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Fault indicators and unique
mode-dependent state equations from
a fixed-causality diagnostic bond graph
of linear models with ideal switches

Wolfgang Borutzky

Abstract
Analytical redundancy relations are fundamental in model-based fault detection and isolation. Their numerical evaluation
yields a residual that may serve as a fault indicator. Considering switching linear time-invariant system models that use
ideal switches, it is shown that analytical redundancy relations can be systematically deduced from a diagnostic bond
graph with fixed causalities that hold for all modes of operation. Moreover, as to a faultless system, the presented bond
graph–based approach enables to deduce a unique implicit state equation with coefficients that are functions of the dis-
crete switch states. Devices or phenomena with fast state transitions, for example, electronic diodes and transistors,
clutches, or hard mechanical stops are often represented by ideal switches which give rise to variable causalities.
However, in the presented approach, fixed causalities are assigned only once to a diagnostic bond graph. That is, causal
strokes at switch ports in the diagnostic bond graph reflect only the switch-state configuration in a specific system mode.
The actual discrete switch states are implicitly taken into account by the discrete values of the switch moduli. The pre-
sented approach starts from a diagnostic bond graph with fixed causalities and from a partitioning of the bond graph junc-
tion structure and systematically deduces a set of equations that determines the wanted residuals. Elimination steps
result in analytical redundancy relations in which the states of the storage elements and the outputs of the ideal switches
are unknowns. For the later two unknowns, the approach produces an implicit differential algebraic equations system.
For illustration of the general matrix-based approach, an electromechanical system and two small electronic circuits are
considered. Their equations are directly derived from a diagnostic bond graph by following causal paths and are reformu-
lated so that they conform with the matrix equations obtained by the formal approach based on a partitioning of the
bond graph junction structure. For one of the three mode-switching examples, a fault scenario has been simulated.
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Introduction

In the beginning, bond graph (BG) modelling was mainly
confined to continuous time models for the purpose of
an analysis or a simulation of engineering systems. In the
course of the last two decades, the BG methodology was
extended to also capture hybrid models.

Strömberg et al.1 extended the small set of funda-
mental BG elements by introducing the ideal switch as
another basic BG element accepting that computational
causalities at least in some parts of a BG become mode-
dependent. To compensate for causality changes,
Asher2 introduced so-called causality resistors. Buisson
et al. also used ideal switches and presented a matrix-
based approach to the generation of an implicit state

equation from a BG of a switching linear time-invariant
(LTI) model for a reference mode. Equations for any
other mode of operation are deduced from the set of
equations for the reference mode.3 Margetts4 also fol-
lows the variable causality approach but uses controlled
junctions introduced by Mosterman,5 marks causalities
in the BG that change due to switch state changes by
additional dashed causal strokes that indicate the causal

Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin, Germany

Corresponding author:

Wolfgang Borutzky, Bonn-Rhein-Sieg University of Applied Sciences,

53754 Sankt Augustin, Germany.

Email: wolfgang.borutzky@h-brs.de

This publication is with permission of the rights owner freely accessible at https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-35474
due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. You are free to use this Item in any 
way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the 
rights-holder(s).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/0959651818755292
journals.sagepub.com/home/pii
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0959651818755292&domain=pdf&date_stamp=2018-02-15
https://nbn-resolving.org/urn:nbn:de:hbz:1044-opus-35474


configuration after the commutation of some switches
and distinguishes between static and dynamic causal-
ities. Other than Buisson et al., she derives a single
implicit state equation for all modes of operation.

Ensuing, various publications have demonstrated
that BGs can also serve model-based fault detection
and isolation (FDI).6 The main contribution of BGs to
model-based FDI is that analytical redundancy rela-
tions (ARRs) can be systematically deduced from a
diagnostic bond graph (DBG) with detectors in inverted
causality and storage elements in derivative causality.7

The numerical evaluation of ARRs provides fault indi-
cators, and their structure enables to detect possible
fault candidates. ARRs are also a possible basis for
model-based failure prognosis.8,9

The next step during the last years has been to
apply BG model-based FDI to hybrid models.10,11 In
Wang et al.,11 ideal switching is captured by controlled
junctions, while the literature10,12,13 uses non-ideal
switches, so that causalities remain fixed, that is, mode-
independent.

This article shows that a set of ARRs as well as a set
of unique implicit state equations can be deduced from
a DBG with fixed causalities of a switching LTI system
model. The coefficients in both sets of equations are
functions of the discrete switch states. Switching devices
are taken into account by ideal switches. Ideal switches
entail variable causality, at least locally. Nevertheless,
fixed causalities are assigned only once so that a DBG
is obtained. As to the causalities at switch ports, the BG
reflects only a specific configuration of switch states,
that is, a single system mode of operation. From such a
DBG with fixed causalities, a unique set of ARRs
including discrete switch states is derived. The result is
obtained using an implicit equation for the commuta-
tion of switches and by disregarding the causal strokes
switch ports have got by the causality assignment. The
ARRs are given implicitly. In order to evaluate them,
first, an algebraic or a differential algebraic equations
(DAE) system must be solved. This also applies to time

continuous models in case non-linear constitutive ele-
ment equations prevent the elimination of unknowns.

As to continuous time models, Ould Bouamama
et al.14 presented a procedure for the systematic deriva-
tion of ARRs from a BG, and a module of the model-
ling and simulation software environment Symbols15

supports their generation.16 To the best knowledge of
the author, a systematic generation of a single set of
ARRs for all modes of operation from a DBG with
fixed causalities of a hybrid model using ideal switches
hasn’t been reported in the literature.

