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Abstract 

There are optimization problems in which an improvement in performance or a reduction in cost can be attained if the input signal 

of the system is split into multiple components. Splitting the signal allows customizing the design of the system’s hardware for a 

narrower range of frequencies, which in turn allows making a better use of its physical properties.  

There exist applications that have very specific signal-splitting requirements, such as “counter-flow avoidance”, that conventional 

signal processing tools cannot meet. Accordingly, a novel “Sign-Preserving” filter has been developed and is presented in this paper. 

The underlying algorithm of the filter is comprehensively explained with the aim of facilitating its reproduction and the aspects of 

its operation are thoroughly discussed. The filter has two key features (1) it separates a discrete signal 𝒂 into two components, a 

mostly low-frequency signal 𝒃 and a predominantly high-frequency signal 𝒄 such that the sum of 𝒃 and 𝒄 replicates exactly the 

original signal 𝒂 and more importantly (2) the signs of the two output signals are equal to the sign of 𝒂 at all times. 

The paper presents two case studies which demonstrate the use of the Sign-Preserving filter for the optimization of real life 

applications, in which counter-flow must be avoided: the hybridization of the battery pack of an electric vehicle and the 

parallelization of a packed bed thermal energy store. 
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1. Introduction 

The processing of a signal refers to the transformation of a 

signal containing a package of information into a different 

form of signal(s) —typically simpler—for its utilization [1].  

This branch of knowledge is of paramount importance for 

numerous aspects of modern life. Given its importance a 

considerable amount of research is still devoted to the study 

and development of improved signal processing techniques.  

There are many areas where the processing and filtering of 

signals is applied. The following can be highlighted: consumer 

electronics, telecommunications and computer networks [2], 

image and video processing and enhancement [3,4], control 

systems, medical equipment [5,6], geophysics [7], 

oceanography and astronomy [8]. 

Numerous applications in the aforementioned areas make use 

of signal processing tools to split a driving (input) signal into 

two or more signals based on their frequencies because it 

would be highly impractical, or impossible in some cases, to 

fabricate physical components capable of handling the whole 

spectrum of frequencies contained in the original signal. By 

separating the input signal into multiple components the 

overall system’s performance can be improved or even 

optimized because the capacities of the different devices in the 

system are better exploited.  

There are a number of well-known, fully characterized and 

extensively tested filter designs such as the Butterworth [9], 

Chebyshev [10], Bessel [11], Linkwitz-Riley [12] and 

Savitzky-Golay filters [13]—among others—by means of 

which the splitting of a signal into two or more frequency-

based groups can be done. There exists an ample literature 

addressing their characteristics (response, delay, gain, etc.), as 

well as their advantages, shortcomings and applications for 

which each of them is particularly appropriate. 

However there are certain applications, such as the 

hybridization of energy storage systems for cost-reduction or 

performance improvement, that have very specific signal-

splitting requirements which the existing signal processing 

tools cannot meet.  

Currently there is no signal-decomposition technique available 

that allows splitting a signal into two frequency based 

components in such a way that the sign of the two resulting 

signals is the same than that of the input signal at any given 

point. Accordingly, this paper presents a novel time-domain  
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Nomenclature 

Symbol Definition Symbol Definition 

α Aspect ratio (Packed bed example) 𝐸𝑠 Signal energy 

γ Vector containing the basic shape of the wavelets i Interval within the signal length 

Δφ Phase difference with respect to original signal k No. of harmonic 

η Factor for impeding numerical errors L Signal length (amount of points) 

θ Vector of angles between 0 and 2π M 
Matrix containing several c signals for singular 

value decomposition 

λ 
Vector containing a shifted (downwards) version of 

γ 
𝑛𝑟𝑢𝑛𝑠 Number of runs of the filter 

μ Zero-mean normalization of wavelet λ norm Magnitude of a vector 

ν 
Version of μ wavelet with starting and ending points 

at zero.  
𝑝0 Initial estimation of correction coefficient 

φ Phase  𝑝𝑚𝑎𝑥   
Value to calculate max. permissible correction 

coefficient 

χ Battery capacity ratio (EV example) 𝑝1𝑏  
maximum permissible correction coefficient for 

snippet of b 

ω Frequency of work cycle (for packed bed example) 𝑝1𝑐 
maximum permissible correction coefficient for 

snipper of c 

𝒂 Original signal to be filtered 𝑝1 Overall maximum permissible correction coefficient 

𝒃 Low frequency output signal Q 
Energy (heat) content of work cycle (Packed bed 

example) 

𝒃𝒊 Snippet of signal b in the interval i S Diagonal matrix from singular value decomposition 

𝒃𝒊𝟎 Initial mod. of snippet of b sgn Sign function 

𝒃𝒊𝟏 
Temporary vector containing points whose sign 

changed upon correction 
t Time index or number of data point 

𝒃𝒊𝟐 Modified snippet of b at interval i 𝑊 Wavelet width in number of points 

𝒄 High frequency output signal 𝑊𝑚𝑎𝑥  Maximum wavelet width 

𝒄𝒊 Snippet of signal c in the interval i x 
Coefficient for the Fourier series 

 

𝒄𝒊𝟎 Initial mod. of snippet of c y Coefficient for the Fourier series 

𝒄𝒊𝟏 
Temporary vector containing points whose sign 

changed upon correction 
Z Ratio of signal energies 

𝒄𝒊𝟐 Modified snippet of c at interval i   

 
based filter that satisfies the very particular condition of sign 

preservation throughout the signal length. The paper is 

intended to provide researchers and technologists a valuable 

tool for the optimization of systems of diverse kinds. 

The paper is structured in the following way: section 2 

presents the motivation behind the development of the Sign-

Preserving filter. Section 3 discusses the mechanics of the 

filter. Here, the algorithm followed by the filter is 

comprehensively explained with the aim of facilitating its 

reproduction and use for solving different problems that have 

the same “sign-preservation” requirement. Section 4 provides 

further detail of some aspects of the operation of the filter such 

as signal energy and conservation of phase. Furthermore, this 

section discusses the applicability of the filter for different 

kinds of input signals such as noisy waves and pulses. Section 

5 presents two case-studies that demonstrate the use of the 

Sign-Preserving filter for the optimization of real-life 

applications: the hybridization of an electric vehicle’s battery 

pack and the parallelization of a packed bed thermal energy 

store. Lastly, section 6 provides a summary of the key 

takeaways of the paper. 

2 Motivation 

The motivation for the Sign-Preserving filter will be explained 

by means of Figure 1. In the figure, the input (or driving) signal 

𝒂 for a certain system is shown. The signal, as it can be seen, 

comprises a mix of low and high frequencies; therefore the 

physical component of the system that will be driven by it must 

be capable of handling a wide range of frequencies.  

An improvement in the overall performance of the system 

could be achieved if the input signal 𝒂 was split into two 

signals 𝒃 and 𝒄 in such a way that 𝒃 contained the low 

frequencies and 𝒄 comprised the remaining high frequencies. 

Both signals 𝒃 and 𝒄 will be inputs to the system and will drive 

two separate physical devices. The improvement in 

performance (or cost reduction in some cases) is owed to the 

fact that the components driven by the signals can be 

customized for the specific (and narrower) range of 

frequencies they will experience as opposed to having a device 

whose performance is compromised because it was designed 

for being capable of handling the whole spectrum contained in 

𝒂.  

As mentioned in section 1, there are many different tools that 

can be used to separate a signal into two or more frequency 

components. Figure 1a shows an example of a decomposition 

of 𝒂 carried out through a Fourier analysis, where the low 

frequency components were grouped in 𝒃 whilst the high-

frequency components were grouped in 𝒄.  It should be noted 

that this kind of splitting allows a perfect reproduction of the 

original signal (i.e. 𝒃 + 𝒄 = 𝒂). 



It can be seen in Figure 1a that the two resultant signals have 

different signs from each other in many points in time 

throughout the signal’s length (e.g. t=12). This phenomenon 

is called “counter-flow”. In many applications it is not a 

problem at all; however in some others, such as the examples 

presented in section 5, having counter-flow is highly 

undesirable.  

Suppose for the sake of argument, that the signal 𝒂 is the duty 

of an electric motor. During the periods when 𝒂 is positive the 

motor is consuming electricity and producing mechanical 

work while during the periods when 𝒂 is negative the motor 

acts as a generator, i.e. consumes mechanical work and 

produces electricity.  

When the signal is split into two components 𝒃 and 𝒄, as 

shown in Figure 1a,  two smaller motors are used, one for each 

new signal. These motors will work in the same way 

described, as a motor during the positive periods and as a 

generator during negative periods.  The two motors are 

expected to work in parallel and their combined output should 

be the same as the output of the single motor driven by 𝒂. This 

condition is met in the decomposition shown in Figure 1a. 

