whether
fields outsick this class can be usefui and free of pathology.

Using these tools, we descrile new manipulatian algorithms In
particular, we improve existing plannirg algorithims by a quadatic
facta, and the plan lengh by a linear factar. Using our new and
improved strategies we shav how to simultaneousiorient and pose
any part, withou sensingfroman arbitrary initial configuation. We
relax earlier dynamec and mechanicd assumptioato obtain mare
robugt and flexible strategies.

Finally, we conside partsfeedesthat can only implemenavery
limited “vocabulary” of vecta fields (as opposé to the pixel-wise
programmabiliy assumd above) We shav how to plan and ex-
ecue parts posirg and orienting strategies for thes devices but
with a significart increa in planning compkxity and sone sacri-
fice in completenesguarantees We discus the trade-df between
mechanicd compkxity and planning compkxity.
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Fig. 1. Sensorlessorting using force vecta fields part of
differen sizes arefirst centeredthen subsequenglseparated,
dependig on their size.

1. Introduction

Programmald force fields offer a fundamentall new ap-
proad to automate parts manipulation Insteal of handling
a pat directly (e.g, with aroba gripper) a force field su-
roundirg the part causs it to move. Programmald force
fieldspromise gred flexibilit y, speedand dexterity for awide
variely of tasks sudch as parts orienting positioning singulat-
ing, sorting feeding ard assembt. Recenty, severd de-
vices have been invented tha can implemen programmable
forcefields in particula, actuate arrays fabricatel with Mi-
cro Electo Mechanica Systen (MEMS) technolog, as well
as macroscopi vibrating plates Thes new automatio de-
signs permt distributed paralle] nonprehensilesensorless
manipulation tasks tha make them particularly attractve for
handlirg batdh microfabricaté parts whos smal dimen-
sions and large numbes would prohibit conventiona pick-
and-plae operations.

A wealh of geometre ard algorithmi problens arise in
the contrd and programmiig of manipulation systens with
many independenactuators The theol of programmable
force fields represerg the first systematiccomputationhat-
tadk on massvely paralld distributed manipulation basel on
geometrt and physicd reasoning Thegod of thispape isto
develop asciene bas for manipulatian using programmable
force fields and to demonstra experimens with prototype
devices tha suppot this theoly. We presehcombinatorially
precieplannirg algorithnmstha synthesie stratgiesfor con-

trolling and coordinatig avetry large numbe of distributed
actuatos in aprincipled task-evel fashion.

When apatt is placed on such a device, the programmed
vecta field induces aforce ard momen upan it. Over time,
the pat may come to red in a dynamc equilibrium state.
In principle, we have tremendoas flexibility in choosimg the
vecta field, since using e.g, MEMS array technologiesthe
forcefield may be programme pixel-wise Hence wehavea
lot of contrd over the resultirg equilibrium states By chain-
ing sequenceof vecta fields the equilibriamay be cascaded
to obtan a desiral fina state—fa example this stae may
represeha unique orientation or pos of the part A system
with suc abelavior exhibits the feedirg property (Akella et
al. 1995):

A systen hasthefeedirg propery over ase of pars £ and
asd of initial configuratiors 7 if, givenany pat P € &, there
issomre outpu configuratian g sud that the system can move
P to q fromany locationin 1.

Our work on programmal# vecta fieldsisrelated to non-
prehensi manipulation [Donald, Jennings and Rus 1995;
Zumd ard Erdmam 1996 Erdmam ard Masan 1996 Erd-
maml996]: inboth casespartsaremanipulate without form
or force closure.

Thispape describsour experimentadevices atechnique
for analyzirg them called equilibriumanalysis lower bounds
(i.e., impossibility resulty on wha the devicescannd do, and
resuls of aclassificatio of contrd straegiesyielding design
criteriafor usefd manipulation stratgies Then we describe
new manipulatio algorithims using thes tools. In particula,
weimprove earlig plannirg algorithns by aquadratt factar,
show how to simultaneousl orient ard pose apart ard relax
dynamt and mechanichassumptiosto obtain more robust
ard flexible strakgies.

One corollaly of our resuls is amethal for coordinat-
ing the actiors of a large distributed actuation system Such
systens comprig arrays with up to ters of thousand of in-
dependenyl sevoabk actuato cells which we cal motion
pixels We show how thes systens can be programmed in a
fine-grainedSIMD (single instructian multiple datg fashion
to exert forcefieldsonthemanipulatel object therely accom-
plishing massvely paralld distributed manipulation More-
over, thetheoly of programmal# force fields gives amethod
for controlling a large numbe of distributed actuatos in a
principled geometrigtask-evel fashion Whereamany con-
trol theories for multiple independenactuatos bre&k down
asthe numbe of actuatosbecomslarge, our systens should
only becone more robug asthe actuatos becone dense and
more NUMerous.

Thetheol developalinthispapeisapplicabétoany con-
trollable array capabé of generatig force vecta fields ard it
isindependetof thespecift devicehardware Wehavetested
it thoroughy in collaboration with J. Suh ard G. Kovacson a
MEMS actuate array developal at Stanfod (Bohringer et al.
1997c) Thismicrociliadevice consiss of a 16 x 16 array of
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motion pixels which covers an area of abou 2 cm x 2 cm.
Ead pixel consiss of four thermobimorp actuators Actu-
ators in ead direction can be controlled independenyt by a
graphicé use interfae on apersonhcompute. Bohringer

and coworkers (1997h reportal on experimensin sensorless

manipulatio with the microcilia device. Smal chips were
placed at arbitraly initial positiorsonthearray and weretrans-
lated rotated centeredand aligned by the array without sen-
sa feedback Thes experimens constitue strorg evidence
in suppot of our theoly of sensorlesmanipulation.

In this pape, we focus on the theoreticé foundatiors of
manipulatio with programmats force fields. We po< the
guestion Which force fields are suitabk for manipulation
strakgies? In particula, we ak whethe the fields may be
classified Tha is, can we characterie all thos force fields
in which every pait has stabk equilibria? While thisquestion
has bea well studial for a point mas in afield, the issue
is more subte when lifted to abody with finite area due to
the momern covecta. To answe, we first demonstrag im-
possibility results in the form of “l ower bounds” there exist
perfecty plausibk fields that induce no stabk equilibrium in
simple parts.

Fortunatey, there is also goad news. We presem condi-
tions for fields to induce well-betaved equilibria,
by exploiting the theoly of potentid fields. While potential
fields have been widely used in roba contrd (Khatib 1986;
Koditsch& ard Rimon 1988 Rimon ard Koditsché 1992;
Reif and Wang 1995, microactuato arrays preseh us with
the ability to explicitly progran the applied force at every
poirt in avecta field. Wherea previouswork has developed
contrd strakgies with artificial potentia fields our fields are
nonartificid (i.e., physical) Artificial potentia fields require
atight feedba& loop, in which at ead clock tick, the robot
senss its stat ard looks up acontrd (i.e., a vecto) using
a state-inéxed navigation function (i.e., a vecta field). In
contrastphysica potentid fields employ no sensingard the
motion of the manipulatel objed evolves in an open-loop
manne (for example like aparticle in agravity field). This
alore makes our application of potential-fietl theor to mi-
crodevices unique ard novel. Moreover, sud fields can be
composed using addition sequentibcomposition “parallel”
composition by superpositia of controls or by anew kind of
“morphing’ of contrd signals which we will define.

Previous resuls on array manipulation straegies may be
formalized using equilibrium analysis Bohringe and col-
leagus propose afamily of contrd strakgiescalled squeeze
patterns and aplannirg algorithm for pars orientation This
first resut proved an O (n?) uppe bourd on the numbe E of
orientatia equilibria of a nonpathologich(see Sectim 3.2)
plana pat with n vertices Thisyieldsan O(E?) = 0(n*)
plannirg algorithm to uniquey oriert a part unde certain
geometri¢dynamic and mechanichassumptionsln this pa-
per, we arguetha thisbourd on equilibriaappeastight. This
resulsin ahigh plannirg and executian compkxity.

Using our equilibrium analysisweintroduceradia fields,
which satisfy our stability propery. Radid fields can then
be combina with squeee fields We show this has several
benefits:

1. the numbe of equilibriadropsto E = O (n);

2. the plannirg compkxity dropsto O (E2) = 0 (n?);

3. throughot the strakegy execution every pat rotates
abou onefixed unique point (after the first step) and

4. this mears tha we can dispens with one critical as-
sumption (called 2PHASE by Bohringe and coworkers
(1994a)) we no longe nedal to assune that the trans-
lationd and rotationd motiors inducel by the array
interad in a“quasi-stati¢ ard “sequentidl manne.

We motivate our resuls by beginning with a description
of the experimenté devices we are intereste in program-
ming. In particula, we descrile our progres in building the
M-CHiIP (Manipulation CHIP), a mass$vely parallé array of
programmal®@ micromotian pixels. As prod of the concept,
we demonstrat a prototype M-CHIP containirg up to 15,000
silicon actuatos in 1in. Our strakgies are also applicable
to macroscopi partsfeedersWe descrile aplana, vibratory
orienting anl manipulation device tha also uses our novel
strakgies.

Both of thes devices porterd severd key practica is-
sues First, the straegies employel by our improved algo-
rithms ard analyss require significart mechanichard con-
trol compkxity—even though they require no sensing While
we believe such mechanism are feasibk to build using the
silicon MEM Stechnologisweadvocate it isundeniabéthat
no sud device exists yet (the M-CHIP haspixel-wise
programmabiliy, but the first generatio does nat have suf-
ficient directiond resolution to implemen highly accurate
radid strakgies) For this reason we introdue and ana-
lyze stratgies composd of field sequencgtha we know are
implementab# using current (microscopt or macroscopic)
technoloy. Ead straegy is asequene of pairs of squeezes
satisfyirg certan “orthogonality’ properties Unde thee as-
sumptionswe can ensure:

1. equilibrium stability,

2. relaxed mechanichand dynamicé assumption (the
sane as point 4, above), and

3. compkxity and completenesguarantees.

The framework is quite general ard applies to any set
of primitive operatioms satisfyirg certan “finit e equilibrium”
properties(whichwedefine)—heneit hasbroad applicability
toawiderangeof devices Inparticula, weview therestricted
classof fieldsasavocabulary and itsrulesof composition asa
grammar resultirg in alanguag of manipulation stratgies.
Using our gramma, the resulting straegies are guarantee to
be well-beraved.

Finally, both our radid stratgies and our finite manip-
ulation gramma have the following advantage over previ-
ous manipulatia algorithrrs for programmal# vecta fields:
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previous algorithns suc as thos describel by Bdhringer
ard colleagus (19944 19964 guaranteto uniquely oriert a
part but the translation&position of the patt is unknown at
the strakgy’s termination Both of our new algorithns gua-

antee to position the patt uniquel (up to pat symmetry in

translatio as well as orientation space Like the algorithms
in Bohringets work (19944 1996a) the new algorithirs re-
quire no sensingand work from any initial configuratia to

uniquely poethe part In particula, the initial configuration
is never known to the (sensorlegsexecutin system which

functionsin an open-log@ manne.

The compkxity and completenes guarantes we obtain
for manipulation grammas are considerahy weake than for
theided radid straegies For radid straegies we show that
any nonpathologichplana pat with finite area conta¢ can
be placed in aunique poein O(E) = O(n) steps Unde the
simplified manipulation gramma, our planne is guaranteed
tofind astratgy if one exists (if one does nat exist, the plan-
ner will signd this). However, it is not known whethe there
exists a straegy for every part This lack of completeness
of manipulation gramnrastrakgies stand in contrasto the
complet generasqueee ard radid algorithns for which a
guaranteé strakegy exists for all parts Moreover, the plan-
ning algorithm is worst-cag exponentid insteal of merely
quadratic.

Finally, the desie to implemen complicatel fields raises
the questia of contrd uncertaing. We close by describing
how families of potentia functions can be usal to represent
contrd uncertainy and analyzel for their impad on equilib-
ria, and we give an outlodk on still-open problens and future
work.

2. Experimental Apparatus: Parts Feeders

It is often extremely costly to maintan part orde throughout
the manufactue cycle. For example insteal of keepirg parts
in pallets they are often delivered in bags or boxes whence
they mug bepicked out and sorted A partsfeedeis amachine
that oriens sud parts before they are fed to an assembly
station Currentl, the desiqn of part feedes is a blad art
that isresponsite for up to 30% of the cog and 50% of work-
cel failures (Nevinsard Whitney 1978 Boothroyd Poli, and
Murch 1982 Farnun and Davis 1986 Schroe 1987 Singer
ard Seerirg 1987) “The red problem is nat part transfer
but part orientation” accordirg to Frark Riley of the Bodine
Corporatian (Riley 1983 p. 316, hisitalics). Thus although
patt feedirg accouns for a large portion of assemby cost,
there is nat mud scientific bass for automatirg the process.
The mog comma type of parts feede is the vibratory
bowl feederwhere parsin abowl! are vibrated using arotary
motion, so that they climb ahelicd track Asthey climb, a
sequene of bafflesand cutousin the tradk creat amechan-
ical “filter” tha cause partsin all but one orientatim to fall

bad into the bowl for anothe attemp at running the gaunt-
let (Boothroyd Poli, ard Murch 1982 Riley 1983 Sandler
1991).

Say’s APOS part feede (Hitakawa 1988 uses an ar-
ray of ness (silhouete trapg cut into avibrating plate The
ness and the vibratory motion are designé so tha the part
will reman in the neg only in one particula orientation By
tiltin g the plate ard letting parsflow acrosit, the ness even-
tually fill up with partsin the desiral orientation Although
the vibratory motion is unde softwase control specialized
mechanichness mug be designéd for eat part (Moncevicz,
Jakielgard Ulrich 1991).

The reasm for the succes of vibratory bowl feedes and
the Sony APQOS systen is the underlyirg principle of sen-
sorles manipulation (Erdmam and Masa 1988 that allows
partspositionirg ard orienting without sensofeedback This
principleiseven moreimportart at smal scalesbecaus sen-
sa datwill belessaccurae and moredifficult to obtain The
APOSsysten or bowl feedesareunlikely towork inthemicro
domain insteadnovel devicedesigrsfor micromanipulation
tasks are required The theoly of sensorlesmanipulatian is
the sciene bas for developing and controlling sud devices.

Reducirg the amourn of required sensiig is an exampk of

minimalian (Camy and Goldbeg 1994 Boéhringeret al.1995b),

which pursua the following agenda for a given roba task,
find the minima configuratian of resource requirel to sove

the task Minimalism is interesting becaus doing tak A

without resoure B proves that B is somelow inessentihto

the information structue of the task In robotics minimal-

ism has becone increasingy influential Raibet and col-

league (1993 showed that walking and running machines
could be built without static stability. Erdmam and Mason
(1988 showed how to do dexteros manipulation without

sensing McGee (1990 built a biped kneeal walker with-

out sensorscomputersor actuators Camy ard Goldbeg

(1999 argudl that minimaliam has along tradition in indus-
trial manufacturingand developed geometrt algorithns for

orienting pars using simple grippeis and accuratelow-cost
light beams Brooks (1986 developed online algorithns that
rely less extensvely on plannirg anrd world models Don-

ald, Jenningsand Rus (1995 ard Bohringe et al. (1995b)
have built distributed teans of mobilerobottha cooperagin

manipulatio without explicit communication We interd to

use thes resuls for our experimens in micromanipulation,
ard to examine how they relak to our theoretich proofs of

minimalig systems.