As in Buisson et al.,3 the general matrix-based equa-
tions formulation starts from the well-known block
diagram of a general BG extended by a field of ideal
switches and a partitioning of the junction structure
(JS) matrix. Equations obtained from the partitioning
of the JS matrix are reformulated so that the outputs of
the JS into the switch field can be inserted into the
implicit switch equation resulting in an implicit ordi-
nary differential equation (ODE) for the states of the
storage elements. The formal approach is illustrated by
three small example systems. Each of them is character-
ized by a particular feature.

Formal matrix-based approach

This article confines to mode-switching LTI models as
a subset of general (non-linear) hybrid system
models. As in Buisson et al.,3 the general matrix-based
equations formulation starts from the well-known
block diagram of a general BG extended by a field of
ideal switches and adds a field of inverted detectors
(Figure 1). The grouping of elements into fields results
in a partitioning of the JS matrix. Equation (1) obtained
from the partitioning of the JS matrix is reformulated
so that the outputs of the JS into the switch field can be
inserted into an implicit switch equation. The result is
an implicit equation in which the outputs of the depen-
dent storage elements _xd and the output of the switches
Ti into the JS are the unknowns. Accounting for the

Figure 1. Block diagram of a general bond graph.
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field of storage elements, a second equation for these
two unknowns can be set up. Both equations can be
combined into a DAE for _xd and Ti. As a final result,
implicitly given ARRs are obtained that relate known
system inputs u, measured output signals vms , _xd, and Ti.
Coefficients in the DAE system and in the ARRs are
mode-dependent. The following sections present the
steps of the outlined procedure.

Block diagram of a general BG extended by a field of
switches and a field of inverted detectors

In this article, a DBG is used to set up ARRs for a
switched linear system. As sensors provide measured
signals, detectors in a DBG are in inverted causality.
They deliver known signals into the model which are
either efforts or flows. Following the notation used, for
example, in Merzouki et al.17 and Touati et al.,18 effort
detectors De : em are replaced by a signal source
SSe : em and flow detectors De : f m by a signal source
SSf : f m. All such measured signals into the DBG are
collected into a vector vms . Power variables at junctions
with a detector attached are summed up, which yields a
residual that is close to zero when the engineering sys-
tem is faultless. Otherwise, the input into a detector is a
residual that is significantly different from zero and
thus may serve as a fault indicator. All residuals are
composed into a vector r. Switches may be controlled
such as transistors or commutate autonomously such as
diodes. The external signals affecting the discrete state
of the controlled switches are collected into a function
s(t). All ns discrete switch states mi(t), i=1, . . . , ns, are
collected into a vector m(t). Between two consecutive
discrete switching events, switch states are constant. In
a mode of operation, the continuous state of the system
changes with time.

All storage elements in the DBG may take derivative
causality. If the assignment of derivative causality
results in a causal conflict, that is, a storage element
cannot accept derivative causality, then a remedy may
be to add another sensor if a measurement at the
desired location is physically possible. For a beha-
vioural linear BG model with storages in preferred inte-
gral causality and some storage elements retaining
derivative causality, Rosenberg19 has shown that the
state variables of the dependent storages can be elimi-
nated. Accordingly, for DBGs with storage elements in
preferred derivative causality and a minimum number
of storages in integral causality, the state variables of
the latter ones can be eliminated. Therefore, it can be
justified to assume that all storage elements in the
DBG of a linear model are in derivative causality. The
assumption makes the subsequent matrix-based
approach more concise.

Setting up ARRs

The grouping of elements into fields is expressed by
equation (1)
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ð1Þ

Because of the assumption that there are no storage
elements in integral causality, that is, all storage ele-
ments can take derivative causality in the DBG, the
equations in equation (1) simplify

zd =S23Di +S24Ti +S25u+S26v
m
s ð2Þ

Do=� ST
23 _xd +S33Di +S34Ti +S35u+S36v

m
s ð3Þ

To=� ST
24 _xd � ST

34Di +S44Ti +S45u+S46v
m
s ð4Þ

Accordingly, the equation for the vector of residuals,
r, reads

r=� ST
25 _xd � ST

35Di � ST
45Ti +S55u+S56v

m
s ð5Þ

In equation (5), variables _xd, Di, and Ti must be
expressed by known signals. The inputs and output of
the resistive field are related by a matrix L

Di =LDo ð6Þ

Substituting equation (6) into equation (3) yields

(I� S33L)Do =� ST
23 _xd +S34Ti +S35u+S36v

m
s ð7Þ

where I denotes an identity matrix of appropriate
dimensions. Assuming that (I� S33L) can be inverted,
then equations (6) and (4), respectively, read

Di =�HST
23 _xd +HS34Ti +HS35u+HS36v

m
s ð8Þ

To =� (ST
24 � ST

34HST
23) _xd +(S44 � ST

34HS34)Ti

+(S45 � ST
34HS35)u+(S46 � ST

34HS36)v
m
s

ð9Þ

where H : =L(I� S33L)
�1 (H exists in case L is a sym-

metric and positive definite matrix3).
The switches are assumed to be ideal, and their com-

mutation is expressed by an implicit equation that holds
independently of their causality

MTo + �MTi = 0 ð10Þ

where M is a diagonal matrix with entries mjj 2 f1, 0g,
j=1, . . . , ns, and �M := I�M.