 

Figure 1. Examples of signal decompositions using a) Fourier 

analysis and b) Sign-Preserving filter 

Nevertheless, there are many instances (e.g. t=4 and t=12) 

where counter-flow is found. In these cases, one motor is 

consuming electricity (producing mechanical work) while the 

other one is operating in reverse producing electricity. In t=12, 

for example, the motor driven by 𝒃 is consuming more 

electricity than what the motor driven by 𝒂 would be 

consuming; this excess power is provided by the motor driven 

by 𝒄. Having counter-flow in the system means that the effects 

of 𝒃 and 𝒄 counter-act each other (instead of adding to each 

other) to produce the desired final effect, which is to replicate 

𝒂.  

The foregoing is just a very simple example of how in certain 

systems a split of the signals in a conventional way does not 

make much sense. Any of the existing signal-splitting 

techniques, either frequency-domain based tools such as the 

Butterworth, Chebyshev, Bessel and Linkwitz-Riley filters or 

time-domain based methods such as the Savitzky-Golay filter 

(or a more basic moving average approach) will produce 

output signals (𝒃 and 𝒄) with some degree of counter-flow.  

Consequently, this paper proposes a filter by means of which 

a discrete time signal a can be split into two different 

components without incurring in the aforementioned counter-

flow problem. The key-feature of this “Sign-Preserving Filter” 

is that at any given time the following two conditions are met:  

𝒂 = 𝒃 + 𝒄                                                                                (1) 

𝑠𝑔𝑛(𝒂) = 𝑠𝑔𝑛(𝒃) = 𝑠𝑔𝑛(𝒄)                                               (2) 

The component 𝒃 contains mainly low-frequency (smooth) 

content while 𝒄 is predominantly composed of high frequency 

(not-so-smooth) content.  The filter, as Eqs. (1) and (2) 

indicate is designed to produce 2 outputs 𝒃 and 𝒄 ; however it 

can be reapplied on the resultant signal 𝒃 to produce 3 outputs: 

𝒃𝟏, 𝒃𝟐 and 𝑪.  

Figure 1b shows an example of a decomposition of the same 

signal 𝒂 carried out through the Sign-Preserving filter. The big 

difference the Sign-Preserving filter has with other Fourier-

based filters is that the condition described by Eq. (2) is true at 

all times.  

The Sign-Preserving filter can be used in numerous 

optimization problems where an improvement in the 

performance of the system or a cost reduction can be achieved 

by splitting the driving signal but counter-flow must be 

avoided. The algorithm followed by the filter is explained in 

full detail in the subsequent sections. 

3. The signal filtering process 

This section discusses in depth the mechanics of the operation 

of the filter. The algorithm followed by the Sign-Preserving 

filter is shown in Figure 2. 

The operation of the filter is based on passing a number of 

wavelets of different sizes throughout the length of the signal 

to be filtered. As the wavelets are passed, some non-

smoothness is subtracted from the signal and that subtracted 

content is accumulated elsewhere. 

There are two parameters that control the operation of the 

filter. The first is the maximum width of the wavelets (𝑊𝑚𝑎𝑥  ) 

and the second is the number of runs (𝑛𝑟𝑢𝑛). A run of the filter 

consists in passing twice through the signal, all the odd wave-

widths contained in the interval between W=3 and W= 𝑊𝑚𝑎𝑥. 



A larger number of runs will produce a smoother signal 𝒃 at 

the expense of a longer computation time.  

 

Figure 2. Algorithm followed by the Sign-Preserving filter 

Every wavelet has a value of zero at both of its ends, as shown 

in Figure 3. The way the wavelets are generated and their 

shape will be explained in detail further ahead in the paper. 

The fact that the wavelets start and end having a value of zero 

means that they do not have any effect on those points. In order 

to modify those points, each wavelet is passed twice through 

the signal. During the second sweep the wavelet is offset by 

half of the wavelet-width. For example, if a wavelet with a 

W=7 started at point 1 of the signal during the first pass, it will 

start at point 4 during the second pass. The foregoing is 

graphically explained by Figure 4.   In order for the wavelet’s 

starting point during the second pass to be exactly at the 

middle point of the wavelet during the first pass, the length of 

the wavelet has to be an odd number of points. Therefore only 

odd values between W=3 and W= 𝑊𝑚𝑎𝑥  are considered.  

The wavelets are generated in the following way: A vector of 

angles (𝜽) containing W equally spaced points between 0 and 

2π is created. The basic shape of the wavelets (𝜸) is given by 

Eq. (3). The waves 𝝁 and 𝝂, given by Eqs. (5) and (6) 

respectively, are normalized versions of the basic γ curve. 

These two waves are used by the filter during its operation to 

determine the amount of subtraction or “correction” to be 

applied to the signal at a given point.  

𝜸 = 1 − cos (𝜽) (3) 

 
𝝀 = 𝜸 − 𝑚𝑒𝑎𝑛(𝜸) (4) 

 

𝝁 =
𝝀

√𝝀⊤ ∗ 𝝀
 (5) 

 

𝝂 =
𝜸

√𝝁⊤ ∗ 𝜸
 (6) 

 
Figure 3 shows examples of wavelets generated for a W=3, 9 

and 51. It can be seen that as aforementioned, the starting and 

ending points of the 𝝂 wavelet have always a value of zero, 

which is an important aspect of the filter’s operation. It can 

also be seen that the wavelets (which define an interval of 

interest during the filter’s operation) resemble a Hann 

Window; although within the Sign-Preserving filter they are 

used in a different way. 

 

Figure 3. Wavelets 𝝁 and 𝝂 generated for a W=3 (top), W=9(middle) 

and W=51(bottom)  

The two components of the signal 𝒃 and 𝒄 are initialized. 

These components have the same length (𝐿) as 𝒂. The signal 𝒄 

which will hold the high frequency part is set to zero while 𝒃 

is initialized as an identical copy of 𝒂. As the filter progresses 

some of the content of 𝒃 will be removed (i.e. filtered) and 

stored in 𝒄.  



After the initialization of the two components the operation of 

the filter begins. The first pass is done with a 3-point wavelet, 

which is the smallest possible wavelet. The signal 𝒃 is divided 

into multiple intervals depending on the width of the wavelet 

in course. The number of intervals (𝑖) is given by Eq. (7). For 

example, for a 3-point wavelet, the intervals go from points 1 

to 3, from points 3 to 5, from points 5 to 7, and so on. Every 

interval is modified as the filter marches through the signal 

length. 

𝑖 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ⌈
𝐿

𝑊 − 1
⌉ (7) 

 
In some cases the last interval is incomplete, in which case 

there is a wrap-around. The interval covers whatever points are 

left and continues at the beginning of the signal. For example, 

in a signal with 60480 points, the last interval for a 51-point 

wavelet would start at point 60451 and only has 30 points 

before reaching 60480 (the last point of the signal), so it 

extends to points 1-21.  

The points of the signal that are used for the aforementioned 

“wrap-around” are not modified, as they have been already 

filtered at the start of the pass. The wrap-around is just used to 

complete the interval so that the filter can calculate the amount 

of “correction”, which is applied only to the remaining points 

at the end of the signal.  

The above implies that the filter is not symmetric hence it 

cannot be applied in reverse (i.e. start at point n of signal and 

work towards point 1) because the correction calculated for the 

wrapped-around intervals will be different in both cases 

(forwards and backwards) due to the different shape of the 

signal at both of its ends. The outputs produced by the forward 

run will not be exactly equal to those generated by the reverse 

run but they will not differ greatly from each other. 

Nevertheless, there is no practical reason why the filter would 

need to be run backwards thus the asymmetry is not a problem. 

It is worth highlighting that the intervals are independent from 

each other. The ending point of any given interval is the 

starting point for the next one. During a pass of a wavelet those 

points remain unaltered, because the starting and ending points 

of the wavelet are always zero. This independency offers the 

possibility to carry out operations in parallel, that is to say, 

within a pass of a wavelet all the intervals could be filtered 

simultaneously rather than sequentially, which offers the 

possibility to employ more computational power to reduce the 

calculation time.  

As it was mentioned before, two passes are carried out for each 

wavelet. After the first sweep through the signal has been 

completed a second sweep is performed with an offset of half 

the wavelet width. For example, wavelets with a W=9 and 

W=25 start at point 1 during the first pass but during the second 

pass start at points 5 and 13 respectively, as Figure 4 shows. 

