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ProgrammableForce
Fields for Distri buted
Manipulation , with
Applications to MEMS
Actuator Array s and
Vibrator y Parts Feeders∗

Abstract
Programmableforcevector fieldscan beused to control a variety of
flexibleplanar parts feederssuch asmassively parallel microactua-
tor arraysor transverselyvibrating (macroscopic) plates. Thesenew
automation designs promise great flexibility, speed, and dexterity—
webelievethey may beemployed to position, orient, singulate, sort,
feed, and assemble parts. However, since they have only recently
been invented, programming and controlling themfor manipulation
tasks ischallenging. When a part isplaced on our devices, thepro-
grammed vector field induces a force and moment upon it. Over
time, the part may come to rest in a dynamic equilibrium state. By
chaining sequences of force fields, the equilibrium states of a part
in the field may be cascaded to obtain a desired final state. The
resulting strategies require no sensing, and enjoy efficient planning
algorithms.

This paper begins by describing new experimental devices that
canimplement programmableforcefields. Inparticular, wedescribe
our progress in building the M-CHIP (Manipulation CHIP), a mas-
sively parallel array of programmable micromotion pixels. Both
the M-CHIP and other microarray devices, as well as macroscopic
devices such as transversely vibrating plates, may be programmed
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with vector fields, and their behavior predicted and controlled using
our equilibrium analysis. We demonstrate lower bounds (i.e., im-
possibility results) on what the devices cannot do, and results on a
classification of control strategies yielding design criteria by which
well-behavedmanipulationstrategiesmaybedeveloped. Weprovide
sufficient conditionsfor programmablefieldsto inducewell-behaved
equilibria on every part placed on our devices. We define compo-
sition operators to build complex strategies from simple ones, and
show theresulting fieldsarealso well behaved. Wediscusswhether
fields outside this class can beuseful and freeof pathology.

Using these tools, wedescribenew manipulation algorithms. In
particular, we improve existing planning algorithms by a quadratic
factor, and the plan length by a linear factor. Using our new and
improved strategies, weshow how to simultaneously orient and pose
anypart, without sensing, fromanarbitrary initial configuration. We
relax earlier dynamic and mechanical assumptions to obtain more
robust and flexiblestrategies.

Finally, weconsider partsfeedersthat canonly implement avery
limited “vocabulary” of vector fields (as opposed to the pixel-wise
programmability assumed above). We show how to plan and ex-
ecute parts posing and orienting strategies for these devices, but
with a significant increase in planning complexity and some sacri-
fice in completeness guarantees. We discuss the trade-off between
mechanical complexity and planning complexity.
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Fig. 1. Sensorless sorting using force vector fields: parts of
different sizesarefirst centered, then subsequently separated,
depending on their size.

1. Int roduction

Programmable force fields offer a fundamentally new ap-
proach to automated parts manipulation. Instead of handling
a part directly (e.g., with a robot gripper), a force field sur-
rounding the part causes it to move. Programmable force
fieldspromisegreat flexibilit y, speed, anddexterity for awide
variety of taskssuch aspartsorienting, positioning, singulat-
ing, sorting, feeding, and assembly. Recently, several de-
vices have been invented that can implement programmable
forcefields: in particular, actuator arrays fabricated with Mi-
cro Electro Mechanical System (MEMS) technology, as well
as macroscopic vibrating plates. These new automation de-
signs permit distributed, parallel, nonprehensile, sensorless
manipulation tasks that make them particularly attractive for
handling batch microfabricated parts, whose small dimen-
sions and large numbers would prohibit conventional pick-
and-placeoperations.

A wealth of geometric and algorithmic problems arise in
the control and programming of manipulation systems with
many independent actuators. The theory of programmable
force fields represents the first systematic, computational at-
tack on massively parallel distributed manipulation based on
geometric andphysical reasoning. Thegoal of thispaper isto
develop asciencebasefor manipulation using programmable
force fields, and to demonstrate experiments with prototype
devices that support this theory. We present combinatorially
preciseplanningalgorithmsthat synthesizestrategiesfor con-

trolling and coordinating avery large number of distributed
actuators in aprincipled, task-level fashion.

When apart is placed on such a device, the programmed
vector field induces a force and moment upon it. Over time,
the part may come to rest in a dynamic equilibrium state.
In principle, we have tremendous flexibilit y in choosing the
vector field, since using, e.g., MEMS array technologies, the
forcefield may beprogrammed pixel-wise. Hence, wehavea
lot of control over theresulting equilibrium states. By chain-
ing sequencesof vector fields, theequilibriamay becascaded
to obtain a desired final state—for example, this state may
represent a unique orientation or pose of the part. A system
with such abehavior exhibits the feeding property (Akellaet
al. 1995):

A systemhasthefeedingproperty over aset of partsP and
aset of initial configurations4 if , given any part P ∈ P, there
issomeoutput configuration q such that thesystem can move
P to q from any location in 4.

Our work on programmablevector fieldsisrelated to non-
prehensile manipulation [Donald, Jennings, and Rus 1995;
Zumel and Erdmann 1996; Erdmann and Mason 1996; Erd-
mannl996]: inbothcases, partsaremanipulatedwithout form
or forceclosure.

Thispaper describesour experimental devices, atechnique
for analyzing them called equilibriumanalysis, lower bounds
(i.e., impossibility results) onwhat thedevicescannot do, and
resultsof aclassification of control strategiesyielding design
criteria for useful manipulation strategies. Then we describe
new manipulation algorithmsusing thesetools. In particular,
weimproveearlier planning algorithmsby aquadratic factor,
show how to simultaneously orient and poseapart, and relax
dynamic and mechanical assumptions to obtain more robust
and flexiblestrategies.

One corollary of our results is a method for coordinat-
ing the actions of a large distributed actuation system. Such
systems comprise arrays with up to tens of thousands of in-
dependently servoable actuator cells, which we call motion
pixels. We show how these systems can be programmed in a
fine-grained, SIMD (single instruction multipledata) fashion
toexert forcefieldsonthemanipulatedobject, thereby accom-
plishing massively parallel distributed manipulation. More-
over, the theory of programmable forcefieldsgives amethod
for controlling a large number of distributed actuators in a
principled, geometric, task-level fashion. Whereasmany con-
trol theories for multiple independent actuators break down
asthenumber of actuatorsbecomeslarge, our systemsshould
only becomemorerobust astheactuatorsbecomedenser and
morenumerous.

Thetheory developedinthispaper isapplicabletoany con-
trollablearray capableof generating forcevector fields, and it
isindependent of thespecificdevicehardware. Wehavetested
it thoroughly in collaboration with J. Suh and G. Kovacson a
MEMSactuator array developed at Stanford (Böhringer et al.
1997c). Thismicrociliadeviceconsistsof a 16 × 16 array of
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motion pixels, which covers an area of about 2 cm × 2 cm.
Each pixel consists of four thermobimorph actuators. Actu-
ators in each direction can be controlled independently by a
graphical user interface on a personal computer. Böhringer
and coworkers(1997b) reported on experimentsin sensorless
manipulation with the microcilia device. Small chips were
placedat arbitrary initial positionsonthearray andweretrans-
lated, rotated, centered, and aligned by thearray without sen-
sor feedback. These experiments constitute strong evidence
in support of our theory of sensorless manipulation.

In this paper, we focus on the theoretical foundations of
manipulation with programmable force fields. We pose the
question, Which force fields are suitable for manipulation
strategies? In particular, we ask whether the fields may be
classified. That is, can we characterize all those force fields
in which every part hasstableequilibria? Whilethisquestion
has been well studied for a point mass in a field, the issue
is more subtle when lifted to abody with finite area, due to
the moment covector. To answer, we first demonstrate im-
possibility results, in the form of “l ower bounds”: thereexist
perfectly plausiblefields that induceno stableequilibrium in
simpleparts.

Fortunately, there is also good news. We present condi-
tionsfor fieldsto inducewell-behaved equilibria,
by exploiting the theory of potential fields. While potential
fields have been widely used in robot control (Khatib 1986;
Koditschek and Rimon 1988; Rimon and Koditschek 1992;
Reif and Wang 1995], microactuator arrays present us with
the ability to explicitly program the applied force at every
point in avector field. Whereaspreviouswork hasdeveloped
control strategieswith artificial potential fields, our fieldsare
nonartificial (i.e., physical). Artificial potential fields require
a tight feedback loop, in which at each clock tick, the robot
senses its state and looks up a control (i.e., a vector) using
a state-indexed navigation function (i.e., a vector field). In
contrast, physical potential fieldsemploy no sensing, and the
motion of the manipulated object evolves in an open-loop
manner (for example, like aparticle in agravity field). This
alone makes our application of potential-field theory to mi-
crodevices unique and novel. Moreover, such fields can be
composed using addition, sequential composition, “parallel”
composition by superposition of controls, or by anew kind of
“morphing” of control signals, which wewil l define.

Previous results on array manipulation strategies may be
formalized using equilibrium analysis. Böhringer and col-
leaguesproposed afamily of control strategiescalled squeeze
patterns, and aplanning algorithm for partsorientation. This
first result proved an O(n2) upper bound on thenumber E of
orientation equilibria of a nonpathological (see Section 3.2)
planar part with n vertices. This yields an O(E2) = O(n4)

planning algorithm to uniquely orient a part, under certain
geometric, dynamic, andmechanical assumptions. In thispa-
per, wearguethat thisbound on equilibriaappearstight. This
results in ahigh planning and execution complexity.

Usingour equilibriumanalysis, weintroduceradial fields,
which satisfy our stability property. Radial fields can then
be combined with squeeze fields. We show this has several
benefits:

1. thenumber of equilibriadrops to E = O(n);
2. theplanning complexity drops to O(E2) = O(n2);
3. throughout the strategy execution, every part rotates

about onefixed, uniquepoint (after thefirst step); and
4. this means that we can dispense with one critical as-

sumption (called 2PHASE by Böhringer and coworkers
(1994a)): we no longer need to assume that the trans-
lational and rotational motions induced by the array
interact in a“quasi-static” and “sequential” manner.

We motivate our results by beginning with a description
of the experimental devices we are interested in program-
ming. In particular, we describe our progress in building the
M-CHIP (Manipulation CHIP), a massively parallel array of
programmable micromotion pixels. As proof of the concept,
wedemonstrateaprototypeM-CHIP containing up to 15,000
silicon actuators in 1 in2. Our strategies are also applicable
to macroscopic partsfeeders. Wedescribeaplanar, vibratory
orienting and manipulation device that also uses our novel
strategies.

Both of these devices portend several key practical is-
sues. First, the strategies employed by our improved algo-
rithms and analysis require significant mechanical and con-
trol complexity—even though they requirenosensing. While
we believe such mechanisms are feasible to build using the
siliconMEMStechnologiesweadvocate, it isundeniablethat
no such device exists yet (the M-CHIP has pixel-wise
programmability, but the first generation does not have suf-
ficient directional resolution to implement highly accurate
radial strategies). For this reason, we introduce and ana-
lyzestrategiescomposed of field sequencesthat weknow are
implementable using current (microscopic or macroscopic)
technology. Each strategy is asequence of pairs of squeezes
satisfying certain “orthogonality” properties. Under theseas-
sumptions, wecan ensure:

1. equilibrium stability,
2. relaxed mechanical and dynamical assumptions (the

sameas point 4, above), and
3. complexity and completeness guarantees.

The framework is quite general, and applies to any set
of primitiveoperationssatisfying certain “finit eequilibrium”
properties(whichwedefine)—henceit hasbroadapplicability
toawiderangeof devices. Inparticular, weview therestricted
classof fieldsasavocabularyand itsrulesof compositionasa
grammar, resulting in alanguage of manipulation strategies.
Using our grammar, theresulting strategiesareguaranteed to
bewell-behaved.

Finally, both our radial strategies and our finite manip-
ulation grammar have the following advantage over previ-
ousmanipulation algorithmsfor programmablevector fields:
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previous algorithms such as those described by Böhringer
and colleagues(1994a, 1996a) guaranteeto uniquely orient a
part, but the translational position of the part is unknown at
the strategy’s termination. Both of our new algorithms guar-
antee to position the part uniquely (up to part symmetry) in
translation as well as orientation space. Like the algorithms
in Böhringer’s work (1994a, 1996a), the new algorithms re-
quire no sensing, and work from any initial configuration to
uniquely pose thepart. In particular, the initial configuration
is never known to the (sensorless) execution system, which
functions in an open-loop manner.

The complexity and completeness guarantees we obtain
for manipulation grammarsareconsiderably weaker than for
the ideal radial strategies. For radial strategies, weshow that
any nonpathological planar part with finite area contact can
beplaced in auniqueposein O(E) = O(n) steps. Under the
simplified manipulation grammar, our planner is guaranteed
to find astrategy if oneexists (if onedoesnot exist, theplan-
ner wil l signal this). However, it is not known whether there
exists a strategy for every part. This lack of completeness
of manipulation grammar strategiesstands in contrast to the
complete general squeeze and radial algorithms for which a
guaranteed strategy exists for all parts. Moreover, the plan-
ning algorithm is worst-case exponential instead of merely
quadratic.

Finally, the desire to implement complicated fields raises
the question of control uncertainty. We close by describing
how families of potential functions can be used to represent
control uncertainty and analyzed for their impact on equilib-
ria, and wegivean outlook on still-open problemsand future
work.

2. Experimental Apparatus: Parts Feeders

It isoften extremely costly to maintain part order throughout
themanufacturecycle. For example, instead of keeping parts
in pallets, they are often delivered in bags or boxes, whence
they must bepickedout andsorted. A partsfeeder is amachine
that orients such parts before they are fed to an assembly
station. Currently, the design of parts feeders is a black art
that isresponsiblefor up to 30% of thecost and 50% of work-
cell failures(Nevinsand Whitney 1978; Boothroyd, Poli, and
Murch 1982; Farnum and Davis 1986; Schroer 1987; Singer
and Seering 1987). “The real problem is not part transfer
but part orientation,” according to Frank Riley of theBodine
Corporation (Riley 1983, p. 316, his italics). Thus, although
part feeding accounts for a large portion of assembly cost,
there is not much scientific basis for automating theprocess.

The most common type of parts feeder is the vibratory
bowl feeder, whereparts in abowl arevibrated using arotary
motion, so that they climb ahelical track. As they climb, a
sequenceof bafflesand cutouts in the track createamechan-
ical “filter ” that causes parts in all but one orientation to fall

back into the bowl for another attempt at running the gaunt-
let (Boothroyd, Poli, and Murch 1982; Riley 1983; Sandler
1991).

Sony’s APOS parts feeder (Hitakawa 1988) uses an ar-
ray of nests (silhouette traps) cut into avibrating plate. The
nests and the vibratory motion are designed so that the part
wil l remain in the nest only in one particular orientation. By
tilting theplateand letting partsflow acrossit, thenestseven-
tually fil l up with parts in the desired orientation. Although
the vibratory motion is under software control, specialized
mechanical nestsmust bedesigned for each part (Moncevicz,
Jakiela, and Ulrich 1991).

The reason for the success of vibratory bowl feeders and
the Sony APOS system is the underlying principle of sen-
sorlessmanipulation (Erdmann and Mason 1988) that allows
partspositioningandorientingwithout sensor feedback. This
principleiseven moreimportant at small scales, becausesen-
sor datawil l belessaccurateandmoredifficult toobtain. The
APOSsystemor bowl feedersareunlikely towork inthemicro
domain: instead, novel devicedesignsfor micromanipulation
tasks are required. The theory of sensorless manipulation is
thesciencebasefor developing and controlling such devices.