That is, in the DBG, actual switch states are not
expressed by the causality assigned to switch ports. In
this article, switches are denoted by the often used but
non-standard symbol Sw : m. Their actual state is
accounted for by m 2 f0, 1g. Actually, the used non-
standard symbol Sw : m is meant to be generic. It may
stand for an ideal switch as well as a non-ideal one. By
the way, the half arrow added to the bonds of a BG
also does not express the actual direction of the power
flow but a reference direction.
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The equation of the switches can be used to eliminate
To in equation (9), which yields an implicit equation for _xd

M(ST
24 � ST

34HST
23)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M1

_xd = ½ �M+M(S44 � ST
34HS34)�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M2

T

+ M(S45 � ST
34HS35)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M3

u

+ M(S46 � ST
34HS36)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M4

vs
m
i

ð11Þ

This is an equation with the two unknowns _xd and Ti.
Another equation for these unknowns can be obtained
using the linear constitutive equations of the storage
elements

zd =Fdxd ð12Þ

where Fd is a diagonal matrix in case all storage ele-
ments are one-port elements. Substituting equation (2)
into equation (12), observing equation (8) and differen-
tiating the result with respect to time gives

Fd _xd =S23
_Di +S24

_Ti +S25 _u+S26 _vms ð13Þ
=� S23HST

23|fflfflfflfflffl{zfflfflfflfflffl}
N1

€xd + ½S24 +S23HS24�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
N2

Ti

+ ½S25 +S23HS35�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
N3

_u

+ ½S26 +S23HS36�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
N4

_vms

ð14Þ

Equations (11) and (14) constitute a DAE system for
½ _xTd TT

i �
T for all modes of operation as the coefficients

of the matrices depend on the discrete switch states

0 0

N1 �N2

� �
d

dt

_xd

Ti

� �
=
�M1 M2

�Fd 0

� �
_xd

Ti

� �
+

M3

0

� �
u

+
0

N3

� �
_u

+
M4

0

� �
vms +

0

N4

� �
_vms

ð15Þ

Now, assume that the initial configuration of switch
states and Ti(0) are known when the monitoring of a
physical system starts. When an industrial system is set
into operation, it is known which sources and which
system components are connected and which ones are
switched off. It is known whether a clutch in an electro-
mechanical drive is engaged or disengaged at start time,
or which transistors in an electronic circuit are closed
and which ones are not when the system is switched on.
For such a known initial switch configuration
Ti(0)=0. Then, equation (11) provides _xd(0). With
these initial values equation (15) can be solved, and
finally, an evaluation of equation (5) observing equa-
tion (8) yields the residuals. The numerical

computation can be carried out simultaneously with
the measuring of signals as the numerical integration
algorithm using past values from a sliding time window
only needs to perform some few time steps until new
measured values are provided. If a mode change due to
the commutation of some switches is encountered, the
time instant is to be determined and the algorithm
needs a fresh start with new initial conditions.

Unique mode-dependent state equations

In the case of a fault-free system, residuals vanish, that
is, r=0. Substitution of equation (8) into equation (5)
gives

½ST
25 � ST

35HST
23�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Q1

_xd =� ½ST
45 +ST

35HS34�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Q2

Ti

+ ½S55 � vT35HS35�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Q3

u

+ ½S56 � ST
35HS36�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Q4

vms

ð16Þ

Equations (11), (14), and (16) constitute an implicit
linear algebraic set of equations with mode-dependent
coefficients from which implicit state equation can be
deduced for all modes of operation

M1 �M2 �M4

Q1 Q2 �Q4

N1 �N2 �N4

2
64

3
75 _xd

Ti

vms

2
64

3
75= 0

0

�Fd

2
64

3
75xd

+

M3

Q3

N3

2
64

3
75 u½ �

ð17Þ

Illustrative examples

A software implementation of the general matrix-based
procedure presented in the previous section may be used
to automatically set up mode-dependent ARRs for
large-scale mode-switching LTI models and to obtain
implicit state equations that hold for all modes of opera-
tion. If a model is of moderate size, one can manually
directly derive equations from a DBG by following cau-
sal paths. In the sequel, in order to avoid a handling
with matrices of large dimensions and to keep the pre-
sentation easy to survey, small illustrative examples are
considered. The equations derived from a DBG are
reformulated so that one can see how the matrices in the
general approach actually look like in the examples.

A DC motor drive with a load

Figure 2 shows a diagram of a DC motor that obtains
its input voltage from a buck converter.

The drive includes three switching devices, namely, the
controlled transistor, the autonomously switching diode,
and the mechanical clutch. As in Buisson et al.,3 all three
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of them are modelled as ideal switches. Figure 3 displays
a DBG of the electromechanical system.

Annotated power variables denoting measured
quantities carry a superscript m. The causal path
between the two left-side switches highlighted in red
colour indicates that the port variables of the two
switches are algebraically dependent.

Direct deduction of equations. The subsequent equations
are directly read out from the DBG in Figure 3. The
meaning of variables and parameters is indicated by the
DBG

u1 =E� u2 ð18Þ
i2 = i1 � imL1

ð19Þ
uRL1

=RL1
iRL1

ð20Þ

iRL1
= imL1

ð21Þ

ia =
1

Ra
ua ð22Þ

MR=Rloadv
m
load ð23Þ

v3 =vm � vm
load ð24Þ

_p1 =L1
d

dt
imL1

ð25Þ

_p3 = Im _vm ð26Þ
_p4 = Iload _vm

load ð27Þ
_q=C _umC ð28Þ

ARR1 : 12 : r1 = u2 � L1
d

dt
imL1
� RL1

imL1
� umC

ð29Þ
ARR2 : 02 : r2 = imL1

� C _umC � ia ð30Þ
ARR3 : 15 : r3 = kia � _p3 �M3 ð31Þ
ARR4 : 16 : r4 =M3 � _p4 � Rloadvm

load ð32Þ

Furthermore, there is a causal path highlighted in
blue colour between the inductor I : La and the resistor
R : Ra of the armature winding, which means that
matrix �ST

23 in equation (1) does not vanish. With the
summation of efforts at junction 14, this causal path
contributes the two equations

ia =
1

Ra
(umC � _p2 � kvm) ð33Þ

_p2 =La
d

dt
ia ð34Þ

that can be combined into an ODE for ia

La
d

dt
ia +Raia = umC � kvm ð35Þ

By looking at the ARRs, it can be seen that ARR1 is
mode-dependent as it depends on u2, which is a port
variable of switch Sw : m2. Residuals ARR3 and ARR4

are also mode-dependent as they do depend on switch
Sw : m3 representing the clutch. In case the clutch is dis-
engaged, clearly, M3 =0, vm 6¼ vm

load, and residuals r3,
r4 are independent

Figure 3. Diagnostic bond graph of the DC motor drive.