By doing so, with each wave-width a cosine and a sine wave 

are effectively being applied. The second pass (with an offset) 

is carried out to take care of the starting and ending points of 

the intervals that were not modified during the first pass.  

Inside every interval, the algorithm only sees a snippet 𝒃𝒊 and 

𝒄𝒊 of the complete signals 𝒃 and 𝒄, which are determined by 

the width of the interval. For a given interval i, the algorithm 

calculates, by means of Eq. (8), the correction coefficient (𝑝0) 

that would be applied to the signal snippets if there were no 

sign constraints in place. This coefficient is a mere initial 

estimate. 

 

Figure 4. Comparison of the 𝝂 wavelet with a W=9 (top) and W=25 

(bottom) during the first and second pass 

𝑝0 = 𝝁⊤ ∗ 𝒃𝒊 (8) 

 
Both signals are modified based on the correction coefficient 

(p0). The filter subtracts from the snippet of the low-frequency 

signal some non-smoothness and adds it to the snippet of the 

high-frequency signal, as stated in Eqs. (9) and (10). 

𝒃𝒊𝟎 = 𝒃𝒊 − 𝑝0 ∗ 𝝂 (9) 

 
𝒄𝒊𝟎 = 𝒄𝒊 + 𝑝0 ∗ 𝝂 (10) 

 
Subsequently, a series of checks are carried out to determine 

if the correction applied caused a sign change within any one 

of the signal snippets. A sign change in either of the modified 

signal snippets means that the initial estimation for p0 is too 

large and needs to be revised. The points of the low and high 

frequency signal snippets ( 𝒃𝒊𝟎 and 𝒄𝒊𝟎 , respectively) whose 

sign changed (in either direction) are extracted and stored in 

smaller temporary vectors called 𝒃𝒊𝟏 and 𝒄𝒊𝟏. Their 

corresponding entries of the 𝝂 wavelet are also extracted and 

stored in vectors called 𝝂1𝑏 and 𝝂1𝑐.  

The maximum permissible correction coefficients 𝑝1𝑏  or 

𝑝1𝑐  that can be applied to the signals are obtained through Eqs. 

(11)-(13) 

𝑝max 𝑏 = 𝑚𝑖𝑛 (
|𝒃𝒊𝟏|

𝒗1𝑏

) (11) 

 

𝑝max 𝑐 = 𝑚𝑖𝑛 (
|𝒄𝒊𝟏|

𝒗1𝑐

) (12) 

 
𝑝1𝑏,𝑐 = 𝑠𝑔𝑛(𝑝0) ∗ 𝑚𝑖𝑛(|𝑝0|, 𝑝𝑚𝑎𝑥 𝑏,𝑐) (13) 

 



If no change of sign was observed in either of the modified 

signals (𝒃𝒊𝟎 or 𝒄𝒊𝟎) then the corresponding correction 

coefficient (𝑝1𝑏  or 𝑝1𝑐) is equal to the 𝑝0 originally calculated 

by Eq.(8). The maximum correction coefficient that can be 

applied (𝑝1) is the minimum between 𝑝1𝑏  and 𝑝1𝑐 .This ensures 

that neither of the signals experiences a change in sign. It 

should be mentioned that either one of the signals can take a 

value of zero, zero is considered neutral and doesn’t represent 

a change of sign. A factor 𝜂 of 0.999 is introduced to avoid 

problems caused by numerical inaccuracy. If the full p1 

coefficient is applied, there is a risk that a sign change will still 

occur due to rounding errors. The two signals are modified as 

Eqs. (15) and (16) indicate.  

𝑝1 = 𝑚𝑖𝑛(𝑝1𝑏 , 𝑝1𝑐) (14) 

 
𝒃𝒊𝟐 = 𝒃𝒊 − 𝑝1 ∗ 𝜂 ∗ 𝝂 (15) 

 
𝒄𝒊𝟐 = 𝒄𝒊 + 𝑝1 ∗ 𝜂 ∗ 𝝂 (16) 

 
Once the new values (𝒃𝒊𝟐 and 𝒄𝒊𝟐) for the snippets of both 

signals have been calculated, these are installed in the full 

signals 𝒃 and 𝒄 in their respective positions.  Following, the 

algorithm moves to the next interval where the filtering 

operations discussed above are repeated. After all intervals are 

completed for a given wavelet a second pass considering an 

offset in the starting point of the wavelets is carried out. When 

the two passes of a wavelet are finished the algorithm goes 

back to the early beginning and generates a new wavelet based 

on the next odd number of points (i.e. W=W+2). The loop 

repeats until all wavelets in the range between W=3 and Wmax 

have been passed through the signal, at which point one run of 

the filter is completed. As aforementioned, several runs can be 

carried out (𝑛𝑟𝑢𝑛𝑠) to produce a smoother low-frequency 

component 𝒃 . 

4 Aspects of the operation of the filter 

In this section of the paper the operation of the Sign-

Preserving filter is extensively reviewed. The applicability of 

the filter to different types of signals is demonstrated and some 

particularities of its behaviour—such as the conservation of 

phase and reduction of signal energy—are discussed and 

thoroughly analysed. 

4.1 Filtering a noisy signal  

Consider the signal 𝒂 described by the Fourier series given by 

Eq. (17), where θ  is a vector of 60480 points evenly spaced 

between 0 and 2π. The coefficients 𝑥 and 𝑦 for the series can 

be found in Table 1, for all the harmonics that do not appear 

on the table (e.g. k=2, 7, 25, etc.) the coefficients x and y have 

a value of zero. 

𝒂 = ∑ 𝑥𝑘 ∙ 𝑐𝑜𝑠(𝑘𝜽) + 𝑦𝑘 ∙ sin (𝑘𝜽)

113

𝑘=1

 (17) 

 

Figure 5 shows an example of the operation of the filter. In this 

example the filter carried out 50 runs through the signal 𝒂 

(described in Table 1) with a maximum wavelet width (𝑊𝑚𝑎𝑥  ) 
of 79. As it can be seen, the filter has effectively created a 

smoother signal (𝒃 ) while the high-frequency components 

removed have been stored in a separate signal (𝒄). It is also 

possible to observe that the two output signals produced have 

the same sign as 𝒂 at all times, which satisfies Eq. (2). 

Table 1. Values for the α and β coefficients in Eq. (17) 

k x y Magnitude Phase (ϕ) 

1 -0.556 0.541 0.776 135.783° 

4 -0.476 1.034 1.138 114.719° 

9 -0.375 -0.539 0.657 -124.828° 

11 -0.194 -0.141 0.240 -143.99° 

37 -0.219 0.025 0.220 173.488° 

79 -0.053 0.122 0.133 113.481° 

113 0.089 0.047 0.101 27.838° 
 

 

Figure 5. Example of the operation of the Sign-Preserving filter: 

Splitting of 𝒂 with a 𝑊𝑚𝑎𝑥 of 79 and 50 runs 

The Sign-Preserving filter has two control variables, the 

number of runs (𝑛𝑟𝑢𝑛 ) and the maximum wavelet width to be 

used (Wmax). Figure 6 shows a comparison of the results 

produced by the filter when 15, 30 and 100 runs are carried out 

with 𝑊𝑚𝑎𝑥  values of 49,125 and 199.  

It is important to remember that 𝑊𝑚𝑎𝑥   can only take odd 

values and its size is relative to the number of points (L) 

contained in the discrete signal (𝒂) being filtered.  

As expected, a larger 𝑛𝑟𝑢𝑛 yields a smoother low-frequency 

signal. However, the maximum wavelet width has a stronger 

effect on the performance of the filter. When a small value for 

𝑊𝑚𝑎𝑥  is used the filter can only remove a very small amount 

of “non-smoothness” on every run because it does fewer 

passes per run (proportional to the number of wavelets). 

Conversely, when a larger value for 𝑊𝑚𝑎𝑥   is considered, more 

wavelets are used per run therefore the filter is able to subtract 

larger amounts of high-frequencies in every run and produce a 

much smoother curve in less iterations.  

As aforementioned, to reach a certain result (i.e. level of 

smoothness) more runs will be required if a smaller number of 

wavelets are used per run. To exemplify this we’ll use the 

signal 𝒂 described by Eq. (17). A way of measuring how much 

content has been taken from 𝒃 and put into 𝒄 is to measure the 

magnitude of the resultant signal, which is calculated by 

means of Eq. (18). 