Reducing theamount of required sensing isan exampleof
minimalism (Canny and Goldberg 1994; Böhringer et al. 1995b),
which pursues the following agenda: for a given robot task,
find theminimal configuration of resources required to solve
the task. Minimalism is interesting, because doing task A
without resource B proves that B is somehow inessential to
the information structure of the task. In robotics, minimal-
ism has become increasingly influential. Raibert and col-
leagues (1993) showed that walking and running machines
could be built without static stability. Erdmann and Mason
(1988) showed how to do dexterous manipulation without
sensing. McGeer (1990) built a biped, kneed walker with-
out sensors, computers, or actuators. Canny and Goldberg
(1994) argued that minimalism has along tradition in indus-
trial manufacturing, and developed geometric algorithms for
orienting parts using simple grippers and accurate, low-cost
light beams. Brooks(1986) developed onlinealgorithmsthat
rely less extensively on planning and world models. Don-
ald, Jennings, and Rus (1995) and Böhringer et al. (1995b)
havebuilt distributed teamsof mobilerobotsthat cooperatein
manipulation without explicit communication. We intend to
use these results for our experiments in micromanipulation,
and to examine how they relate to our theoretical proofs of
minimalist systems.

2.1. Microfabricated Actuator Arrays

A wide variety of micromechanical structures (devices with
featuresin theµmrange) hasbeenbuilt recently by usingpro-
cessing techniques known from the VLSI industry (see, for
example, the work of Gabriel (1995), MacDonald and col-
leagues (1997) and MacDonald (forthcoming). Various
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microsensors and microactuators have been shown to per-
form successfully; e.g., a single-chip air-bag sensor is com-
mercially available(AnalogDevices1991), andvideoprojec-
tions using an integrated, monolithic mirror array have been
demonstrated recently (Sampsell 1993) and are now starting
toreplaceconventional projectionsystems. A fully integrated
scanning tunneling microscope(STM) hasbeen developed in
our group (Xu, Miller, and MacDonald 1995; MacDonald et
al. 1997). However, the fabrication, control, and program-
ming of microdevices that can interact and actively change
their environment remains challenging.

Problems arise from:

1. unknown material properties and the lack of adequate
models for mechanisms at very small scales,

2. the limited range of motion and force that can be gen-
erated with microactuators,

3. the lack of sufficient sensor information with regard to
manipulation tasks, and

4. design limitations and geometric tolerances due to the
fabrication process.

Several MEMS researchers, among others (Fujita 1993;
Storment et al. 1994; Liu and Wil l 1995; Jacobson et al.
1995; Suh et al. 1996) have proposed MEMS manipulator
arrays. For an overview, see thework of Liu and Wil l (1995)
or Böhringer and colleagues (1994a, 1994b).

Our arrays(Fig. 2) arefabricated using aSCREAM (Single-
Crystal Silicon Reactive Etching and Metallization) process
developed in theCornell NanofabricationFacility (Zhangand
MacDonald 1992, Shaw, Zhang, and MacDonald 1993). The
SCREAM process is low temperature, and does not interfere
with traditional VLSI (Shaw and MacDonald 1996). Hence
it opensthedoor tobuildingmonolithicmicroelectromechan-
ical systems with integrated microactuators and control cir-
cuitry on thesamewafer.

One of the goals of research in microactuators is to de-
velop devices for manipulating other small components; for
example, to accurately position micromachined components
for inspection or assembly purposes. Fabrication constraints
limi t the design of most of these components (usually small
chipletsmadefrom silicon wafers) to extruded planar shapes,
so manipulation in the plane is sufficient for many applica-
tions. For example, a microactuator array has been success-
fully employedtoreplace a3-DOFstagein ascanningelectron
microscope (SEM) (Darling et al. 1997).

Our designisbasedonmicrofabricatedtorsional resonators
(Mihailovichet al. 1993; MihailovichandMacDonald1996).
Each unit device consists of a rectangular grid etched out of
single-crystal silicon suspended by two rods that act as tor-
sional springs (Fig. 3). The grid is about 200 µm long, and
extends 120 µm on each side of the rod. The rods are 150
µm long. The current asymmetrical design has 5-µm high
protruding tipson onesideof thegrid that makecontact with
an object lying on top of theactuator (Fig. 4). Theother side

Fig. 2. A prototype M-CHIP fabricated in 1995: a large uni-
directional actuator array (viewed via scanning electron mi-
croscopy). Each actuator is 180 × 240 µm in size. De-
tail from a 1 in2 array with more than 15,000 actuators
(For more pictures on device design and fabrication, see
theWorldWideWebat http://www.cs.cornell.edu/home/karl/
MicroActuators.)

Fig. 3. Released asymmetric actuator for theM-CHIP(viewed
viascanning electron microscopy): adensegrid (10 µm spac-
ing) withanaluminumelectrodeunderneath(left); agridwith
5-µm high poles (right).

of the actuator consists of a denser grid above an aluminum
electrode. If a voltage is applied between the silicon sub-
strate and the electrode, the dense grid above the electrode
is pulled downward by the resulting electrostatic force. Si-
multaneously, the other side of the device (with the tips) is
deflected several µm out of the plane. Hence, an object can
be lifted and pushed sideways by theactuator.

Because of its low inertia (resonance in the high-kHz
range), the device can be driven in a wide frequency range
from DC to several 100 kHz AC. Our actuators need not be
operatedat resonance: they canalsobeservoedtoperiodically
“hit ” an object on top, thereby applying both lateral and ver-
tical forces. Our calculations, simulations, and experiments
haveshown that the forcegenerated with atorsional actuator
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is approximately 10 µN, which corresponds to a force-per-
arearatio of 100µN/mm2, which islargeenough to levitatea
pieceof paper (1 µN/mm2) or asilicon wafer (10 µN/mm2).

Each actuator can generate motion in one specific direc-
tion if it is activated; otherwise, it acts as a passive frictional
contact. Figure 2 shows asmall section of such a unidirec-
tional actuator array, which consists of more than 15,000 in-
dividual actuators. The combination and selective activation
of several actuators with different motion bias allows us to
generate various motions in discrete directions, spanning the
plane (Fig. 5).

The microscopic features of these actuators pose a possi-
ble disadvantage, which may make them less useful in harsh

Fig. 4. ReleasedM-CHIPactuatorsconsistingof single-crystal
silicon with 5-µm high tips.

Fig. 5. Released M-CHIP prototype motion pixel, consisting
of actuators oriented in four different directions.

or dirty environments. Macroscopic objects and forces can
easily damagemicroactuators. For example, careful handling
is required when placing objects on the array. However, sil-
icon is asurprisingly flexible material at microscopic scales
(Peterson 1982), and extremely largeelastic deformationsare
possible without structural damage (Taher, Saif, and Mac-
Donald 1995). Another concern are dust particles that could
jam the microactuators. As a remedy, tiny venting holes can
be etched from the backside of the substrate, such that dust
particles are removed by a constant flow of air. Such air jets
are also useful for levitating or manipulating objects (Pister
Fearing, and Howe1990; Konishi and Fujita1993).

Thefabricationprocessandmechanismanalysishavebeen
described in more detail in other works (Böhringer et al.
1994a, 1994b; Böhringer, Donald, and MacDonald 1996b).

2.2. Macroscopic Vibratory Parts Feeder

Böhringer and colleagues (1995a) have presented a device
that uses the force field created by transverse vibrations of a
plate to position and align parts. The device consists of an
aluminum plate that is attached to acommercially available
electrodynamic vibration generator,1 with a linear travel of
0.02m, and the capability to produce a force of up to 500
N (Fig. 6). The input signal, specifying the waveform cor-
responding to the desired oscillations, is fed to asingle-coil
armature, which moves in aconstant field produced by a ce-
ramic permanent magnet in acenter-gap configuration.

For low amplitudesandfrequencies, theplatemoveslongi-
tudinally with no perceptibletransversevibrations. However,

1. Model VT-100G, Vibration Test Systems, Akron, Ohio, USA.

Fig. 6. Vibratory plate parts feeder: an aluminum plate (size
50 cm × 40 cm) exhibits a vibratory minimum. Parts are
attracted to this nodal line, and reach equilibrium there.
(See also the World Wide Web at www.ee.washington.edu/
faculty/karl/Research/VibratoryPlate.)



Böhringer, Donald, and MacDonald / ForceFields for Distributed Manipulation 7

asthefrequency of oscillationsis increased, transversevibra-
tions of the plate become more pronounced. The resulting
motion is similar to the forced transverse vibration of a rect-
angular plate, clamped on one edge and free along the other
three sides. This vibratory motion creates a force field in
which particlesareattracted to locationswith minimal vibra-
tion, called the nodal lines. This field can be programmed
by changing the frequency, or by employing clamps as pro-
grammablefixtures that createvarious vibratory nodes.

Figure 6 shows two parts, shaped like a triangle and a
trapezoid, after they havereached their stableposes. Tobetter
illustratetheorientingeffect, thecurveshowing thenodal line
hasbeendrawnby hand. Notethat thisdevicecanonly usethe
finitemanipulationgrammar described inSection6.2, sinceit
can only generate aconstrained set of vibratory patterns, and
cannot implement radial strategies.

3. Equilibriu m Analysis for Programmable
Vector Fields

For the generation of manipulation strategies with pro-
grammable vector fields, it is essential to be able to predict
themotion of apart in thefield. Particularly important isde-
termining the stable equilibrium poses that a part can reach
in which all forces and moments are balanced. This equi-
librium analysis was introduced in our short conference pa-
per (Böhringer et al. 1994a), where we presented atheory of
manipulation for programmable vector fields, and an algo-
rithm that generatesmanipulation strategiesto orient polygo-
nal partswithout sensor feedback using asequenceof squeeze
fields. Wenow review thealgorithmfromthat work andgivea
detailed proof of itscomplexity bounds. Thetoolsdeveloped
hereareessential to understanding our new and improved re-
sults, and wil l beused throughout thispaper to develop com-
plexity bounds for our distributed manipulation algorithms.

In general, weassumethat thedynamicsof apart moving
in the force field is governed by first-order dynamics. This
assumption is based on extensive experimentation with the
devices presented in Section 2. In a first-order system, the
velocity of a part is directly proportional to the force acting
on it. Basically, it is arigid-body dynamical system that is
heavily damped.

3.1. SqueezeFields and Equilibria

In the work of Böhringer and colleagues (1994a), we pro-
posed afamily of control strategies called squeezefields and
aplanning algorithm for parts orientation.

DEFINITION 1. Assume l is a straight line through the ori-
gin. A squeezefield f isatwo-dimensional force-vector field
defined as follows:

1. if z ∈ R
2 lies on l, then f (z) = 0; and

2. if z doesnot lieon l,then f (z) is theunit vector normal
to l and pointing toward l.

We refer to the line l as the squeeze line, because l lies in
the center of the squeeze field. See Figure 7 for examples of
squeezefields.

Assuming quasi-static motion, an object wil l move per-
pendicularly toward the line l and cometo rest there. Weare
interested in the motion of an arbitrarily shaped (not neces-
sarily small) part P . Let us call P1, P2 the regions of P that
lieto theleft and to theright of l, respectively, and c1, c2 their
centersof area. In arest position, both translational and rota-
tional forcesmust bein equilibrium. Weobtain thefollowing
two conditions:

1. TheareasP1 and P2 must beequal, and

2. Thevector c2 − c1 must benormal to l.

Part P has atranslational motioncomponent that isnormal
to l if condition 1doesnot hold, andP has arotational motion
component if condition 2 does not hold (see Fig. 8). This
assumes auniform force distribution over the surface of P ,
which is a reasonable assumption for a flat part that is in
contact with alargenumber of elastic actuators.

Fig.7.Sensorlesspartsorientingusingforce-vector fields: the
part reachesuniqueorientationafter twosubsequent squeezes.
Thereexist such orientating strategiesfor all polygonal parts.
(See the World Wide Web at www.ee.washington.edu/
faculty/karl/PFF for an animated simulation.)
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Fig. 8. Equilibrium condition: to balance the force and mo-
ment acting on P in aunit squeezefield, thetwo areasP1 and
P2 must beequal (i.e., l must be abisector), and the linecon-
necting thecentersof areac1 and c2 must beperpendicular to
thenode line.

DEFINITION 2. A part P is in translation equilibrium if the
forces acting on P are balanced; P is in orientation equilib-
rium if themomentsacting on P arebalanced. Total equilib-
rium is simultaneous translation and orientation equilibrium.

Let (x0, y0, θ0) be an equilibrium pose of P . (x0, y0) is
the corresponding translation equilibrium, and θ0 is the cor-
responding orientation equilibrium.

Note that conditions 1and 2 do not imply that in equilib-
rium, thecenter of areaof P hasto coincidewith thesqueeze
line l. For example, consider a large and asmall square con-
nected by a long rod of negligible width (Fig. 9). If the rod
is long enough, thecenter of areawil l lieoutsideof the large
square. However, in equilibrium, the squeeze line l wil l al-
ways intersect the largesquare.

3.2. Polygon Bisectors and Complexity

Consider a polygonal part P in a unit squeeze field, as de-
scribed in Section 3.1. In this section, we describe how to
determine the orientations θi in which P achieves equilib-
rium. This construction wil l show that equilibria always ex-

Fig. 9. A part consisting of two squaresconnected by a long,
thin rod. The part is in total equilibrium, but its COM does
not coincidewith thesqueeze line l.

ist, as long as the contact areas have finite size, and that for
connected parts, theorientation equilibriaarediscrete. More
precisely, if a connected part is in equilibrium in a squeeze
field, there are discrete values for its orientation and its off-
set from the center of the squeeze line. The equilibrium is
of course independent of its position along the squeeze line.
Hence, in the remainder of Section 3, when using the term
“discrete equilibria,” we mean that the orientation and offset
of the part is discrete. We wil l derive upper bounds on the
number of thesediscreteequilibria.

DEFINITION 3. A bisector of a polygon P is a line that cuts
P into two regions of equal area.

PROPOSITION 1. Let P be apolygon whose interior is con-
nected. Thereexist O(kn2) bisectorssuchthat P isinequilib-
rium when placed in asqueezefield where the bisector coincides
with the squeeze line. n is the part complexity measured as
thenumber of polygon vertices, and k denotes themaximum
number of polygon edges that abisector can cross.

If P isconvex, then thenumber of bisectors isbounded by
O(n).

For most part geometries, k is asmall constant.2 However,
in the worst case, pathological parts can reach k = O(n).
A spiral-shaped part (e.g., a rectilinear part) would be an
example for such apathological case, becauseevery bisector
intersectsO(n) polygon edges.

LEMMA 1. Given apolygon P and a line l : y = mx + c,
let n be thenumber of vertices of P :

1. there exist O(n2) combinatorially different ways how
a line l can intersect P ;

2. let a and b be the intersections of bisector l with the
convex hull of P . Asm variesfrom −∞ to +∞, a and
b progress monotonically counterclockwise about the
convex hull of P ; and

3. if the interior of P is connected, then there exists a
uniquebisector of P for every m ∈ R.

2. In particular, in an earlier work (Böhringer et al. 1994a), weassumed that
k = O(1).
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Combinatorially equivalent intersectionsof polygonP are
all those placements of the intersecting line l such that the
sets of left and right polygon vertices are fixed. A necessary
condition for combinatorial equivalenceisthat l intersectsthe
sameordered set of polygon edges.

Proof. ThereareO(n2) different placementsfor l such that it
coincides with more than one vertex of P . Hence, all place-
ments of l fall into one of O(n2) combinatorially equiva-
lent classes. This was proven by Díaz and O’Rourke (1990,
Lemma3.1).

Assume l is abisector of P with a fixed slope m. Since
the interior of P is connected, the intersection between l and
P must be alinesegment of nonzero length. Hence atransla-
tionof l (e.g., towardtheleft) wil l causeastrictly monotonous
decreasein theleft-areasegment of P , and viceversa. There-
fore, thebisector placement of l for agiven slopem isunique.
�

Consider thebisector l of polygonP for changingmvalues,
as described in Lemma 5. The intersections of l with the
convex hull of P , a and b, progress monotonically about the
convex hull. In general, this progression corresponds to a
rotation and atranslation of l.

In thefollowingproof for Proposition1, weinvestigatethe
relationship between the location of thebisector and thecor-
responding left and right areasof P and itsrespectivecenters
of area.