Figure 2. DC motor drive with a load.
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r3 = kia � Im _vm ð36Þ
r4 =� Iload _vm

load � Rloadv
m
load ð37Þ

When the clutch engages, load I : Iload and the motor
do have the same measured angular velocity vm. The
discs of the clutch sticking together can be considered
as one rigid body. The two storage elements I : Im and
I : Iload are rigidly connected and are thus dependent.
As both sensors measure the same angular velocity, one
of them is redundant and residuals r3, r4 are algebrai-
cally dependent. They are related by the constraint

r3 + r4 = kia � (Im + Iload) _vm � Rloadv
m ð38Þ

The case of two storage elements becoming depen-
dent by the closing of a switch will be considered in the
second example. In the following, the study of the elec-
tromechanical drive assumes that the clutch is perma-
nently engaged. That is, vm

load=vm. Accordingly,
switch Sw : m3 can be omitted and one detector of the
angular velocity is sufficient. Residual r3 then becomes
mode-independent and reads

r3 = kia � (Im + Iload) _vm � Rloadv
m ð39Þ

The two ideal switches Sw : m1 and Sw : m2 in the
converter model are described by the following two
implicit algebraic equations

0=m1u1 + �m1i1

=m1(E� u2)+ �m1i
m
L1

ð40Þ

0=m2i2 + �m2u2

=m2(i1 � imL1
)+ �m2u2

ð41Þ

Elimination of switch variable i1 yields

(m1 �m2 + �m1m2)u2 =m1 �m2E+ �m1 �m2i
m
L1

ð42Þ

As the two switches in the buck converter model
commutate oppositely, m2 = �m1 holds so that equation
(42) simplifies to

u2 =m1 �m2E=m1E ð43Þ

and ARR1 (29) thus reads

r1 =m1E� L1
d

dt
imL1
� RL1

imL1
� umC ð44Þ

That is, for this example, the solution of two linear
algebraic equations enables to evaluate the ARRs. This
is also reflected by the causal path highlighted in red
colour in the left part of the DBG. The opposite com-
mutation of the two switches would only reverse the
causal strokes on the causal path between them.

Equations of the matrix-based procedure. In the following,
the above equations directly obtained from the DBG in
Figure 3 are reformulated so that it can be seen of what
form the equations of the matrix-based procedure pre-
sented in the previous section are in this example. First,

reformulation of equations (18) and (19) leads to equa-
tion (4)

u1

i2

� �
|fflffl{zfflffl}

To

=
0 �1
1 0

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

S44

i1

u2

� �
|fflffl{zfflffl}

Ti

+
1

0

� �
|ffl{zffl}
S45

E½ �|{z}
u

+
0 0 0

�1 0 0

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

S46

imL1

umC

vm

2
64

3
75

|fflfflffl{zfflfflffl}
vms

ð45Þ

Rewriting equations (20)–(23), equation (35) gives
equation (3)

iRL1

ua

vRload

2
64

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
Do

=

0 0 0 0 0

0 �1 0 0 0

0 0 0 0 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�ST

23

_p1
_p2
_p3
_p4
_q

2
6666664

3
7777775

|fflffl{zfflffl}
_xd

+

1 0 0

0 1 �k
0 0 1

2
64

3
75

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S36

imL1

umC
vm

2
64

3
75

|fflfflffl{zfflfflffl}
vms

ð46Þ

Equations (25)–(28) and (34) may be written in the
form

1=L1 0 0 0 0

0 1=La 0 0 0

0 0 1=Im 0 0

0 0 0 1=Iload 0

0 0 0 0 1=C

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fd

_p1
_p2
_p3
_p4
_q

2
6666664

3
7777775

|fflffl{zfflffl}
_xd

=

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
S23

d

dt

uRL1

ia

MR

2
64

3
75

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
_Di

+

1 0 0

0 0 0

0 0 1

0 0 1

0 1 0

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
S26

d

dt

imL1

umC
vm

2
64

3
75

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
_vms

ð47Þ

The result is equation (13) differentiated with respect
to time. The implicit switch equations read

m1 0
0 m2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M

u1
i2

� �
|fflffl{zfflffl}

To

+
�m1 0
0 �m2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�M

i1
u2

� �
|fflffl{zfflffl}

Ti

=0 ð48Þ

Substitution of equation (45) into equation (48) gives

0= ( �M+MS44)Ti +MS45u+MS46v
m
s ð49Þ

For this example, equation (11) reduces to an alge-
braic equation for Ti. Furthermore, equation (6) reads
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Di = diag(RL1
1=Ra Rload)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
L

Do ð50Þ

With equation (46) into equation (50) and the result
into equation (47), one obtains an ODE for xd. Finally,
equation (5) for the residuals reads

r1

r2

r3

2
64

3
75

|fflffl{zfflffl}
r

¼
0 1

0 0

0 0

2
64

3
75

|fflfflfflfflffl{zfflfflfflfflffl}
�ST

45

i1

u2

� �
|fflffl{zfflffl}

Ti

þ
�1 0 0 0 0

0 0 0 0 �1
0 0 �1 �1 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�ST

25

_p1
_p2
_p3
_p4
_q

2
6666664

3
7777775

|fflffl{zfflffl}
_xd

þ
0 �1 0

1 0 0

0 0 0

2
64

3
75

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
S55

imL1

umC
vm

2
64

3
75

|fflfflffl{zfflfflffl}
vms

þ
�1 0 0

0 �1 0

0 k �1

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�ST

35

uRL1

ia

MR

2
64

3
75

|fflfflfflffl{zfflfflfflffl}
Di

ð51Þ

Substituting equation (46) into equation (50) and the
result into equation (5) gives the residual vector, r, as a
linear function of Ti, _xd, and vmS .