2.1 Microfabricated Actuatar Arrays

A wide variety of micromechanidastructurea (devices with
featuresinthe umrangg hasbeen built recenty by using pro-
cessing technique known from the VLSI industy (see for
example the work of Gabrid (1995) MacDonadl and col-
leagues (1997 ard MacDonald(forthcoming) Various
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microsensa and microactuatos have been shown to per-

form successfullye.g, a single-chp air-bag senso is com-
mercially available (Analog Devices1991) and video projec-
tions using an integrated monolithic mirror array have been
demonstrate recenty (Sampsél1993 ard are now starting
torepla@conventionad projectian systemsA fully integrated
scannimg tunnelirg microscop (STM) has been developal in

our groyp (Xu, Miller, and MacDonall 1995 MacDonadl et
al. 1997) However, the fabrication control and program-
ming of microdevices tha can intera¢ ard acively change
their environmert remairs challenging.

Problens arise from:

1. unkrnown materid properties and the lack of adequate
modek for mechanisraat very smal scales,

2. the limited range of motion and force tha can be gen-

eratel with microactuators,

the lack of sufficient senso information with regad to

manipulatian tasks and

desig limitations and geometrt tolerancs due to the

fabrication process.

3.

4.

Severd MEMS researchersamoryg othess (Fujita 1993;
Stormen et al. 1994 Liu ard Will 1995 Jacobso et al.
1995 Suh et al. 1996 have proposé MEMS manipulator
arrays For an overview, see the work of Liu and Will (1995)
or Bohringe ard colleagus (19943 1994b).

Our arrays (Fig. 2) arefabricatel using aSCReAM (Single-
Crystd Silicon Reacive Etching and Metallization) process
developal inthe Cornel Nanofabricatio Facility (Zharg and
MacDonatl 1992 Shaw, Zhang and MacDonatl 1993) The
SCREAM proces is low temperatureand does not interfere
with traditiond VLSI (Shaw ard MacDonatl 1996) Hence
it opersthe doa to building monolithic microelectromechan-
ical systens with integrated microactuatos and contrd cir-
cuitry on the sane wafer.

One of the goak of researh in microactuatas is to de-
velop devices for manipulatig othe smal componentsfor
example to accuratef position micromachind components
for inspectia or assembyt purposes Fabrication constraints
limit the design of mog of these componerg (usualy small
chiples made from silicon waferg to extruded plana shapes,
so manipulation in the plare is suficient for many applica-
tions For example a microactuato array has been success-
fully employeltorepla® a3-DOF stagein ascannimg electron
microscoe (SEM) (Darling et al. 1997).

Our desigqisbase& onmicrofabricate torsiondresonators
(Mihailovichetal. 1993 Mihailovichand MacDonat 1996).
Ead unit device consiss of arectangulagrid etchel out of
single-crystasilicon suspende by two rods tha ad as tor-
siond springs (Fig. 3). The grid is abou 200 «m long, and
extends 120 «m on ead side of the rod. The rods are 150
um long. The currert asymmetrichdesigh has 5-um high
protrudirg tips on one side of the grid tha make contad with
an objed lying on top of the actuato (Fig. 4). The othe side

ﬂ‘%ﬁ"hﬁ‘%‘ﬂ‘!
F W, . W LWL

WO W LT W

Fig. 2. A prototype M-CHip fabricatel in 1995 alarge uni-
directiona actuate array (viewed via scannimg electro mi-
croscopy) Ead actuato is 180 x 240 um in size De-
tail from a 1in? array with more than 15,0® actuators
(For more pictures on device desigh and fabrication see
the World Wide Web at http://www.cs.cornell.edu/home/karl/
MicroActuators.)

Fig. 3. Releasd asymmetr actuato for the M-CHiP (viewed
viascannimg electray microscopy) adenggrid (10 «m spac-
ing) with an aluminum electroa undernedt (left); agrid with
5-um high poles (right).

of the actuato consiss of a dense grid above an aluminum
electrode If a voltage is applied betwea the silicon sub-
strake ard the electrode the den® grid above the electrode
is pulled downward by the resultirg electrostat: force Si-

multaneous}, the othe side of the device (with the tips) is

deflectel severd um out of the plane Hence an objed can
be lifted and pushel sideways by the actuatae.

Becausg of its low inertia (resonane in the high-kHz
range) the device can be driven in awide frequerty range
from DC to severd 100 kHz AC. Our actuatos neeal not be
operaté at resonancethey canalsobesewvoedto periodically
“hit” an objed on top, therely applying both laterd and ver-
tical forces Our calculations simulations ard experiments
have shown tha the force generatd with atorsionad actuator
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is approximatef 10 N, which correspondto aforce-pe-
arearatio of 100 .N/mm?, which islarge enoudn to levitate a
piece of pape (1 uN/mn?) or asilicon wafer (10 uN/mmn?).

Ead actuate can generad motion in one specift direc-
tion if it is acivated otherwise it acs as a passve frictional
contact Figure 2 shows asmal sectian of sud aunidirec-
tiond actuate array, which consiss of more than 15,00 in-
dividud actuators The combination and selectve acivation
of severd actuatos with differert motion bias allows us to
generat various motiors in discree directions spannimg the
plare (Fig. 5).

The microscopt features of thes actuatos pos a possi-
ble disadrantage which may make them less usefd in harsh

Fig. 4. Releasd M-CHIP actuatos consistimg of single-crystal
silicon with 5-um high tips.

M

Fig. 5. Releasd M-CHIP prototype motion pixel, consisting
of actuatos oriental in four differert directions.

or dirty environments Macroscopt object and forces can
easiy dama@ microactuatorsFor example carefu handling
is required when placing objecs on the array. However, sil-
icon is asurprisingy flexible materid at microscopt scales
(Petersa 1982) and extremely large elastt deformatiorsare
possibé without structurd dama@ (Tahe, Saif, and Mac-
Donall 1995) Anothe concen are dug particles thet could
jam the microactuatorsAs aremed, tiny venting holes can
be etchel from the backsie of the substratesud tha dust
particles are removed by a constamflow of air. Suc air jets
are also usefu for levitating or manipulatirg objecs (Pister
Fearing and Howe 1990 Konish and Fujita 1993).
Thefabrication procesand mechanim analysshavebeen
describé in more detal in otha works (Béhringe et al.
1994a 1994h Bohringe, Donald and MacDonatl 1996b).

2.2 Macroscopc Vibratory Parts Feeder

Bohringe and colleagus (19953 have presentd a device
tha uses the force field createl by trans/erse vibratiors of a
plate to position ard align parts The device consiss of an
aluminum plate that is attachd to acommercialy available
electrodynami vibration generatq! with alinear travel of
0.02m ard the capability to produe aforce of up to 500
N (Fig. 6). Theinput signal specifyirg the waveform cor-
respondiig to the desiral oscillations is fed to asingle-coil
armaturewhich movesin aconstanfield producel by ace-
ramic permanetmagnéin acente-gap configuration.

For low amplitudesand frequenciesthe plate moveslongi-
tudinally with no perceptibétransrersevibrations However,

1. Modd VT-100G Vibration Ted SystemsAkron, Ohio, USA.

Fig. 6. Vibratory plate parts feeder an aluminum plate (size
50 cm x 40 cm) exhibits a vibratory minimum Parts are
attractel to this nodd line, and read equilibrium there.
(See als the World Wide Web at www.ee.washington.edu/
faculty/karl/ResearcNibratoryPlate.)
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asthefrequerty of oscillatiorsisincreasedtranversevibra-
tions of the plate becone more pronounced The resulting
motion is similar to the forced transverse vibration of arect-
angula plate clampel on one edge ard free alorg the other
three sides This vibratory motion creats aforce field in
which particles are attracta to locatiors with minimd vibra-
tion, called the nodd lines This field can be programmed
by changirg the frequerty, or by employirg clamgs as pro-
grammabe fixtures tha create various vibratory nodes.

Figure 6 shows two parts shapé like atriangle ard a
trapezoidafter they havereacheé their stabkeposes To better
illustrate the orienting effect, the curve showing thenodd line
hasbeendrawn by hand Notethat thisdevicecanonly usethe
finitemanipulationgrammadescribé in Sectian 6.2, sinceit
can only generag¢ aconstraind se of vibratoly patternsand
canna implemert radid straegies.

3. Equilibriu m Analysisfor Programmable
Vecta Fields

For the generatio of manipulation straegies with pro-
grammabe vecta fields it is essentihto be able to predict
the motion of apatt in the field. Particularly importart isde-
termining the stabk equilibrium poses tha a pat can reach
in which all forces ard momens are balanced This equi-
librium analyss was introducel in our shot conferene pa-
pe (Bohringe et al. 1994a) where we presentd atheory of
manipulation for programmat# vecta fields, and an algo-
rithm that generatemanipulatio straegiesto oriert polygo-
nd parswithout sensofeedbak using asequeneof squeeze
fields Wenow review thealgorithm fromtha work and givea
detailed prod of its compkxity bounds Thetools developed
here are essentibto understandig our new and improved re-
sults ard will be used throughot this pape to develop com-
plexity bounds for our distributed manipulatio algorithms.

In generalwe assune tha the dynamic of a pait moving
in the force field is governal by first-orde dynamics This
assumptia is bas@ on extensve experimentatia with the
devices presentd in Sectim 2. In afirst-orde system the
velocity of a patt is directly proportion4 to the force acting
onit. Basicall, it is arigid-body dynamicé systen tha is
heavily damped.

3.1 Squeee Fields and Equilibria

In the work of Béhringe and colleagus (1994a) we pro-
posal afamily of contrd straegies called squeee fields and
aplannirg algorithm for parts orientation.

DEFINITION 1. Assune! is a straigh line throuch the ori-
gin. A squeeefield f isatwo-dimensionbforcevecta field
definel as follows:

1. if z e R? lieson !, then f(z) =0; ard

2. if zdoesnatlieon/,then f(z) isthe unit vecta normal
to/ and pointing toward /.

We refe to the line ! asthe squeee line, becaus! liesin
the cente of the squeee field. See Figure 7 for examples of
squeee fields.

Assumirg quasi-statt motion, an objed will move per-
pendiculany toward the line! and come to res there We are
intereste in the motion of an arbitrarily shapeé (not neces-
sarily smal)) patt P. Let uscal P1, P, theregionsof P that
lietotheleft and to theright of /, respedtvely, and ¢1, ¢ their
centes of area In ared position both translationhard rota-
tiond forcesmud bein equilibrium We obtain thefoll owing
two conditions:

1. Thearea P; and P, mug be equal and
2. Thevecta ¢ — ¢; mud benormd to .

Part P has atranslationamotion componentha isnormal
to! if condition 1doesnat hold, and P has arotationd motion
componenif condition 2 does not hold (see Fig. 8). This
assume auniform force distribution over the surfae of P,
which is areasonald assumptia for a flat pat tha is in
conta¢ with alarge numbe of elastt actuators.

Fig. 7. Sensorlesparsorienting using forcevecta fields the
part reachsuniqueorientation after two subsequersqueezes.
There exist sudh orientatirg stratgies for all polygona parts.
(See the World Wide Web a www.ee.washington.edu/
faculty/karl/PFF fo an animatel simulation.)



8 THEINTERNATIONAL JOURNAL OF ROBOTICS RESEARGCH / Februay 1999

=— squeeze line

P,

-

2y

N\

Fig. 8. Equilibrium condition to balane the force ard mo-
mert acting on P inaunit squeeefield, thetwo area P; and
P> mug beequa (i.e., I mug be abisector) ard theline con-
nectirg the centes of areac1 and ¢ mug be perpendiculato
the nock line.

DEFINITION 2. A patt P isin translatian equilibriumif the
forces acting on P are balanced P isin orientation equilib-
riumif the momens acting on P are balanced Total equilib-
riumis simultaneos translation ard orientation equilibrium.

Let (xo, yo, 6p) be an equilibrium pos of P. (xo, yo) is
the correspondig translation equilibrium, and 6y is the cor-
respondig orientation equilibrium.

Note that conditiors 1ard 2 do not imply tha in equilib-
rium, the cente of areaof P hasto coincide with the squeeze
linel. For example conside alarge and asmal squae con-
nectel by along rod of negligible width (Fig. 9). If the rod
islong enoughthe cente of areawill lie outsicke of the large
square However, in equilibrium, the squeee line [ will al-
ways interset the large square.

3.2 Polygon Bisectos and Complexity

Conside a polygond pat P in a unit squeee field, as de-
scribed in Sectim 3.1 In this section we descrile how to
determire the orientatiors 6; in which P achieves equilib-
rium. This constructio will show tha equilibria always ex-

CoM,|

-

— — — SOEREEEE. o~ — — — = =

Fig. 9. A pat consistirg of two square connectd by along,
thin rod. The patt isin totd equilibrium but its COM does
not coincide with the squeeeline!.

ist, as long as the conta¢ area have finite size ard that for
connectd parts the orientation equilibria are discrete More
precisey, if a connectd pat isin equilibrium in asqueeze
field, there are discree values for its orientation and its off-
sd from the cente of the squeee line. The equilibrium is
of coure independenof its position along the squeee line.
Hence in the remainde of Sectin 3, when using the term
“discrete equilibria” we mean tha the orientatian ard offset
of the patt is discrete We will deiive uppe bound on the
numbe of these discree equilibria.

DerFINITION 3. A bisecta of a polygon P isalinetha cuts
P into two regions of equa area.

PropPOSITION 1. Let P be apolygon whose interior is con-
nected Thereexist O (kn?) bisectossuctha P isinequilib-

rium when placel in asqueeefield wherethebisecto coincides

with the squeee line. n isthe pat compkxity measurd as
the numbe of polygon vertices ard £ denote the maximum
numbe of polygon edges that a bisecta can cross.

If P isconvex, thenthe numbe of bisectosisboundel by
O(n).

For mog patt geometriesk is asmal constanf However,
in the worg case pathologich parts can reah k = O(n).
A spiral-shapé pat (e.g, a rectilinea par) would be an
exampk for suc a pathologichcase becaus every bisector
intersecs O (n) polygon edges.

LEmMmMA 1. Given apolygon P ard alinel : y = mx + ¢,
let n be the numbe of vertices of P:

1. there exist O (n?) combinatorialy differert ways how
alinel caninterset P;

2. let a and b be the intersectios of bisecta / with the
convex hull of P. Asm variesfrom —oo to 400, a and
b progres monotonicaly counterclockwie abou the
convex hull of P; and

3. if the interior of P is connectedthen there exists a
unigue bisecta of P for every m € R.

2. Inparticula, in an earlie work (Bohringe et al. 1994a) we assumd that
k=0().
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Combinatorialy equivalert intersectios of polygon P are
all thos placemert of the intersectimg line / sud that the
sek of left and right polygon vertices are fixed A necessary
conditionfor combinatorihequivalen®istha / intersecsthe
sare orderel se of polygon edges.

Proof. Therare O (n?) differert placemergfor [ sucthat it
coincides with more than one vertex of P. Hence all place-
mens of / fall into one of O(n?) combinatorialy equva-
lent classes This was proven by Diaz and O’Rourke (1990,
Lemma3.1).

Assune! is abisecto of P with afixed slope m. Since
the interior of P isconnectedthe intersectia betwea [ and
P mud be aline segmert of nonzeo length Hene atransla-
tionof [ (e.g, toward theleft) wil| caug astrictly monotonous
decreasintheleft-areasegment of P, ardviceversa There-
fore, the bisecta placemenof [ for agiven slopem isunique.
O

Considethebisecta ! of polygon P for changirgm values,
as describé in Lemma 5. The intersectios of [ with the
convex hull of P, a and b, progres monotonicaly abou the
convex hull. In general this progressia correspond to a
rotation and atranslation of /.

Inthefollowing prod for Proposition 1, weinvestigaethe
relationshp betwee the location of the bisecta and the cor-
respondig left and right area of P and itsrespedtve centers
of area.