Thiswil l allow usto show that for combinatorially equiva-
lent bisector placements, thereareonly afinitenumber of pos-
sible equilibria, and this number is bounded by O(k), where
k ≤ n is thenumber of polygon edges that thebisector inter-
sects.

Proof (Proposition 1). Consider two combinatorially equiv-
alent placements of bisector l on polygon P . We wil l show
that the number of equilibria for this bisector placement is
bounded by O(k). Since there are O(n2) such placements
for P (see Lemma 1), the total number of equilibria wil l be
O(kn2).

Rotating the Bisector. Consider the line l and a point s

that lieson l (Fig. 10). Thedirection of l isgiven by avector
r. Assume for now that the line l intersects two edges of the
polygon P in the points r1 and r2. Also assume that these
edges have directions a1 and a2. Now consider another line
l′ with direction r ′ that intersects l in s. Assume that l and
l′ havecombinatorially equivalent intersectionswith polygon
P , and that l′ intersects the polygon edges in r ′

1 and r ′
2. Let

uswrite ri = s + ρir and r ′
i = s + ρ′

i r
′ for i = 1, 2. Then the

polygon areabetween l and l′ is

A = 1

2

(
ρ′

2ρ2 − ρ′
1ρ1

) (
r ′ × r

)
.

In the general case where l and l′ intersect multiple edges of
some arbitrary polygon P at points r1, r2, . . . , rk and r ′

1, r
′
2,

Fig. 10. Two nonparallel lines l and l′ in a combinatorially
equivalent intersection with polygon P .

. . . , r ′
k (k even), thepolygon areabetween l and l′ is

A = 1

2

(
r ′ × r

) k∑
i=1

(−1)iρ′
iρi .

Without lossof generality, let ρk 6= 0. Then r ′ can bewritten
as r ′ = r + αak for some α ∈ R, and the above equation
becomes

A = 1

2
((r + αak) × r)

k∑
i=1

(−1)iρ′
iρi,

= α

2
(ak × r)

k∑
i=1

(−1)iρ′
iρi .

(1)

From the two vector equations r ′
i = s + p′

i r
′ and r ′

i = s +
ρir + λai, λ ∈ R, wecan determineρ′

i as

ρ′
i = ρi(ai × r)

(ai × r) + α(ai × ak)
. (2)

If wealsochoosetheedge-directionvectorsai such that (ai ×
r) = 1, then eqs. (1) and (2) simplify to the following rational
functions in α:

ρ′
i = ρi

1 + α(ai × ak)
, (3)

A = α

2

k∑
i=1

(−1)i
ρ2

i

1 + α(ai × ak)
. (4)

Let us look at the denominator di(α) = 1 + α(ai × ak) in
more detail. This is important because we shall see that in
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all formulas we will obtain, the denominators consist only of
di(α). For an arbitrary polygon,di is a linear function ofα.
If all ai are parallel, thendi = 1. If the polygon is rectilinear,
i.e., allai are either parallel or perpendicular, thendi(α) = 1
if ai ||ak, anddi(α) = 1 + αa⊥ if ai ⊥ ak, wherea⊥ is
constant. So in this case, there are only two different constant
denominators, one of which is 1.

Translating the Bisector.We now consider the case where
l′ shifts parallel (Fig. 11). Analogously to the previous para-
graph, letr ′

i = s′ + ρ′
i r

′, andr ′′
i = s′′ + ρ′′

i r ′. Also, let the
vector betweens′ ands′′ bes′′ − s′ = βa2. Then the polygon
area betweenl′ andl′′ is

B = βa2 × 1

2

((
r ′
2 + r ′′

2

)− (
r ′
1 + r ′′

1

))
,

= β

2

(
ρ′

2 + ρ′′
2 − ρ′

1 − ρ′′
1

)
(a2 × (r + αa2)) ,

= β

2

(
ρ′

2 + ρ′′
2 − ρ′

1 − ρ′′
1

)
.

(5)

In the general case,l′ andl′′ intersect multiple edges of some
arbitrary polygonP at pointsr ′

1, r
′
2, . . . , r ′

k andr ′′
1 , r ′′

2 , . . . , r ′′
k .

Now theρ′′
i can be determined from the two vector equations

r ′′
i = r ′

i + λai, λ ∈ R, andr ′′
i = s′′ + ρ′′

i r ′:

ρ′′
i = ρ′

i − β
ai × ak

ai × r ′ ,

= ρ′
i − β

ai × ak

1 + α(ai × ak)
,

= ρi − β(ai × ak)

1 + α(ai × ak

.

(6)

Fig. 11. Two parallel linesl′ andl′′ in combinatorially equiv-
alent intersection with polygonP .

Then the polygon area betweenl′ andl′′ is

B = β

2

k∑
i=1

(−1)i(ρ′
i + ρ′′

i ),

= β

2

k∑
i=1

(−1)i
(ρi − β(ai × ak)

1 + α(ai × ak)
.

(7)

This is a quadratic polynomial inβ (unless allai are paral-
lel, in which case it simplifies to the linear equationB =
β
∑k

i=1(−1)iρi).
Maintaining the Bisector Property.From the above two

paragraphs, we see that if the bisectorl is rotated tol′, then
the left and right areas are changed by a valueA (6= 0 in
general) as described in eq. (4). Hence, a subsequent shift of
l′ is necessary to restore the bisector property, by changing
the areas by a valueB, as described in eq. (7).

This implies the conditionA+B = 0, withA andB given
by eqs. (4) and (7):

A + B = 1

2

k∑
i=1

(−1)i
αρ2

i + 2βρi − β2(ai × ak)

1 + α(ai × ak)
.

= 0.

(8)

This equation ensures thatl is a bisector ofP . It is a necessary
and sufficient condition for translation equilibrium in a unit-
squeeze field. Equation (8) is a rational equation inα, and a
quadratic polynomial equation inβ. Hence for all combinato-
rially equivalent bisectors, we can obtain an explicit formula
to describeβ as a function ofα.

In general, eq. (8) is equivalent to a polynomial inα and
β whose degree depends on the numberk of polygon edges
intersected by the bisectorsl, l′, or l′′. The degree of this
polynomial is limited byk for α, and by 2 forβ. In the
rectilinear case, the degrees forα andβ are limited by 2. In
the case where allai are parallel, eq. (8) simplifies to a linear
equation:

∑k
i=1(−1)i(α

ρi

2 + β)ρi = 0.
Moment Equilibrium.After rotating (parameterα, obtain

l′) and translating (parameterβ, obtainl′′) the bisectorl, its
intersections with the polygon edges move fromri to

r ′′
i = s + ρ′′

i r ′ + βak,

= s + ρi − β(ai × ak)

1 + α(ai × ak)
(r + αak) + βak.

(9)

If all ai are parallel, this simplifies tor ′′
i = s + ρir + (αρi +

β)ak.
Suppose thatcl andcr , are the left and the right centers

of area ofP , andAl andAr are the respective area sections,
so Al + Ar = A. We are interested in how these points
change when the bisector changes. Note that alwaysc =
1
A

(Alcl + Arcr), and ifP is bisected (i.e.,Al = Ar = 1
2A)

thenc = 1
2(cl + cr).
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Weconsider theareabetween l and l′′, whichcanbewritten
as asum of quadrangles (ri, rk, r

′′
k , r ′′

i ). Theweighted center
areaof this areacan bedetermined as

C =
k∑

i=1

(−1)i
1

6
((ri + rk)(ri × rk) + (rk + r ′′

k )(rk × r ′′
k )

+ (r ′′
k + r ′′

i )(r ′′
k × r ′′

i ) + (r ′′
i + ri)(r

′′
i × ri)).

(10)

For the left areas, the following relationship holds (assuming
A′′

l 6= 0):

A′′
l c

′′
l = Alcl + C

⇒ c′′
l = Al

A′′
l

cl + 1

A′′
l

C,

and similarly, for the right areas (assuming A′′
r 6= 0):

c′′
r = Ar

A′′
r

cr − 1

A′′
l

C.

Hence,

c′′
r − c′′

r = Al

A′′
l

ct − Ar

A′′
r

cr +
(

1

A′′
l

+ 1

A′′
r

)
C.

Both l and l′′ are bisectors, so Al = Ar = A′′
l = A′′

r = A
2 ,

and

c′′
l − c′′

r = cl − cr + 4

A
C.

For orientation equilibrium, werequire that the lineconnect-
ingthecentersof area, c′′

r −c′′
l , andthedirectionof thebisector

r ′, areperpendicular:

(c′′
l − c′′

r ) · r ′ = (cl − cr + 4

A
C) · r ′,

= 0.

(11)

The value of C = C(α, β) can be determined by using eqs.
(9) and(10), andtheequation r ′ = r+αak. Equation(11) isa
necessary andsufficient conditionfor orientationequilibrium.

By using the expressions derived in eqs. (1)–(10), both
eqs. (8) (for translation equilibrium) and (11) (for orientation
equilibrium) canbeexpressedwith rational functionsinα and
β whose numerator (respectively, denominator) degrees are
O(k) (respectively, O(1)) for α and 2 for β. Hence, we can
obtain asystem of two polynomial equationsof degreeO(k)

for α and 2 for β. This system has at most O(k) solutions,
resulting in O(k) total equilibria for bisector placements that
are combinatorially equivalent. Since there are (n2) com-
binatorially different bisector placements, there are at most
O(kn2) total equilibria.�[]

3.3. Planning of Manipulation Strategies

In this section, we present an algorithm for sensorless parts
alignment with squeeze fields (Böhringer et al., 1994a;
Böhringer, Donald, and MacDonald 1996a). Recall from
Section 3.2 that in squeezefields, theequilibriafor connected
polygons are discrete (modulo a neutrally stable translation
parallel to the squeeze line, which we wil l disregard for the
remainder of Section 3).

To model our actuator arrays and vibratory devices, we
made the following assumptions:

Density: the generated forces can be described by a vector
field, i.e., theindividual microactuatorsaredensecom-
pared to thesizeof themoving part; and

2Phase: themotion of a part hastwo phases: (1) puretransla-
tiontowardsl until thepart isin translationequilibrium,
and (2) motion in translation equilibrium until orienta-
tion equilibrium is reached.

Notethat duetotheelasticity andoscillationof theactuator
surfaces, wecan assumecontinuousareacontact, and not just
contact in three or a few points. If a part moves while in
translation equilibrium, in general the motion is not a pure
rotation, but also has a translational component. Therefore,
relaxing the 2Phase assumption is one of the key results of
this paper.

DEFINITION 4. Let θ betheorientation of aconnected poly-
gon P in asqueeze field, and let us assume that condition 1
holds. The turn function t : θ → {−1, 0, 1} describes the
instantaneous rotational motion of P :

t (θ) =



1  if P wil l turn counterclockwise,
−1     i f P wil l turn clockwise,
0            if P is in total equilibrium.

See Figure 12 for an illustration. The turn function t (θ)

can be obtained, for example, by taking the sign of the lifted
moment MP (z) for poses z = (x, y, θ), in which the lifted
forcefP (z) is zero.

Definition 6 immediately implies the following lemma.

LEMMA 2 (Böhringer, MacDonald, and Donald 1996a). Let
P beapolygon with orientation θ in asqueezefield such that
condition 1 holds. P is stable if t (θ) = 0, t (θ+) ≤ 0, and
t (θ−) ≥ 0; otherwise, P is unstable.

Proof. Assumethepart P is in apose(x, y, θ) such that con-
dition 1 is satisfied. This implies that the translational forces
acting on P balance out. If in addition t (θ) = 0, then the
effectivemoment iszero, and P is in total equilibrium. Now
consider asmall perturbation δθ > 0 of theorientation θ of P

while condition 1 is still satisfied. For a stable equilibrium,
the moment resulting from the perturbation δθ must not ag-
gravate, but rather counteract, theperturbation. This is trueif
and only if t (θ + δθ ) ≤ 0 and t (θ − δθ ) > 0.
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Fig. 12. (a) Polygonal part: stable (thick line) and unsta-
ble (thin line) bisectors are also shown. (b) Turn func-
tion, which predicts the orientations of the bisectors. Sta-
ble (respectively, unstable) bisectors correspond to angles
at which the turn function changes from +1 to −1 (respec-
tively, from −1 to +1). (c) Squeeze function, constructed
from the turn function. (d) Alignment strategy for two ar-
bitrary initial configurations. (See the World Wide Web at
www.ee.washington.edu/faculty/karl/Research/ for ananimated
simulation.)

Using this lemma, we can identify all stable orientations,
which allows us to construct the squeeze function (Goldberg
1993) of P (see Fig. 12c); i.e., the mapping from an initial
orientation of P to thestableequilibrium that it wil l reach in
thesqueezefield:

LEMMA 3. Let P beapolygonal part on an actuator array A
suchthat Density and2Phasehold. Giventheturnfunction
t of P , its corresponding squeeze function s : S

1 → S
1 is

constructed as follows:

1. all stable equilibrium orientations θ map identically
to θ ;

2. all unstable equilibrium orientations map (by conven-
tion3) to the nearest counterclockwise stable orienta-
tion; and

3. all orientationsθ with t (θ) = 1(−1) map to thenearest
counterclockwise (clockwise) stableorientation.

Then, s describestheorientationtransitionof P inducedbyA.

Proof. Assume that part P initially is in pose (x, y, θ) in
array A. Because of the 2Phase assumption, we can assume
that P translates toward the center line l until condition 1 is

3. Equally, onecould define t to map unstableequilibrium orientationsto the
nearest clockwise stable equilibrium. This choice for a set of measure zero
does not affect our subsequent analysis and algorithms.

satisfied without changing itsorientation θ . P wil l changeits
orientation until the moment is zero, i.e., t = 0: a positive
moment, (t > 0) causescounterclockwisemotion, and aneg-
ativemoment (t < 0) causesclockwisemotion until thenext
root of t is reached. �

Weconclude that any connected polygonal part, when put
in a squeeze field, reaches one of a finite number of possi-
ble orientation equilibria (Böhringer et al. 1994a; Böhringer,
Donald, and MacDonald 1996a). The motion of the part
and, in particular, the mapping between initial orientation
and equilibrium orientation isdescribed by thesqueezefunc-
tion, which isderived from the turn function (asdescribed in
Lemma3). Note that all squeeze functionsderived from turn
functions aremonotonestep-shaped functions.

Goldberg (1993) hasgivenanalgorithmthat automatically
synthesizes amanipulation strategy to uniquely orient apart,
given its squeeze function. While Goldberg’s algorithm was
designed for squeezes with arobotic parallel-jaw gripper, in
fact, it is more general, and can be used for arbitrary mono-
tonestep-shapedsqueezefunctions. Theoutput of Goldberg’s
algorithm is asequenceof anglesthat specify therequired di-
rections of the squeezes; therefore, these angles specify the
direction of the squeeze line in our force-vector fields (for
example, the two-step strategies in Figures 7 and 12d). It
is important to note that the equilibria obtained by a MEMS
squeeze field and by a parallel-jaw gripper wil l typically be
different, even when thesqueezedirectionsare identical. For
example, to seethis, consider squeezing asquare-shaped part
(Fig. 13). Stable and unstable equilibria are reversed. This
showsthat our mechanical analysisof equilibrium isdifferent
from that of theparallel-jaw gripper. Let ussummarize these
results in the following statements.

PROPOSITION 2. Let P be apolygon whose interior is con-
nected. There exists an alignment strategy consisting of a

Fig. 13. Equilibrium configurations for a square-shaped part
using (a) a frictionlessparallel-jaw gripper, and (b) aMEMS
squeeze field. In this example, stable and unstable equilibria
are reversed.
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sequenceof squeezefieldsthat uniquely orientsP up to sym-
metries.

Since the strategies of Proposition 2 consist of fields with
squeeze lines at arbitrary angles through the origin, we call
them general S

1 squeeze strategies, or, henceforth, general
squeezestrategies.

COROLLARY 1. The alignment strategies of Proposition 2
have O(kn2) steps, and they may be computed in time
O(k2n4), where k is the maximum number of edges that a
bisector of P can cross. In the case where P is convex, the
alignment strategy has O(n) steps, and can be computed in
timeO(n2).