An all mode implicit state space model. If there is no fault
in the physical system, then the residuals vanish.
Assuming that the clutch is permanently closed, then
neglecting of elements RL1

, C, and La in the ARRs
leads to the following implicit state space equations

_p1 =m1E� Ra
p1
L1
� k

p3
Im

ð52Þ

_p3 + _p4 = k
p1
L1
� Rload

p3
Im

ð53Þ

0=
p3
Im
� p4
Iload

ð54Þ

The resulting DAE holds for the two modes of oper-
ation determined by the discrete state m1 of the con-
trolled switch Sw : m1 and is identical to the one given
in Buisson et al.3 Differentiating equation (54) once
reduces the DAE into an ODE for ½p1 p3�. That is, the
resulting DAE system is of index 1.

However, in contrast to the approach in Buisson
et al.,3 the DAE system is not deduced from the state
space model of a reference configuration, but
obtained directly from a single DBG with fixed
causalities.

An ideal switch connecting two capacitors

In this section, it is shown that the presented approach
to the generation of mode-dependent ARRs and a
unique implicit state equation from a fixed-causality
DBG is also applicable to systems in which the closing
of an ideal switch leads to an algebraic dependency
between the states of two storage elements. If this
dependency would be expressed by a change of causal
strokes in a DBG of the system, then one of the two

Figure 4. Circuit with an ideal switch Sw connecting two capacitors.

Figure 5. DBG of the circuit with two capacitors.
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storage elements would turn from initially assigned
derivative causality into integral causality. In contrast,
the presented approach stays with fixed causalities and
makes use of an implicit equation for the ideal switches
in the model.

As an example, Figure 4 displays the schematic of
the well-known circuit example with two capacitors
in parallel.20 This example is interesting as a closing
of the ideal switch leads to a higher index problem.
That is, the index of the DAE system is mode-
dependent.

Figure 5 displays a DBG of the circuit in Figure 4.
As can be seen from Figure 5, the two capacitors are

in static derivative causality, and the detectors are in
inverse causality. Accordingly, the output of the switch
is its effort. Whether the switch is on or off is implicitly
taken into account by the value of its discrete state
variable m. Moreover, the causal path Sw : m� C : C1,
highlighted in red colour, implicitly indicates the depen-
dency between the two capacitors. If the closing of the
switch would be accounted by a change of causal
strokes, then a causal path between the capacitors
would result.

Direct deduction of equations. Inspection of the DBG in
Figure 5 immediately yields the following equations

iSw=� _q1 + im2 ð55Þ

_q1 =C1( _uSw + _umC2
) ð56Þ

_q2 =C2 _umC2
ð57Þ

ARR1 : 11 : r1 =R1(F� im2 )� R2i
m
2 �

1

C1
q1

ð58Þ

ARR2 : 03 : r2 = iSw � _q2 �
1

R3

q2
C2

ð59Þ

The ideal switch is described by the implicit equation

0=miSw + �muSw ð60Þ

Equations of the matrix-based procedure. Reformulation of
equation (55) and substitution into the switch equation
yields

½m�|{z}
M

1 0½ �|fflfflffl{zfflfflffl}
ST
24

_q1
_q2

� �
|fflffl{zfflffl}

_xd

= ½ �m�|{z}
M

½uSw�|ffl{zffl}
Ti

+ ½m�|{z}
M

1 0½ �|fflfflffl{zfflfflffl}
S46

im2
umC2

� �
|fflfflffl{zfflfflffl}

vms

ð61Þ

Combining equations (56) and (57) gives equation (13)

1=C1 0

0 1=C2

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Fd

_q1
_q2

� �
|fflffl{zfflffl}

_xd

=
1

0

� �
|ffl{zffl}
S24

½ _uSw�|ffl{zffl}
_Ti

+
0 1

0 1

� �
|fflfflfflffl{zfflfflfflffl}

S26

d

dt

im2

umC2

" #
|fflfflfflfflffl{zfflfflfflfflffl}

_vms

ð62Þ

Equations (61) and (62) may be combined into the
DAE

MST
24 � �M

0 �S24

" #
€xd
_Ti

� �
=

0 0

�Fd 0

� �
_xd

Ti

� �

+
MS46

S26

� �
½ _vms �

ð63Þ

In this simple case, substitution of equation (62) into
equation (61) gives an ODE for Ti

MST
24F
�1
d S24

_Ti � �MTi =MS46v
m
s �MST

24F
�1
d S26 _vms

ð64Þ

For m=0, this ODE reduces to Ti =0= usw, that
is, the switch is closed. For m=1, the multiplication of
matrices yields

c1 _Ti = c1 _usw = im2 � c1 _umc2 ð65Þ

As the switch is open im2 = _q1 = c1 _uc1 . Hence, the
result is usw = uc1 � uc2 as to be expected. Finally, refor-
mulation of the ARRs yields

Figure 6. Two independent switches.
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r1

r2

� �
|ffl{zffl}

r

=
0 0

�1 �1

� �
_q1
_q2

� �
|fflffl{zfflffl}

_xd

+
�1
0

� �
½usw�|ffl{zffl}
Ti

+
R1

0

� �
½F�|{z}
u

+
�R �1
1 �1=R3

� �
im2
umc2

" #
|fflfflffl{zfflfflffl}

vms

ð66Þ

where R=R1 +R2.