𝑛𝑜𝑟𝑚(𝒃) = √𝑏1
2 + 𝑏2

2 + ⋯ + 𝑏𝑛−1
2 + 𝑏𝑛

2 (18) 
 

 
 

Figure 6. Signal split into 𝒃 (blue) and 𝒄 (red) using different combinations of control parameters: 𝑊𝑚𝑎𝑥 and 𝑛𝑟𝑢𝑛𝑠 

 

Figure 7. Reduction of magnitude of 𝒃 with respect to original 

signal 𝒂 as more runs of the filter are carried out. 

For example, to produce a low-frequency signal 𝒃 whose 

magnitude is 50% of the magnitude of the original signal 𝒂, a 

filtering operation considering a 𝑊𝑚𝑎𝑥=199 would require 10 

runs. If a 𝑊𝑚𝑎𝑥 =125 is used then the filtering operation will 

take 35 runs whereas if 𝑊𝑚𝑎𝑥  is set to 49, the filter will need 

569 runs to reach the specified value. Figure 7 shows the 

reduction in magnitude of  𝒃 with respect to the original signal  

𝒂 for 𝑊𝑚𝑎𝑥  values of 49,125 and 199.  

It should be kept in mind that the values quoted are specific 

for the example used; however the behaviour depicted is a 

general trend. When larger values of 𝑊𝑚𝑎𝑥   are used, the filter 

will shave more content from the signal with every run. The 

foregoing comparison does not suggest that using a large 

number of wavelets per run is necessarily good. The end goal 

of the filter will vary depending of the application for which it 

is employed and in some cases a precise or subtle filtering may 

be required, which cannot be done when 𝑊𝑚𝑎𝑥  is set to a large 

value (relative to the number of data points in the signal).  A 

good rule of thumb for defining 𝑊𝑚𝑎𝑥 is that the maximum 

width of the wavelets should be ≤1% of the total length of 𝒂. 

A question that arises is if it is possible to obtain the exact 

same filtered signal 𝒃 using a small 𝑛𝑟𝑢𝑛 with a large 𝑊𝑚𝑎𝑥  

than with a large 𝑛𝑟𝑢𝑛  and a small 𝑊𝑚𝑎𝑥. Except for the 

extreme case when the signal is completely flattened out 

(which needless to say is not at all the purpose of the filter) the 

answer is no, it is not possible. Several filter operations have 

been carried out (as shown in Figure 6) considering values for 

𝑊𝑚𝑎𝑥  of 49,125 and 199 and values for 𝑛𝑟𝑢𝑛 of 3, 15 and 30. 

With the results obtained a singular value decomposition in the 

form of M=USV* was carried out, where M is a 60480 x 9 



matrix containing the high-frequency signals (𝒄) produced by 

the filter. None of the singular values contained in the diagonal 

matrix S are zero (or close to zero) which indicates a clear 

independency between the two control parameters of the filter. 

The above means that in the 2D space containing all the 

different possible combinations of 𝑊𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛, there are 

no two combinations of values that yield the exact same result.  

Another interesting feature (or quirk) of the Sign- Preserving 

filter that should be pointed out is the fact that, unlike filters 

based on a cut-off frequency such as the Butterworth and 

Chebyshev low/high pass filters, the Sign-Preserving filter 

does not have a stopping condition other than the specified 

number of runs. Hence, given enough time (i.e. a sufficiently 

large number of runs) the filter will smoothen a signal down 

to a straight line at zero. In other words, the filter will empty 

the vector containing the low-frequency signal 𝒃 and will 

eventually create a copy of 𝒂 in the vector containing the high-

frequency signal 𝒄. However, the key point is that the 

operation of the filter is a selective process: the highest-

frequencies found in each pass are removed first and the low 

frequencies are left behind for a subsequent pass. The 

foregoing can be demonstrated via a Fourier analysis of the 

results produced by the filter.  

 

Figure 8. Magnitudes of the relevant frequency components of 𝒃 

(left) and 𝒄 (right) as more runs of the filter are carried out.  

Figure 8 shows, from a frequency-domain point of view, the 

result of the filter’s operation on the signal 𝒂 , described by 

Eq. (17). The filter was applied using three different values for 

𝑊𝑚𝑎𝑥  (49,125 and 199) and with each of them 3, 30 and 100 

runs were carried out. Figure 8 shows the magnitudes of the 

frequency components of the output signals 𝒃 and 𝒄. The time-

domain results of these decompositions are shown in Figure 6. 

It can be easily seen in the plots for the 𝒃 signal (left) that the 

magnitude of the fast harmonics is considerably reduced 

whilst the low-frequency components remain practically 

unaltered, which demonstrates the selectivity of the Sign-

Preserving filter during its operation.  

It can also be seen that when a large 𝑤𝑚𝑎𝑥   is used together 

with a large number of runs (i.e. 𝑤𝑚𝑎𝑥 =  125 and 𝑛𝑟𝑢𝑛 =

100 or 𝑤𝑚𝑎𝑥  = 199 and 𝑛𝑟𝑢𝑛 ≥ 30) the frequency spectrum 

of the 𝒄 signal, which should ideally comprise mostly high-

frequency content, starts to resemble that of the 𝒂 signal. In 

other words, given enough time 𝒄 becomes a copy of 𝒂. 

Moreover, Figure 8 helps to further illustrate the fact that when 

a small value for 𝑊𝑚𝑎𝑥 is used, the filter is only capable of 

removing a very small amount of non-smoothness from the 

signal 𝒃 in every run. This is not necessarily an inconvenience 

as in some situations the ability to perform a fine adjustment 

may be useful which could not be achieved by a run consisting 

of several wavelet widths (i.e. a large 𝑊𝑚𝑎𝑥  ).  

An important question to address is how to achieve a good 

decomposition and how to choose good values for 𝑤𝑚𝑎𝑥  and 

𝑛𝑟𝑢𝑛. The filter’s aim is to split a signal 𝒂 into two signals, a 

predominantly low-frequency signal 𝒃 and a predominantly 

high-frequency signal 𝒄, which must have the same sign at all 

times and their sum must replicate exactly the original signal 

𝒂. As it has been shown in the paper, the filter is successful in 

doing that. Without an application (an optimization problem) 

a given signal split cannot be judged; as long as it meets the 

criteria established by Eqs. (1) and (2) then it is a good 

decomposition. One combination of 𝑤𝑚𝑎𝑥  + 𝑛𝑟𝑢𝑛 is no better 

than another. 

When using the filter as a tool for solving a specific 

optimization problem (such as the ones presented in section 5) 

a two-dimensional search space has to be created with the two 

control parameters: 𝑤𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛. Each combination of 

values for those two parameters will produce a different 

signal-split that is, a pair of signals 𝒃 and 𝒄. Every pair of 

signals will then be used as the input to a model, which is 

specific of the particular problem to be solved; the model is a 

“black box” to the filter. The model could be for example, a 

pair of equations that describe the cost of two devices that will 

be driven by the two signal-components. In this case the best 

signal split (combination of 𝑤𝑚𝑎𝑥  + 𝑛𝑟𝑢𝑛) is the one that yields 

the lowest total cost. In other words, the best values for 𝑤𝑚𝑎𝑥  

and 𝑛𝑟𝑢𝑛 are given by the application for which the filter is 

being used and can only be determined after an exhaustive 

exploration of their combinational space. 

4.2 Filtering a square wave 

In this subsection the use of the Sign-Preserving filter for 

filtering impulses and square waves of different lengths 

(number of points) is demonstrated. Square waves are 

completely different from the noisy waves (see Figure 5) that 

would typically be encountered in the applications for which 

the Sign-Preserving filter has been developed; however they 

are useful for further demonstrating the capabilities of the 

Sign-Preserving filter as they have a rich frequency spectrum.  

Figure 9 shows the split of three different square waves with 

lengths of 1, 1000 and 30,000 points.  The waves have a 

constant value of -1 and rise to 1 at a time index of 10,000.  



 

Figure 9. Split of square waves of different length into 𝒃 and 𝒄 with a fixed value for 𝑊𝑚𝑎𝑥=125 

 

Figure 10. Frequency spectrum of signals 𝒃 and 𝒄 produced from the decomposition of square waves of different lengths 

The peak value of 1 is maintained for 1, 1000 or 30,000 points, 

depending on the case, and after that it returns to -1. The filter 

was used on each of the three waves having a fixed value for 

𝑊𝑚𝑎𝑥=125. Results produced after 3 and 100 runs are shown. 

The Sign-Preserving filter is successful in splitting the square 

waves into a mostly low frequency signal 𝒃 and a mostly high-

frequency signal 𝒄 that retains the sharp transitions. More 

importantly, the condition that the sign of the two components 

created should be the same as that of 𝒂 at all times is met.  

It can be seen—perhaps more evidently in the case of a 30,000 

point-long square wave—that as more runs are carried out 𝒃 

starts to widen at the base in order to smooth out the abrupt 

rise of the square wave from a negative to a positive value.  