Proof. Proposition 1 states that a polygon with n vertices
has E = O(kn2) stable orientation equilibria in a squeeze
field (O(n) if P is convex). This means that the image of its
corresponding squeeze function is a set of E discrete values.
Given such asqueeze function, Goldberg’s algorithm (Gold-
berg 1993) constructs alignment strategies with O(E) steps.
Planning complexity isO(E2). �

Thestrategiesof Goldberg (1993) havethesamecomplex-
ity boundsfor convex and nonconvex parts, becausewhen us-
ing squeeze grasps with aparallel-jaw gripper, only the con-
vex hull of the part need be considered. This is not the case
for programmable vector fields, where manipulation strate-
gies for nonconvex parts are more expensive. As described
in Section 3.2, there could exist parts that haveE = �(kn2)

orientation equilibria in asqueeze field, which would imply
alignment strategiesof length�(kn2) andplanningcomplex-
ity �(k2n4).

Notethat theturnandsqueezefunctionshave aperiodof π ,
dueto thesymmetry of thesqueezefield; rotating thefield by
an angle of π produces an identical vector field. Rotational
symmetry in the part also introduces periodicity into these
functions. Hence, general squeezestrategies(seeProposition
2) orient a part up to symmetry, that is, up to symmetry in
the part and in the squeeze field. Similarly, the grasp plans
based on squeeze functions in the work of Goldberg (1993)
can orient a part with a macroscopic gripper only modulo
symmetry in thepart and in thegripper.4 Sincein Goldberg’s
(1993) work we reduce to the squeeze-function algorithm, it
is not surprising that this phenomenon is also manifested for
squeeze-vector fields as well. A detailed discussion of parts
orientation modulo symmetry has been provided (Goldberg
1993).

The algorithm in this section uniquely orients a part (up
to symmetry); however, its position cannot be predicted pre-
cisely. In Section 6, we wil l present new and improved ma-
nipulation algorithms that position and orient parts uniquely,
and also reduce the number of equilibria to E = O(kn). In
Section 6.2 we wil l show that the algorithm described in this

4. Parallel-jaw gripper symmetry is also modulo π .

section can be extended easily such that unique positioning
and orienting can beachieved.

Squeeze fields may be generalized to the case where l is
slightly curved, as in the“node” of thevibrating plate in Fig-
ure 6(detailsareavailable(Böhringer 1995a)). Theremaining
sectionsof thispaper investigateusing moreexotic fields(not
simplesqueezepatterns) to:

• allow disconnected polygons,
• relax the2Phaseassumption,
• reduce theplanning complexity,
• reduce thenumber of equilibria,
• reduce theexecution complexity (strategy length), and
• determinefeasibility resultsand limitations for manip-

ulation with general forcefields.

3.4. Relaxing the2PhaseAssumption

InSection3.3, the2Phaseassumptionallowedustodetermine
successive equilibrium positions in a sequence of squeezes,
by aquasi-static analysis that decouples translational and ro-
tational motion of themoving part. For any part, thisobtains
a unique orientation equilibrium (after several steps). If the
2Phase assumption is relaxed, we obtain a dynamic manip-
ulation problem, in which we must determine the equilibria
(x, θ) given by the part orientation θ and the offset x of its
center of mass from the squeeze line. A stable equilibrium
is a (xi, θi) pair in R × S

1 that acts as an attractor (the x

offset in an equilibrium is, surprisingly, usually not 0; see
Fig. 9). Again, we can compute these (xi, θi) equilibrium
pairs exactly, as outlined in Section 3.2.

Considering (xi, θi) equilibrium pairs has another advan-
tage. Wecan show that, even without the2Phaseassumption,
after two successive, orthogonal squeezes, the set of stable
poses of any part can be reduced from C = R

2 × S
1 to a

finite subset of C (the configuration space of part P ); see
claim 1 (Section 6.2). Subsequent squeezeswil l preserve the
finitenessof thestatespace. Thiswil l significantly reducethe
complexity of a task-level motion planner. Hence, if assump-
tion 2Phaseisrelaxed, thisideastill enablesusto simplify the
general motion-planning problem (as formulated, for exam-
ple, by Lozano-Pérez, Mason, and Taylor (1984)) to that of
Erdmann and Mason (1988). Conversely, relaxing assump-
tion 2Phase raises the complexity from the “linear” planning
schemeof Goldberg (1993) to the forward-chaining searches
of Erdmann and Mason (1988) or Donald (1990).

4. Lower Bounds: What Programmable Vector
Fields Cannot Do

We now present “l ower bounds”—constituting vector fields
and parts with pathological behavior, making them unusable
for positioning. These counterexamples show that we must
be careful in choosing programmable vector fields, and that,
apriori, it is not obvious when afield is well behaved.
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4.1. UnstableFields

InSection3,wesaw that in avector fieldwith asimplesqueeze
pattern (seeagain Fig. 7), polygonal parts reach certain equi-
librium poses. This raises the question of a general classifi-
cation of all thosevector fields in which every part hasstable
equilibria. Thereexist vector fieldsthat donot havethisprop-
erty, even though they arevery similar to asimplesqueeze.

DEFINITION 5. A skewed field fS is avector field given by
fS(x, y) = −sign(x) (1, ε), where0 6= ε ∈ R.

PROPOSITION 3. A skewed field induces no stable equilib-
rium on adisk-shaped part.

Proof. Consider Figure14, which shows askewed field with
ε = −2

3: only when thecenter of thedisk coincides with the
center of thesqueezepatterndo thetranslational forcesacting
on the disk balance. But it wil l still experience a positive
moment that wil l cause rotation. �
PROPOSITION 4. A diagonally skewed field (ε = ±1) in-
duces no stableequilibrium on asquare-shaped part.

Proof. To reach equilibrium in a diagonally skewed field,
thesqueeze linehas to bisect thepart such that theconnector
between the left and theright centersof area isdiagonal (i.e.,
parallel to theforcevectors). An analysissimilar to theproof
of Proposition 1 (Section 3.2) shows that for a square, no
bisector placement can achieve an angle with the connector
of less than 83◦. �

Propositions 3and 4show that skewed squeezefieldscan-
not be used for open-loop positioning or orienting of parts,
since there may not exist any stable equilibria. However,
skewed squeeze fields may be very useful if our goal is to
continuously rotate apart (e.g., for inspection purposes).

Fig. 14. Unstablepart in theskewed squeezefield (ε = −2
3).

Thedisk with itscenter on thesqueezelinewil l keep rotating;
moreover, it has no stableequilibrium in this field.

4.2. UnstableParts

Similarly, wewould liketo identify theclassof all thoseparts
that always reach stable equilibria in particular vector fields.
From Section 3, we know that connected polygons in simple
squeeze fields satisfy this condition. This property relies on
finite area contacts: it does not hold for point contacts. As a
counterexample, consider thepart PS in Figure15.

PROPOSITION 5. There exist parts that do not have stable
equilibria in asimplesqueezefield.

Proof. The S-shaped part in Figure 15 has four rigidly con-
nected “feet” with small contact surfaces. Astheareaof each
of thesefour feet approacheszero, thepart hasno stableequi-
libriumin asimplesqueezefield. Thereisonly oneorientation
for thepart in which both forceand moment balanceout, and
this orientation is unstable. �

In Section 5.2, wediscuss thisphenomenon in greater de-
tail, after the tools necessary for a complete mathematical
analysis havebeen developed.

Finally, the number of stable equilibria of a given part
influences both the planning complexity and the plan length
of an alignment strategy. It also affects the resolution of the
vector field that isnecessary to perform astrategy accurately.
Even though all partswehaveconsidered exhibit only oneor
two orientation equilibria, there exist no tight bounds on the
maximum number of orientation equilibria in aunit squeeze
field.

PROPOSITION 6. Let n bethenumber of verticesof apolygon
P , and let k bethemaximum number of edgesthat abisector
of P can cross:

Fig. 15. The S-shaped part PS with four rigidly connected
point-contact “feet” in unstable total equilibrium (forces
and moments balance). There exists no stable equilib-
rium position for this part in a vector field with a simple
squeeze pattern.
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A. regular polygonshaven stableorientation equilibria in
asqueezefield; and

B. every connectedpolygonhasO(kn2) stableorientation
equilibria in asqueezefield.

Proof.

A. Becauseof their part symmetry, regular polygonshave
2n equilibria. Half of them are stable, the other n are
unstable.

B. SeeSection 3.2.

As described in Section 3.2, there exist simple polygons
with n vertices that can bebisected by astraight line in up to
O(kn2) topologically different ways(Böhringer et al. 1997a).
Thissuggeststhat therecouldbepartsthat have�(kn2) orien-
tation equilibria in asqueezefield, which would imply align-
ment strategies of length �(kn2) and planning complexity
�(k2n4).

While the counterexample in Figure 15 may be plausibly
avoided by prohibiting parts with “point contacts,” the other
examples(Fig.14andProposition6) aremoreproblematic. In
Section5, weshow how tochooseprogrammablevector fields
that exclude some of these pathological behaviors, by using
thetheory of potential fieldstodescribe aclassof forcevector
fields for which all polygonal parts have stable equilibria. In
Section 6.1, we show how to combine these fields to obtain
new fields in which all parts haveonly O(kn) equilibria.

Webelievepartswith point contact (not having finitearea
contact) wil l behavebadly inall vector fields. Wecanmodel a
point contact with delta functions, such that, e.g., for apoint-
contact P0 at (x0, y0):∫

P0

f dA =
∫

f δ(x0, y0)dA = f (x0, y0).

This model is frequently used in mechanics (see, e.g., the
work of Erdmann (1994)). Point contact permits rapid, dis-
continuouschangesin forceandmoment. Hence, bodieswith
point contact wil l tend to exhibit instabilities, as opposed to
flat parts that are in contact with a large number of (elastic)
actuators. Finally, we believe that as the area contact—the
size of the “feet” of a part—approaches zero, the part may
becomeunstable. Thisrepresents adesign constraint on parts
that are to be manipulated using programmable planar parts
feeders.

The lower bounds we demonstrate are indications of the
pathologies that can arise when fields without potential or
parts with point contact are permitted. Each of our coun-
terexamples (Figs. 14 and 15) is “generic” in that it can be
generalized to avery large class of similar examples. How-
ever, these lower bounds are just a first step, and one wishes
for examples that delineate thecapabilitiesof programmable
vector fields for planar parts manipulation even more
precisely.

The separating field shown in Figure 1c is not a poten-
tial field, and there exist parts that wil l spin forever, with-
out equilibrium, in thisfield (this followsby generalizing the
construction in Fig. 14). However, for specific parts, such as
thoseshown in Figure1, thisfield isuseful if wecan posethe
parts appropriately first (e.g., using the potential field shown
in Fig. lb).

Finally, wemay “surround” nonpotential fieldswithpoten-
tial fieldstoobtain reasonablebehavior insomecases. Figure
1 shows how to “surround” a nonpotential field in time by
potential fields, to eliminate pathologies. Similarly, we can
surround nonpotential fields spatially. For example, if field
lc could be surrounded by a larger potential field, then after
separation, parts could reach astableequilibrium.

Nonpotential fields can be used safely with the following
methodology: let H ⊂ C = R

2 × S
1 be theundesirable limit

set. For example, H could be a limi t cycle where the part
spins forever. Let P̂V (H) be the weak pre-image (Lozano-
Pérez, Mason, andTaylor 1984; Donald1989) of H under the
fieldV . If wecan ensurethat thepart starts in aconfiguration
z ∈/ P̂V (H), it wil l not reach the unwanted limi t cycle. For
example, in Figure 1 the centering step (b) ensures that the
part doesnot endupon theborder between thetwoseparating
fields, where it would spin forever in step (c).

5. Completeness: Classification using Potential
Fields

Weareinterested in ageneral classification of all thosevector
fieldsinwhichevery part hasstableequilibria. Asmotivation,
recall that a skewed vector field, even though very similar to
a regular squeeze field (see again Fig. 7), induces no stable
equilibrium in a disk-shaped part (Fig. 14). In this section,
we discuss a family of vector fields that wil l be useful for
manipulation tasks. Thesefields belong to aspecific class of
vector fields: theclass of fields that haveapotential.

We believe that fields without potential wil l often induce
pathological behavior in many parts. Fields without poten-
tial admit pathsalong which aparticle (point mass) wil l gain
energy. Sincemechanical partsarerigid aggregationsof par-
ticles, this may induce unstable behavior in larger bodies.
However, therearesomecaseswherenonpotential fieldsmay
beuseful. For example, seeFigurelc, which isnot apotential
field. Such fieldsmay beemployed to separatebut not to sta-
bilize, pose, or orient parts. Thisstrongstatement devolvesto
our proof that fields likeFigure14 do not havewell-behaved
equilibria. Hence, they should only be employed when we
want to induce an unstable system that wil l cast parts away
from equilibrium, e.g., to sort or separate them.

Consider the class of vector fields on R
2 that have a po-

tential, i.e., fields f in which the work is independent of the
path, or equivalently, the work on any closed path is zero,∮

f ·ds = 0. Inapotential field, eachpoint (x, y) isassigned
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a real value U(x, y) that can be interpreted as its potential
energy. When U issmooth, then thevector field f associated
with U is thegradient −∇U . In general, U(x, y) isgiven, up
to an additive constant, by the path integral

∫
a
f · ds (when

it existsand it isunique), whereα isan arbitrary path from a
fixed reference point (x0, y0) to (x, y). Assuming first-order
dynamics, whenU issmooth, an ideal point object isinstable
equilibrium when it is at a local minimum of U .

DEFINITION 6. Let f be aforce-vector field on R
2, and let

p be apoint that is offset from afixed reference point q by a
vector r(p) = p − q. Wedefinethegeneralized forceF asthe
forceand moment induced by f at point p:

F(p) = (f (p), r (p) × f (p)). (12)

Let P be a part of arbitrary shape, and let Pz denote the
part P in pose z = (x, y, θ) ∈ C. We define the lifted force
field fP astheareaintegral of theforceinducedby f over Pz:

fP (z) =
∫
Pz

f dA.  (13)

The lifted generalized forcefield FP isdefined asthearea
integral of the force and moment induced by f over P in
configuration z:

FP (z) =
∫
Pz

FdA,

=

∫

Pz

f dA,

∫
Pz

r × f dA


 .

(14)

Hence, FP isavector field on C. Finally, wedefine the lifted
potential UP : C → R. UP istheareaintegral of thepotential
U over P in configuration z:

UP (z) =
∫
Pz

UdA. (15)

We now show that the category of potential fields is closed
under the operation of lifting, and that UP is the potential of
FP (seeFig. 16). Note that U need not besmooth.

Let g : X → Y and h : Y → Z. Let k : X → Z

be the function that is the composition of g and h, defined
by k(x) = h(g(x)). In the following proposition, we use
the notation h(g) to denote k, the function composition of g

and h.

PROPOSITION 7. Let f bea forcefield on R
2 with potential

U , and let P be apart of arbitrary shape. For thelifted gener-
alizedforcefieldFP andtheliftedpotential UP , thefollowing
equality holds: UP = ∫

P
UdA = ∫

α
FP · dz + c, whereα is

Fig. 16. Determining the potential, and liftin g are commuta-
tiveoperations on force-vector fields.

an arbitrary path in C from afixed referencepoint, and c is a
constant.

Proof. Given a force field f with potential U , and a part
P , we define P ∗ as the set {(r, η)|(r cosη, r sinη) ∈ P } ⊂
R × S

1. P ∗ is arepresentation of P in polar coordinates: p
= (r cosη, r sinη) ∈ P if and only if (r, η) ∈ P ∗.

We write Pz to denote P in pose z = (xz, yz, θz). If P is
moved into pose z, then the point p moves to pz = (xz +
r cos(θz + η), yz + r sin(θz + η)) = (xz, yz) + r z. Let us
assumethat for agiven P , theCOM of P isat 0; this implies
that theCOM of Pz lies at (xz, yz).