Thiswill allow usto show that for combinatorialy equva-
lent bisecta placementghere areonly afinitenumbe of pos-
sible equilibria, ard this numbe is bounde by O (k), where
k < n isthe numbe of polygan edges tha the bisecta inter-
sects.

Proaof (Proposition 1). Conside two combinatorialy equiv-
alert placemers of bisecta / on polygan P. We will show
tha the numbe of equilibria for this bisecta placemenis
boundel by O (k). Sine ther are O (n?) sudch placements
for P (see Lemma 1), the totd numbe of equilibria will be
0 (kn?).

Rotatingthe Bisects. Conside the line [ and a point s
tha lieson [ (Fig. 10). Thedirectian of [ is given by avector
r. Assune for now tha the line! intersecs two edges of the
polygon P in the points r1 and r. Also assune tha these
edges have directiors a; and a. Now conside anothe line
I’ with direction r’ tha intersecs [ in s. Assune tha / and
I’ have combinatorialy equivalert intersectios with polygon
P, ard thet I intersecs the polygon edgesin r; and r;. Let
uswriter; = s+ p;r andr! = s + pir' fori =1, 2. Thenthe
polygon areabetwea [ and !’ is

A= -
5 (

In the generbcage wher ! ard I’ interset multiple edges of

somre arbitraly polygon P at pointsry, rz, ..., ry ard ry, 15,

pop2 — p1p1) (r' xr).

Fig. 10. Two nonparallélines ! and I’ in a combinatorially
equvalert intersectio with polygon P.

., 1. (k even), the polygon areabetwea [ and I’ is

1
(' xr) Z( V' pipi.

I\)

Without loss of generaliy, let o, # 0. Thenr’ can bewritten
asr’ = r + aa; for sone o € R, and the above equation
becomes

1 k .
5 (0 +aa) xr) g—l)’p;pi,

. (1)
o .
/
=5 @ xn) ) (=D'pip:
i=1
From the two vecta equatios r; = s + p;r’ andr] = s +
pir + Aa;, A € R, we can determire p; as

ol = pila; X r)
(@i xr)+ala xap)

@)

If wealso choo®the edge-directia vectosa; suttha (a; x

r) =1, then egs (1) and (2) simplify to the foll owing rational
functiorsin o:

ol=— P

o1+ a(ai x ag)’

i pl
Z(_ D i e@ o 1+ aa; xay)

3)

(4)

Let us look at the denominatod; (@) = 1 + a(a; x ai) in
more detail This is importart becaus we shal see tha in
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all formulas we will obtain, the denominators consist only ofrhen the polygon area betweErand!” is

d; (@). For an arbitrary polygory; is a linear function ofr.

If all a; are parallel, thed; = 1. If the polygon is rectilinear,

i.e., allq; are either parallel or perpendicular, théie) = 1

if a;|lax, andd; (@) = 1+ aay if a; L ai, wherea, is

constant. So in this case, there are only two different constant

denominators, one of which is 1. =
Translating the BisectoMe now consider the case where i

I’ shifts parallel (Fig. 11). Analogously to the previous Pararyis is a quadratic polynomial ifi (unless ally; are paral-

/I __ / /.. " __ Vi /s
graph, let; = S o a”f/j’i =8 o Also, letthe 1) " \which case it simplifies to the linear equation =
vector between’ ands” bes” — s’ = Bay. Then the polygon ﬂZI; l(_l)ipl_)
1= "

area betweeH and!” is

B= (=D (o] + o),

(7)

N
Ea .IIM»

(pi — Bla; x ay)

=1 1+ o(a; xag)

1

N[ ™

Maintaining the Bisector PropertyFrom the above two
1 paragraphs, we see that if the bisedt rotated td’, then
B = Bas x > ((ro+r5) = (r1+r7)), the left and right areas are changed by a valué£ 0 in
general) as described in eq. (4). Hence, a subsequent shift of
= i (05 + p5 — p1 — p7) (a2 x (r +aaz)), (5) ['is necessary to restore the bisector property, by changing

2 the areas by a valug, as described in eq. (7).
= g (05 + p5 — 1 — pY1). This implies the conditioa + B = 0, with A andB given
by egs. (4) and (7):

In the general casé&,and!” intersect multiple edges of some
arbitrary polygonP at points, 5, ..., r andry, ry, ..., r. A+ B=
Now thep;” can be determined from the two vector equations

NI =

Xk:(_l),-fxpiz + 2Bpi — B?ai x ar)
i 14+ a(a; x ax) o (®

rl'=rl+xaj, A € R, andr] = 5" + p/'r'": -0
n_ a; X ag This equation ensures thias a bisector oP. Itis a necessary
pi=pi—F a; xr'’ and sufficient condition for translation equilibrium in a unit-
, a; X ag squeeze field. Equation (8) is a rational equatioa,iand a
=p—B 1+a(a x ap)’ (6) quadratic polynomial equation ph Hence for all combinato-
oi — Blai x ax) rially equivalent bisectors, we can obtain an explicit formula

to describes as a function of:.

In general, eq. (8) is equivalent to a polynomiabirand
B whose degree depends on the numbef polygon edges
intersected by the bisectots!’, or I”. The degree of this
polynomial is limited byk for «, and by 2 forg. In the
rectilinear case, the degrees toandg are limited by 2. In
the case where ad; are parallel, eq. (8) simplifies to a linear
equation:}"5_; (—1) (@ + B)p: = 0.

Moment Equilibrium.After rotating (parametez, obtain
I") and translating (parametgr obtain!”) the bisectot, its
intersections with the polygon edges move frgno

T l4a(a xap

"/

ri =54 p/r" + Bax,

_ oi — Bla; X ag) )
=95+ m(/’ +Olak) + ﬂak.

iy If all a; are parallel, this simplifies tg' = s + p;r + (ap; +

Ty A Bak.

Suppose that; andc,, are the left and the right centers
of area of P, andA; and A, are the respective area sections,
SOA; + A, = A. We are interested in how these points
change when the bisector changes. Note that always
Fig. 11. Two parallel line$ and!” in combinatorially equiv- %(A,cl + A,c;), and if P is bisected (i.e.4; = A, = %A)
alent intersection with polygoR. thenc = %(Cl +¢r).
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Weconsidetheareabetwea! and{”, which canbewritten
as asum of quadrangle(r;, i, r//, r'). The weightedl center

i

area of this area can be determiné as

. il " "
C =) (=D 2(Ci + 10 X 1) + (i + 1) e x 1)
i=1
+ (o + D )+ 6+ )G x ).
(10)

For the left areasthe foll owing relationshp holds (assuming
A} #0):

A;/Cl// = Aicg+C
1

A
—ca+—C

"
= =7 o
Al Al

ard similarly, for the right area (assumig A}/ # 0):

n_ Ar 1

=""¢ ——C.
r n-r /"
AT A

Cc

P n_ Ay A, 1 1
Cr—Cr—FC;—FCr-F F—FF C.
l r l r

Both / ard [” are bisectorsso A; = A, = A = A =
and

A
2

o —cl=c—c+ ZC.
For orientation equilibrium, we require that the line connect-
ingthecentesof areac, —c;', andthedirection of thebisector
r’, are perpendicular:

4
o =) r'=(a—cr+-0)-r, 1)

=0.

The value of C = C(«, 8) can be determine by using egs.
(9) and (10), ard theequation ' = r +aay. Equation(11) isa
necessarand suficient condition for orientatian equilibrium.

By using the expressios delived in eqs (1)—(10) both
egs (8) (for translatio equilibrium) ard (11) (for orientation
equilibrium) can beexpressd withrationd functiorsina and
B whos numerato (respediely, denominator degrees are
O (k) (respedtely, O(1)) for « and 2 for 8. Hence we can
obtain asysten of two polynomid equatiors of degree O (k)
for « and 2 for 8. This systen has at mog O (k) solutions,
resultirgin O (k) totd equilibriafor bisecto placemergthat
are combinatorialy equvalent Since there are (n2) com-
binatorially differernt bisecto placementsthere are at most
0 (kn®) totd equilibria.[]

3.3 Planning of Manipulation Strategies

In this section we presemh an algorithm for sensorles parts
alignmen with squeee fields (Bohringe et al., 1994a;
Bohringe, Donald and MacDonatl 1996a) Recal from
Sectin 3.2 tha in squeeefields the equilibriafor connected
polygors are discret (modub a neutrally stabk translation
parallé to the squeee line, which we will disregard for the
remainde of Sectio 3).

To modé our actuate arrays and vibratoty devices we
mack the following assumptions:

Density: the generatd forces can be describé by a vector
field, i.e., theindividud microactuatas are deng com-
paral to the size of the moving part and

2Phase themotion of a partt hastwo phases(1) puretransla-
tiontowards! until the pattisintranslation equilibrium,
ard (2) motion in translatio equilibrium until orienta-
tion equilibrium isreached.

Notethat duetotheelasticity and oscillation of theactuator
surfaceswe can assune continuos areacontact and not just
contac¢ in three or a few points If a pat moves while in
translation equilibrium, in gener& the motion is not a pure
rotation but also has a translationhcomponent Therefore,
relaxing the 2Phae assumptia is one of the key resuls of
this pape.

DEFINITION 4. Let 6 bethe orientation of aconnectd poly-
gon P in asqueee field, and let us assune tha condition 1
holds The tumn functionr : & — {—1, 0, 1} describs the
instantaneosirotationd motion of P:

1 if P will turn counterclockwise,
t@)=1{-1 i f P will turn clockwise,
0 if Pisintotd equilibrium.

See Figure 12 for an illustration The tum function ¢ (9)
can be obtained for example by taking the sign of the lifted
momen Mp(z) for pose z = (x, y, 6), in which the lifted
force fp(z) iszero.

Definition 6 immediatey implies the following lemma.

LEMMA 2 (Bohringe, MacDonald and Donald 1996a). Let
P beapolygon with orientation 6 in asqueeefield sud that
condition 1 holds P isstabkif 1(0) = 0,¢r(6+) < 0, and
t(0—) > O; otherwise P isunstable.

Proof. Assunethepatt P isin apos (x, y, 0) suc tha con-
dition 1 is satisfied Thisimpliestha the translationaforces
actig on P balane out If in addition #(0) = 0, then the
effective momern iszerg and P isin totd equilibrium Now

conside asmal perturbatim 8y > 0 of the orientatian 6 of P

while condition 1 is still satisfied For a stabk equilibrium,
the momert resultirg from the perturbation 9 mug nat ag-
gravate but rathe counteractthe perturbation Thisistrue if

ardonly if 1 (6 + 8g) <0ardz(6 — &) > O.
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Fig. 12. (a) Polygona part stabk (thick line) and unsta-
ble (thin line) bisectos are alo shown. (b) Tum func-
tion, which predics the orientatiors of the bisectors Sta-
ble (respedtsely, unstabl¢ bisectos correspod to angles
at which the tumn function change from +1 to —1 (respec-
tively, from —1 to +1). (c) Squeee function constructed
from the tumn function (d) Alignmernt straegy for two ar-
bitrary initial configurations (See the World Wide Web at

satisfie without changimy its orientation 6. P will changpits
orientation until the momer is zerq i.e., t = 0: a posiive
moment (¢ > 0) causscounterclockwis motion and aneg-
ative momern (¢ < 0) causs clockwise motion until the next
root of ¢ isreached ™

We concluce tha any connectd polygona part when put
in asqueee field, reache one of a finite numbe of possi-
ble orientatian equilibria (Béhringe et al. 19944 Bohringe,
Donald and MacDonatl 1996a) The motion of the part
and in particula, the mappirg betwea initial orientation
ard equilibrium orientatian is describe by the squeee func-
tion, which is detived from the tum function (as describé in
Lemma3). Notethat all squeee functiors detived from turn
functions are monotore step-shapgfunctions.

Goldbeg (1993 hasgiven analgorithm that automatically
synthesize amanipulation strakgy to uniquey oriert apart,
given its squeee function While Goldbeg's algorithm was
designe for squeezewith arobotic parallel-pw grippe, in
fact, it is more general and can be usel for arbitray mono-
tonestep-shapgsqueeefunctions Theoutput of Goldbeg's
algorithmis asequeneof anglestha specify the required di-
rectiors of the squeezestherefore thes® angles specify the
direction of the squeee line in our forcevecta fields (for
example the two-step strakegies in Figures 7 and 12d). It
isimportart to note that the equilibria obtainel by a MEMS

WWW.ee.Washington.edu/faculty/karI/Researfdnananimatedsqueee field ard by a parallel-gw grippe will typically be

simulation.)

Using thislemma we can identify all stabk orientations,
which allows us to construt the squeee function (Goldbeg
1993 of P (see Fig. 12c) i.e., the mappirg from an initial
orientatian of P to the stabk equilibrium that it will read in
the squeee field:

LEMMA 3. Let P beapolygona pat on an actuato array 4
suththa Density and 2Phaghold. Giventhetumfunction

t of P, its correspondig squeee function s : S — Stis
constructd as foll ows:

1. all stabk equilibrium orientatiors 6 map identically
too;

2. all unstabé equilibrium orientatiors map (by conven-
tion®) to the neares counterclockwie stabk orienta-
tion; and

3. all orientatiors 0 with¢(0) = 1(—1) maptothenearest
counterclockwie (clockwisé stabk orientation.

Then s describstheorientatimtransitinof P induced by 4.

Proof. Assume tha pat P initially isin po% (x, y, ) in
arrey 4. Becaus of the 2Phas assumptionwe can assume
that P translats toward the cente line ! until condition 1is

3. Equally, one could defirer to magp unstabé equilibrium orientatiors to the
nearesclockwise stabk equilibrium This choice for a se of measue zero
does nat affect our subsequeranalyss and algorithms.

different even when the squeee directiors areidentical For

example to seethis, conside squeezig asquare-shapipart
(Fig. 13). Stabk and unstabé equilibria are reversed This

showstha our mechanicbanalyss of equilibriumisdifferent
from that of the parallel-pw grippe. Let ussummariethese
resulsin the following statements.

PROPOSITION 2. Let P be apolygon whose interior is con-
nected Ther exists an alignmen straegy consistig of a

kb rdaie
ez b bl
&) Paralkel-Jaw Cirpper ] Squecae Fleld

Fig. 13. Equilibrium configuratiors for a square-shapkepart
usirg (a) africtionless parallel-pw grippe, and (b) aMEMS
squeeefield. In this example stabk and unstabé equilibria
arereversed.
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sequeneof squeeefieldsthat uniquel orients P up to sym-
metries.

Since the straegies of Propositio 2 consis of fields with
squeee lines at arbitray angles throudh the origin, we call
them genera S squeee straegies or, henceforth geneal
squeee strategies.

COROLLARY 1. The alignmen strakgies of Propositian 2
have O(kn?) steps and they may be compute in time
0 (k’n*), wher k is the maximun numbe of edges tha a
bisecta of P can cross In the cae where P is convex, the
alignmern strakgy has O (n) steps and can be computel in
time O (n?).

Proof. Propositin 1 states that a polygon with n vertices
has E = O(kn?) stabk orientatin equilibria in a squeeze
field (O(n) if P isconvex). This mears tha the image of its
correspondig squeee function isasd of E discree values.
Given sut asqueee function Goldbeg's algorithm (Gold-
berg 1993 construcs alignmert straegies with O (E) steps.
Plannirg compkxity is O (E?). O

The strakgies of Goldbeg (1993 have the sane complex-
ity boundsfor convex and noncowex parts becauswhen us-
ing squeee grasgs with aparallel-pw grippe, only the con-
vex hull of the patt neel be considered Thisis not the case
for programmat# vecta fields where manipulation strate-
gies for noncaowex parts are more expensve. As described
in Sectian 3.2, there could exist parstha have E = Q (kn?)
orientation equilibriain asqueee field, which would imply
alignmen strakgies of lengh 2 (kn?) and plannirg compkex-
ity Q (k%n*).