Figure 10 shows, complementary to the time-domain based 

results presented in Figure 9, the frequency spectrums of the 

low and high frequency signals generated from the split of the 

three different square waves. In the case of the 1-point wave 

(or impulse), it can be seen that as more runs of the filter are 

carried out, the magnitudes of the frequency components of 

both signals start to increase, which in a way is the opposite 

effect to what was observed in the examples presented in 

section 4.1. This occurs because as more passes of the filter 

are carried out, both signals start to cover a wider spread in the 



time domain. One may also observe that the signal 𝒃 becomes 

increasingly a low–frequency signal as the filter completes 

more runs. The magnitude of the slow-harmonics increases 

considerably while some fast harmonics (e.g. 30-100) 

practically disappear from it. Another interesting phenomenon 

to point out for the case of the 1-point wave is that the 

magnitudes of the frequency spectrums of both signals, 𝒃 and 

𝒄, are very similar to one another.  

A similar behaviour can be seen in the case of the 1000-point 

square wave. The magnitudes of the slow harmonics of 𝒃 

increase significantly as more runs of the filter are carried out 

while the fast-harmonics become negligible, becoming 

progressively a predominantly low-frequency signal. 

Interestingly, the magnitudes of some slow-harmonics in 

𝒄 increase noticeably as well; nevertheless 𝒄 remains being a 

(mostly) high-frequency signal.  

4.3 Discussion on phase and signal energy  

Most of the applications for which the Sign-Preserving filter 

could be used (such as the ones presented in section 5) are only 

concerned with avoiding counter-flow in the output signals. 

Notwithstanding, this section discusses the behaviour of the 

Sign-Preserving filter in terms of signal energy (𝐸𝑠) and phase 

(𝜑), with the aim of providing a broader overview of the 

characteristics of the signal splitting tool that allows the filter 

to be used in different unforeseen applications that require for 

instance, a certain degree of control over the phase of the 

output signals, in addition to the sign preservation feature. 

A case study was carried out with 10,000 randomly generated 

waves. The random waves are composed of the same 

harmonics (1, 4, 9, 11, 37, 79 and 113) as the 𝒂 signal 

described by Eq. (17). The values for the x and y coefficients 

that determine the magnitude and phase of each of them are 

randomly generated within certain specified ranges. The 

ranges have been defined to ensure that the waves created have 

strong low-frequency components with some added high-

frequency noise, which resembles the signals that would most 

likely be encountered in the envisaged real-life applications of 

the Sign-Preserving filter. The ranges for the values that 𝑥 and 

𝑦 may acquire are given by Table 2. Figure 11 shows some 

examples of the randomly generated noisy-signals 𝒂 used for 

the phase and signal energy study.  

Table 2. Ranges of values for the x and y coefficients of the 

random waves generated 

k x y 

1,4 {-5≤ x ≤-3.5} | |  
{3.5≤ x ≤5} 

{-5≤ y ≤-3.5} | | 
{3.5≤ y ≤5} 

9,11 {-3.5≤ x ≤-2} | | 
 {2≤ x ≤3.5} 

{-3.5≤ y ≤-2} | |  
{2≤ y≤ 3.5} 

37,79 {-2≤ x ≤-0.5} | |  
{0.5≤ x ≤2} 

{-2≤ y ≤-0.5} | | 
 {0.5≤ y ≤2} 

113  {-0.5≤ x ≤0.5} {-0.5≤ y ≤0.5} 

 
The objective of the study on phase (𝜑) is to understand how 

the phase of the different frequency components of a signal is 

modified when the signal is filtered to some level with the 

Sign-Preserving filter. In this study, the amount of filtering is 

not defined by means of a 𝑊𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛 as it was done 

previously. The filter in this case is run until outputs 𝒃 and 𝒄 

of the same magnitude (defined as the Euclidean norm, see Eq. 

(18)) are produced. The reason for this (owing to the study 

of 𝐸𝑠) and details of how it is achieved will be explained 

further on.  
 

 
Figure 11. Examples of some randomly generated noisy-waves used 

for the study of φ and 𝐸𝑠 

The results of the phase study are shown in Figures 12 and 13. 

For each of the 10,000 signals filtered, the difference in phase 

between the relevant harmonics (1, 4, 9, 11, etc) contained in 

the output signals and their analogous harmonic in the original 

signal 𝒂 is presented. Figure 12 shows the difference in phase 

(𝛥𝜑) or phase-shift of the frequency components of 𝒃 with 

respect to 𝒂 while Figure 13 presents the 𝛥𝜑 between 𝒄 and 𝒂. 

It should be noted that whilst the signals 𝒂 are composed 

exclusively of the harmonics listed in Table 2, the components 

𝒃 and 𝒄 produced from the signal splitting have a richer 

frequency spectrum (i.e. have other harmonics). A direct 

comparison can only be carried out with those harmonics 

which have a counterpart in the original signal 𝒂 .  

It can be seen that the Sign-Preserving filter does a fairly good 

job at conserving the phase of the frequency components. In 

the case of the low-frequency signal 𝒃, shown in Figure 12, 

the 𝛥𝜑 of all the slow harmonics (≤ 11), which are the most 

important in terms of magnitude, is no greater than 20° in 

either direction. In the 37th and 79th harmonics, differences of 

up to 180° are observed; however the majority of the results 

are concentrated in the ± 60° band. The 113th harmonic is the 

only one whose 𝛥𝜑 oscillates in the whole ±180° range; 

however, given that its magnitude in the 𝒃 signal is so small, 

this is not particularly relevant.  



 
Figure 12. Phase difference between harmonics in 𝒃 and their 

counterparts in 𝒂 for the 10,000 random signals filtered  

In the case of 𝒄—shown in Figure 13—the slow harmonics 

(≤11) maintain a 𝛥𝜑 with respect to 𝒂 well within a ± 20° 

band, being the 9th harmonic the one that exhibits the most 

erratic behaviour.  The 37th harmonic presents a difference of 

±5° while the 79th harmonic is almost unaltered, having a shift 

within ±1°. The results for the 113th harmonic are concentrated 

in the ±10° band, however a few outlying points can be 

distinguished.   

 

 
Figure 13. Phase difference between harmonics in 𝒄 and their 

counterparts in 𝒂 for the 10,000 random signals filtered 

For the study on signal energy (𝐸𝑠) a comparison between the 

Sign-Preserving filter and a more conventional Butterworth 

filter was carried out. The comparison between the two filters 

is not as straightforward as it seems because the Sign-

Preserving filter, unlike the Butterworth, does not have a cut-

off frequency as a control parameter; therefore generating 

comparable waves with the two methods is a challenge.  

A solution to the above is to use the magnitude of the output 

signals as the stopping criterion. For each of the 10,000 

randomly generated 𝒂 waves, both filters will be used to 



produce 𝒃 and 𝒄 components of equal magnitudes among 

themselves, thereby allowing a fair comparison. 

For the Butterworth filter a loop was programmed so that the 

cut-off frequency could be varied until the value that produced 

a split of equal magnitudes was found. A low-pass filter is used 

to generate the 𝒃 signal while 𝒄 is simply assumed to be the 

remaining content (i.e. 𝒄 = 𝒂 − 𝒃). In the case of the Sign-

Preserving filter both control parameters are discrete and 𝑤𝑚𝑎𝑥  

is restricted to odd numbers; therefore obtaining output signals 

of equal magnitude by simply assigning a value to these two 

variables is virtually impossible. A loop that applies the filter 

repeatedly and allows a fine adjustment was constructed. In 

this loop the filter carries out as many runs as possible with a 

large 𝑊𝑚𝑎𝑥   (to do the bulk of the work quickly), then it 

performs more runs with an increasingly smaller value of 

𝑊𝑚𝑎𝑥  (for a fine-tuning) until outputs of equal magnitudes are 

produced. 

The signal energy (𝐸𝑠) of a discrete signal 𝒇 is calculated as 

the sum of the squares of all the data points contained in the 

vector [14], as shown by Eq. (19). For each of the 10,000 cases 

explored, the signal energies of the original signal 𝒂 and of the 

output signals 𝒃 and 𝒄 produced by both filtering methods 

were calculated. A ratio of signal energies (𝑍) defined by Eq. 

(20) was also calculated.  