An all mode implicit state space model. Again, an implicit
DAE with mode-dependent parameters can be obtained
from the ARRs if the residuals vanish. Reformulation
yields the following unique implicit form for both
modes of operation

1 1

0 m

� �
_q1
_q2

� �
|fflffl{zfflffl}

_q

=
� 1

RC1
� 1

R3C2

� �m
C1

�m� m
R3

� �
1
C2

2
4

3
5 q1

q2

� �

+
R1=R

0

� �
½F�

ð67Þ

The differentiation index of equation (67) depends
on mode m. For m=1 (open switch), the matrix pre-
multiplying _q is invertible. In this case, the index is
zero. For m=0 (closed switch), the second equation is
an algebraic constraint which simply expresses that the
voltage across both capacitors is the same.
Differentiation of this constraint reduces the DAE sys-
tem into an ODE. That is, in this mode, the DAE is of
index 1. The problem in practice is that software such
as OpenModelica does not perform index reduction
during simulation. The computation just fails when the
switch state m becomes zero.

Controlled independent switches

The third example illustrates the application of the
approach to a simple circuit with two controlled inde-
pendent switches. Figure 6 shows the circuit schematic.

Figure 7 displays a DBG with two detectors. The
inverted causalities at the detector ports and the deri-
vative causality at the storage port enforce an effort
out causality at the switch ports independent of their
state.

Summation of efforts at 1-junctions and flows at
0-junctions leads to the following equations

isw1
= im ð68Þ

r1 =E� R1i
m � usw1

� uc ð69Þ

_q= im � isw2
ð70Þ

uc =R2isw2
+ usw2

+ um ð71Þ

The switches are described by the implicit equation

0
0

� �
=

m1 0
0 m2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

M

usw1

usw2

� �
|fflfflffl{zfflfflffl}

Ti

+
�m1 0
0 �m2

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

�M

isw1

isw2

� �
|fflfflffl{zfflfflffl}

To

ð72Þ

Reformulation of equations (68) and (70) gives

isw1

isw2

� �
|fflfflffl{zfflfflffl}

To

=
0
�1

� �
|fflfflffl{zfflfflffl}
�ST

24

½ _q�|{z}
_xd

+
1 0
1 0

� �
|fflfflfflffl{zfflfflfflffl}

S46

im

um

� �
|fflffl{zfflffl}

vms

ð73Þ

Substituting equation (73) into equation (72) yields

�MST
24 _xd =�MTi + �MS46v

m
s ð74Þ

The state equation of the capacitor gives

�m2
1

c
q=( �m2 �m2R2)usw2

+ �m2u
m ð75Þ

or

�m2
1

c
_xd = ½0 ( �m2 �m2R2)� _Ti + ½0 1� _vms ð76Þ

Finally, the equations for the residuals read

Figure 7. DBG of the circuit in Figure 6.
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r1

r2

� �
|ffl{zffl}

r

=
�R1

�1

� �
½ _q�|{z}
_xd

+
�1 �1
0 0

� �
usw1

usw2

� �
|fflfflffl{zfflfflffl}

Ti

+
0

1

� �
½E�|{z}
u

+
�R �1
�1 �1=R3

� �
im

um

� �
|fflffl{zfflffl}

vms

ð77Þ

In the case of a fault-free circuit, one obtains the fol-
lowing state equation

_q= isw1
� isw2

= ½1� 1�To

=
m1

m1R1 � �m1
E� q

C

� �
� m2

m2(R2 +R3)� �m2

q

C

ð78Þ

which is valid for all four switch-state configurations.
If both switches are open (m1 =m2 =0), equation (78)
correctly yields _q=0.

Structural fault signature matrix

A structural fault signature matrix (FSM) reflects the
dependency of ARRs from component parameters. If a
residual ri (column i of a FSM) exceeds a mode-
dependent fault threshold thrji, where j denotes the
mode, then a fault is detected in that mode and at least
one of the parameters included in the ARR taken into
account in one row of the FSM is a fault candidate.
For the circuit in Figure 4, residual r1 reads

r1 =� usw � umC2
� Rim2 +R1F ð79Þ

(cf. equation (66)). Substituting equation (56) into
equation (55) and the result into the implicit switch
equation (60) gives an implicit ODE for usw

mC1 _usw � �musw =mim2 �mC1 _umC2
ð80Þ

Residual r2 reads

r2 =� (C1 _usw + _umC2
)� C2 _umC2

+ im2 �
1

R3
umC2

ð81Þ

Table 1 shows the FSM for the second example.
The two additional columns on the right side of the

table hold further information. Entries in the last but

one column indicate the detectability of a fault. The last
column keeps record of the isolability of a fault. As can
be seen, all potential faults can be detected, but none,
except a faulty capacitance, can be isolated with the
given sensors. The last three rows of the FSM may be
omitted if the current source Sf : F and the sensors can
be assumed to be fault free.

In the presented approach, the vector of residuals, r,
depends on _xd, Ti which are given by a DAE (cf. equa-
tion (15)). Accordingly, to set up an FSM, equations of
the residuals and the DAE system are to be inspected
with regard to parameters and measured variables (sen-
sor outputs). Dependencies may be captured in a depen-
dency graph. Figure 8 displays the dependency graphs
for residuals r1, r2 (cf. Figure 5).