Notetha theturn and squeegfunctionshave aperiad of 7,
dueto the symmety of the squeeefield; rotating the field by
an angk of 7= produce an identicd vecta field. Rotational
symmety in the pat also introduces periodicity into these
functions Hence generasqueee straegies (see Proposition
2) oriert a pat up to symmetrytha is, up to symmety in
the pait and in the squeee field. Similarly, the grag plans
basel on squeee functiors in the work of Goldbeg (1993)
can oriert a pat with a macroscopi grippe only modulo
symmety inthe patt and inthe grippa.* Sinaein Goldbeg's
(1993 work we redue to the squeeze-functioalgorithmy it
isnat surprisirg tha this phenomenno is also manifeste for
squeezerecta fields aswell. A detaila discussia of parts
orientation modub symmety has been provided (Goldbeg
1993).

The algorithm in this section uniquely orients a patt (up
to symmetry) however, its position canna be predictel pre-
cisely. In Sectin 6, we will preseh new and improved ma-
nipulation algorithirs that position and oriert parts uniquely,
ard alo redue the numbe of equilibriato E = O (kn). In

sectian can be extendal easily suc tha unique positioning
ard orienting can be achieved.

Squeee fields may be generalizd to the cae where [ is
slightly curved asinthe“node€’ of the vibrating platein Fig-
ure 6(detaisareavailable (Bohringe 1995a)) Theremaining
sectiors of this pape investigae using more exotic fields (not
simple squeee pattern$ to:

allow disconnecte polygons,

relax the 2Phag assumption,

redue the plannirg compkxity,

redue the numbe of equilibria,

redue the executian compkxity (straegy length) and
determire feasibility resuls ard limitations for manip-
ulation with gener&force fields.

3.4. Relaxing the 2Phas Assumption

InSection 3.3, the2Phasassumptia allowed usto determine
succesise equilibrium positiors in asequene of squeezes,
by a quasi-stati analyss tha decouplstranslationbard ro-
tationd motion of the moving part For any part, this obtains
a unigue orientation equilibrium (after severd steps) If the
2Phas assumptia is relaxed, we obtan a dynamt manip-
ulation problem in which we mug determire the equilibria
(x, 6) given by the patt orientation 6 and the offset x of its
cente of mas from the squeee line. A stabk equilibrium
is a(x;,6;) pair in R x S tha ack as an attractar (the x
offset in an equilibrium is, surprisingy, usualy not O; see
Fig. 9). Again, we can compue the® (x;, 6;) equilibrium
pairs exactly, as outlined in Sectin 3.2.

Considerimgy (x;, 6;) equilibrium pairs has anothe advan-
tage We can show that, even without the 2Phags assumption,
after two succeswe, orthogoné squeezesthe sd of stable
poses of any part can be reducel from € = R? x S to a
finite subs¢ of C (the configuration spae of pat P); see
claim 1 (Section 6.2). Subsequersqueezswill preseve the
finitenes of the stae space Thiswill significanty reduethe
compkxity of atask-kvel motion planne. Hence if assump-
tion 2Phasisrelaxed thisideastill enablsusto simplify the
generamotion-plannirg problem (as formulated for exam-
ple, by Lozano-PérezMason and Taylor (1984) to that of
Erdmam ard Masm (1988) Conversey, relaxing assump-
tion 2Phae raises the compkxity from the “linear” planning
schene of Goldbeg (1993 to the forward-chainiig searches
of Erdmam and Masa (1988 or Donald (1990).

4. Lower Bounds What Programmable Vector
Fields Canna Do

We now preseh “l ower bounds™—constitutig vecta fields
ard parts with pathologichbehavior, making them unusable

Section 6.2we will show that the algorithn describd in this for positioning Thes Counteexampig show tha we must

4. Parallel-jaw grippe symmety is also modub .

be carefu in choosiy programmalts vecta fields and that,
apriori, it isnot obvious when afield iswell behaved.
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4.1 Unstabk Fields

InSectin 3, wesaw tha in avecta field with asimplesqueeze
patten (se2 agan Fig. 7), polygona parts read certan equi-
librium poses This raises the questio of a generé classifi-
cation of all those vecta fields in which every patt has stable
equilibria Thereexist vecta fieldstha do not have thisprop-
erty, even thouch they are very similar to asimple squeeze.

DEFINITION 5. A skewed field fg is avecta field given by
fs(x,y) = —sign) (1, €),wher 0 # € € R.

PropPosSITION 3. A skewed field induces no stabk equilib-
rium on adisk-shapd part.

Proof. Conside Figure 14, which shows askewed field with
€ = —%: only when the cente of the disk coincides with the
cente of the squeee patten do the translationaforces acting
on the disk balance But it will still experien@ aposiive
momert that will cau rotation [

ProPOSITION 4. A diagonaly skewed field (¢ = +1) in-
duces no stabk equilibrium on a square-shapkpart.

Proof. To read equilibrium in a diagonaly skewed field,

the squeee line has to bised the pait sud tha the connector
betwea the left and the right centes of areaisdiagona (i.e.,

paralld to the force vectors) An analyss similar to the proof

of Proposition 1 (Sectio 3.2) shows tha for a square no

bisecto placemencan achieve an angk with the connector
of lessthan 83°. [

Propositiors 3and 4 show tha skewed squeee fields can-
nat be usal for open-log positionirg or orienting of parts,
since there may not exist any stabk equilibria However,
skewed squeee fields may be very usefd if our god is to
continuousy rotak apat (e.g, for inspectian purposes).

Fig. 14. Unstabk patt in the skewed squeegfield (e = — %).
Thedisk with itscente onthe squeeglinewil | kegp rotating;
moreover, it has no stabk equilibrium in this field.

4.2 Unstabk Parts

Similarly, wewould lik e to identify the class of all those parts
tha always read stabk equilibriain particula vecta fields.
From Sectio 3, we know tha connectd polygorsin simple
squeee fields satisf this condition This propery relies on
finite area contacts it does not hold for point contacts Asa
counteexample conside the patt Pgs in Figure 15.

ProPOSITION 5. Thetre exist parts tha do not have stable
equilibriain asimple squeee field.

Prodf. The S-shapd patt in Figure 15 has four rigidly con-
nectel “feet’ with smal contat surfaces Astheareaof each
of thes four feet approachszerq the part has no stabk equi-
libriumin asimplesqueeefield. Therisonly oneorientation
for the patt in which both force anrd momen balane out, and
this orientatian is unstable [

In Section 5.2, we discus this phenomennin greate de-
tail, after the tools necessar for a complee mathematical
analyss have been developed.

Finally, the numbe of stabk equilibria of a given part
influences both the plannirg compkxity and the plan length
of an alignmert straegy. It also affects the resolution of the
vecta field tha isnecessarto perfom astraegy accuratey.
Even thouch all pars we have considerd exhibit only one or
two orientatio equilibria there exist no tight bounds on the
maximum numbe of orientation equilibriain aunit squeeze
field.

ProPOSITION6. Letn bethenumbe of verticesof apolygon
P, ard let k£ be the maximum numbe of edgesthat abisector
of P cancross:

Fig. 15. The S-shapd part Ps with four rigidly connected
point-contat “feet’ in unstabé totd equilibrium (forces
ard momens balance). Ther exists no stabk equilib-
rium position for this pat in a vecta field with a simple
squeee pattern
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A. regular polygors have n stabk orientation equilibriain
asqueeefield; and

B. every connectd polygan has O (kn?) stabkorientation
equilibriain asqueee field.

Proof.

A. Becaus of their pat symmety, regular polygors have
2n equilibria Half of them are stable the othe n are
unstable.

B. See Sectin 3.2.

As describé in Section 3.2, there exist simple polygons
with n verticestha can be bisectel by a straigh linein up to
0 (kn?) topologicaly differert ways (Béhringe et al. 1997a).
Thissuggesithat therecould be parstha have Q (kn?) orien-
tation equilibriain asqueee field, which would imply align-
mert strakgies of lengh 2 (kn?) ard plannirg compkxity
Q(k%n).

While the counteexampke in Figure 15 may be plausibly
awided by prohibiting parts with “point contactg the other
examples(Fig. 14 and Propositian 6) aremoreproblematic In
Section 5, weshow how to choo® programmals vecta fields
that exclude some of thes pathologichbelaviors, by using
thetheowy of potentidfieldsto descrite aclass of forcevector
fields for which all polygona part have stabk equilibria In
Sectio 6.1, we show how to combire the fields to obtain
new fieldsin which all pars have only O (kn) equilibria.

We believe pars with point contad (not having finite area
contacywill behavebadl inall vecta fields Wecanmodéd a
point contad with deltafunctions suc that e.g, for apoint-
contae P at (xg, yo):

/ fdA = / F5(x0. y0)dA = f(x0, y0).
Po

This modé is frequenty usal in mechanis (seg e.g, the

work of Erdmam (1994)) Poirt contad permit rapid, dis-

continuos changsin forceand moment Hence bodieswith

point contad will terd to exhibit instabilities as opposd to

flat parts tha are in conta¢ with alarge numbe of (elastic)
actuators Finally, we believe tha as the area contact—the
size of the “feet” of a part—approactsezerqg the pat may
becone unstable Thisrepreserd adesigh constraii on parts
tha are to be manipulate using programmat# plana parts
feeders.

The lower bounds we demonstra are indicatiors of the
pathologis tha can arise when fields without potentid or
pars with point contad¢ are permitted Ead of our coun-
terexamples (Figs 14 ard 15) is “generic’ in that it can be
generalizd to avely large class of similar examples How-
ever, thes lower bounds are just afirst step and one wishes
for examplesthat delineaé the capabilities of programmable
vecta fields for plana pars manipulation even more

precisey.

The separatig field shown in Figure 1c is nat a poten-
tial field, and there exist parts tha will spin forever, with-
out equilibrium, in thisfield (this foll ows by generalizig the
constructim in Fig. 14). However, for specift parts suc as
those shown in Figure 1, thisfield isusefu if we can posethe
pars appropriatef first (e.g, using the potentid field shown
in Fig. |b).

Finally, wemay “surround nonpotentiéfieldswith poten-
tial fieldsto obtain reasonaldbelhavior in sonecasesFigure
1 shows how to “surround a nonpotenti&field in time by
potentia fields to eliminak pathologies Similarly, we can
surrourd nonpotentiafields spatially. For example if field
Ic could be surroundd by a larger potentid field, then after
separationparts could read astabk equilibrium.

Nonpotentiafields can be usel safely with the foll owing
methodology let H ¢ € = R? x S be the undesiral# limit
set For example H could be a limit cycle where the part
spirs forever. Let Py (H) be the wea pre-imag (Lozano-
PérezMason ard Taylor 1984 Donald 1989 of H unde the
field V. If we can ensuetha the patt starsin aconfiguration
z E ﬁV(H), it will not read the unwanta limit cycle. For
example in Figure 1the centerirg step (b) ensurs that the
part doesnot end up onthe borde betwea thetwo separating
fields where it would spin forever in step (c).

5. Completeness Classification using Potential
Fields

Weareintereste in ageneraclassificatio of all those vector
fieldsinwhich every part hasstabkequilibria Asmotivation,
recal tha a skewed vecta field, even thoudh very similar to
aregular squeee field (see agah Fig. 7), induces no stable
equilibrium in adisk-shapd pat (Fig. 14). In this section,
we discus afamily of vecta fields tha will be usefu for
manipulation tasks The fields belorg to aspecift class of
vecta fields the class of fields that have a potential.

We believe tha fields without potentid wil | often induce
pathologica beravior in many parts Fields without poten-
tial admt paths along which aparticle (point mas$ will gain
enggy. Since mechanichparsarerigid aggegatiors of par-
ticles this may induce unstabé behavior in larger bodies.
However, there are sone cass where nonpotentibfields may
be useful For example see Figurelc, whichisnat apotential
field. Sud fields may be employel to separad but nat to sta-
bilize, pose or oriert parts Thisstrorg statemetdevolvesto
our prod that fields like Figure 14 do nat have well-behaved
equilibria Hence they shoul only be employa&l when we
wart to induce an unstabé systen that will cag pars away
from equilibrium, e.g, to sott or separat them.

Conside the class of vecta fields on R? tha have a po-
tential i.e,, fields f in which the work is independenof the
path or equvalently, the work on any closeal path is zero,
¢ f-ds = 0. Inapotentid field, eac point (x, y) isassigned
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ared value U(x, y) tha can be interprete as its potential
enegy. When U issmooth then the vecta field f associated
with U isthegradienn —VU. IngeneralU (x, y) isgiven up
to an addiive constantby the pah integral [, f - ds (when
it existsard it isunique) where « is an arbitray pah from a
fixed referene point (xo, yo) to (x, y). Assumiry first-order
dynamicswhen U issmooth anided point objed isinstable
equilibrium when it isat alocd minimum of U.

DEFINITION 6. Let f be aforcevecta field on R?, and let
p be apoint tha is offset from afixed referene point q by a
vecta r(p) = p — q. Wedefirethegeneralizd force F asthe
force and momert inducel by f at poirt p:
F(p) = (f(P),r(p) x f(p). (12)
Let P be apat of arbitray shapeand let P, denoe the
pat P inpoez=(x,y,0) € C. We defire the lifted force
field fp astheareaintegrd of theforceinduced by f over P;:

fP(Z):/fdA- (13)
Py

The lifted generalizd forcefield Fp isdefinal asthe area
integrd of the force anrd momern inducel by f over P in
configuratio z:

Fp(2) = / FdA,
P,
(14)
- /fdA,/rxfdA
P, P,

Hence Fp isavecta field on €. Finally, we defire the lifted
potentid Up : € — R. Up isthearenintegrd of thepotential
U over P in configuratian z:

Up(2) = / UdA.

Pz

(15)

We now show tha the cakgory of potentid fields is closed
unde the operatim of lifting, and that Up is the potentid of
Fp (seeFig. 16). Notetha U neeal not be smooth.

letg: X > Yadh :Y - Z. Letk : X - Z
be the function that is the compositio of ¢ and 4, defined
by k(x) = h(g(x)). In the following proposition we use
the notatian z(g) to denoe k, the function composition of g
ard 4.

PROPOSITION 7. Let f be aforce field on R? with potential
U, ardlet P be apatt of arbitray shape For thelifted gene-
alizedforcefield Fp ardthelifted potentid U p, thefoll owing
equaliy holds Up = [, UdA = [, Fp -dz+ ¢, wherea is

3 I,
L]
R=
z |/ J
] P P
oy
g
/
a

f =

potential: path integral

Fig. 16. Determinirg the potential ard liftin g are commuta-
tive operatiors on forcevecta fields.

an arbitraly pah in € from afixed referene point, ard c isa
constant.

Proof. Given aforce field f with potentid U, and a part
P, we defire P* asthe sd {(r, n)|(r cosn, rsinn) € P} C
R x St. P* is arepresentatioof P in polar coordinatesp
=(rcosn, rsing) € Pifadonly if (r, n) € P*.

We write P; to denoke P in poe z = (xz, yz,07). If P is
moved into pose z, then the point p movesto p; = (xz +
rcos8; + 1), yz + rsin@; + n)) = (xz,y2) +rz. Letus
assunetha for agiven P, the COM of P isat 0; thisimplies
tha the COM of P, liesat (xz, yz).