𝐸𝑠(𝒇) = ∑ 𝒇(𝑡)2

𝐿

𝑡=1

= (𝑛𝑜𝑟𝑚(𝒇))2 (19) 

 

𝑍 =
𝐸𝑠(𝒃) + 𝐸𝑠(𝒄)

𝐸𝑠(𝒂)
 (20) 

 

Figure 14 shows a comparison of the ratios of signal energies 

(Z) obtained with the Butterworth filter and the Sign-

Preserving filter. It can be seen that the Sign-Preserving filter 

consistently yields a lower Z  than the Butterworth low/high 

pass filter. On average the ratio produced by the Sign-

Preserving filter is 40% lower than the ratio obtained from the 

Butterworth filter. 

Figure 14. Comparison between the ratio of signal energies (Z) 

obtained through a Butterworth filter and the Sign-Preserving filter  

Although the term signal energy is a measure of the size of the 

signal rather than an actual measure of energy, the two 

concepts are very closely related. Considering an audio system 

for example, the 𝐸𝑠 of a voltage signal represents the energy 

that would be dissipated by a 1Ω speaker [15]. The results 

presented in Figure 14 are of great importance because they 

indicate that in some applications, the Sign-Preserving filter 

potentially allows reproducing the effect of 𝒂 (since 𝒃 + 𝒄 = 

𝒂) but consumes less energy in doing so, since 𝐸𝑠(𝒃) + 𝐸𝑠(𝒄) 

< 𝐸𝑠(𝒂). 

5 Examples of applications 

In this section of the paper two examples of possible 

applications for the Sign-Preserving filter are presented. The 

filter is suitable for optimization problems which, similar to 

the examples presented, have the following conditions: 

1) No counter-flow. The two output signals should 

never have different signs from each other. 

2) Neither of the output signals should ever have a 

greater amplitude than the input signal.  

3) The frequencies of the two output signals must be 

sufficiently different from each other but there is not 

a sharp cut-off frequency. In other words, one signal 

should be made mainly of low-frequency content 

while the other should mostly comprise high-

frequency content.  

4) An improvement in performance, cost or any other 

metric of interest can be attained by splitting the input 

signal into two (or more) signals and customizing the 

design of the physical components of the system that 

will handle (or will be driven by) them. 

5.1 Optimization of an electric vehicle’s battery pack 

The battery pack of an electric vehicle (EV) can be cost-

optimized by means of the Sign-Preserving filter. The power 

profile seen at the wheels of the vehicle (which is ultimately 

the load of the battery) can be split into two components, a 

predominantly low-frequency profile and a predominantly 

high frequency profile. Typically, the low-frequency 

component will have a large energy content and a reduced 

peak power, whereas the high-frequency component will have 

a small energy content but a comparatively large peak power. 

Instead of having a single battery that handles the load in its 

entirety, the EV will have 2 batteries, one for each of the two 

frequency components (low and high) of the load. The two 

batteries will be based on different compositions or 

technologies. The optimization presupposes the possibility of 

manufacturing batteries of different specifications whose cost 

per unit energy and per unit power differ considerably from 

each other. 

 

The “High Capacity (HC)” battery, used for the low-frequency 

part of the load, will have a much lower cost per unit of energy 

storage capacity ($/kWh) while it will have a high cost per unit 

power ($/kW). Conversely, the “High Power (HP)” battery, 

used for the high-frequency part of the load, will have a much 

lower cost per unit power but will have an increased cost per 

unit energy capacity. Therefore, the low-frequency battery 

will supply the bulk of the energy while the high-frequency 

battery will mainly function as a peak-shaver.  

 

The High-Capacity battery of the proposed 2-battery hybrid 

system could be based for example, on a chemistry that has a 



high specific energy such as Lithium Nickel Cobalt 

Aluminium-Oxide (NCA), Lithium Nickel Manganese 

Cobalt-Oxide (NMC) or even Sodium Nickel Chloride 

(Na/NiCl2). The HP battery, on the other hand, could be based 

on a chemistry with a high specific power such as Lithium 

Iron-Phosphate (LFP) [16-18]. 

 

If a Fourier decomposition was used to split the signal, the 

problem of energy “counter-flow” would be encountered. In 

the context of an EV application having counter-flow implies 

one of two things: 1) one battery is supplying power to the 

wheels while at the same time the other battery is being 

recharged by the regenerative brakes or 2) the output of one 

battery is being used to charge the other. Needless to say, 

neither of those scenarios make sense, both batteries should be 

either charging or discharging at the same time. The case 

where one battery is idle while the other one is active is also 

possible because there is no work in opposite directions.  

Consequently, the Sign-Preserving filter is required. 

 

Cardenas and Garvey [19] carried out, using the Sign 

Preserving filter, a cost-optimization of the battery pack of a 

Nissan Leaf. In the study, the load that the vehicle’s 

powertrain experiences when the car is subjected to a standard 

driving cycle [20] is used as the reference signal (𝒂). The 

signal used for the study is created through a model that 

translates the speed profile of the driving cycle into an electric 

power profile [21]. Figure 15 shows the electric power profile 

of the Nissan Leaf when driving under the “EPA-LA92” cycle. 

During the positive periods the battery is supplying power to 

the electric motor whilst during the negative periods the 

battery is being recharged by the regenerative brakes.  

Figure 15. Electric power profile used for optimization 

To carry out the optimization of the battery-pack a 2D 

combinatorial space was created with the two input parameters 

to the filter: 𝑊𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛. The range for the variables was 

defined rather arbitrarily in the study; however the results 

show that the optimum is contained within the search space 

defined. Every combination of parameters (𝑊𝑚𝑎𝑥  + 𝑛𝑟𝑢𝑛) is a 

different filtering operation that produces two load profiles, 

one for each battery. 

 
The original battery of the Nissan Leaf has a capacity of 24 

kWh [22], which in the hybrid battery system is provided by 

the sum of the capacities of the two batteries: High-Capacity 

and High-Power. The fraction that either one of the batteries 

contribute to the total capacity of 24kWh of the vehicle is 

called the “Capacity Ratio”. The capacity ratios of the High-

Capacity (𝜒𝐻𝐶) and High-Power (𝜒𝐻𝑃) batteries can be 

calculated through Eqs. (21) and (22), respectively.  

𝜒𝐻𝐶 = ∫ 𝑏(𝑡) 𝑑𝑡

𝑡=𝑇

𝑡=0

  ∫ 𝑎(𝑡) 𝑑𝑡

𝑡=𝑇

𝑡=0

⁄  (21) 

 

𝜒𝐻𝑃 = 1 − 𝜒𝐻𝐶  (22) 

 
The total system cost for each of the n combinations of HC+ 

HP batteries contained in the two-dimensional search space 

(𝑊𝑚𝑎𝑥  and 𝑛𝑟𝑢𝑛) is calculated by means of Eqs.(23)-(25).The 

inputs for the equations are the capacity ratios and peak 

powers seen by the batteries in every different configuration. 

𝑐𝑜𝑠𝑡𝐻𝐶 = 20 ∙ (24 ∙ 𝐸𝐻𝐶) + 60 ∙ 𝑃𝑒𝑎𝑘𝐻𝐶 (23) 

 
𝑐𝑜𝑠𝑡𝐻𝑃 = 140 ∙ (24 ∙ 𝐸𝐻𝑃) + 30 ∙ 𝑃𝑒𝑎𝑘𝐻𝑃 (24) 

 
𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑠𝑡𝐻𝐶 + 𝑐𝑜𝑠𝑡𝐻𝑃 (25) 

 
Figure 16 shows how the total system cost varies with respect 

to the two parameters of the filter. The highest overall costs 

observed are in the range between $6700 and $6800. The 

original battery pack of the Nissan Leaf has an estimated price 

of $6805 [23]. 

 

Figure 16. Variation of the total cost of the hybrid battery (HC + 

HP) with respect to the filter’s control parameters 

The absolute minimum total cost of $5939.3 is obtained with 

a combination of 𝑊𝑚𝑎𝑥 = 33 and a 𝑛𝑟𝑢𝑛 = 22. In the 

optimum configuration found (minimum cost) the High-

Capacity battery has a capacity ratio (𝜒𝐻𝐶) of 0.80, which is 



equivalent to 19.23 kWh and it sees a maximum peak power 

of 37.18 kW. On the other hand, the High-Power battery has a 

capacity of 4.77 kWh and sees a much larger peak power of 

88.55 kW. The cost of the optimum configuration found 

represents a 12.7% reduction in comparison to the cost of the 

original battery pack of the vehicle. 

Figure 17 shows how the overall system cost varies with 

respect to the capacity ratio of the High-Capacity battery 

(𝜒𝐻𝐶). The fact that there are many different combinations of 

filter parameters that yield the same capacity ratio becomes 

evident in the figure. It should be pointed out however, that 

even though the capacity ratio is the same, the shapes of the 

profiles generated are different. It is also clear from Figure 17 

that for the same capacity ratio some combinations are more 

expensive than others. 