We define three families of functions ρ, ζ , and α, as fol-
lows:

ρr,η : [0, 1] → R
2

such that ρr,η is asmooth path in R
2 with ρr,η (0) = 0 and

ρr,η(1) = p0 = (r cosη, r sinη),

ζz : [0, 1] → R
2 × S

1

such that ζz is a smooth path in R
2 × S

1 with ζz(0) = 0 and
ζz(1) = z = (xz, yz, θz), and

αr,η : R
2 × S

1 → R
2

(x, y, θ) 7→ (x + r cos(θ + η),

y + r sin(θ + η).

So ζz is an arbitrary smooth path from 0 to z in C, and
αr,η(ζz) is a smooth path in R

2 from p0 = (r cosη, r sinη)

to pz = (xz + r cos(θz + η), yz + r sin(θz + η)). Recall that
αr,η(ζz) is the function composition of ζz and αr,η.

Weare interested in thepotential of U at pz.
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U(pz) =
∫
β

f · ds,

whereβ is somepath from 0 to pz. The integral is

path independent, becausef has potential U . Since

wecan chooseany path, wechoose apath β that

consists of two parts: (1) apath from 0 to thepoint

p0, and (2) apath from p0 to pz.

=
∫

ρr,η

f · ds +
∫

αr,η(ζz)

f · ds,

where thepath αr,η(ζz), given by thecomposition of

ζz and αr,η, depends on z as well as on r and η, but

ρr,η is independent of z. The left integral is the

potential differencebetween p0 and 0. Without loss

of generality, let us chooseU(0) = 0.

=U(p0) +
∫
ζz

f (αr,η) · (J dz),

whereJ is theJacobian:

J =
( ∂αx

∂x
∂αx
∂y

∂αx
∂θ

∂αy
∂x

∂αy
∂y

∂αy
∂θ

)
=
(

1 0 −r sin(θ + η)

0 1 r cos(θ + η)

)
,

which is thederivativeof αr,η. f (αr,η) is the function

composition of αr,η and f . Also note that dz =
(dx, dy, dθ).

=U(p0) +
∫
ζz

(
fx(αr,η), fy(αr,η),

r cos(θ + η)fy(αr,η) − r sin(θ + η)fx(αr,η)
) · dz.

=U(p0) +
∫
ζz

F(αr,η), ·dz.

(16)

Equation (16) statesthat thepotential at apoint pz = (xz+
r cos(θz+η), yz+r sin(θz+η)) canbedeterminedasthesum
of two integrals: the first integrates the force f over a path
from 0 to p0 = (r cosη, r sinη). If we choose U(0) = 0,
then the first integral is the potential at point p0. The right
part of the expression can be understood as the path integral
of thegeneralized force from p0 to pz

With this result, we can now consider the lifted potential
UP at apoint z = (xz, yz, θz) ∈ C:

UP (z) =
∫
Pz

U(p)dA,

=
∫ ∫

P ∗
U(pz)r dr dη,

wherepz = (xz + r cos(θz + η), yz

+r sin(θz + η)) such that (r, η) ∈ P ∗.

=
∫ ∫

P ∗


U(p0) +

∫
ζz

F(αr,η) · dz


 r dr dη,

by using eq. (16). Again, F(αr,η) denotes the

function composition of αr,η and F .

=
∫ ∫

P ∗
U(p0)r dr dη

+
∫ ∫

P ∗


∫

ζz

F(αr,η) · dz


 r dr rη.

Thefirst expression is thearea integral of U over

P . From Definition 6, it follows that this express-

ion is equal to UP (0) (note that UP (0) is acon-

stant that does not depend on z).

=UP (0)

+
∫ ∫

P ∗


 1∫

0

F(αr,η(ζz(t))) · ζ ′
z(t)dt


 r dr rη,

where ζ ′
z is thederivativeof ζz. Thedot product

yields ascalar value. Wecan now switch the

integrals.

=
1∫

0


∫ ∫

P ∗
F(αr,η(ζz(t))) · ζ ′

z(t) r dr dη


 dt

+UP (0).

ζ ′
z is constant with respect to the integration

parameters r and η hence, wecan move ζ ′
z out-

sideof thearea integral.

=
1∫

0


∫ ∫

P ∗
F(αr,η(ζz(t)))r dr dη


 · ζ ′

z(t) dt

+UP (0),

=
1∫

0


∫ ∫

P ∗
F(ζz,x(t) + r cos(ζz,θ (t) + η),
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ζz,y(t) + r sin(ζz,θ (t) + η))r dr dη
) · ζ ′

z(t)dt

+UP (0),

where ζz = (ζz,x, ζz,y, ζz,θ ).

=
1∫

0



∫ ∫

P ∗
ζz(t)

F (r cosη, r sinη)r dr dη


 · ζ ′

z(t)dt

+UP (0),

whereP ∗
ζz(t)

= {(r, η)|(r cosη, r sinη) ∈ Pζz(t)}.

=
1∫

0


 ∫

Pζz(t)

F dA


 · ζ ′

z(t)dt + UP (0),

=
1∫

0

FP (ζz(t)) · ζ ′
z(t)dt + UP (0)

by definition of the lifted forceFP .

=
∫
ζz

FP · dz + UP (0).

Hence, UP is indeed thepotential of FP . �
Webelieve that ashorter proof ispossibleby using differ-

ential formsfor thecasethat both f and U aresmooth. How-
ever, since the fields in consideration are usually not smooth
(e.g., unit squeezeor radial fields), wegivethelonger general
proof here. Note that this proof does not rely on the fact that
f is a vector field on R

2. Therefore, the proof generalizes to
dimensions 3 or higher.

COROLLARY 2. Let f be aforcefieldonR
2 withpotential U ,

andletP be apart of arbitrary shape. For theliftedgeneralized
force FP and the lifted potential UP , the following equality
holds if UP is differentiable: ∇UP = −FP .

Proof. Follows directly from Proposition 7. �

Soagain,UP (x, y, θ)canbeinterpretedasthepotential en-
ergy of part P in configuration (x, y, θ) Therefore, weobtain
a lifted potential field UP whose local minima are the stable
equilibrium configurations in C for part P . Furthermore, po-
tential fields are closed under addition and scaling. We can
thus create and analyze more complex fields by looking at
their components. In general, thetheory of potential fieldsal-
lowsus to classify manipulation strategieswith vector fields,
offering new insights into equilibrium analysis and provid-
ing the means to determine strategies with stable equilibria.
For example, it allowsusto show that orientation equilibrium

Fig. 17. Two trianglesPz and Pz′ with referencepointsz and
z′ whosesymmetric difference is less than ε.

in a simple squeeze field is equivalent to the stability of a
homogeneous boat floating in water, provided its density is
ρ = 1

2ρwater(for referenceson boat stability, seetheworksof
Gillmer (1956, pp. 42ff) or Newman (1977, p. 290ff)).

5.1. Properties of Lifted Forceand Potential Fields

In thissection, weshow that for apolygonal part P , thelifted-
force field is always continuous, and the lifted potential is
always smooth.

PROPOSITION 8. Consider a polygon P at two configura-
tions: z = (x, y, θ) andz′ = (x′, y′, θ ′), z, z′ ∈ C = R

2×S
1.

For all ε > 0, there exists aδ > 0 such that if z′ lies within
a δ-ball around z, z′ ∈ Bδ(z), then µ(Pz1Pz′) < ε(µ(·) de-
notes the size of an area, and 1 is the symmetric difference
of two sets).

Proof. First wewil l create aregion S around Pz such that for
any perturbed triangle Pz′ ⊂ S, the nonoverlapping regions
of Pz and Pz′ are less than a given ε in size. Then we will
show that there always exists a region Bδ(z) around z such
that if z′ ∈ Bδ(z), then Pz′ lies in S.

For now, let usassumethat Pz isatriangleinconfiguration
z, and let a be the length of its longest side. Consider the set
S = Pz ⊕ Bα(0), for some a > 0 (Fig. 17). The area of
S − Pz is µ(S − Pz < 3α(a + 2α). Let us choose α < 1

9
min(1, ε, ε/a). Then, if ε < 1, µ(S−Pz) < 1

3(ε+2ε2) < ε.
If ε ≥ 1, µ(S − Pz) < 1

3(ε + 2) < ε. So in both cases, if
Pz′ ⊂ S, then the area of the symmetric difference, Pz1Pz′
is at most ε.

We are interested in the distance between apoint p ∈ Pz,
and the corresponding perturbed point p′ ∈ Pz′ . We can
describe the points p and p′ as p = (x + r cos(φ + θ), y +
r sin(φ+θ)) andp′ = (x′ +r cos(φ+θ ′), y′ +r sin(φ+θ ′)),
where r and φ are the length and the angle of a line from the
referencepoint of P to thepoint p. Thedistancebetween the
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x-coordinates is

|xp − xp′ | = |x + r cos(φ + θ) − x′ − r cos(φ + θ ′)|
≤ |x − x′| + |2r sin

2φ + θ + θ ′

2
sin

θ − θ ′

2
|

≤ |x − x′| + r|θ − θ ′|.
If wechoose δ = α

4max(1,r)
, weobtain

|xp − xp′ | ≤ α/4 + α/4

= α/2.

Similarly, |yp − yp′ < α/2, and hence |p − p′| < α. We
conclude that p′ ∈ S whenever z′ ∈ Bδ(z). Hence we can
always find a δ-ball around z such that the areas of Pz and
Pz′ differ by at most ε (by choosing δ < α

4max(1,r)
, i.e.,

δ <
min(1,ε,ε/a)
36max(1,r)

).
Thisproof generalizestoarbitrary polygons(e.g., by using

triangulations). �
PROPOSITION 9. Let P be apolygonal part in a force field
f with potential U . The lifted force field fP (z), and the
lifted generalized forcefield FP (z), with z = (x, y, θ) ∈ C =
R

2 × S
1, arecontinuous functions in x, y, and θ .

Proof. For a given γ > 0, we want to determine an up-
per bound on the difference between F(z) and F(z′) for an
arbitrary z′ ∈ Bγ (z):

|F(z) − F(z′)| =

∣∣∣∣∣∣∣
∫
Pz

f dA −
∫
Pz′

f dA

∣∣∣∣∣∣∣ ,

≤

∣∣∣∣∣∣∣
∫

Pz−Pz′

f dA

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

Pz′−Pz

f dA

∣∣∣∣∣∣∣ ,

≤ f̂


 ∫

Pz−Pz′

dA +
∫

Pz′−Pz

dA


 ,

= f̂ |Pz1Pz′ |,
wheref̂ = supS (|f (x, y)|) with S = {s ∈ Pz′ |z′ ∈ Bγ (z)}.
This supremum exists whenever f is integrable; i.e., if fP

exists.
From Proposition 8, we know that we can make the area

of Pz1Pz′ arbitrarily small, by choosing an appropriate δ-
ball around z. In particular, we can force it to be less than
1/f . Hence we can ensure that |F(z) − F(z′)| < ε for any
z′ ∈ Bδ(z), and any ε > 0. This implies that F is continuous
in z = (x, y, θ).

An analogous argument holds for the lifted generalized
forceFP .

COROLLARY 3. For a polygonal part P , the lifted potential
field UP (z) = ∫

Pz
UdA is C1 (i.e., its derivative exists and

is continuous). Moreover, ∇UP (z) = −FP (z), where FP is
the lifted generalized forceacting on P .

Proof. Becauseof Proposition 7, UP (z) = ∫
α

FP · dz+ c for
someconstant c. From Proposition 9, weknow that the lifted
generalized forceFP iscontinuous; hencethepath integral of
FP must beC1. ∇UP (z) = −FP (z) becauseof Corollary 2.

5.2. Examples: Classification of ForceFields
Example 1. (Radial Fields) A radial field is avector field
whose forces are directed toward a specific center point. It
can be used to center a part in the plane. The field in Fig-
ure lb can beunderstood asa radial field with arather coarse
discretization using only four different forcedirections. Note
that this field has apotential.

DEFINITION 7. A unit radial field R is a two-dimensional
force-vector field such that R(z) = −z/|z| if z = 0, and
R(0) = 0.

Note that R has a discontinuity at the origin. A smooth
radial field can bedefined; for example, by R′(z) = −z.

PROPOSITION 10. Given the radial fields R and R′, the cor-
responding potential fields are U(z) = ||z||, and U ′(z) =
1
2||z||2, respectively.

Note that U is continuous (but not smooth), while U ′ is
smooth.

Counterexample1(SkewedSqueezeFields): Consider again
theskewedsqueezefield inFigure14. Notethat, for example,
the integral on a cyclic path along the boundary of the disk
is nonzero. This explains why the disk-shaped part has no
equilibrium.

PROPOSITION 11. No skewed squeezefield has apotential.

Counterexample 2 (Parts with Point Contacts): Consider
again the globally unstable S-shaped part PS from Section
4 (Fig. 15). At first glance, this example may seem coun-
terintuitive. It can be shown (see Lemma 4) that there must
exist a pose zmin in which PS achieves minimal potential, so
why is PS not stable in pose zmin? To better understand this
problem, we investigate S-shaped parts with finite area con-
tacts, and the transition as their contact areas are decreased
towards 0.

Let us consider an S-shaped part with four square “feet.”
We choose the reference point at the COM, such that two
of the feet are centered at ±(rA, 0), and the other two feet
are at ±(rB cosφ, rB sinφ) with φ constrained to −π/2 <

φ < π/2 (Fig. 18). Figure 19 shows two equilibria for an
S-shaped part. It is easy to see that these are the only two
total equilibria, and that one of them (Fig. 19a) is unstable.
For the following discussion, it issufficient to investigate the
behavior in a squeeze field with its reference point fixed at
(0,0).

Figure 20a shows the moment function MPS
and the po-

tential UPS
of an S-shaped part, whererA = 12, rB = 4, φ =
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Fig. 18. An S-shaped part with four rigidly connected square
“feet” in configuration(x, y, θ) = (0, 0, 0), rA = 12, rB =
4, andφ = 60◦.

60◦, and the feet have area size 10. Notice that in poses with
θ -angles corresponding to minima in the potential, the mo-
ment has a root with negative slope, which indicates a stable
(orientation) equilibrium. Figures 20b and 20c show the (nor-
malized) moments and potentials for parts with feet sizes 5
and 1, respectively. We observe that with decreasing contact
areas, these functions become “less smooth,” and the slope at
the moment root increases. Figure 20d depicts moment and
potential for a part with infinitesimally small feet. In this case,
the moment function does not have a root at the minimum of
the potential; rather, it exhibits a discontinuity at this orien-
tation. This has the consequence that the part is not stable
in this pose. In fact, for the moment function in Figure 20d,
there exist no roots with negative slope, and hence there exists
no stable equilibrium.

This observation can be made mathematically precise. The
exact equations for the lifted potential and the moment ofPS

are

UPS
= 2rA| cosθ | + 2rB | cos(θ + φ)|, (17)

MPS
= 2rAS(θ) + 2rBS(θ + φ),

with S(θ) =




sinθ if 0 ≤ θ < π/2 or 3/2π < θ < 2π,

− sinθ if π/2 < θ < 3/2π,

0 if θ = π/2 or θ = 3/2π.

(18)

The potential minimum is reached atθ = π/2 or θ =
3/2π . However, we see that, for example,MPS

(π/2) =
−2rBS(π/2 + φ) = −2rB cosφ 6= 0. Furthermore,
MPS

(π/2−) > 0, andM(π/2+) < 0. This implies that the
partPS will oscillate aboutθ = π/2. Under first-order dy-
namics, this oscillation will be infinitesimally small, because
any infinitesimal angular deflection ofPS results in a restor-

Fig. 19. Total equilibria of an S-shaped part with area
contacts in a squeeze field. (a) Maximum potential,zmax =
(0, 0, θmax), such thatrA sinθmax = −rB sin(θmax + φ);
θmax ≈ −0.24. (b) Minimum potential,zmin = (0, 0, θmin);
θmin ≈ π/2.

ing moment with opposed orientation. Under second-order
dynamics, the part may have a finite oscillation amplitude be-
cause of the inertia of the part. However, damping will reduce
this amplitude over time.