We defire three families of functiors p, ¢, and «, as fol-
lows:

ory [0, 1] — R2

such tha p;,, is asmooh pah in R? with p,, (0) = 0 and
pry(1) = po = (r cosn, r siny),

& :[0,1] > R? x St

sud that ¢, isasmooh pah in R? x St with £,(0) = 0 and
;Z(l) =Z= (-XZ7 yZv 92)! and

RZ
(x +rcosd + 1),
y +rsin® + n).

RZ x St
(x,y,6)

—
—

Oyt

S0 ¢ is an arbitray smooh pah from O to z in G, and
oy, (L) isasmooh pathin R2 from po = (r cosy, r sinn)
topz = (xz + rcos0; + n), yz + r sin(6z + n)). Recal that
ar.p(¢z) isthe function compositio of ¢, ard o .

We are intereste in the potentid of U at p;.
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U(pa) :/f-ds,
B

where g issone pat from 0 to p,. Theintegrd is
pah independentbecaus f has potentid U. Since
we can choo® any path we choo® apath 8 that
consiss of two parts (1) apat from 0 to the point
Po, ard (2) apath from pg to p;.

:p{f.dst / f - ds,

Ar (&2)

whete the pah ;. (¢2), given by the compositia of
{z ard ;. ,, depend on z aswell ason r ard 5, but
pr.n isindependenof z. Theleft integrd isthe
potentia differen@ betwea pg and 0. Without loss
of generaliy, let uschoo® U (0) = 0.

=U(po) + / f ey - (3 d2),
&z

where J is the Jacobian:

dax dax dax )
I ( ax 9y 00 ) _ <1 0 —rsin® + 77))
—\o ) day | — 1 ’
oA g/ N0 1 reotoen
which isthe deiivative of o, ,. f () isthefunction

compositio of o, ,, ard f. Also notetha dz =
(dx, dy, do).

=U(po) + / (fx(ar,n)v fy(ar,n)a
&z

r coSO + 1) fy (@) — r SINO + 1) fe (@) - dz.

—U(po) + f Far,), -dz.

&
(16)

Equation (16) statesthat the potentid at apoint p; = (xz+
r co90z+n), yz+r sin(6z+n)) can bedetermine asthesum
of two integrals the first integrates the force f over a path
from O to po = (rcosn, rsingy). If we choog U(0) = 0,
then the first integrd is the potentiad at point pg. The right
pat of the expressim can be understod as the pat integral
of the generalizd force from pg to p;

With this result we can now conside the lifted potential
Up @ apointz = (xz, yz,07) € C:

Up(2) = / U(p)dA,

P;
_ / / Upa)r dr dn,
P*

wherep; = (x; +r cog6; + 1), yz
+rsin(@; + n)) sud tha (r, n) € P*.

:// U(p0)+/‘F(ar,n)-dZ rdrdn,
P*

z
by using eq (16). Again, F(«,,) denotsthe
function compositio of «,.,, ard F.

=//U(po)r dr dn
P*
—l—// /F(otr,n)-dz rdrrn.

P* \lz
The first expressia is the areaintegrd of U over
P. From Definition 6, it foll ows tha this express-
ionisequdto Up(0) (notetha Up(0) isacon-
start that does not depem on z).
=Up(0)

1
+ / / ( / F(ar,n@z(r)))xz’(r)dr)rdr -
P* 0

whetre ¢, isthe deiivative of ¢,. The dot product
yields ascala value We can now switch the

integrals.
1

=/ (/ / F(ary (52(1))) - §5(0) r dr dn) dt
P*

0
+Up(0).
¢, isconstahwith respetto the integration
parametesr and n hence we can move ¢, out-
side of the araaintegral.

1
_ / ( / / F ey (C2(0))r dr dn) L) di
0o \" p

+Up(0),

1
_ / ( / / F(Lan () + 1 COSLa.0(8) + 1),
0 P
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G2,y (t) 4 1 SiN(L2,9 (1) + m)r dr dn) - &5 ()dt
+Up(0),
where fz = (fz,xs fz,y’ §z,9)-
1
=f / / F(rcosn, rsing)r drdn | - ¢,(t)dt
0

+Up(0),
whete P, = {(r, n)|(r cosn, rsinn) € Pr,}.

¥
P{z(t)

1

=f / FdA | - (t)dt + Up(0),
0 Vo
1

=/ Fp(&(1)) - &5 (1)dt + Up(0)
0
by definition of the lifted force Fp.

=f Fp-dz+ Up(0).
&z

Hence Up isindeal the potentid of Fp. [

We believe that ashorte prod is possibe by using differ-
entid formsfor the caetha both f ard U are smooth How-
ever, since the fields in consideratia are usuallyy not smooth
(e.g, unit squeeeor radid fields), we give the longe general
prod here Note tha this prod does nat rely on the fact that
f isavecta field on R2. Thereforethe prodf generalizeto
dimensios 3 or highe.

COROLLARY 2. Let f be aforcefield on R? with potentid U,
andlet P be apatt of arbitraly shape For theliftedgeneralized
force Fp ard the lifted potentid Up, the following equality
holdsif Up isdifferentiable VUp = —Fp.

Prodf. Follows directly from Proposition 7. (O

SoagainUp(x, y, 6) canbeinterpretel asthepotentiden-
ergy of patt P inconfiguratia (x, y, ) Thereforewe obtain
alifted potentia field Up whos locd minima are the stable
equilibrium configuratiosin € for pat P. Furthermorepo-
tentid fields are closal unde addition ard scaling We can
thus creae ard analyz more compkx fields by looking at
their componentsin generalthetheory of potentia fields al-
lows us to classify manipulatian straegies with vecta fields,
offering new insights into equilibrium analysgs and provid-
ing the mears to determire straegies with stabk equilibria.
For example it allows usto show tha orientation equilibrium

L
ar
AL\
i Sk
1)
, -,
£ i \
P P %
£ By
; i
—I—'_-
it T

Fig. 17. Two triangles P, and P, with referene pointsz and
Z whose symmetre differen@islessthan e.

in a simple squeee field is equvalert to the stability of a
homogeneasiboa floating in water, provided its densiy is
0= % owater (for reference on bod stability, see the works of
Gillmer (1956 pp. 42ff) or Newman (1977, p. 290ff)).

5.1 Properties of Lifted Force and Potentid Fields

Inthissectionwe show tha for apolygonapat P, thelifted-
force field is always continuous and the lifted potentia is
always smooth.

ProPOSITION 8. Conside a polygan P at two configura-
tions z= (x,y,0) andz = (x',y,0"),2,Z e C=R?xSL.
For all ¢ > 0, there exists aé > 0 suc tha if Z' lies within
aés-bal arourd z, 2 € Bs(z), then w(P,APy) < e(u(-) de-
notes the size of an areg and A is the symmetr¢ difference
of two sets).

Prodf. First wewill creae aregion S arourd P, sudh tha for
any perturbel triangle P, C S, the noroverlappirg regions
of P, and P, are less than agiven ¢ in size Then we will
show tha there always exists a region Bs(z) arourd z such
tha if Z € Bs(z), then P, liesin S.

For now, let usassunethat P, isatrianglein configuration
z, ard let a be the lengt of itslonges side Conside the set
S = P; ® B,(0), for sonea > 0 (Fig. 17). The area of
S — Pyisu(S — P, < 3a(a + 2a). Letuschooga < 3
min(1, €, €/a). Thenife < 1, u(S—Py) < %(€+262) < €.
If e > 1, u(S — P;) < 3(e +2) < e. Soin both casesif
Py C S, then the area of the symmetrc difference P,A Py
isat mog e.

We are interesté in the distane betwea apoint p € Pz,
and the correspondig perturbel point p’ € P,. We can
descrile the pointsp ard p’ asp = (x + rcog¢ + 0), y +
rsin(g+6))andp’ = (x’+rcoep+0'), y +rsin(p+6)),
where r and ¢ are the lengh and the angk of a line from the
referene point of P tothe point p. The distane betwea the



Bohringe, Donald ard MacDonadl / Force Fields for Distributed Manipulation 19

x-coordinatsis

|xp — xp'| = |x +rcose +6) —x" —rcodp + 6|
26+6+6  6—0
Sin

< |x —x'| +|2r sin
<l|lx—x'|+1|2r 5 5

|
<|x—x'|+r6 -0
— o i
If wechoog s = T we obtain

|xp — xp'| < a/4+a/d
=a/2.

Similarly, |yp — yp < «/2, ardhene|p — p/| < a. We
concluce tha p’ € S wherever Z € Bs(z). Hene we can
always find a §-bal arourd z sud tha the ares of P, and
P, differ by at mog ¢ (by choosig § < ie.,
5 < min(l,e,e/a)).

36max(1,r) . . .
Thisprod generalizeto arbitrary polygors(e.g, by using

triangulations) O

__a
dmaxl,r)’

ProOPOSITION 9. Let P be apolygona pat in aforce field
f with potentid U. The lifted force field fp(z), and the
lifted generalizd forcefield Fp(z), withz = (x, y,0) € C=
R? x S, are continuos functiorsin x, y, and 6.

Proof. For a given y > 0, we wart to determire an up-
per bourd on the differene betwee F(z) and F(Z') for an

arbitray z' € B, (2):
/ fdA — f fdAl,
Pz Py

< /fdA+ /fdA,

|F(2) - F(2)| =

P,—P, — P,
<f / dA + / da |,
P,—Py P,—P,

=f|PZAPZ/|,

where f = sups (|f(x, y)]) with S = {s € Py|Z € B,(2)}.
This supremum exists wherever f is integrable i.e, if fp
exists.

From Propositian 8, we know tha we can make the area
of P,A P, arbitrarily small by choosimg an appropria¢ 6-
bal arourd z. In particula, we can force it to be less than
1/f. Hene we can ensue tha |F(z) — F(Z)| < ¢ for any
Z € Bs(z),ard any € > 0. Thisimpliestha F iscontinuous
inz=(x,y,0).

An analogos argumert holds for the lifted generalized
force Fp.

COROLLARY 3. For apolygond patt P, the lifted potential
field Up(2) = sz UdA is C1 (i.e, its deiivative exists and

is continuous) Moreover, VUp(z2) = —Fp(2), where Fp is
the lifted generalizd force actingon P.

Proof. Becaug of Propositim 7, Up (2) = fa Fp-dz+cfor
sonmeconstatc. From Propositio 9, we know that the lifted
generalizd force Fp iscontinuoushenethe pahintegrd of
Fp mug beCl. VUp(2) = —Fp(2) becaus of Corollary 2.

5.2 Examples Classification of Force Fields

Exampe 1. (Radid Fields) A radid field is avecta field

who= forces are directal toward a specift cente point It

can be usal to cente a patt in the plane The field in Fig-

ure Ib can be understod as aradid field with arathe coarse
discretizatia using only four differert force directions Note
tha thisfield has apotential.

DEFINITION 7. A unit radid field R is a two-dimensional
forcevecta field sut tha R(z) = —z/|z| if z = 0, and
R(0) = 0.

Note tha R has a discontinuiy at the origin. A smooth
radid field can be defined for example by R'(z) = —z.

ProPoOSITION 10. Given theradid fields R and R’, the cor-
respondig potentia fields are U(z) = ||z||, and U'(2) =
1112112, respedtely.

Note that U is continuows (but not smooth) while U’ is
smooth.

Counteexampk1 (Skewed SqueezFields): Consideagain
the skewed squeeefield in Figure 14. Notethat for example,
the integrd on a cyclic pah along the bounday of the disk
is nonzero This explains why the disk-shapd pat has no
equilibrium.

ProPOSITION 11. No skewed squeee field has apotential.

Counteexampk 2 (Parts with Point Contacts) Consider
agan the globally unstabé S-shapd patt Ps from Section
4 (Fig. 15). At first glance this exampke may seen coun-
terintuitive. It can be shown (se2 Lemma 4) that there must
exist a pose zmin in which Pg achieves minimd potential so
why is Ps not stabk in pose zmin? To bette understad this
problem we investigaé S-shapd pars with finite area con-
tacts and the transitin as their contad¢ area are decreased
towards 0.

Let us conside an S-shapd pat with four squae “feet.”
We chooe the referene point at the COM, sud tha two
of the feet are centerd at &=(r4, 0), ard the othe two feet
are at £(rp cos¢, rg Sing) with ¢ constraind to —7/2 <
¢ < m/2 (Fig. 18). Figure 19 shows two equilibria for an
S-shapd part It is eay to see tha thes are the only two
totd equilibria, ard tha one of them (Fig. 199 is unstable.
For the foll owing discussionit is suficient to investigae the
behavior in asqueee field with its referene point fixed at
(0,0).

Figure 20a shows the momert function Mp; ard the po-
tentid Up, of an S-shapd part wherery, = 12,rp =4, ¢ =
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Fig. 18. An S-shaped part with four rigidly connected square
“feet” in configuration(x, y,0) = (0,0,0),r4 = 12,rp = =
4, andp = 60°. .

60°, and the feet have area size 10. Notice that in poses with '
#-angles corresponding to minima in the potential, the mo-
ment has a root with negative slope, which indicates a stable =
(orientation) equilibrium. Figures 20b and 20c show the (nor-
malized) moments and potentials for parts with feet sizes 5 et
and 1, respectively. We observe that with decreasing contact o
areas, these functions become “less smooth,” and the slope al ; 2
the moment root increases. Figure 20d depicts moment and "
potential for a part with infinitesimally small feet. Inthis case, (&)
the moment function does not have a root at the minimum of
the potential; rather, it exhibits a discontinuity at this orienFig. 19. Total equilibria of an S-shaped part with area
tation. This has the consequence that the part is not stablntacts in a squeeze field. (a) Maximum potentighx =
in this pose. In fact, for the moment function in Figure 20d(0, 0, Omax), such thatr, sinfmax = —rg SiN(Omax + ¢);
there exist no roots with negative slope, and hence there exigisx ~ —0.24. (b) Minimum potentialznmin = (0, 0, Omin);
no stable equilibrium. Omin ~ /2.

This observation can be made mathematically precise. The
exact equations for the lifted potential and the momerRpof

are ing moment with opposed orientation. Under second-order

dynamics, the part may have a finite oscillation amplitude be-
cause of the inertia of the part. However, damping will reduce
this amplitude over time.

We conclude that parts with point contacts can exhibit

Up, = 2r4| cosf| + 2rg| cog6 + ¢)|,
Mpg = 2rsS(0) + 2rgS(6 + ),

17)

sing if0 <60 <m/20r3/2r <6 <2r, pathological behavior even in very simple and otherwise well-
withS(0) = { —sing if 7/2 <0 < 3/2x, behaved potential fields: this example shows that for such
0 if 6 = /2 org = 3/2r. parts, it is possible that the generalized force is not zero in a

(18)

The potential minimum is reached @&t= /2 or6 =
3/2n. However, we see that, for examplg&fp,(7/2) =
—2rgS(w/2 + ¢) —2rpcosp # 0. Furthermore,
Mpy(w/2—) > 0, andM (7 /2+) < 0. This implies that the

pose that minimizes the potential of the part.

This pathology cannot occur when only parts with finite
area contact are allowed. From Corollary 3, we know that the
(lifted) potential of a part with area contactdg; hence its
gradient exists everywhere. In particular, the gradient is zero
at the minimum of the potential. This means that in a pose

part Ps will oscillate abouty = 7 /2. Under first-order dy- with minimum potential, the generalized force must be zero.
namics, this oscillation will be infinitesimally small, becausé et us summarize these results.
any infinitesimal angular deflection &% results in a restor-
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Fig. 20. Momert function M p (thin line) ard potentid U p, (thick line) for S-shapd parts (a) feet have contacs of areasize
10; (b) size = 5; (c) size = 1; (d) point contacts Note how a discontinuiy is createl in the momern function when the contact

areais decreasgtoward O.