 

Figure 17. Relationship between the total cost of the hybrid battery 

and the capacity ratio of the High-Capacity battery (𝜒𝐻𝐶) 

 

This case study demonstrates the usefulness of the “Sign- 

Preserving filter” in the context of electric vehicles. By 

replacing the battery pack of the vehicle with a hybrid system 

consisting of two batteries (one for bulk energy storage and 

one for peak-power) cost reductions of 12.7% (or more, 

depending on the load used as a reference) can be achieved. 

In the study, the authors point out that the optimization 

approach used (based on the Sign-Preserving filter) is not 

limited to cars, but could be equally applied to other types of 

EVs. A hybridized battery would be particularly beneficial to 

vehicles that are likely to experience drastic or very frequent 

acceleration and braking, such as electric bikes and city buses. 

5.2 Optimization of a packed bed thermal energy 

store 

Another example of the use of the Sign-Preserving filter is the 

optimization of the thermal stores inside a compressed air 

energy storage system (CAES).  

 

CAES is a large scale energy storage technology typically used 

for grid applications. During periods of excess electricity 

production (or low demand) a compressor draws power from 

the grid to compress air, which reaches high pressures (~ 70 

Bar) and temperatures (~550 °C). The stream of high pressure 

air is circulated through a heat exchanger where it surrenders 

the heat of compression to a secondary stream of non-

pressurized air. The compressed air is then stored at high 

pressure but near ambient temperature in a dedicated pressure 

store. The secondary stream of air flows through a packed bed, 

in which the heat of compression is stored for a subsequent 

use.  

 

During periods of high demand (or low electricity production) 

the CAES system operates in reverse to put energy back into 

the grid. The compressed air is withdrawn from the pressure 

store, heated up with the energy stored in the packed bed and 

expanded in a turbine. The mechanical work produced by the 

expansion of the air is used to drive an electrical generator. A 

more detailed explanation of the operation of CAES systems 

can be found in [24, 25]. Figure 18 shows a schematic of a 

packed bed working within a CAES system.   

 

 
 
Figure 18. Schematic of a non-pressurized packed bed operating in 

charging mode within a CAES system. 

There are different trade-offs involved in the design of a 

packed bed. For example, if small rocks are used the packed 

bed will have very good heat transfer characteristics due to a 

large surface area; however this entails increased pressure 

drops. Conversely if big rocks are used, pressure losses are 

minimized but the packed bed will suffer from poorer heat 

transfer capabilities due to the reduced surface area. 

 

Another design trade-off is found in the choice of aspect ratio 

(α) for the container. The aspect ratio is defined as the ratio of 

the packed bed’s height with respect to its diameter. A short 

and wide design (α < 1) has the advantage of a lower pumping 

load due to the reduced height and larger cross-sectional area 

of the container; however due to the reduced separation 

between the hot and cold ends of the store, the self-discharge 

exergy losses (heat flowing down the thermal front) are 

increased. A thin and tall packed bed (α > 1) is the inverse 

case, it has much higher pressure drops due to an increased 

height and a reduced cross-section but has smaller self-

discharge losses.   

 

Cardenas et al. [26] carried out a techno-economic 

optimization of a utility-scale packed bed. In the study, the 

authors analyse comprehensively the aforementioned trade-

offs. The work cycle (ω1) used in the study is defined by Eq. 

(26); it is a power profile with a peak power of 10 MW and a 

period of 1 day (86400 sec.) 

 

ω1 = 10 ∙ sin (
2 ∙ 𝑡 ∙ 𝜋

86400
)  (26) 

 



The work cycle ω 1  has 1 charging period (between the 0th and 

12th hour) and 1 discharging period (between the 12th and 24th 

hour).  The work cycle has an energy content (Q) of 76.4 

MWhth, calculated via Eq.(27), which are supplied to the 

packed bed by the secondary stream of non-pressurized air at 

550°C. 

 

𝑄 = ∫ ω1 ∙  𝑑𝑡

𝑡=43200

𝑡=0

  (27) 

 

The mass of rock required to store the energy content of the 

work cycle (Q) is determined based the specific heat capacity 

of the rocks and the temperature delta that the packed bed will 

experience, which in a CAES system goes from ambient to 550 

°C. The packed bed of the study contains 850x103 kg of rock.  

 

The parametric study carried out explored several different 

designs of packed beds (combination of aspect ratio and size 

of rocks) to find the optimum configuration from a techno-

economic standpoint, i.e. a design that achieves the highest 

efficiency with the minimum cost. 

Expanding on the above, Cardenas et al. [27] presented a brief 

analysis of the effect that the frequency of the work cycle has 

on the performance of a packed bed. For the study, different 

work cycles were created by reducing the period of ω1 to a half 

(ω2), a fourth (ω4), an eight (ω8), etc. as Eqs. (28) and (29) 

show. In order for the packed beds of the different work cycles 

to be comparable to one another, their size (based on the 

energy content of the cycle) was kept constant. To maintain 

the 76.4 MWhth of energy storage capacity, the amplitude 

(peak power) of the profiles is modified proportionally to the 

frequency; in other words, if the frequency is doubled the peak 

power of the cycle is doubled too.   

 

ω2 = 20 ∙ sin (
2 ∙ 𝑡 ∙ 𝜋

43200
)  (28) 

 

ω4 = 40 ∙ sin (
2 ∙ 𝑡 ∙ 𝜋

21600
)  (29) 

 

For clarity, ω2 refers to a 24 hour work-cycle with 2 charging 

periods and 2 discharging periods (of equal duration) while ω4 

refers to a 24 hour work-cycle with 4 charging periods and 4 

discharging periods. Figure 19 shows the work cycles used for 

the frequency study. 

 
Figure 19. Different 76.4MWh work-cycles used for frequency 

study 

The parametric analysis carried out with ω1 in ref. [26] was 

repeated with the different work cycles ω2, ω4, etc. For every 

one of the load profiles several different values of α and sizes 

of rocks were evaluated to find the optimum design in terms 

of performance (lowest exergy losses). 

 

Figure 20 shows the behaviour of the exergy losses per cycle 

(normalized with respect to the exergy input) for a packed bed 

working under ω2 (top) and ω8 (bottom) as the aspect ratio and 

rock size are varied. It can be seen that regardless of the design 

parameters, the exergy losses per cycle increase as the 

frequency of the work-cycle increases. The optimum design 

found for the ω1 work cycle had losses of 1.75% whereas the 

optimum designs for work-cycles ω2 and ω8 have exergy 

losses of 2.31% and 3.46%, respectively 

  

 
Figure 20. Exergy losses per cycle for different designs of packed 

beds working under a ω2 (top) and a ω8 (bottom) 

 

Figure 21 shows a more generalized view of the behaviour of 

the exergy losses for different working cycles. All the designs 

shown in the figure consider the optimum size of rocks for the 

specific value of α. It can be seen that the exergy losses per 

cycle increase as the frequency of the work-cycle increases. 

This is largely attributable to the fact that higher frequency 

work-cycles have a higher “peak-power to energy” ratio, 

which translates directly into much higher pressure losses. The 

optimization algorithm will try to compensate this by shifting 

the design of the packed bed towards a smaller α; however the 

extent of the adjustment is limited by the other mechanisms of 

exergy loss (such as heat transfer and self-discharge losses) 

which tend to increase as α reduces. 

 



On the other hand, for the case of the lower frequency work-

cycles, the design of the packed bed will tend to larger values 

of α to try to reduce heat transfer and self-discharge losses 

since the lower “peak-power to energy” ratios of these cycles 

do not entail particularly high pressure drops.  

 

 
 

Figure 21. Effect of the frequency of the work-cycle on the 

performance of the packed bed. 

 

Another interesting detail to note from Figure 20 is that the 

rock size for the optimum design becomes increasingly 

smaller as the frequency of the work cycle increases. The 

increased air flow rates (due to higher powers) seen in the 

faster work cycles demand a better heat transfer capability 

from the packed bed. The specific surface area of the packed 

bed can be increased if smaller rocks are used, which allows a 

more effective heat exchange between the storage material and 

the stream of air; however smaller rocks will result in 

increased pressure drops. 

 
Table 3. Optimum packed bed designs obtained for the different 

work-cycles studied. 