We conclude that parts with point contacts can exhibit
pathological behavior even in very simple and otherwise well-
behaved potential fields: this example shows that for such
parts, it is possible that the generalized force is not zero in a
pose that minimizes the potential of the part.

This pathology cannot occur when only parts with finite
area contact are allowed. From Corollary 3, we know that the
(lifted) potential of a part with area contact isC1; hence its
gradient exists everywhere. In particular, the gradient is zero
at the minimum of the potential. This means that in a pose
with minimum potential, the generalized force must be zero.
Let us summarize these results.



Böhringer, Donald, and MacDonald / ForceFields for Distributed Manipulation 21

Fig. 20. Moment function MPS
(thin line) and potential UPS

(thick line) for S-shaped parts: (a) feet havecontactsof areasize
10; (b) size= 5; (c) size= 1; (d) point contacts. Notehow adiscontinuity iscreated in themoment function when thecontact
area is decreased toward 0.

COROLLARY 4. Let P be apart with finite area contact in a
force-vector field f with potential U . In a configuration z0
that corresponds to a local extremum of the lifted potential
UP , the lifted generalized forceFP (z0) is zero.

In other words, for a first-order dynamical system and a
part P with finite-areacontact, a local minimum (maximum)
of UP corresponds to a stable (unstable) equilibrium of P

in f .

Example 2 (Morphing and Combining Vector Fields). Our
strategiesfromSection 3haveswitchpointsin time, wherethe
vector field changesdiscontinuously (Fig. 7). Thisisbecause
after one squeeze, for every part, the orientation equilibria
form a finite set of possible configurations, but in general
thereexistsno uniqueequilibrium (asshown in Section 3.3).
Hence, subsequent squeezes are needed to disambiguate the
part orientation. These switches are necessary for strategies
with squeezepatterns.

Onemay ask whether, usinganother classof potential field
strategies, uniqueequilibriamay beobtained without discrete
switching. Webelievethat continuously varying vector fields

of the form (1 − t)f + tg, where t ∈ [0, 1] represents time,
and f and g aresqueezes, may lead to vector fields that have
thisproperty. Here, “+” denotespoint-wiseadditionof vector
fields, and we wil l write “f  g” for the resulting continu-
ously varying field. By restricting f and g to be fields with
potentialsU and V , weknow that U + V and (1− t)U + tV

are potential fields, and hence we can guarantee that f + g

and f  g arewell-behaved strategies. Theseform thebasis
of our new algorithms in Section 6.

Let us formalize the previous paragraphs. If f is avector
field (in this case asqueeze pattern) that is applied to move
part P , we define the equilibrium set EP (f ) as the subset of
the configuration spaceC for which P is in equilibrium. Let
us write f ∗ g for a strategy that first applies vector field f ,
and then vector field g, to movepart P . f + g can beunder-
stood as applying f and g simultaneously. We have shown
that in general, EP (f ) is not finite, but for two orthogonal
squeezesf and g, thediscrete-switching strategy f ∗g yields
afiniteequilibriumset EP (f ∗g) (seeSection6.2, Claim 1).
Furthermore, for some parts, the equilibrium is unique up to
symmetry.
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We wish to explore the relationship between equilibria
in simple vector fields EP (f ) or EP (g), combined fields
EP (f +g), discretely switched fieldsEP (f ∗g), and contin-
uously varyingfieldsEP (f  g). For example, onemay ask
whether thereexistsastrategy withcombinedvector fields, or
continuously varying fields, that, in just onestep, reaches the
same equilibrium as a discretely switched strategy requiring
multiplesteps. Finally, let f1 ∗ f2 ∗ . . . ∗ fs be asequenceof
squeeze fields guaranteed to uniquely orient a part P under
assumption 2Phase. Wewish to investigatehow continuously
varying strategies such as f1  f2  . . .  fs can be em-
ployed to dynamically achievethesameequilibriaeven when
the 2Phase assumption is relaxed. The distributed actuation
strategy f ∗ g is distributed in space, but not in time. The
strategy f +g isparallel with respect to spaceand time, since
f andg aresimultaneously “run.” Research in thisareacould
lead to a theory of parallel distributed manipulation that de-
scribes spatially distributed manipulation tasks that can be
parallelized over timeand spaceby superposition of controls.

5.3. Upward-Shaped Potential Fields

So far we have presented specific force fields that always
(e.g., squeezeandradial fields) or never (e.g., skewedsqueeze
fields) inducestableequilibriaon certain classesof parts. We
concludethissectionwith acriterion that provides asufficient
condition on force fields such that all parts of a certain size
reach astableequilibrium.

Wehaveobserved inSection 4that apriori it isnot obvious
when aforcefield inducesstableequilibria. Our equilibrium
criterion wil l bebased on two important properties:

1. The field has apotential. Potential fields do not allow
closed paths(technically, limi t cycles) along which the
work ispositive, which could induceinfinitemotion of
apart.

2. Theforcefield is“inward-directed,” which impliesthat
(assuming first-order dynamics) partscan never leavea
certain region, R. This useful property is adirect con-
sequence of the definition of inward-directedness. An
inward-directed forcefield correspondsto an “upward-
shaped” potential, in which all paths that leave region
R havean ascending slope.

Wewil l requireProperty 1 tohold for theentireforcefield,
whileProperty 2 devolves to aboundary condition.

5.3.1. Elementary Definitions

DEFINITION 8. Let z ∈ R
n. The ε-ball around z, denoted

Bε(z), is the set {r ∈ R
n| |r − z| < ε} of all points within a

distance ε of z.

DEFINITION 9. (Lozano-Pérez 1983). Let A, B be sets in
R

n. The Minkowski sum A ⊕ B of two sets A and B is
defined as theset {a + b|a ∈ A, b ∈ B}.

From these definitions, it follows that for a region R with
boundary ∂R, the set ∂R ⊕ Bd(0) = {r + z|r ∈ ∂R, and
|z| ≤ d} comprises all points that are within a distance d

from theboundary of R.

DEFINITION 10. Given a region R ⊂ R
n, define the set

CI (R, d) = R − (∂R ⊕ Bd(0), which is the region R

shrunk by distance d. Note that CI (R, d) is based upon
the configuration-space interior (Lozano-Pérez 1983) of R

for Bd(0). Abusing terminology slightly, we call CI (R, d)

theconfiguration-space interior of R in this paper.

DEFINITION 11. The radius rP of a part P is the maximum
distance between an arbitrary point of P and the center of
mass (COM) of P .

5.3.2. Equilibrium Criterion

We are now able to state ageneral criterion for a force field
f to induce stable equilibria on all parts in a region S. As
mentioned at the beginning of Section 5.3, this criterion is
based on two main conditions: (1) if f has a potential, limit
cycles with positive energy gain are avoided inside S; and
(2) if f is “inward-directed” (see thedefinition below), parts
cannot leave the region S.

In the following, we give ageneral definition of inward-
directed vector fieldson amanifoldZ. Wethen specializethe
definition to the special instances of Z = C = R

2 × S
1 (the

configuration space) and Z = R
2, and give asufficient, prac-

tical condition for inward-directedvector fields. Weconclude
with thepresentation of our equilibrium criterion.

DEFINITION 12. (Inward-Directed Force Fields).5 Let Z be
an arbitrary smooth manifold, and let Y ⊂ Z be acompact
and smooth submanifold with boundary of Z. Assume that
∂Y has codimension 1 in Z, and that the boundary of Y is
orientable. Let q ∈ ∂Y be apoint on the boundary of Y , and
Vq ∈ TqZ bea tangent vector to Z at q.

We say Vq is inward-directed to ∂Y at q if there exists a
sufficiently small ε > 0 such that q + εVq ∈ Y .

Let V be avector field on Z. Wesay V is inward-directed
to ∂Y if V (q) is inward-directed to ∂Y at q for all q ∈ ∂Y .

Assumetheset S ⊂ R
2 iscompact and smooth. Consider

the part P when it is placed into the force field f such that
itsCOM lies in S. Theset of all such poses is asubset of the
configuration spaceC = R

2 ×S
1, which wecall S̃ = S ×S

1.
Theboundary of S̃ is∂S̃ = ∂S×S

1. Notethat ∂S̃ separatesthe
interior iS̃ = S̃ − ∂S from theexterior C−S̃ = R

2 −S)×S
1,

and that ∂S̃ is isomorphic to atorusS
1 × S

1.
Now let z = (x, y, θ) ∈ ∂S̃, and let Fz ∈ TzC represent

the lifted generalized force acting on part P in pose z. Fz

is inward-directed (with respect to ∂S̃) if Fz points into the
interior of S̃. Note that this condition is equivalent to saying

5. In this definition, for convenience we assume that Z is embedded in R
m

for somem. This condition may be relaxed.
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that the projection of Fz onto the tangent space at (x, y) to
R

2 points into S, because the rotational component of Fz is
tangential to ∂S̃. So, for example, if z = (x, y, θ) ∈ ∂S̃, then
z′ = (x, y, θ ′) ∈ ∂S̃ for any θ ′.

The following proposition gives asimple condition on a
force field f that tells us if , for a given part P , its lifted
generalized forcefield FP is inward-directed:

PROPOSITION 12. Let P be apart with radiusr whoseCOM
is thereferencepoint used to define itsconfiguration spaceC
= R

2 × S
1. Let f bea force-vector field defined on aregion

R ⊂ R
2, with FP the corresponding lifted generalized force

field. Let S ⊂ R
2 be aconvex, compact, and smooth subset

of theconfiguration-space interior of R, and S ⊂ CI (R, r).
Consider a point q ∈ ∂S with outward normal nq , and a

ball Br(q) with radius r about q. If for every point q ∈ ∂S,
and for every point s in the corresponding ball Br(q), the
dot-product g(s) = f (s) · nq is less than 0, then the lifted
generalized forcefield FP is inward-directed to ∂S (note: (·)
is thestandard inner product).

Proof. Consider the part P in pose z = (x, y, θ) ∈ ∂S̃ such
that q = (x, y). P has radius r; hence it lies completely
inside the ball Br(q), independent of its orientation θ . As
we know that g(p) = f (p) · nq < 0 for all p ∈ Br(q),
we can conclude that the integral of g(p) over P is also less
than 0:

∫
P

g(p)dA = ∫
P

f (p) · nqdA = fP · nq < 0. This
implies that for fP , which is the translational component of
FP (see Definition 6), the vector q + εfP (z) lies inside S, if
ε ispositiveand sufficiently small. Asmentioned above, this
suffices to ensure that thevector z + εFP (z) lies insideS̃.[]

LEMMA 4. (Equilibrium Criterion). Let P be apolygonal
part with radius r, let f be a force field with potential U

defined on a region R ⊂ R
2, and let S ⊂ R as specified in

Proposition 12. Let us also assume that themotion of part P

is governed by first-order dynamics.
If thelifted force-vector field FP is inward-directed to ∂S̃,

then the part P wil l reach a stable equilibrium under f in iS̃

whenever its COM is initially placed in S.

Proof. Assume that the COM of part P is placed at a point
(x, y) ∈ S. Thismeansthat P isinsomeposez = (x, y, θ) ∈
S̃. We now show that the COM of P cannot leave S when
initially placed insideS. Weknow that ∂S̃ separates iS̃ from
C −S̃. Hence every path from z to some z∗ ∈ C −S̃ must
intersect ∂S̃ at some point z′ ∈ ∂S̃. Now consider part P in
pose z′. Under first-order dynamics, its velocity must be in
the direction of FP (z′). Because FP is inward-directed, the
velocity of P must be toward iS̃. In particular, this means
that theCOM wil l moveinto iS; henceP cannot leaveS, and
that there is no equilibrium on ∂S.

Becauseof Proposition 7, f , and henceFP , havepotential
U and UP , respectively. Therefore limi t cycles with energy
gain are not possible. Furthermore, UP (S̃) is the continuous

image of a compact set,S̃. Therefore the image UP (S̃) is a
compact subset of R, which has aminimum valueattained by
some point s ∈ S̃. Since f is inward-directed, s must lie in
iS̃. Thisminimumis astableequilibriumof P inf , asshown
in Corollary 4. []

Because of Lemma 4, the use of potential fields is invalu-
able for the analysis of effective and efficient manipulation
strategies, asdiscussed in thefollowing section. In particular,
it is useful for proving the completeness of a manipulation
planner.

6. New and Improved Manipulatio n Algorithms

Thepart-alignment strategiesinSection3.3haveswitchpoints
in time where the vector field changes discontinuously (Fig.
12). Wecandenotesuchaswitchedstrategybyf1∗f2∗. . .∗fs ,
wherethefi arevector fields. In Section 3.3, weshowed that
a general squeeze strategy to align a (nonconvex) polygonal
part with n vertices may need up to O(kn2) switches, and
requireO(k2n4)time in planning (k is themaximum number
of polygon edgesthat abisector can cross). To improvethese
bounds, we now consider a broader class of vector fields in-
cluding simplesqueezepatterns, radial, and combined fields,
as described in Section 5.

In Section 6.1 weshow how, by using radial and combined
vector fields, we can significantly reduce the complexity of
the strategies from that of Section 3. In Section 6.2 we de-
scribe ageneral planning algorithm that workswith alimited
“grammar” of vector fields(andyields, correspondingly, less-
favorablecomplexity bounds).

6.1. Radial Strategies

Consider apart P in aforcefieldf . Someforcefieldsexhibit
rotational symmetry properties that can be used to generate
efficient manipulation strategies:

Property 1: There exists a unique pivot point v of P such
that P is in translation equilibrium if and only if v coincides
with 0.

Property 2: There exists a unique pivot point v of P such
that P is in (neutrally stable) orientation equilibrium if and
only if v coincides with 0.

We typically think of thepivot point v being apoint of P ;
however, in generality, just like the center of mass of P , v

doesnot need to liewithin P , but instead issomefixed point
relative to the reference frame of P . Now consider the part
P in an ideal unit radial force-vector field R as described in
Section 5.

PROPOSITION 13. In aunit radial field R, Properties1 and 2
hold.

Proof. First, we fix the part P at an arbitrary orientation θ ,
and show that at this orientation P has aunique translation
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equilibrium v(θ). That is, placing v(θ) at the origin is nec-
essary and sufficient for P to be in translation equilibrium at
orientation θ . Second, we show that for any two distinct ori-
entationsθ and θ ′, v(θ) = v(θ ′). Wecall thisuniquepoint v,
dropping the orientation θ . Finally, we argue that whenever
P is in translation equilibrium (i.e., v is at the origin), P is
neutrally stable with respect to orientation. This follows by
the radial symmetry of R.

Consider the translational forces (but not the moments)
acting on P in the radial field R. To do this, let us sepa-
rate R into its x- and y-components, Rx , and Ry , such that
R = (Rx, Ry). Assume for now that the orientation of P

is fixed. If P is placed at a position z0 ∈ R
2, whose x-

coordinate is sufficiently negative, the total force induced by
Rx on P wil l point in the positive x-direction. Symmetri-
cally, placing P at a sufficiently large positive x-coordinate
wil l cause aforce in the negative x-direction. We claim that
by translating P rigidly with an increasing x-coordinate, this
force decreases continuously and strictly monotonically, and
hencehas aunique root.