COROLLARY 4. Let P be apat with finite areaconta¢ in a
forcewvecta field f with potentid U. In a configuratiaon zg
that correspondto alocd extremum of the lifted potential
Up, thelifted generalizd force Fp(zp) is zero.

In othe words for a first-orde dynamic# systen ard a
patt P with finite-area contact alocad minimum (maximum)
of Up correspond to a stabk (unstabl¢ equilibrium of P

inf.

Exampeé 2 (Morphing and Combinirg Vecta Fields). Our
stratgiesfrom Sectian 3have switch pointsintime, wherethe
vecta field changsdiscontinuoust (Fig. 7). Thisisbecause
after one squeezgfor every part the orientation equilibria
form afinite sa of possibé configurations but in general
there exists no unigue equilibrium (as shown in Sectia 3.3).
Hence subsequensqueezsare neede to disambiguad the
pat orientation Thes switches are necessarfor strakgies
with squeee patterns.

Onemay ak whethe, using anothe class of potentia field
strakgies unique equilibriamay be obtainal without discrete
switching We believe tha continuousy varying vecta fields

of theform (1 — #) f + tg, wheret € [0, 1] represergtime,

ard f ard g are squeezesnay lead to vecta fields tha have

thispropery. Here “+” denote point-wise addition of vector
fields, and we will write “f ~~ g” for the resultirg continu-
ously varying field. By restricting f ard g to be fields with

potentiab U and V, weknowtha U + V ard (1 — 1)U +tV

are potentia fields, and hene we can guarante tha f + g

ard f ~ g arewell-behaved strakegies Thesform the basis
of our new algorithnsin Section 6.

Let us formalize the previous paragraphslf f is avector
field (in this ca® asqueee pattern that is applied to move
pat P, we defire the equilibrium se& Ep(f) asthe subsé¢ of
the configuratio spae C for which P isin equilibrium Let
uswrite f x g for a straegy tha first applies vecta field f,
ard then vecta field g, to move patt P. f + g can beundea-
stodl as applying f and g simultaneousl. We have shown
that in general Ep(f) is nat finite, but for two orthogonal
squeeze fard g, the discrete-switchig straegy f * g yields
afiniteequilibriumsed Ep (f xg) (seeSectian 6.2, Claim 1).
Furthermorefor sone parts the equilibrium is unique up to
symmety.
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We wish to explore the relationshp betwea equilibria
in simple vecta fields Ep(f) or Ep(g), combinal fields
Ep(f+g),discretey switchel fields Ep (f * g), and contin-
uousy varyingfields Ep (f ~ g). For example onemay ask
whethe there existsastratgy with combineal vecta fields, or
continuousy varying fields, that, in just one step reachsthe
sanme equilibrium as a discretey switched stratgy requiring
multiple steps Finally, let f1 x f> % ... x f; be asequene of
squeee fields guaranted to uniquey oriert a part P under
assumptia 2PhaseWe wish to investigaé how continuously
varying stragegiessud as f1 ~ fo ~» ... ~ fy canbeem-
ployed to dynamicalyy achieve the sarre equilibriaeven when
the 2Phaseassumptia isrelaxed The distributed actuation
strakgy f = g is distributed in space but not in time. The
strakgy f + g isparallé with respetto spa@and time, since
f and g aresimultaneougl “run.” Researbinthisareacould
lead to atheory of parallé distributed manipulatio tha de-
scribes spatially distributed manipulation tasks tha can be
parallelizel over time and spa by superpositia of controls.

5.3 Upward-Shapd Potentid Fields

So far we have presentd specifc force fields tha always
(e.g, squeerardradid fields) or never (e.g, skewed squeeze
fields) induce stabk equilibriaon certan classs of parts We
conclucethissectionwith acriterion that provides asuficient
condition on force fields sud that all pars of a certan size
read a stabk equilibrium.

Wehaveobseved in Section 4tha apriori itisnot obvious
when aforce field induces stabk equilibria Our equilibrium
criterion will be basel on two importart properties:

1. Thefield has apotential Potentié fields do not allow
closel patts (technicaly, limit cycleg along which the
work is positve, which could induce infinite motion of
apart.

2. Theforcefieldis“inward-directeqd’ which impliesthat
(assumig first-orde dynamic$ pars can never leave a
certan region, R. Thisusefu propery is adired con-
sequene of the definition of inward-directednessAn
inward-directe forcefield correspondto an “upward-
shaped potential in which all patts tha leave region
R have an ascendig slope.

Wewill require Propery 1to hold for the entireforcefield,
while Propery 2 devolves to abounday condition.

5.3.1 Elementay Definitions

DEFINITION 8. Let z € R". The e-bal arourd z, denoted
B.(2), isthesd {r € R"| |r — z| < €} of all points within a
distane ¢ of z.

DEFINITION 9. (Lozano-Pére 1983) Let A, B be sekin

R", The Minkowski sum A @ B of two se6 A ard B is
definel asthese {a+ bja e A, b € B}.

From thes definitions it foll ows that for aregion R with
bounday oR, the se¢ R & B;(0) = {r + zIr € 9R, and
|z| < d} comprise all points tha are within a distane d
from the bounday of R.

DerFINITION 10. Given aregion R C R”", defire the set
CI(R,d) = R — (R & B4(0), which is the region R
shrurk by distan@ d. Note tha CI(R,d) is base upon
the configuration-spaginterior (Lozano-Pére 1983 of R
for B;(0). Abusing terminolog slightly, we cal CI(R, d)
the configuration-spaginterior of R in this pape.

DEerFINITION 11. Theradissrp of apatt P isthe maximum
distane betwea an arbitray point of P and the cente of
mas (COM) of P.

5.3.2 Equilibrium Criterion

We are now able to stak agenera criterion for a force field
f to induce stabk equilibria on all parsin aregion S. As
mentionel at the beginning of Sectin 5.3, this criterion is
basel on two main conditions (1) if f has apotential limit
cycles with posiive enegy gain are awided inside S; and
(2) if f is“inward-directed (see the definition below), parts
canna leave theregion S.

In the following, we give ageneradefinition of inward-
directal vecta fieldson amanifold Z. Wethen specializthe
definition to the specid instance of Z = € = R? x S? (the
configuratio spac¢ and Z = R?, ard give asuficient, prac-
tical condition for inward-directe vecta fields Weconclude
with the presentatio of our equilibrium criterion.

DEFINITION 12.  (Inward-Directel Force Fields)® Let Z be
an arbitraly smooh manifold ard let Y C Z be acompact
ard smooh submanifodl with bounday of Z. Assurre that
dY has codimensia 1 in Z, ard tha the bounday of Y is
orientable Let ¢ € dY be apoint on the bounday of Y, and
V, € T, Z beatangenvecta to Z at q.

We say V, isinward-directel to 9Y at g if ther exists a
suficiently smal e > Osuththa g +- €V, € Y.

Let V be avecta field on Z. We say V isinward-directed
toaY if V(g) isinward-directélto dY at g forall ¢ € 9Y.

Assunethesd S ¢ R? iscompatard smooth Consider
the patt P when it is placed into the force field f sud that
its COM liesin S. The sd of all suct posesis asubseéof the
configuratio spa@ € = R? x S, whichwecall § = § x S™.
Thebounday of SisdS = 95 xS™. Notethat 3 S separatsthe
interior i S = S — S from theexterior —8§ = R2 — §) x S1,
ard that 85 isisomorpht to atorus St x S1.

Now let z = (x, y,6) € 3S, ard let F, € T.C represent
the lifted generalize force acting on pat P in poe z. F,
is inward-directe (with respetto 95) if F. pointsinto the
interior of S. Note that this condition is equvalert to saying

5. In this definition, for conveniene we assune tha Z is embeddd in R
for some m. This condition may be relaxed.
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that the projectin of F, onto the tangen spae at (x, y) to
R? points into S, becaus the rotationd componehof F; is
tangentiato 8S. Sa for example if z = (x, y, 6) € 35, then
7 =(x,y,0") €3S forany 0.

The following propositian gives asimple condition on a
force field f that tells us if, for a given pat P, its lifted
generalizd forcefield Fp isinward-directed:

PrOPOSITION 12. Let P be apait with radiusr whose COM
isthereferene point usal to defire its configuration spae
=R? x S’. Let f beaforcevecta field definel on aregion
R c R?, with Fp the correspondig lifted generalize force
field. Let S ¢ R? be aconvex, compactand smooh subset
of the configuration-spaeinterior of R,and S C CI(R, r).

Conside a point ¢ € 3S with outwad normd n,, and a
bal B,(q) with radius » abou ¢. If for every point g € a5,
ard for every point s in the correspondig bal B.(gq), the
dot-produt g(s) = f(s) - ny islessthan O, then the lifted
generalizd forcefield Fp isinward-directel to 0S5 (note (-)
isthe standad inner product).

Proof. Conside the patt P in po®z = (x, y,6) € 3S such
tha ¢ = (x,y). P hasradiss r; hene it lies completely
inside the bal B, (g), independenof its orientation 6. As
we know tha g(p) = f(p) -ny, < Oforall p € B.(g),
we can conclucke tha the integrd of g(p) over P isals less
than 0: [, g(p)dA = [, f(p) -ngdA = fp-ng <O. This
implies tha for fp, which is the translationhcomponenof
Fp (see Definition 6), the vecta g + efp(z) liesinside S, if
€ isposiive ard suficiently small As mentionel above, this
suffices to ensue tha the vecta z + € Fp(z) liesinsideS.[]

LEMMA 4. (Equilibrium Criterion). Let P be apolygonal
patt with radiws r, let f be a force field with potentid U
definal on aregion R ¢ R?, ard let S C R as specifi@ in
Proposition 12. Let us also assune tha the motion of patt P
is governal by first-order dynamics.

If the lifted forcevecta field Fp isinward-directel to 8.5,
then the part P will read a stabk equilibrium unde f iniS
wherever its COM isinitially placalin S.

Proof. Assume tha the COM of patt P is placed at a point
(x,y) € S. Thismearstha P isinsonepo®z = (x, y,0) €
S. We now show tha the COM of P canna leave S when
initially placed inside S. We know that 95 separatei S from
€ —S. Hene every pah from z to sone z* € € —S must
interse¢ 8S at sone point z/ € 5. Now conside patt P in
pos 7. Unde first-orde dynamics its velocity mug be in
the direction of Fp(z'). Becaus Fp isinward-directegdthe
velocity of P mug be toward i S. In particula, this means
that the COM will moveintoiS; hene P canna leave S, and
that there is no equilibriumon 9.

Becaus of Propositio 7, f, ard hene Fp, have potential
U ard Up, respedwely. Therefoe limit cycles with enegy
gain are nat possible FurthermoreUp () is the continuous

image of acompat set,S. Therefoe theimage Up(S) isa
compat subseéof R, which has aminimum value attainel by
some point s € S. Sinee f isinward-directeds mug liein
i §. Thisminimumis astabkequilibriumof P in £, asshown
in Corollary 4. ]

Becaus of Lemma 4, the use of potentia fields isinvalu-
able for the analyss of effective and efficient manipulation
strakgies asdiscussdin thefoll owing section In particula,
it is usefd for proving the completenesof a manipulation
planne:.

6. New and Improved Manipulatio n Algorithms

Thepart-alignmebstraegiesin Section 3.3 haveswitch points
in time where the vecta field changs discontinuoust (Fig.
12). Wecandenoesudaswitched strategy by f1x fox. . .x fy,
wherethe f; arevecta fields In Sectim 3.3, we showed that
agenerhsqueee strakgy to align a (noncawex) polygonal
patt with n vertices may neal up to O (kn?) switches and
require O (k?n*)time in plannirg (k is the maximum number
of polygon edgestha abisecta can cross) To improvethese
bounds we now conside a broade class of vecta fields in-
cluding simple squeee patternsradial and combinel fields,
as describé in Sectin 5.

In Sectian 6.1 we show how, by using radid and combined
vecta fields we can significanty redue the compkxity of
the stratgies from tha of Secti 3. In Sectin 6.2 we de-
scribe ageneraplannirg algorithm tha works with alimited
“grammar’ of vecta fields (and yields, corresponding, less-
favorablke compkxity bounds).

6.1 Radid Strategies

Conside apait P in aforcefield f. Soneforcefields exhibit
rotationd symmety properties tha can be usal to generate
efficient manipulatio straegies:

Property 1: There exists a unigue pivat point v of P such
that P isintranslation equilibrium if ard only if v coincides
with 0.

Property 2: There exists a unique pivet point v of P such
tha P isin (neutraly stablg orientation equilibrium if and
only if v coincides with O.

We typically think of the pivot point v being apoint of P;
however, in generaliy, just like the cente of mas of P, v
does nat neal to lie within P, but insteal is sone fixed point
relaive to the referene frame of P. Now conside the part
P in an ided unit radid forcevecta field R as describé in
Sectin 5.

ProPOSITION 13.
hold.

Prodf. First, we fix the patt P at an arbitrary orientatio 6,
ard show that at this orientation P has aunique translation

Inaunit radid field R, Propertis 1 and 2
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equilibrium v(@). Tha is, placing v(0) at the origin is nec-
essay and suficient for P to bein translation equilibrium at
orientation 6. Secondwe show tha for any two distina ori-
entatiorsd and 6, v(9) = v(0’). We cal this unigue poirt v,
droppirg the orientatian 6. Finally, we argue tha wherever
P isin translatian equilibrium (i.e., v is at the origin), P is
neutrally stabk with respetto orientation This follows by
theradid symmety of R.

Conside the translationa forces (but not the moments)
acting on P in the radid field R. To do this, let us sepa-
rate R into its x- and y-componentsk,, and Ry, sud that
R = (R, Ry). Assure for now tha the orientation of P
is fixed If P is placal at a position zg € R?, who x-
coordinae is suficiently negaive, the totd force induced by
R, on P will poirt in the posiive x-direction Symmetri-
cally, placing P at a suficiently large posiive x-coordinate
will caug aforce in the negaive x-direction We claim that
by translatig P rigidly with an increasig x-coordinatethis
force decreasgcontinuousy and strictly monotonicaly, and
hene has auniqueroot.

To verify this claim, conside a smal area patth g of
P. A uniform translatio ¢ of % in the x-direction can be
describé as P(r) = Po & (z0 + 1x) (with zg the initial po-
sition of the patch x the unit vecta in the x-direction and
@ the Minkowski sum) The totd force on £(¢) in the x-
direction is f?t R.dA. This force decreasgcontinuously
and strictly monotonicaly with¢, becaus R, isstrictly mono-
tone and continuows everywhee except on the x-axis, which
has measue ze in R2. A similar argumert applies for the
y-direction ard becaus of theradid symmety of R, for any
direction.

If we choo® the sa S as asuficiently large disk-shaped
region arourd the origin, and recal tha R hasapotential we
can apply Lemma 4to concluck tha there mug exist at least
onetotd equilibrium for P. Now assune tha there exist two
distina equilibriae; = (x1, y1, 61), ard ez = (x2, y2, 62) for
PinR. Wewrite“ P(¢;)” todenottha P isinconfiguration
e;. Becaus of the radid symmety of R, we can reorient
P(e2) to P(e}) sud that its orientation is equa to P(eq :

ey = (x5, yp, 01), Where( ) = M( ) and M isarotation

matrix with angke 61 — 02 (Flg 21). Thisreorientatio does
nat affect the equilibrium Notetha P can be moved from e

to e}, by apure translation From above, we know that such a
translation of P correspondto astrictly monotore changgin

the translationaforces acting on P. Hene we conclude that
P(e1) and P(e}) canna both be in translation equilibrium
unlesse; and ¢, areequal Thisimpliesthat e; ard e cannot
both be equilibria of P in R unles they both have the same
pivot point v. O

Definition 7assumetha the cente of aradid field lies at
the origin. This definition can be generalizd to radid fields
with arbitrary centes (x., y.). Then properties 1and 2 hold
when the pivot point v coincides with (x., y.). Surprisingy,

Fig. 21. Rotating a part abou the cente of aunit radid field.
Theforce ard torque on the part reman constatwith respect
toitsreferene frame.

v neal nat be the cente of area P: for example consider
agan the patt in Figure 9, which consiss of a large ard a
smal squae connectd by a long rod of negligible width.