Non-ideal switches

A slight modification of the implicit equation of an
ideal switch allows to apply the approach presented in
section ‘Formal matrix-based approach’ in the case that
some of the switches in a model are to be considered
non-ideal. For these switches, the plus sign in equation
(60) is replaced by a minus sign and their discrete state
is allowed to take values ε or 1� ε, where 0\ ε� 1.
Let m be the discrete state of an ideal diode. Then, the
diode’s static characteristic can be described as

muD � (1�m)iD =0 ð82Þ

or

Figure 8. Dependency graph for residuals r1, r2 of the second example: (a) residual r1 and (b) residual r2.

Table 1. Structural fault signature matrix of the circuit with two
parallel capacitors and sensors Df : im2 and De : um

C2
(Figure 4).

Component ARR1 ARR2 D I

R : R1 1 0 1 0
R : R2 1 0 1 0
C : C1 1 1 1 0
Sw : m 1 1 1 0
C : C2 0 1 1 0
R : R3 0 1 1 0
Sf : F 1 0 1 0
Sensor of im2 1 1 1 0
Sensor of um

C2
1 1 1 0
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uD =
1�m

m|fflffl{zfflffl}
= :R(m)

iD ð83Þ

For m= e (open switch), R(m)= (1� e)=e takes a
high value; for m=1� e (open switch), R(m) is of
small value. In DBGs, switches may be denoted by the
non-standard symbol Sw : m regardless whether they
are ideal, or non-ideal.

Single fault scenario

In an off-line simulation of a fault scenario, the physi-
cal system is replaced by a model. As has been shown
in the previous sections, for linear models with ideal
switches, a unique DAE system with mode-dependent
coefficients can be obtained from a DBG with fixed
causalities. However, the closing of an ideal switch may
directly connect two storage elements so that one of
their two ODEs becomes an algebraic equation.
Consequently, the index of the DAE system may
change when the circuit switches into another mode of
operation. The problem in practice is that some simula-
tion software such as Dymola21 or OpenModelica can
perform symbolic index reduction once prior to simula-
tion but are not prepared to do so during simulation.
After a change of the system mode the simulation may
just fail with a division by zero. This problem and some
remedies have been considered by Borutzky.22 To over-
come the problem, one may, for instance, add an ON
resistance to at least some of the ideal switches. The
resulting set of equations, however, may be stiff. When
mode transitions take place, the numerical solution
may fail. Changing parameters controlling the numeri-
cal integration such as the relative, or absolute toler-
ance, or the integration step size may help to recover,
but the resulting accuracy may not be sufficient.
Another option is to perform an index reduction prior
to simulation for those system modes in which some
ODEs turn into algebraic equations due to the closing
of some switches. Then, for each system mode, a set
ODEs is used.

Dynamic behaviour

In the following, the simple example with an ideal
switch connecting two capacitors (Figure 4) is simu-
lated. Computation of the dynamic behaviour starts
with an open switch (m=1) that closes at time instant
t2 =2 ms (m=0) and reopens again at t4 =4 ms

m(t)=1� pulse(t, t2, t4) ð84Þ

For the time interval, in which the switch is closed,
the DAE system has been reduced to an ODE system
by differentiating the trivial algebraic equation
uC1

= uC2
prior to simulation. The fault scenario

assumes that at time instant t3 =1 ms, capacitance C1

abruptly reduces to half of its initial value

~C1(t)=C1(1� step(t, t3))+
C1

2
step(t, t3) ð85Þ

(step(t, t3) is the unit step function. The jump happens
at t= t3.)

Table 2 gives the parameters used in the simulation.
Figure 9 shows the nodal voltages uC1

, uC2
of the fault-

less circuit as well as the faulty nodal voltages ~uC1
, ~uC2

versus time. The latter ones are denoted as tuC1 and
tuC2 in the figure. Simulation results have been
obtained my means of the open software Scilab.23

As can be seen from Figure 9, the capacitor voltages
discontinuously drop to a joint value at closing time
t2 =2ms of the ideal switch. This joint value, needed
for a re-initialisation of the numerical integration, can
be obtained from the principle of charge conservation.
When the switch opens again, no re-initialisation is nec-
essary as the time evolution of the two state variables
continues with no jump.

In the faultless circuit, the closing switch causes an
increase in the capacitance from C1 to C1 +C2 =2C1

and a jump of both nodal voltages to the joint value of
1:58V. In the faulty circuit, capacitance C1 reduces to
half of its value at t3 =1 ms before the switch closes.
As a result, the total capacitance at closing time is
(C1=2+C2) and the joint value of both faulty capaci-
tor voltages becomes

Table 2. Parameters of the circuit in Figure 4.

Parameter Value Units Meaning

F 5.0 mA Current source
R1, R2, R3 1.0 kO Resistances
C1, C2 1.0 mF Capacitances
t2 2.0 ms Switch closes
t4 4.0 ms Switch reopens
t3 1.0 ms Capacitance C1 drops to half

of its value

Figure 9. Time evolutions of the voltages uC1
, uC2

and of the
voltages ~uC1

, ~uC2
of the faulty circuit.
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~uC1
(t+2 )=

C1

2
C1

2 +C2

� � ~uC1
(t�2 )=1:294V ð86Þ

where ~uC1
(t�2 ) denotes the left-side value of ~uC1

(t) at t2
and ~uC1

(t+2 ) the right-side limit. Both joint voltage val-
ues 1:58V and 1:294V are in accordance with Figure 9.
Due to the decrease in C1 as of t3 \ t2, the time con-
stant for the loading of capacitor C : C1 becomes
smaller. This is expressed by the increased rise of ~uC1