To verify this claim, consider a small area patch P0 of
P . A uniform translation t of P0 in the x-direction can be
described as P(t) = P0 ⊕ (z0 + t x̂) (with z0 the initial po-
sition of the patch, x̂ the unit vector in the x-direction, and
⊕ the Minkowski sum). The total force on P(t) in the x-
direction is

∫
P(t)

RxdA. This force decreases continuously
andstrictly monotonically with t , becauseRx isstrictly mono-
tone and continuous everywhere except on thex-axis, which
has measure zero in R

2. A similar argument applies for the
y-direction, and becauseof theradial symmetry of R, for any
direction.

If we choose the set S as asufficiently large disk-shaped
region around theorigin, and recall that R hasapotential, we
can apply Lemma 4to conclude that there must exist at least
onetotal equilibrium for P . Now assumethat thereexist two
distinct equilibriae1 = (x1, y1, θ1), and e2 = (x2, y2, θ2) for
P inR. Wewrite“P(ei)” to denotethat P is in configuration
ei . Because of the radial symmetry of R, we can reorient
P(e2) to P(e′

2) such that its orientation is equal to P(e1 :
e′

2 = (x′
2, y

′
2, θ1), where

(
x′

2
y′

2

)
= M

(
x2
y2

)
, andM isarotation

matrix with angle θ1 − θ2 (Fig. 21). This reorientation does
not affect theequilibrium. Notethat P can bemoved from e1
to e′

2 by apure translation. From above, weknow that such a
translation of P correspondsto astrictly monotonechangein
the translational forcesacting on P . Henceweconclude that
P(e1) and P(e′

2) cannot both be in translation equilibrium
unlesse1 and e′

2 areequal. This implies that e1 and e2 cannot
both be equilibria of P in R unless they both have the same
pivot point v. �

Definition 7assumesthat thecenter of aradial field liesat
the origin. This definition can be generalized to radial fields
with arbitrary centers (xc, yc). Then properties 1and 2 hold
when the pivot point v coincides with (xc, yc). Surprisingly,

Fig. 21. Rotating apart about thecenter of aunit radial field.
Theforceand torqueon thepart remain constant with respect
to its reference frame.

v need not be the center of area P : for example, consider
again the part in Figure 9, which consists of a large and a
small square connected by a long rod of negligible width.
The pivot point of this part wil l lie inside the larger square.
But if therod islongenough, thecenter of areawil l lieoutside
of the larger square. However, the following corollary holds:

COROLLARY 5. For apart P in acontinuousradial forcefield
R′ given by R′(z) = −z, the pivot point of P coincides with
thecenter of areaof P .

Proof. TheforceactingonP inR′ isgivenby F = ∫
P

−zdA,
which is also the formula for the (negated) center of area. �

Now suppose that R is combined with aunit squeeze pat-
tern S, which isscaled by afactor δ > 0, resulting in R + δS.
The squeeze component δS of this field wil l cause the part
to align with the squeeze, similarly to the strategies in Sec-
tion 3.3. But note that the radial component R keeps thepart
centered in the force field. Hence, by keeping R sufficiently
large (or δ small), we can assume that the pivot point of P

remainswithin an ε-ball of thecenter of R. This implies that
assumption 2Phase (see Section 3.3) is no longer necessary.
Moreover, ε can be made arbitrarily small by an appropriate
choiceof δ.

PROPOSITION 13. Let P beapolygonal part with n vertices,
and let k be themaximum number of edges that abisector of
P can cross. Let us assume that v, the pivot point of P , is in
general position. There are at most O(kn) stable equilibria
in a field of the form R + δS if δ is sufficiently small and
positive.

Proof. For a part in equilibrium in apure radial field R (i.e.,
with δ = 0), thepivot point v isessentially fixed at theorigin.
This is implied by Property 1. It iseasy to seethat Property 1
is not true in general for arbitrary fields of the form R + δS.
Property 1 holds if δ = 0, because then any orientation is an
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equilibrium when v is at the center of R. However, Property
2 does not hold if δ > 0, because in general there does not
exist auniquepivot point in squeezefields (seeSection 3.3).

We conduct the combinatorial analysis of the orientation
equilibriaunder theassumptionsthat (1) δ > 0, and (2) that v
isfixedat theorigin. Thenwerelax thelatter assumption, and
show that Property 1holds, approximately, eveninR+δS, for
asufficiently small δ > 0. That is, weshow that asufficiently
small δ can be chosen so that the combinatorial analysis is
unaffected when assumption (2) is relaxed.

First, we show that when δ is small but positive, and with
v fixed at the center of R, there are only a linear number
of orientation equilibria (i.e., we constrain the pivot point v

to remain fixed at the origin until further notice). So let us
assume that we are in a combined radial and small squeeze
field R + δS.

Consider a ray w(0) emanating from v. Assume without
loss of generality that v is not a vertex of P , and that w(0)

intersects the edgesS(0) = {e1, . . . , ek} of P in general po-
sition, 1 ≤ k ≤ n. Parameterize the ray w(·) by its angle φ

to obtain w(φ). As φ sweeps from 0 to 2π , each edge of P

wil l enter and leavethecrossing structureS(φ) exactly once.
S(φ) is updated at critical angles where w(φ) intersects a
vertex of P . Since there are n vertices, there are O(n) criti-
cal angles, and hence O(n) changes to S(φ) overall. Hence,
since between critical angles S(φ) is constant, we see that
S(φ) takes on O(n) distinct values. Now place the squeeze
line l to coincide with w(φ). For a given crossing structure
S(φ) ∪ S(φ + π), satisfying conditions 1 and 2 as defined
in Section 3.3 devolves to solving two equations. The first
equation provides the condition for translation equilibrium,
while the second equation implements the condition for ori-
entationequilibrium. Thelatter equation iscalled themoment
function M(φ), because it describes themoment acting on P

asafunction of φ. (But note that M isdifferent from themo-
ment function defined in Section 3.3, because here the part
rotates about a fixed pivot point.) In analogy to Section 3.3,
it can be shown that these equations are algebraic and of de-
greek, wherek is themaximum number of edges intersected
by the squeeze line as described in Section 3.2. This implies
that between any two adjacent critical values there are only
O(k) orientationsof l (given by w(φ)) that satisfy conditions
1 and 2. Hence, theoverall number of orientationssatisfying
conditions 1 and 2 isO(k, n).

If δ > 0, the part P wil l be perturbed, so that Property
1 is only approximately satisfied. (That is, we can relax the
assumption that v isconstrainedtobeat theorigin). However,
wecanensurethat v lieswithinanε-ball aroundtheorigin(the
center of theradial field). To seethis, first consider P at some
arbitrary configuration z in the squeeze field δS. The total
squeeze force on Pz is given by the area integral δSP (z) =∫
Pz

δSdA. (Recall that SP denotes the lifted force field of S;
see Definition 6, eq. (13).) Now δSP is bounded above by
|δSP | ≤ δA, where A is the area of P (note that S is aunit

squeezefield).
P is in equilibrium with respect to theradial field R if v is

at theorigin. Now consider thelifted forceRP when thepivot
point of P isnot at theorigin. Morespecifically, let vz bethe
pivot point of Pz, and let us define aset RP (d) = {|RP (z)|
such that |vz| = d}. We also define afunctionR̂P (d) = min
{RP (d)} . This function is well defined, because RP (d) is
the continuous image of a compact set; hence the minimum
exists. R̂P (d) is the minimum magnitude of the lifted force
acting on Pz when its pivot point vz is at distanced from the
origin.

By decomposingRP into itsx- andy-components, wecan

write|RP | as
√

R2
P,x + R2

P,y . Becauseof theradial symmetry

of R, let usassumewithout lossof generality that vz = (d, 0).
From theproof of Proposition 13, weknow that for any given
orientation of Pz, the magnitude of RP,x increases continu-
ously and strictly monotonically with increasing d ≥ 0. Fur-
thermore, RP,y iscontinuous in d, and RP,y(0) = 0, so R2

P,y

iscontinuousand monotonically increasing for all d lessthan
some sufficiently small d0 > 0. Hence for any fixed orien-
tation of Pz, RP is acontinuous and strictly monotonically
increasing function for all d ∈ |0, d0|.

Now supposethatR̂P (d) isnot strictly monotone, i.e., that
there exist d1, d2 with 0 ≤ d1 < d2, but R̂P (d1) ≥ R̂P (d2).
Then there must exist z1, z2 with |vz1| = d1 and |vz2| = d2,
and |RP (z1)| = R̂P (d1) ≥ R̂P (d2) = |RP (z2)|. Let usdefine
z′

2 such that z′
2,θ = z2θ and vz′

2
= cvz2 for some c ∈ R, i.e.,

vz2 and vz′
2

lieon aline through theorigin. If wechoose0 ≤
c < 1, then RP (z′

2)| < |RP (z2)|, because |RP | is monotone,
asshowninthepreviousparagraph. Inparticular, if wechoose
c = d1/d2, then RP (z′

2)| < |RP (z2)| ≤ |RP (z1)| = R̂P (d1),
and |vz′

2
| = |vz1|. This is acontradiction to the definition of

R̂P (d1) = min {RP (d)} . Weconcludethat RP iscontinuous
and strictly monotone for sufficiently small d ≥ 0.

Now considerPz inthecombinedfieldR+δS, andagainlet
d denote the distance between pivot point vz and the origin.
In equilibrium, the lifted forces RPz and δSPz balance out;
henceR̂P (d) ≤ |RPz| = |δSPz| ≤ δA, with A the area of
P . SinceR̂P is continuous and strictly monotone in d for
sufficiently small d, wecan ensure that d is less than agiven
ε, by choosing an appropriately small δ. This implies that vz
must lie within an ε-ball of the center of the radial field. In
particular, we can make this ε-ball small enough so that the
crossing structureS(φ) is not affected.

Finally, we have to ensure that the stable equilibria, as
predicted by themoment function M, areapproximated arbi-
trarily closely. Thismeansthat thedisturbancein themoment
function, caused by pivot point vz not exactly coinciding with
the center of the radial field, can be made arbitrarily small.
To see this, first consider the original (unperturbed) moment
function M, which describes the moment acting on the part
P if itspivot point coincideswith theorigin. In thiscase, the
moment is caused solely by the squeeze field δS, while P is
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in equilibrium with respect to the radial field R.
Now consider thedisturbance in M if thepivot point vz is

not exactly at theorigin, but somewhereinan ε-ball around it.
Let us call this disturbance 1M, and note that 1M has two
components: 1MδS , which is the change in moment caused
by thesqueezefield δS, and 1MR, thedisturbancecaused by
the radial field R.

For a part P at a given orientation, any ε-displacement
of vz can change the force in a squeeze field δS by at most
|1FδS | ≤ δεdP , where dP is the maximum diameter of P .
Hence1MδS = r×1FδS isproportional to theproduct of the
disturbance in location ε, and the magnitude of the squeeze
field δ (r is the fixed distance between pivot point and COM
of P ), i.e., |1MδS | = O(δε).

Since the force caused by the radial field R balances the
force generated by the squeeze field δS, we obtain the same
bounds for 1MR. We see that 1M = 1MδS + 1MR =
O(δε). Recall that ε decreases strictly monotonically with
δ; hence 1M decreases asymptotically faster than δ. This
ensures that we can find a sufficiently small δ such that the
moment function M is approximated arbitrarily closely, and
theequilibriaof thesqueezefield δS arenot affected.

Weconcludethat thenumber of equilibriain afieldR+δS

is bounded by O(kn), for sufficiently small δ. �
In analogy to Section 3.3, we define the turn function

t : S
1 → S

1, which describes how the part wil l turn un-
der asqueezepattern, and henceyieldsthestableequilibrium
configurations. Given the turn function t , we can construct
the corresponding squeeze function s as described in Sec-
tion 3.3. With s as the input for the alignment planner de-
scribed by Goldberg (1993), we obtain strategies for unique
part alignment (and positioning) of length O(kn). They can
becomputed in timeO(k2n2).

The result is astrategy for parts positioning of the form
(R + δS1) ∗ · · · ∗ (R + δSO(kn)). Compared to the general
squeezealgorithm in Section 3.3, it improves theplan length
by a factor of n, and theplanning complexity is reduced by a
factor of n2 . Theplanner iscomplete: for any polygonal part,
thereexists astrategy of theform ∗i (R + δSi). Moreover, the
algorithm is guaranteed to find astrategy for any input part.
By appending astep that ismerely theradial fieldR without a
squeezecomponent, weareguaranteed that thepart P wil l be
uniquely posed(v isat theorigin) aswell asuniquely oriented.
We can also show that the continuously varying “morphing”
strategy (R + δS1)  · · · (R + δSO(kn)) R works in
thesame fashion to achieve thesameuniqueequilibrium.

6.2. Manipulation Grammars

Thedevelopment of devicesthat generateprogrammablevec-
tor fields isstill in its infancy. Theexisting prototypedevices
exhibit only alimitedrangeof programmability. For example,
theprototypeMEMSarraysdescribedinSection2.1currently
haveactuators in only four different directions, and theactu-

ators are only row-wise controllable. Arrays with individu-
ally addressableactuatorsat variousorientationsarepossible
(Böhringer et al. 1994a, 1994b; LiuandWil l 1995; Böhringer,
Donald, and MacDonald 1996b; Suh et al. 1996) but require
significant development effort. There are also limitations on
theresolution of thedevicesgiven by fabrication constraints.
For thevibrating-platedevice from Section 2.2, thefieldsare
even moreconstrained by thevibrational modes of theplate.

We are interested in the capabilities of such constrained
systems. In this section, we give an algorithm that decides
whether apart can beuniquely positioned using agiven set of
vector fields, and it synthesizes an optimal-length strategy if
one exists. Furthermore, in Section 6.2, the vector fields we
consider may bearbitrary, and inparticular canvary inmagni-
tude (as opposed to unit-squeeze fields). If we think of these
vector fieldsasavocabulary, weobtain alanguageof manipu-
lation strategies. Weareinterested in thoseexpressionsin the
language that corresponds to a strategy for uniquely posing
thepart.

Wedefine two basic operationson vector fields. Consider
twovector fieldsf andg : f +g denotespoint-wiseaddition,
and f ∗ g denotes sequential execution of f and then g.

DEFINITION 13. Let P be an arbitrary planar part. A finite
fieldoperator is asequenceof vector fieldsthat bringsP from
an arbitrary initial pose into afiniteset of equilibrium poses.

A field operator comes with the following guarantee: no
matter whereinR

2×S
1 thepart startsoff, it wil l alwayscome

to rest in one of E different total equilibria (Fig. 22). That
is, for any polygonal part P , either of these field operators is
always guaranteed to reduce P to a finite set of equilibria in
its configuration spaceC = R

2 × S
1.

From Section 6.1, we know that combined radial squeeze
patternsR + δS have thisproperty. However, thereareother
simplefield operators that also have this finiteness property.

CLAI M 1. Let f and f⊥ beunit-squeezefieldssuch that f⊥
isorthogonal to f . Then thefieldsf ∗f⊥ and f +f⊥ induce
a finite number of equilibria on every connected polygon P ;
hencef ∗ f⊥ and f + f⊥ arefinitefield operators.

Proof. First, consider the field f ∗ f⊥, and without loss of
generality assumethat f (xy) = (−sign(x), 0). Also assume
that the COM of P is the reference point used to define its
configuration space, C = R

2 × S
1. As discussed in Sections

3.2 and 3.3, P wil l reach oneof a finitenumber of orientation
equilibria when placed in f or f⊥. More specifically, when
P is placed in f , there exists afinite set of equilibria Ef =
{(xi, θi)}, where xi is the offset fromf ’s squeeze line, and
θi is the orientation of P (see Section 3.4). Similarly for
f⊥(x, y) = (0, −sign(y)), thereexists afiniteset of equilibria
Ef⊥ = {(yj , θj )}. Since the x-component of f⊥ is zero, the
x-coordinate of the reference point of P (the COM) remains
constant whileP isinf⊥. HenceP wil l finally cometorest in
a pose (xk, yk, θk), where xk ∈ π1(Ef ), (yk, θk) ∈ Ef⊥ , and
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Fig. 22. Manipulation vocabulary for a triangular part on a
vibrating plate, consisting of two consecutive force fields
with slightly curved nodal lines (attractors), which bring the
part into (approximately) thesameequilibria.

π1 is the canonical projection such that π1(x, θ) = x. Since
Ef is finite, so is π1(Ef ). E(f⊥) is also finite; therefore,
there exists only a finite number of such total equilibrium
poses for f ∗ f⊥.