The pivot point of this part will lie inside the larger square.
Butif therodislong enoughthecente of areawill lieoutside
of the larger square However, the foll owing corollary holds:

COROLLARY 5. Forapat P inacontinuowsradid forcefield
R’ given by R’(z) = —z, the pivot point of P coincides with
the cente of areaof P.

Prodf. Theforceactingon P inR’isgivenby F = [, —zd A,
which is also the formula for the (negated cente of area [

Now suppoetha R iscombinel with aunit squeee pat-
tem S, whichisscaleal by afactar § > 0, resultigin R + 6.
The squeee componeh S of this field will cau the part
to align with the squeezesimilarly to the strakgies in Sec-
tion 3.3. But note tha the radid componeh R keefs the part
centerd in the force field. Hence by keepirg R suficiently
large (or § small), we can assune tha the pivot point of P
remairs within an e-ball of the cente of R. Thisimpliesthat
assumptia 2Phas (see Sectinm 3.3) is no longe necessax.
Moreover, ¢ can be mack arbitrarily smal by an appropriate
choice of §.

PrROPOSITION 13. Let P beapolygond patt with  vertices,
ard let £ be the maximun numbe of edges that a bisecta of
P can cross Let us assune that v, the pivot point of P, isin
generaposition There are at mog O (kn) stabk equilibria
in afield of the form R + &S if § is suficiently smal and
posiive.

Prodf. For apatt in equilibriumin apure radid field R (i.e.,
with § = 0), the pivot point v is essentialf fixed at the origin.
Thisisimplied by Propery 1. It iseay to seetha Propery 1
is nat true in gener&for arbitray fields of the form R + §S.
Propery 1 holdsif § = 0, becaus then any orientationisan



Bohringe, Donald ard MacDonatl / Force Fields for Distributed Manipulation 25

equilibrium when v is at the cente of R. However, Property
2 doesnat hold if § > 0, becaus in generdthere does not
exist aunigue pivot point in squeee fields (see Sectin 3.3).

We condud the combinatorié analyss of the orientation
equilibriaunde theassumptioatha (1) § > 0, and (2) tha v
isfixed at the origin. Thenwerelax the latter assumptionand
show tha Propery 1 holds approximatelyevenin R+65S, for
asuficiently smal § > 0. That is, we show tha asuficiently
smal § can be chos@é so tha the combinatoria analyss is
undfected when assumptia (2) isrelaxed.

First, we show tha when § is smal but positve, and with
v fixed at the cente of R, ther are only a linear number
of orientation equilibria (i.e., we constrai the pivot point v
to remah fixed at the origin until further notice) So let us
assune tha we are in acombinel radid and smal squeeze
field R +§S.

Conside aray w(0) emanatig from v. Assune without
loss of generaliy that v is not a vertex of P, ard that w(0)
intersecs the edges S(0) = {e1, ..., e;} of P ingener&po-
sition, 1 < k < n. Parameterie the ray w(-) by itsangk ¢
to obtan w(¢). As¢ sweep from 0to 2, ead edge of P
will ente ard leave the crossirg structue S(¢) exactly once.
S(¢) is update at critical angles where w(¢) intersecs a
vertex of P. Sincethere are n vertices there are O (n) criti-
cd anglesard hene O (n) changsto S(¢) overall Hence,
sinee betwea critical angles S(¢) is constant we see that
S(¢) takes on O (n) distind values Now place the squeeze
line! to coincide with w(¢). For a given crossiny structure
S(¢p) U S(¢ + ), satisfyirg conditiors 1 ard 2 as defined
in Sectin 3.3 devolves to solving two equations The first
equatian provides the condition for translation equilibrium,
while the secom equatian implemens the condition for ori-
entatian equilibrium Thelatter equatianiscalled themoment
function M (¢), becaus it describs the momern acting on P
asafunction of ¢. (But notetha M isdifferert fromthe mo-
mert function defined in Section 3.3, becaus here the part
rotates abou afixed pivot point) In analoy to Sectio 3.3,
it can be shown tha thes equatiors are algebrat¢ and of de-
gree k, where k isthe maximun numbe of edgesintersected
by the squeee line as describé in Section 3.2 Thisimplies
tha betwea any two adjaceh critical values there are only
O (k) orientatiors of / (given by w(¢)) that satisk conditions
1 anrd 2. Hence the overal numbe of orientatiors satisfying
conditiors1ard 2is O (k, n).

If § > 0, the patt P will be perturbed so tha Property
1isonly approximate} satisfied (Tha is, we can relax the
assumptiatha v isconstraindto beat theorigin). However,
wecanensuetha v lieswithinan ¢-bal arourd theorigin (the
cente of theradid field). To seethis, first conside P at some
arbitraly configuration z in the squeee field §S. The total
squeee force on P; is given by the areaintegrd §Sp(z) =
sz 3SdA. (Recal tha Sp denotethe lifted force field of S;
see Definition 6, eq (13)) Now §Sp is bounde& above by
|6Sp| < 8A, where A istheareaof P (notetha S is aunit

squeee field).

P isinequilibriumwith respectto theradid field R if v is
at theorigin. Now conside thelifted force R p when the pivot
point of P isnot at the origin. More specificaly, let v, bethe
pivot point of P,, and let us define asd Rp(d) = {|Rp(2)|
sud tha |vz| = d}. We also defire afunction R p(d) = min
{Rp(d)}. Thisfunction is well defined becaus Rp(d) is
the continuows image of a compat set hene the minimum
exists. Rp(d) is the minimum magnituek of the lifted force
acting on P, when its pivot point v, is at distan@ d from the
origin.

By decomposig Rp intoitsx- and y-componentsve can
write|Rp|as,/R% | + R% . Becausof theradid symmetry
of R, letusassunewithout lossof generaliy that v, = (d, 0).
From the prod of Proposition 13, we know that for any given
orientation of P, the magnitue of Rp , increase continu-
ously and strictly monotonicaly with increasiig d > 0. Fur-
thermore Rp ,, iscontinuowsind, ard Rp ,(0) = 0, S0 R%, !
iscontinuos and monotonicaly increasim for all 4 lessthan
sone sufficiently smal dp > 0. Hence for any fixed orien-
tation of Pz, Rp is acontinuows ard strictly monotonically
increasiig function for all d € |0, dp]|.

Now supposthatli'p (d) isnat strictly monotonei.e., that
there exist d1, d> With 0 < dq < do, but Rp(d1) > Rp(do).
Then there mud exist z1, zp with |vz,| = dq and |vz,| = do,
and|Rp(z1)| = Rp(d1) > Rp(d2) = |Rp(z2)|. Letusdefine
z, sud that z’z’g = Zy ard vy = cvg, for somec € R, i.e,,
vz, ard vz, lieon aIinethrougf1 the origin. If wechoo®0 <
c < 1,thenRp(z,)| < |Rp(22)|, becaus |Rp| ismonotone,
asshowninthepreviousparagraphinparticula, if wechoose
c =di/d, then Rp(Z,)| < |Rp(22)| < |Rp(21)| = Rp(dy),
and |vz | = |vz|. Thisis acontradictio to the definition of
Rp (d1) =min{Rp(d)}. Weconcluctha Rp iscontinuous
ard strictly monotore for suficiently smal d > 0.

Now conside P, inthecombinelfield R+§S, ardagahlet
d denot the distane betwee pivot point v, and the origin.
In equilibrium, the lifted forces Rp, ard §Sp, balane out;
henceRp(d) < |Rp,| = |8Sp,| < 8A, with A the area of
P. SinceRp is continuows and strictly monotore in d for
suficiently smal d, we can ensuethd d islessthan agiven
€, by choosiry an appropriatgl smal §. Thisimpliestha v,
mug lie within an e-bal of the cente of the radid field. In
particula, we can make this e-bal smal enoudn so tha the
crossimy structue S(¢) isnat affected.

Finally, we have to ensue tha the stabk equilibria, as
predictal by the momern function M, are approximatd arbi-
trarily closely. Thismearstha thedisturbaneinthemoment
function cause by pivot point v, not exactly coinciding with
the cente of the radid field, can be mace arbitrarily small.
To see this, first conside the origind (unperturbelimoment
function M, which describs the momern acting on the part
P if its pivot point coincides with the origin. In thiscasethe
momert is cause solely by the squeee field § S, while P is
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in equilibrium with respetto the radid field R.

Now conside the disturbanein M if the pivot point v; is
not exactly at theorigin, but somewherin an e-bal arourdit.
Let us call this disturbane AM, and note tha AM has two
components A Msg, which is the chang in momen caused
by the squeeefield § S, and A Mg, the disturbane causé by
theradid field R.

For a pat P at a given orientation any e-displacement
of vz can change the force in asqueee field §S by at most
|AFss| < dedp, where dp is the maximun diamete of P.
Hene AMss = r x A Fss isproportion&to the produd of the
disturbane in location ¢, and the magnitua of the squeeze
field § (r isthe fixed distan@ betwea pivot point anrd COM
of P),i.e., |AMss| = O(S€).

Since the force causé by the radid field R balance the
force generatd by the squeee field § S, we obtain the same
bound for AMg. Weseetha AM = AMss + AMp =
0O (d¢). Recal tha ¢ decreasestrictly monotonicaly with
8; hene AM decreassasymptoticaly faste than §. This
ensurs that we can find a suficiently smal § sud tha the
momert function M is approximatd arbitrarily closel, and
the equilibria of the squeeefield § S are nat affected.

We conclucetha the numbe of equilibriain afield R 465
isbounde by O (kn), for suficiently smal §. O

In analoy to Section 3.3, we define the turn function
t + St — S, which describs how the pat will tum un-
der asqueee pattern and hene yields the stabk equilibrium
configurations Given the turn function 7, we can construct
the correspondig squeee function s as describe in Sec-
tion 3.3 With s as the input for the alignmen planne de-
scribed by Goldbeg (1993) we obtan strakegies for unique
patt alignmen (and positioning of lengh O (kn). They can
be computel in time O (k2n2).

The resut is astraegy for pars positionirg of the form
(R+68S51) #*---%(R+8Sowxn)). Compare to the general
squeee algorithm in Sectin 3.3, it improves the plan length
by afacta of n, and the plannirg compkxity isreduce by a
factar of n2 . Theplanne iscomplete for any polygona part,
ther exists astraegy of theform x; (R + 3§5;). Moreover, the
algorithm is guaranted to find a stratgy for any input part.
By appendig astep that ismerel theradid field R without a
squeee componentwe are guarantedtha the patt P will be
uniquel posel (v isat theorigin) aswell asuniquey oriented.
We can also show that the continuousy varying “morphing”
straggy (R +3851) ~ -+~ (R+8Sowkn)) ~» R worksin
the sane fashim to achieve the sarre unigue equilibrium.

6.2 Manipulation Grammars

Thedevelopmen of devicestha generat programmalevec-
tor fieldsisstill initsinfancy. The existing prototyge devices
exhibit only alimited range of programmabiliy. For example,
theprototypeMEM Sarraysdescribéin Section 2.1 currently
have actuatos in only four differert directions ard the actu-

ators are only row-wise controllable Arrays with individu-
ally addressalkelactuatos at various orientatiors are possible
(Bohringe etal. 19948 1994h Liuand Will 1995 Bohringe,
Donald and MacDonatl 19961 Sth et al. 1996 but require
significart developmen effort. Therte are also limitations on
the resolution of the devices given by fabricatian constraints.
For the vibrating-plae device from Sectian 2.2, the fields are
even more constraind by the vibrationd modes of the plate.

We are interestd in the capabilities of sud constrained
systems In this section we give an algorithm tha decides
whethe apait can be uniquely positionel using agiven se of
vecta fields and it synthesize an optimal-lengh strakgy if
one exists Furthermorein Sectia 6.2, the vecta fields we
conside may bearbitrary, andin particula can vary inmagni-
tude (as opposé to unit-squeee fields). If we think of these
vecta fieldsasavocabulary, we obtain alanguag of manipu-
lation strakgies Weareinterestd inthos expressiosinthe
languag@ tha correspondto astraegy for uniquely posing
the part.

We defire two bast operatiors on vecta fields. Consider
twovecta fields f and g : f + ¢ denotepoint-wise addition,
ard f x g denote sequentibexecutian of f ard then g.

DEFINITION 13. Let P be an arbitray plana part A finite
field operator is asequeneof vecta fieldsthat brings P from
an arbitrawy initial pose into afinite se of equilibrium poses.

A field operato comes with the foll owing guarantee no
matte wherein R? x S* the patt stars off, it wil | always come
to red in one of E differert totd equilibria (Fig. 22). That
is, for any polygona patt P, eithe of thes field operatosis
always guaranted to redue@ P to afinite set of equilibriain
its configuratio spae € = R? x St

From Sectia 6.1, we know tha combinel radid squeeze
patterrs R + &S have this propery. However, there are other
simple field operatos tha also have this finitenes propery.

CLaiM 1. Let f and £, beunit-squeeegfieldssudtha f
isorthogonato f. Thenthefields f « f, and f + f1 induce
afinite numbe of equilibria on every connectd polygm P;
hene f x f1 and f + f, arefinitefield operators.

Proof. First, conside the field f « f,, and without loss of
generaliy assumetha f(xy) = (—sign(x), 0). Also assume
tha the COM of P isthe referene point useal to defire its
configuration space € = R? x S. Asdiscussd in Sections
3.2ard 3.3, P will read one of afinite numbe of orientation
equilibriawhen placeal in f or f,. More specificaly, when
P isplacain f, there exists afinite se of equilibria £y =
{(xi, 6;)}, wher x; is the offset fromf’s squeee line, and
0; is the orientation of P (see Sectim 3.4). Similarly for
f1(x,y) = (0, —sign(y)), thereexists afinitesd of equilibria
E¢ = {(y),0;)}. Sincethex-componenof f| iszerq the
x-coordinaé of the referene point of P (the COM) remains
constabwhile P isin £, . Hene P will finally cometored in
apo (xi, yk, 6), wher x; € mi(Ef), (yk,6k) € Ef,, and
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Siep |

Siep 2

Fig. 22. Manipulatian vocabulary for a triangula pat on a
vibrating plate consistirg of two consecute force fields
with slightly curved nodd lines (attractors)which bring the
pat into (approximately the same equilibria.

1 isthe canonicéprojection sud tha 71(x, ) = x. Since
Ef isfinite, soisw1(Ey). E(f1) is alw finite; therefore,
there exists only a finite numbe of sud totd equilibrium
posefor f x f) .