(t)
in the interval ½t3, t2) and at t4 when the switch discon-
nects the two circuit parts. Capacitor C1 is charged
with a time constant that is half of the time constant
t =(R1 +R2)C1 in the time interval ½0, t3). For
0\ t\ t2, the left part of the circuit is disconnected
from the right one. Thus, the ODE for ~uC1

reads

_~uC1
+

1

(R1 +R2) ~C
~uC1

=
R1

(R1 +R2) ~C
F ð87Þ

Hence

_~uC1
(t�3 )=

1

(R1 +R2) ~C
R1F� uC1

(t�3
� �

ð88Þ

_~uC1
(t+3 )=

1

(R1 +R2) ~C
R1F� uC1

(t+3
� �

ð89Þ

As a result

_~uC1
(t+3 )=2 _~uC1

(t�3 )=3:03253 10+3 V=s ð90Þ

In case the drop of capacitance C1 takes place when
the switch is closed, then this fault does not significantly
affect the time evolution of uC1

as long as the switch
remains closed

_~uC1
(t+3 )=

4

3
_~uC1

(t�3 ) ð91Þ

for t3 = (t4 � t2)=2.
For t. t4, capacitor C2 is no longer connected to the

current source and discharges with the time constant
R3C2.

Residuals

Let variables of the faulty system model carry a tilde.
For instance, im2 becomes ~i2. Residual r1 then reads

r1 =� usw +R1F� R~i2 � ~uC2

=� 1

_q1
+R1F� R~i2

=� uC1
+R1F� R~i2

=� uC1
+R1F� R½ ~C1(t) _~uC1

+ ~isw�

ð92Þ

In case the switch is open, ~isw =0; otherwise,
~isw =C2

_~uC2
+ ~uC2

=R3. Hence

r1(t)=� uC1
+R1F

� R ~C1(t) _~uC1
+ �m(t) C2

_~uC2
+

1

R3
~uC2

	 
� �
ð93Þ

accounts for both cases. If the real circuit is not faulty,
then ~C1 =C1 and ~uC1

= uC1
, ~uC2

= uC2
. As a result,

r1 =0. In the same way, residual r2 can be reformulated

r2(t)=� C1 _uC1
� C2 _uC2

� ~i2 �
1

R3
~uC2

=� C1 _uC1
� C2 _uC2

+ ½ ~C1(t) _~uC1
+ �m(t)(C2

_~uC2
+ ~uC2

=R3)�

� 1

R3
~uC2

ð94Þ

Figure 10(a) and (b) displays the response of resi-
duals r1, r2 to an abrupt fault in capacitance C1.
Equation (94) indicates that residual r2 depends on C1

as expressed in the FSM. Figure 10(b), however, shows
that r2 is insensitive to changes in C1. In fact, for both
modes of operation, it can be proven analytically that
r2(t)=0, for 0ł tł 0:01 s.

Figure 10(a) shows that the response of residual r1
to the abrupt fault of capacitance C1 is mode-depen-
dent. It captures the abrupt fault of parameter C1 at
t3 =0:001 s and decreases to zero when uC1

(t)
approaches its final value uC1

(t! ‘)=R1F=5 V
independent of the value of C1.

Figure 10. Residuals r1, r2 due to a drop of the capacitance C1

at t = 1 ms: (a) residual r1 and (b) residual r2.
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Conclusion

It has been shown that ARRs used in model-based FDI
as well as a unique implicit state equation with mode-
dependent coefficients can be obtained in a systematic
manner from a fixed-causality DBG of a hybrid model
in which switching components are represented by ideal
switches.

Although ideal switches are naturally of variable
causality, fixed causalities are assigned once to a DBG
by means of the Sequential Causality Assignment
Procedure (SCAP). Nevertheless, a unique set of equa-
tions is deduced from the DBG that determines the
wanted residuals for all modes of operation. The key
step is to substitute the JS outputs into the field of
switches in the implicit switch equation.

The vector of residuals is a JS structure output into
the field of detectors with inverted causalities. After
some elimination steps, the residuals finally depend on
the time derivative of the states and the switch outputs.
For both unknowns an implicit DAE with mode-depen-
dent. coefficients can be obtained.

For the DC motor drive example with two pairwise
commutating switches, it has been shown that only a
set of implicit algebraic equations is to be solved.
Pairwise commutating switches can be identified by a
causal path between their ports in a DBG.

For a faultless model with ideal switches, a unique
implicit state equations with mode-dependent coeffi-
cients can be obtained from the ARRs.

The presented general matrix-based approach has
been applied to three small illustrative example sys-
tems. Equations are directly deduced from a DBG and
are reformulated so that they conform with the matrix
equations obtained by the formal approach, based on a
partitioning of the BG junction structure. For large-
scale linear system models, the procedure can be imple-
mented in a script or a programming language. For
one of the three examples considered, a fault scenario
has been simulated.

It has been outlined that the presented approach of
using a fixed-causality DBG can also be applied in case
some of the switches are to be considered non-ideal.
The steps of the procedure do not need to be changed.
A small change of the implicit equation of some
switches, which actually turns it into an explicit one, is
sufficient. Non-ideal switches, however, may result in a
set of stiff equations, numerical problems, and a con-
tinuous approximation of discontinuous jumps.

The approach can be extended to mode-switching
LTI models with uncertain parameters. The uncertain
element parts can be collected into a field of sources
modulated by power variables that is added to the
block diagram in Figure 1. As a result, residuals
depend on another additive term accounting for para-
meter uncertainties. Subject of further research may
be an extension of the proposed approach to mode-
switching system models with some non-linear
elements.

Acknowledgements

This article is the result of a complete revision and a
substantial extension of a paper entitled ‘Generation of
Mode-dependent ARRs from a Bond Graph of a
Mode Switching LTI Model’ presented at the 4th
International Conference on Control, Decision and
Information Technologies (CoDIT 2017), 5–7 April,
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