If P is placed into the field f + f⊥, there exists a unique
translationequilibriumfor every given, fixedorientationθ . In
eachof thesetranslationequilibria, thesqueezelinesof f and
f⊥ areboth bisectorsof P . Now consider themoment acting
on P when P is in translation equilibrium as a function of
θ . Since there areO(n2) topological placements for a single
bisector, therefore there exist also only O(n2) topological
placements for two simultaneous, orthogonal bisectors. In
analogy to Proposition 1in Section 3.2, we can show that for any
topological placement of thebisectors, thismoment function
has at most O(k) roots, where k is the maximum number of
edges abisector of P can cross. This implies that there exist
only O(kn2) distinct total equilibria for f + f⊥. �

If we can assume that the 2Phase assumption holds, then
Claim 1leadstoaninterestingextensionof theparts-orienting
algorithm described in Section 3.3. Let fx and fy be two or-
thogonal squeeze fields with their squeeze lines coinciding
with thex-axisand they-axis, respectively. Notethat fx ∗fy

is a finite field operator. Let us append fx ∗ fy to an orient-
ing strategy, s. After s has been executed, the part wil l be
uniquely orientated. Assuming that the 2Phase assumption
holds, fx ∗ fy first brings the y-coordinate and then the x-
coordinate of the part to a unique value, while maintaining
unique orientation. Hence, given an arbitrary parts-orienting
strategy s, by executing s ∗ fx ∗ fy , we obtain unique posi-
tioning and orienting.6

6. This scheme can be simplified even further: Let sn be the last squeeze of
the orienting strategy s. Let s⊥

n be asqueeze field orthogonal to sn. Then it
is easy to show that s ∗ s⊥

n uniquely positions and orients thepart.

COROLLARY 6. Let f beafinitefield operator for apart P ,
and let g bean arbitrary vector field. Then thesequenceg ∗f

is afinitefield operator.

Proof. By definition of a finite field operator, f brings the
part P into a finite set of equilibrium poses from arbitrary
initial poses, in particular, from the poses that are the result
of field g. �

Thus, by pre-pending an arbitrary sequence of fields to a
finite field operator, one can always create anew finite field
operator (possibly with asmaller set of discreteequilibria). In
theremainder of thissection, however, wewil l only consider
finite field operators of minimal length, i.e., field sequences
from which no field can beremoved without losing thefinite-
ness property (Definition 13).

WehaveseeninSections 3and 5that for simpleforcefields
suchassqueezeor radial fields, wecanpredict themotionand
theequilibriaof apart using exact analytical methods. How-
ever, for arbitrary fields (e.g., the force fields described in
Section 2.2, which are induced by vibrating plates), such al-
gorithmsarenot known. Instead, wecanemploy approximate
methods to predict the behavior of the part in the force field.
Thesemethodsare typically numerical computations that in-
volve simulating the part from aspecific initial pose, until it
reachesequilibrium.7 Wecall thecost for such acomputation
the simulation complexity s(n). We write s(n), because the
simulation complexity wil l usually depend on thecomplexity
of thepart, i.e., itsnumber of verticesn (for moredetailsalso
see thework of Donald and Xavier (1995)).

PROPOSITION 14. Consider apolygonal part P , and m finite
field operators {Fi}, 1 ≤ i ≤ m, each with at most E distinct
equilibria in the configuration space C for P . There exists an
algorithmthat generatesanoptimal lengthstrategy of theform
F1∗F2∗· · ·∗Fl to uniquely poseP up to symmetries, if such
astrategy exists. Thisalgorithm runsin O(m2E(s(n)+ 2E))

time, where s(n) is the simulation complexity of P in Fi . If
no such strategy exists, thealgorithm wil l signal failure.

Proof. Construct a transition table T of size m2E that de-
scribeshow thepart P movesfrom an equilibrium of Fi to an
equilibrium of Fj . This table can be constructed either by a
dynamicanalysissimilar to that inSection3.1, or by dynamic
simulation. The time to construct this table is O(m2Es(n)),
wheres(n) is thesimulation complexity, which wil l typically
depend on thecomplexity n of thepart.

Using thetableT , wecan search for astrategy as follows:
define thestateof thesystem as theset of possibleequilibria
a part is in, for a particular finite field operator Fi . There are
O(E) equilibriafor eachfinitefieldoperator; hence, thereare
O(m2E) distinct states. For each state, there are m possible

7. See, for example, theWorldWideWebat www.ee.washington.edu/faculty/
karl/Research/.
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successor states, as given by table T , and they can each be
determined inO(E) operations, which resultsin agraph with
O(m2E) nodes, O(m22E) edges, and O(m2E2E) operations
for its construction. Finding a strategy, or deciding that one
exists, then devolves to finding apath whose goal node is a
statewith auniqueequilibrium. Thetotal running timeof this
algorithm isO(m2E(s(n)) + 2E)).

Hence, as discussed by Erdmann and Mason (1988), for
any part wecan decidewhether apart can beuniquely posed
using thevocabulary of field operators {Fi}, but (1) theplan-
ning time is worst-case exponential, and (2) we do not know
how to characterize the class of parts that can be oriented by
a specific family of operators {Fi}. However, the resulting
strategies areoptimal in length.

Manipulation grammarsarediscussed in much greater de-
tail by Böhringer and colleagues(forthcoming) in thecontext
of thelimitedmanipulationvocabulary generatedby vibrating
plates.

7. Conclusions and Open Problems

Thefollowing table1summarizesfieldsandalgorithmsfor ma-
nipulation taskswithprogrammableforcefields, and includes
someadditional recent results.

Less-difficult taskssuchastranslationcanbeachievedwith
relatively simplefieldsand without any planning. Morecom-
plex tasks, such as centering or unique orienting, require in-
creasingly complex fields. However, planning complexity is,
e.g., higher for sequencesof squeezefields, and lower for the
more complex combined radial + squeeze fields. This illus-
tratesatrade-off between mechanical complexity (thedexter-
ity andcontrollability of actuator-array elements) andcompu-
tational complexity (thealgorithmicdifficulty of synthesizing
a strategy). For example, if one is willin g to build a device
capableof radial fields, then onereapsgreat benefits in plan-
ningandexecutionspeed. Ontheother hand, wecanstill plan
for simpler devices, but the plan synthesis is more expensive
(worst-case exponential in the number of equilibria), and we
losesomecompleteness properties.

We believe that the rapid growth in this research area
wil l continue. Even though ascience base for manipulation
withprogrammableforcefieldshasemerged, many important
questionsremainopen. Sometopicsfor futurework arelisted
in the following paragraphs.

• Universal feeder-orienter (UFO) devices. It wasshown
in Proposition 1 that every connected polygonal part
P with n vertices has afinite number of stable orien-
tation equilibria when P is placed into a squeeze field
S. Based on this property, we were able to generate
manipulation strategies for unique part alignment. We
showed in Section 6.1 that by using a combined ra-
dial and squeezefield R + δS, thenumber of equilibria
can be reduced to O(kn). Using elliptic force fields

f (x, y) = (αx, βy) such that α 6= β and α, β 6= 0,
thisboundcanbereduced to two(Kavraki 1995, 1997).

,

In
a stable equilibrium, the part’s major principal axis of
inertia lines up with the squeeze line to minimize the
second moment of inertia.

Does there exist a universal field that, for every part
P , has only one unique equilibrium (up to part sym-
metry)? Such afield could beused to build auniversal
parts feeder (Abell and Erdmann 1996) that uniquely
positionsapart without theneed of a clock, sensors, or
programming.

Wepropose acombined radial and “gravitational” field
R + δG that might havethisproperty. δ is asmall pos-
itive constant, and G is defined as G(x, y) = (0, −1).
This device design is inspired by the “universal grip-
per” described by Abell and Erdmann (1996). Such a
field could beobtained from aMEMSarray that imple-
ments aunit radial force field. Instead of rectangular
actuators in a regular grid, triangular actuators could
be laid out in apolar-coordinate grid. The array could
then be tilted slightly to obtain thegravity component;
hence, such adevice would be relatively easy to build.
Alternatively, aresonating speaker, or avibrating disk-
shaped platethat isfixed at thecenter, might beused to
create aradial force field. Extensive simulations show
that for every part wehavetried, oneuniquetotal equi-
librium is always obtained. We are working toward a
rigorous proof of this experimental observation.

• Abstraction barriers. We believe that programmable
force fields can be used as an abstraction barrier be-
tween parts positioning and feeding applications and
devices implementing the requisite mechanical two-
dimensional force fields (MEMS arrays, vibratory de-
vices, or other devices). That is, applications such as
parts feeding can be formulated in terms of the force
fields required. This then serves as a specification that
the underlying device technology must deliver. Con-
versely, the capabilities of MEMS-array or vibratory-
device technology can be formulated in terms of the
force fields they can implement. This means that de-
vice designers can potentially ignore certain details of
the application process, and instead focus on match-
ing the required force-field specification. This would
freeapplication engineers from needing to know much
about process engineering, in the same way that soft-
wareand algorithm designersoften abstract away from
details of the hardware. Such an abstraction barrier
could permit hierarchical design, and allow application
designswith greater independencefrom theunderlying
device technology.
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Table 1.
Complexity

Task Field(s) Fields Planning Plan Steps

Translate Constant Constant magnitude − 1
and direction

Center Radial Constant magnitude, − 1
continuous directions

Orthogonal squeezes Piecewise constant O(1) O(1)

magnitude and direction
Uniquely orient Sequence of squeezes Piecewise constant O(k2n4) O(kn2)

magnitude and direction
Inertial Smooth magnitude O(1) O(1)

piecewise-constant direction
Uniquely pose Manipulation grammar m arbitrary fields, O(m22E) O(m2E)

at mostE stable equations (not com-
plete)

Sequence of radial + squeeze Piecewise-continuous O(k2n2) O(kn)

magnitude and direction
Elliptic Smooth magnitude and direction O(1) O(1)

UFO Continuous magnitude and direction −− 1

• Magnitude control. Consider an array in which the
magnitudeof the actuator forces cannot be controlled.
Does there exist an array with constant magnitude in
which all parts reach one unique equilibrium? Or can
one prove that, without magnitude control, the number
of distinct equilibria is always greater than one?

• Geometric filters. This paper focuses mainly on sensor-
less manipulation strategies forunique positioningof
parts. Another important application of programmable
vector fields aregeometric filters, which would be use-
ful for the sorting and singulation of parts. Figure 1
shows a simple filter that separates smaller and larger
parts. We are interested in the question, Givenn parts,
does there exist a vector field that will separate them
into specific equivalence classes? For example, does
there exist a field that moves small and large rectangles
to the left, and triangles to the right? In particular, it
would be interesting to know whether for any two dif-
ferent parts there exists a sequence of force fields that
will separate them.

• Force-field computers. In this paper, we have demon-
strated that even with a rather limited vocabulary of
simple force fields, useful and quite complex tasks such
as sensorless posing or sorting of parts can be per-
formed. It might be possible that force fields could
be used to solve certain classes of problems, by en-
coding them in particular force fields, part shapes, and
initial and goal poses, resulting in a “force-field com-
puter” that provides a physical implementation of the
problem. Identifying the class of encodable problems

might yield deeper insights into the complexity of parts
manipulation with force-vector fields.

• Performance measures. Are there performance mea-
sures for how fast (in real time) an array will orient a
part? In some sense, the actuators are fighting each
other (as we have observed experimentally) when the
part approaches equilibrium. For squeeze grasps, one
measure of “efficiency,” albeit crude, might be the in-
tegral of the magnitude of the moment function, i.e.,∫ 2π

0 |M(θ)|dθ . The issue is that if, for many poses,
|M(θ)| is very small, then the orientation process will
be slow. Better measures are also desirable.

• Uncertainty. In practice, neither the force-vector field
nor the part geometry will be exact, and both can only be
characterized up to tolerances (Donald 1989). This is
particularly important at the microscopic scale. Within
the framework of potential fields, we can express this
uncertainty by considering not one single potential
functionUP , but ratherfamilies of potentialsthat corre-
spond to different values within the uncertainty range.
Bounds on part and force tolerances will correspond to
limits on the variation within these function families.
An investigation of these limits will allow us to obtain
upper error bounds for manipulation tasks under which
a specific strategy will still achieve its goal.

A family of potential functions is a set{Uα : C →
R}α∈J whereJ is an index set. For example, we may
start with a single potential functionU : C → R and
define a family of potential functionsF (U, ε, z) as
{{Uα : C → R| ||Uα(p)−U(p)||z < ε} for someε and
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normz. Thisisanalogoustodefining aneighborhoodin
functionspace, using, e.g., thecompact-open topology.

Whenwedifferentiateafamily of potential fields(using
thegradient), weobtain adifferential inclusion instead
of adifferential equation. So if F(u) = F (u, ε, z), then
∇ F (u) = {∇Uα}α∈J .

When considering families of potentials, the equilib-
rium may be known to lie only within a set Ei , al-
though we may know that it is always a point in Ei .
If the sets Ei are of a small diameter less than some
ε > 0, our algorithms could be extended to handle the
ε-approximations.

As a more general approach, we propose an algo-
rithm based on back-projections: for a given part, let
BFi

(G) ⊂C= R
2×S

1 betheback-projection(Lozano-
Pérez, Mason, and Taylor 1984) of the set G under
Fi , where G ⊂ C, and Fi is a family of fields on
R

2 . Then we wish to calculate a sequence of fields
Fl, F2, . . . , Fk, suchthatBF1(BF2(· · ·BFk

(G) · · · )) =
C,whereG is asinglepoint inC (cf.Lozano-Pérez, Ma-
son, andTaylor 1984; ErdmannandMason1988; Brost
1988; Donald 1989; Brigg 1992).

• Output sensitivity. We have seen in Sections 3.1, 6.1,
and 6.2 that the efficiency of planning and executing
manipulation strategies critically depends on the num-
ber of equilibriumconfigurations. Expressing theplan-
ningandexecutioncomplexity asafunctionof thenum-
ber of equilibriaE, rather thanthenumber of verticesn,
iscalled output-sensitiveanalysis. In practice, wehave
found that there are almost no parts with more than
two distinct (orientation) equilibria, even in squeeze
fields. This is far less than the E = O(kn2) upper
boundderived inSection3.2. If thisobservationcanbe
supportedby anexact or evenstatistical analysisof part
shapes, it couldleadtoextremely goodexpectedbounds
on plan length and planning time, even for the less
powerful strategiesemploying manipulation grammars
(notethat thecomplexity of themanipulation grammar
algorithm in Proposition 14 is output-sensitive).

• Discrete force fields. For the manipulation strategies
described in thispaper, weassumethat the forcefields
arecontinuous, i.e., that thegenerated forcesaredense
compared to the moving part (the density assumption
in Section 3.3). When manipulating very small parts
on microactuator arrays, this condition may be only
approximately satisfied. We are interested in the limi-
tations of the continuous model, and we would like to
know theconditionsunder which it isnecessary to em-
ploy a different, discrete model of the array that takes
into account individual actuators, as well as the gaps
between actuators. In the work of Böhringer et al.

(1994b), we propose a model for the interaction be-
tween parts and arrays of individual actuators, based
on thetheory of limi t surfaces(Goyal and Ruina1988;
Goya, Ruina, and Papadopoulos 1991).

• Resonance properties. Is it possible to exploit the dy-
namic resonancepropertiesof parts to tune thecontrol
signal of thearray or platetoperform efficient dynamic
manipulation?

• 3-D force fields. It may be possible to generate 3-D
force fields by using Lorentz electromagnetic forces.
Tunable electric coils could be attached to various
pointsof a3-D body, suspending theresulting object in
astrong permanent magnetic field using magnetic levi-
tation (theLorentz effect) (Hollisand Salcudean 1993;
Salcudean, Wong, and Hollis 1995. The tuning (con-
trol) of the electric coils could be effected as follows:
integratedcontrol circuitry couldbefabricatedandco-
located with the coils, and conceivably, a power sup-
ply. Thecontrol could beglobally effected using wire-
less communication, or the control of each coil could
evolve in time until the part is reoriented as desired.
The Lorentz forces could then be deactivated to bring
the object to rest on the ground. Planning for such a
3-D devicemight reduceto that described by Erdmann
and colleagues (1993).
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