If P isplacedintothefield f + f,, there exists aunique
translatian equilibrium for every given fixed orientation 6. In
ead of thestranslatio equilibrig the squeeelinesof f and
f1 areboth bisectosof P. Now conside the momert acting
on P when P isin translation equilibrium as a function of
6. Sincethere are O (n?) topologica placemert for asingle
bisecta, therefoe there exist also only O (n?) topological
placemerg for two simultaneousorthogonéa bisectors In

analog to Propositia 1in Sectian 3.2, we can show that for any

topologica placemenof the bisectorsthis momer function
has at mog O (k) roots whetre k is the maximum numbe of
edges abisecto of P can cross Thisimpliestha there exist
only O (kn?) distind totd equilibriafor f + f,. O

If we can assune that the 2Phag assumptia holds then
Claim 1leadsto aninterestimg extensian of the parts-orienting
algorithm describé in Section 3.3, Let f, and f, betwo or-
thogona squeee fields with their squeee lines coinciding
with the x-axisand the y-axis, respedtvely. Notetha f, * f,,
is afinite field operato. Let usappem f, = f, to an orient-
ing strakgy, s. After s has bean executed the patt will be
uniquel orientated Assumirg that the 2Phags assumption
holds f. * f, first brings the y-coordinae ard then the x-
coordinae of the patt to aunigue value while maintaining
unique orientation Hence given an arbitraly parts-orienting
straegy s, by executirg s * fy * f,, we obtain unique posi-
tioning and orienting®

6. This schene can be simplified even further. Let s, be the lag squeee of
the orienting straegy s. Let s,{- be asqueee field orthogon&to s,. Thenit
iseay to show that s * s,{- uniquey positiors ard oriens the part.

COROLLARY 6. Let f beafinite field operato for apat P,
ard let ¢ bean arbitray vecta field. Thenthesequeneg x f
isafinitefield operato.

Proof. By definition of a finite field operate, f brings the
pat P into afinite se of equilibrium poses from arbitrary
initial posesin particula, from the poses that are the result
of field g. O

Thus by pre-pendig an arbitraly sequene of fields to a
finite field operato, one can always creae anew finite field
operate (possiby with asmalle set of discreeequilibria). In
the remainde of this section however, we will only consider
finite field operatos of minimd length i.e., field sequences
from which no field can be removed without losing the finite-
nes propery (Definition 13).

Wehaveseeain Sectiors 3and 5that for simpleforcefields
suc assqueeeor radid fields, we can predid themotion and
the equilibria of a pait using exad analyticd methods How-
ever, for arbitray fields (e.g, the force fields describd in
Sectian 2.2, which are induce by vibrating plates) sud al-
gorithmsarenat known. Insteagwecan emplgy approximate
method to predid the betavior of the patt in the force field.
Thes method are typically numerich computatios tha in-
volve simulatirg the partt from aspecift initial pose until it
reacheequilibrium. We cal the cod for such acomputation
the simulation compkxity s(n). We write s(n), becaus the
simulation compkxity will usually depem on the complexity
of thepart i.e., itsnumbe of verticesn (for more detaik also
see the work of Donald and Xavier (1995)).

PropPosITION 14. Conside apolygond patt P, ard m finite
field operatos {F;}, 1 < i < m, ead with a mog E distinct
equilibria in the configuratio spa@ € for P. Thereexistsan
algorithmtha generatean optimd lengt stratgy of theform
F1x Fox- - -x Fy touniquel pose P up to symmetriesif such
astrakegy exists. Thisalgorithm runsin O (m?E (s (n) + 2F))
time, where s(n) is the simulation compkxity of P in F;. If
no sud strakegy exists the algorithm will signd failure.

Proof. Construt a transition table 7' of size m?E tha de-
scribes how the part P movesfrom an equilibrium of F; toan
equilibrium of F;. Thistable can be constructd eithe by a
dynamt analysssimilar to tha in Sectian 3.1, or by dynamic
simulation The time to constru¢ this table is O (m2Es(n)),
whete s (n) isthe simulation compkxity, which will typically
depem on the compkxity n of the part.

Using thetable 7', we can seart for a straegy asfoll ows:
defire the stake of the systen as the se of possibé equilibria
apatisin, for aparticula finite field operato F;. There are
O (E) equilibriafor ead finitefield operator hencether are
0 (m2F) distind states For ead state there are m possible

7. See for example the World Wide Web at www.ee.washington.edu/faculty/
karl/Research/
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successostates as given by table T, and they can eat be
determinéin O (E) operationswhich resulsin agraph with
0 (m2F) nodes 0 (m?2F) edgesard O (m?E2F) operations
for its construction Finding a strakgy, or decidirg tha one
exists then devolves to finding a path whos god noceis a
staewith auniqueequilibrium Thetotd running time of this
algorithm is O (m2E (s(n)) + 2£)).

Hence as discussd by Erdmam and Masm (1988) for
any patt we can decice whethe a pait can be uniquely posed
using the vocébulary of field operatos { F; }, but (1) the plan-
ning time is worst-cag exponentia) ard (2) we do not know
how to characterie the class of parts tha can be oriental by
a specift family of operatos {F;}. However, the resulting
strakgies are optimd in length.

Manipulation grammas are discussd in mucdh greate de-
tail by Bohringe ard colleagus (forthcoming in the coniext
of thelimited manipulatia vocabulary generatd by vibrating
plates.

7. Conclusions and Open Problems

Thefoll owing table 1 summarizefieldsand algorithnsfor ma-
nipulationtaskswith programmal#forcefields andincludes
some additiond recert results.

Less-dfficult taskssudh astranslation can beachieved with
relaively simplefieldsand without any planning Morecom-
plex tasks sud as centerirg or unique orienting require in-
creasingy compkx fields However, plannirg compkxity is,
e.g, highe for sequenceof squeeefields and lower for the
more compkx combinal radid + squeee fields. Thisillus-
tratesatrade-df betwea mechanichcompkxity (the dexter-
ity and controllability of actuate-array elementyand compu-
tationd compkxity (thealgorithmic difficulty of synthesizing
a straegy). For example if oneis willing to build a device
capabeé of radid fields, then one reags gred benefisin plan-
ning and executian speed Onthe othe hand wecan still plan
for simpler devices but the plan synthess is more expensve
(worst-cas exponenti&in the numbe of equilibria), and we
lose some completenesproperties.

We believe tha the rapid growth in this researb area
will continue Even though asciene bas for manipulation
with programmat#forcefieldshasemeged many important
questiosreman open Sonetopicsfor futurework arelisted
in the following paragraphs.

¢ Universafeede-oriente (UFO) devices It wasshown
in Proposition 1 tha every connectd polygond part
P with n vertices has afinite numbe of stabk orien-
tation equilibriawhen P is placal into a squeee field
S. Basal on this propery, we were able to generate
manipulatia straegies for unique part alignment We
showed in Sectio 6.1 tha by using a combina ra-
dial and squeeefield R 485, the numbe of equilibria
can be reducel to O (kn). Using elliptic force fields

f(x,y) = (ax, By) suhtha o # Banda, 8 # 0O,
thisbourd can bereducel to two (Kavraki 1995 1997).

In

a stabk equilibrium, the parts majar principd axis of
inertia lines up with the squeee line to minimize the
secom momer of inertia.

Does therr exist a universa field that for every part
P, has only one unique equilibrium (up to patt sym-
metry)? Suc afield could be usal to build auniversal
parts feede (Abell and Erdmam 1996 that uniquely
positiors apart without the neal of a clock, sensorsor
programming.

We propo® acombinel radid and “gravitational’ field
R + 8G tha might have this propery. § is asmal pos-
itive constantand G isdefined as G (x, y) = (0, —1).
This device desiq is inspired by the “universa grip-
per’ describe by Abell and Erdmam (1996) Sud a
field could be obtainel fromaMEMSarray that imple-
mens aunit radid force field. Instea of rectangular
actuatos in aregular grid, triangula actuatos could
be laid out in apolar-coordinaé grid. The array could
then be tilted slightly to obtain the gravity component;
hence sud adevice would be relaively eay to build.
Alternaively, aresonatig speake or avibrating disk-
shapd platetha isfixed at the cente, might be used to
creat aradid force field. Extensve simulatiors show
tha for every part we have tried, one unique totd equi-
librium is always obtained We are working toward a
rigorous prod of this experimenthobsevation.

Abstraction barriers We believe tha programmable
force fields can be usel as an abstaction barrier be-
tween part positionirg and feedirg applicatiors and
devices implementirg the requisie mechanichtwo-
dimension&force fields (MEMS arrays vibratory de-
vices or othe devices) Tha is, applicatiors sut as
parts feedirg can be formulated in terns of the force
fields required Thisthen sewves as a specificatio that
the underlyirg device technoloy mug deliver. Con-
versey, the capabilities of MEMS-arrey or vibratory-
device technolog can be formulated in terns of the
force fields they can implement This mears tha de-
vice designes can potentiall ignore certan detaik of
the application processand insteal focus on match-
ing the required force-fied specification This would
free application enginees from neediry to know much
abou proces engineeringin the same way tha soft-
watre ard algorithm designes often abstracaway from
detaik of the hardware Sud an abstractio barrier
could permt hierarchicadesign and allow application
desigrswith greate independenefrom the underlying
device technology.
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Table 1.
Complexity
Task Field(s) Fields Planning Plan Steps
Translate Constant Constant magnitude — 1
and direction
Center Radial Constant magnitude, — 1
continuous directions
Orthogonal squeezes Piecewise constant o1 ol
magnitude and direction
Uniquely orient Sequence of squeezes Piecewise constant 0 (kn*) 0 (kn?)
magnitude and direction
Inertial Smooth magnitude [0JEN) (0] )]
piecewise-constant direction
Uniquely pose Manipulation grammar m arbitrary fields, 0(m?2f)  0(m2F)
at mostE stable equations (not com-
plete)
Sequence of radial + squeeze Piecewise-continuous 0 (k?n?) O (kn)
magnitude and direction
Elliptic Smooth magnitude and direction o) ol
UFO Continuous magnitude and direction —— 1

* Magnitude control. Consider an array in which the
magnitudeof the actuator forces cannot be controlled.
Does there exist an array with constant magnitude in
which all parts reach one unique equilibrium? Or can
one prove that, without magnitude control, the number
of distinct equilibria is always greater than one?

« Geometricfilters. This paper focuses mainly on sensor-
less manipulation strategies fonique positioningof
parts. Another important application of programmable
vector fields argieometric filterswhich would be use-
ful for the sorting and singulation of parts. Figure 1
shows a simple filter that separates smaller and larger
parts. We are interested in the question, Givgrarts,
does there exist a vector field that will separate them
into specific equivalence classes? For example, does
there exist a field that moves small and large rectangles
to the left, and triangles to the right? In particular, it
would be interesting to know whether for any two dif-
ferent parts there exists a sequence of force fields that
will separate them.

« Force-field computers. In this paper, we have demon-
strated that even with a rather limited vocabulary of
simple force fields, useful and quite complex tasks such
as sensorless posing or sorting of parts can be per-
formed. It might be possible that force fields could
be used to solve certain classes of problems, by en-
coding them in particular force fields, part shapes, and
initial and goal poses, resulting in a “force-field com-
puter” that provides a physical implementation of the
problem. Identifying the class of encodable problems

might yield deeper insights into the complexity of parts
manipulation with force-vector fields.

Performance measures. Are there performance mea-
sures for how fast (in real time) an array will orient a
part? In some sense, the actuators are fighting each
other (as we have observed experimentally) when the
part approaches equilibrium. For squeeze grasps, one
measure of “efficiency,” albeit crude, might be the in-
tegral of the magnitude of the moment function, i.e.,
fOZ” [M(0)|d6. The issue is that if, for many poses,
M (6)| is very small, then the orientation process will
be slow. Better measures are also desirable.

Uncertainty. In practice, neither the force-vector field
nor the part geometry will be exact, and both can only be
characterized up to tolerances (Donald 1989). This is
particularly important at the microscopic scale. Within
the framework of potential fields, we can express this
uncertainty by considering not one single potential
functionU p, but rathefamilies of potentialthat corre-
spond to different values within the uncertainty range.
Bounds on part and force tolerances will correspond to
limits on the variation within these function families.
An investigation of these limits will allow us to obtain
upper error bounds for manipulation tasks under which
a specific strategy will still achieve its goal.

A family of potential functions is a setU, : ¢ —
R}yes WherelJ is an index set. For example, we may
start with a single potential functioti : ¢ — R and
define a family of potential function§ (U, ¢, z) as
{Uy : C— R| ||Uy(p)—U(p)||; < €} for somec and
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nom z. Thisisanalogostodefining aneighborhodin
function spaceusing e.g, thecompact-opetopology.

Whenwedifferentiaeafamily of potentidfields(using
the gradient) we obtain adifferentid inclusion instead
of adifferentid equation Soif F(u) = F (u, €, z), then
V F ) ={VUylaey-

When considerirg families of potentials the equilib-
rium may be known to lie only within a s¢ E;, al-
thoudh we may know tha it is always a point in E;.
If the ses E; are of a smal diamete less than some
€ > 0, our algorithrrs could be extendeal to handk the
e-approximations.

As a more generé approach we propo® an algo-
rithm base on back-projections for a given part let
BFr,(G) CcC= R2x S betheback-projectio (Lozano-
Pérez Mason and Taylor 1984 of the s& G under
F;, where G C @, and F; is a family of fields on
R? . Then we wish to calculat a sequene of fields
Fi, Fo, ..., Fy,sudtha Br, (BF,(--- BR(G)---)) =
C,whereG isasinglepointin € (cf. Lozano-PéreaMa-
son ard Taylor 1984 Erdmam and Masan 1988 Brost
1988 Donald 1989 Brigg 1992).

« Outpu sensitvity. We have seen in Sectiors 3.1, 6.1,
ard 6.2 tha the efficiency of plannirg and executing
manipulatio straegies critically depend on the num-
ber of equilibrium configurations Expressig the plan-
ning and executian compkxity asafunction of thenum-
ber of equilibria E, rathe thanthe numbe of verticesn,
iscalled output-sensitiganalysis In practice we have
found tha there are almog no parts with more than
two distind (orientatior) equilibria even in squeeze
fields Thisis far less than the E = O (kn?) upper
bourd deiivedin Section 3.2 If thisobsevation can be
supporte by an exad or even statistichanalyss of part
shapegdt couldleadto extremely goad expecta bounds
on plan lengh and plannirg time, even for the less
powerful strakgiesemployirg manipulatiasn grammars
(note tha the compkxity of the manipulatian grammar
algorithm in Proposition 14 is output-sensite).

« Discret force fields For the manipulation straegies
describd in this pape, we assune tha the force fields
are continuousi.e., that the generatd forces are dense
compare to the moving patt (the densiyy assumption
in Section 3.3). When manipulatirg very smal parts
on microactuato arrays this condition may be only
approximatey} satisfied We are intereste in the limi-
tatiors of the continuos mode| anrd we would like to
know the conditiors unde which it isnecessarto em-
ploy a different discree modd of the array that takes
into accout individud actuatorsas well as the gaps
betwea actuators In the work of Bohringe et al.

(1994b) we propog amodé for the interactio be-
tween pars ard arrays of individud actuatorsbased
onthetheow of limit surface (Goyd and Ruina1988;
Goya Ruing and Papadopouls 1991).

* Resonane properties Is it possibé to exploit the dy-
namc resonane properties of part to tune the control
signd of thearray or plateto perfom efficient dynamic
manipulation?

« 3-D force fields. It may be possibé to generag 3-D
force fields by using Lorentz electromagneti forces.
Tunabk electrc coils could be attachd to various
pointsof a3-D body, suspendig the resultirg objed in
astrorg permanetmagnett field using magnett | evi-
tation (the Lorentz effect) (Hollisand Salcudea 1993;
SalcudeanWong, and Hollis 1995 The tuning (con-
trol) of the electric coils could be effectal as foll ows:
integrated contrd circuitry could befabricatel and co-
located with the coils, and concévably, a power sup-
ply. The contrd could be globally effected using wire-
less communicationor the contrd of ead coil could
evolve in time until the pat is reoriente as desired.
The Lorent forces could then be deacivated to bring
the objed to reg on the ground Plannirg for sud a
3-D device might redue@to that describe by Erdmann
ard colleagus (1993).
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