 

Work 

Cycle 

Aspect 

Ratio 

(α) 

Rock 

Diameter 

(mm) 

Normalized 

Exergy 

Losses  

Exergy 

Efficiency 

(%) 

ω0.5 1.2 4.36 0.0154 98.46 

ω1 0.6 3.72 0.0174 98.26 

ω2 0.3 3.06 0.0231 97.69 

ω4 0.2 3.03 0.0289 97.11 

ω8 0.1 2.67 0.0346 96.54 

ω16 0.05 2.26 0.0423 95.77 

 

Table 3 summarizes the design and performance parameters of 

the optimum designs found for each of the 6 work cycles 

studied. As it can be drawn from the results presented, there is 

a design trade-off involving the frequency of the work-cycle. 

If a packed bed is intended for operating under a high-

frequency work cycle, small rocks will have to be used in order 

to sustain the rapid heat transfer required; although doing so 

will result in a higher pumping load. Conversely, if a packed 

bed will operate under a low-frequency work cycle, a fast-

response capability is not necessary and larger rocks can be 

used to minimize pressure losses. 

 

The work cycle that a CAES system is likely to experience in 

real life applications is not a simple sinusoidal wave. It is a 

profile that is determined by electricity production and 

demand and has considerable oscillations (noise) in it. The 

trade-off discussed above leads to the idea that it is possible to 

achieve a reduction in the total exergy losses of a packed bed 

(either working in a CAES system or other type of application) 

if instead of servicing a load with a single packed bed, the load 

is split based on frequency ranges into two (or more) smaller 

profiles and an independent packed bed is assigned to each one 

of them. 

 

If a Fourier decomposition was used to split the signal, the 

problem of energy “counter-flow” would be encountered. In 

the context of a CAES system the counter-flow implies that a 

single reversible compressor/expander machine cannot be 

used because at some points one packed bed would be in 

charge mode (i.e. compressor working) while at the same time 

the other would be discharging (i.e. expander working) 

therefore two separate power-conversion machines would be 

required.  

  

Furthermore, when counter-flow occurs, the output of one 

packed bed is used to counteract the input of the other one to 

create the desired overall effect which is to replicate the 

original profile. Because of this, one of the two packed beds 

will see a greater power than what the single packed bed for 

the original profile would see at the same time (Fig. 1a 

illustrates this), which calls for a power-conversion machine 

that is rated for a higher power and is thus more expensive. For 

the reasons above, the Sign-Preserving filter is required to 

carry out the load splitting. 

   

The expected reduction in exergy losses can be achieved 

because by splitting the load into multiple components, the 

design of each one of the individual packed beds can be 

optimized better for the narrower range of frequencies to 

which they will be subjected. The low-frequency component 

of the system’s load profile, which will typically have the 

largest energy content, will be handled by a packed bed with 

large rocks which will keep pressure losses to a minimum. On 

the other hand, the higher frequency component(s) of the load, 

which hold a much smaller energy content, will be handled by 

a packed bed with rather small rocks. A penalty in pressure 

drops will be paid in favour of improved heat transfer 

characteristics; however the total amount of exergy that will 

pass through the high-frequency packed bed will be relatively 

small. 

 

Different combinations of the filter’s control variables 𝑊𝑚𝑎𝑥 

and 𝑛𝑟𝑢𝑛 need to be explored to find the optimum split of the 

power profile. Each combination will produce two load 

profiles (𝒃 and 𝒄) which will be handled by two different 

packed beds. The design of each packed bed will be optimized 

for its working load, following the procedure described in [26]. 

The optimum signal split is the one that produces the lowest 

total exergy losses.  

 



The work on the optimization of a packed bed based on “load 

splitting” is currently being carried out by the authors of this 

paper. The concept and rationale behind this application have 

been introduced in [27] and [28]. The results of the 

optimization of a packed bed by means of the Sign-Preserving 

filter will be made available in a subsequent publication. 

 

6 Concluding remarks 

There are optimization problems where a reduction in cost or 

an improvement in performance can be attained if the driving 

signal of the system is separated into two or more components, 

because this allows customizing the design of the physical 

equipment for a narrower range of frequencies and thus 

making a better use of its properties.  

Some of those problems, such as the hybridization of the 

battery pack of an electric vehicle or the parallelization of a 

packed bed thermal store, have very specific signal-splitting 

requirements that conventional signal processing tools cannot 

meet. These include:  

 The two output signals should never have different 

signs from each other. 

 Neither of the output signals should ever have a 

greater amplitude than the input signal.  

 One signal should comprise mainly low-frequency 

content while the other should comprise mostly high-

frequency content.  

A novel Sign-Preserving filter for discrete signal 

decomposition has been presented in this paper and the 

mechanics of its operation have been thoroughly discussed. 

The filter developed splits an original signal 𝒂 into two 

components: a mostly low-frequency signal 𝒃 and a 

predominantly high-frequency signal 𝒄. The sum of 𝒃 + 𝒄 

replicates 𝒂 perfectly. The key feature of the filter is that the 

signs of 𝒃 and 𝒄 are equal to the sign of the original signal 𝒂 

at every time t.  

The algorithm followed by the Sign-Preserving filter has been 

explained in depth. The filter produces 2 outputs, although if 

a 3-way split is required the filter can be reapplied to the low-

frequency output 𝒃 . It should be noted that the filter does not 

operate in real-time, however a quasi-real-time operation 

could be achieved if forecast data is available for the particular 

application. The operation of the filter is rather simple, it is 

based on passing wavelets (similar to a Hann window) of 

different widths through the signal length subtracting some 

amount of “non-smoothness” from it with every pass which is 

then stored in the high-frequency output signal (𝒄). A set of 

checks are in place to ensure that no sign-change occurs in 

neither of the signals (𝒃 and 𝒄). The filter will perform passes 

along the signal with all the wavelets contained between 3 and 

the maximum wavelet width defined by the user.  A run of the 

filter consists of two passes with every wavelet contained in 

the aforementioned range. Several runs can be carried out, 

which will produce a smoother low-frequency signal 𝒃.  

The operation of the Sign Preserving filter has been 

demonstrated with a manufactured noisy-wave (whose 

equation of provided for reproducibility) and with square 

waves of different lengths. Not a single case was found where 

the sign-preservation condition is not met. The paper also 

presents a study on phase, using 10,000 randomly generated 

noisy-waves. The study shows that, as a consequence of its 

sign-preserving characteristic, the filter also preserves the 

phase of the different frequency components. All the slow 

harmonics in the low-frequency signal b produced (in each of 

the 10,000 cases analysed) have a difference of ±20° with 

respect to their counterparts in the original signal, while the 

fast harmonics contained in the high-frequency signal c have 

a difference of only ±10°.  

With the same 10,000 random waves a study on signal energy 

was carried out. A parameter Z was defined as the ratio of the 

sum of the signal energies of b and c with respect to the signal 

energy of the original signal a. The Z-values produced by a 

low + high pass Butterworth filter range between 0.88 and 1 

whilst the values for Z generated by the Sign-Preserving filter 

range between 0.53 and 0.63. These results indicate that the 

Sign-Preserving filter is capable of reproducing the effect of a 

signal but consumes less energy in doing so.  

Furthermore, the paper presented two case studies of the use 

of the Sign Preserving filter for real life optimization problems 

where “counter-flow” needs to be avoided. One is the cost 

reduction of an electric vehicle’s battery pack by replacing it 

with two batteries: A “High-Capacity” one with a low cost per 

unit of energy storage capacity ($/kWh) and a “High-Power” 

one with a low cost per unit power ($/kW). The power profile 

of the vehicle is split into two signals by means of the Sign 

Preserving filter, the low-frequency part of the load is handled 

by the High-Capacity battery while the High-Power battery 

takes care of the high-frequency part of the duty. The case 

study showed that a cost reduction of 12.7% or more 

(depending on the vehicle, driving profile and batteries used) 

can be achieved through this optimization approach based on 

load-splitting. 

The second case study is concerned with the packed beds of 

rock (thermal stores) inside a compressed air energy storage 

system. Although conclusive results have not been achieved 

yet, a strong case for the use of the Sign Preserving filter in 

this application is made. If a packed bed is intended for 

operating under a high-frequency work cycle, a small rocks are 

needed to sustain the rapid heat transfer required; however 

they entail higher pressure drops. Conversely, if a packed bed 

will operate under a low-frequency work cycle, larger rocks 

can be used because a fast-response capability is not necessary 

and pressure losses are minimized.  

The work cycle that a packed bed operating inside a CAES 

system experiences is a profile with considerable oscillations 

in it, i.e. mix of a wide range of frequencies. Based on the 

results presented, it seems very possible that an improvement 

in the efficiency of a thermal energy store can be achieved if 

the load is split into two (or more) smaller profiles based on 

frequency ranges and each profile is handled by an 

independent packed bed whose design has been customized 

for it.  
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