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Abstract 

While computational models are playing an 

increasingly important role in developmental 

psychology, at least one lesson from robotics is still 

being learned:  modeling epigenetic processes often 

requires simulating an embodied, autonomous 

organism.  This paper first contrasts prevailing 

models of infant cognition with an agent-based 

approach.  A series of infant studies by Baillargeon 

(1986; Baillargeon & DeVos, 1991) is described, and 

an eye-movement model is then used to simulate 

infants' visual activity in this study.  I conclude by 

describing three behavioral predictions of the eye-

movement model, and discussing the implications of 

this work for infant cognition research.   

1 Introduction 

During the last decade, researchers within robotics and 

developmental psychology have identified a number of 

common goals.  Parallel work in the two fields has 

benefited both disciplines.  For example, many robotics 

researchers have begun to move away from heavily pre-

designed or hand-built systems, advocating instead naïve 

agents that acquire adaptive behaviors by interacting with 

their environment (e.g., “developmental engineering” in 

Metta, Sandini, and Konczak, 1999).  This approach 

assumes an epigenetic view of development, in which 

both the organism and the environment play a critical role.   

 Developmental psychologists, meanwhile, have 

begun to recognize the value of computational models for 

investigating developmental processes, and in particular, 

infant cognitive development, (e.g., Mareschal & French, 

2000; Mareschal, Plunkett, & Harris, 1999; Munakata, 

McClelland, Johnson, & Siegler, 1997; Simon, 1998; 

Thelen, Schöner, Scheier, & Smith, 2001).  A common 

theme across much of this work is the description of 

adaptive behavior in infants by means of a compact set of 

computational principles (e.g., learning by prediction of 

future states, knowledge as graded representations, etc.)   

 Despite the fact that these models illustrate an 

impressive range of theoretical perspectives, modeling 

architectures, and learning algorithms, many overlook a 

central element of robotics research:  the notion of an 

embodied, autonomous agent that interacts with a real or 

virtual environment (Schlesinger, 2001; Schlesinger & 

Parisi, 2001).   

 In this paper, I argue that developmental 

psychologists still have much to learn from work in 

robotics.  In particular, I propose that by modeling the 

infant not just as a computational system, but more 

generally as an agent—that perceives its world via sensors 

and changes its world via effectors—we are able to 

investigate development as an epigenetic process.  And 

perhaps more importantly, a variety of new insights on 

how young infants learn may be revealed.   

 In the next section, I contrast conventional modeling 

approaches with an emerging perspective often described 

as an agent-based approach.  In Section 3, I highlight a 

series of infant studies conducted by Baillargeon (1986; 

Baillargeon & DeVos, 1991) to illustrate a critical debate 

concerning early infant knowledge.  Section 4 introduces 

an eye-movement model, inspired by the agent-based 

approach, which I have developed to address the debate.  

Section 5 presents two simulations of Baillargeon's study 

with the model.  In section 6, I conclude by presenting 

some of the novel behavioral predictions generated by the 

eye-movement model, and discuss the implications of the 

model for infant cognition research.   

2 The importance of autonomy 

Conventional models of infant cognition tend to focus on 

the development of internal information processing 

systems (e.g., recognition or categorization of visual 

stimuli).  As a result, many models do not explicitly 

simulate either a sensory system that receives sensory data 

(e.g., a visual array), or a motor system that performs 

overt behaviors (e.g., a reaching movement, a gaze shift).   

 For example, Munakata et al. (1997) propose a multi-

layer recurrent network for simulating an infant that tracks 

moving objects.  On the input side, a visual display is 

preprocessed and parsed into discrete objects.  Similarly, 

instead of producing motor behaviors, the output of the 

model is a prediction of the sensory input expected during 

the following timestep.   

 In contrast, physical robots are by definition 

embodied, and “inhabit” a real environment.  In a similar 

manner, robotic simulations capture quasi-realistic 



 

 
 

Figure 1:  Schematic display of the Habituation (A), Possible (B), and Impossible (C)  

events studied by Baillargeon (1986; Baillargeon & DeVos, 1991).   

features of the physical world (e.g., dynamic features such 

as gravity and inertia, perceptual features such as visual 

perspective, etc.).  In general, robots are not buffered from 

their environment, but instead interface or make contact 

with it in at least two ways, first through sensory systems, 

and second through effector systems.   

 Another important feature of robotics is that because 

autonomous robots both sense and act on their 

environment, they are “free” to select their own sensory 

inputs (Nolfi & Parisi, 1993).  As I have illustrated 

elsewhere (Schlesinger, Parisi, & Langer, 2000), an 

important consequence of “self-selection” of sensory 

inputs is that autonomous agents explore computational 

search spaces in a highly efficient manner.  These learning 

trajectories often reproduce important patterns of 

development found in human infants.   

 Therefore, at least one reason to simulate cognitive 

development in infants with an agent-based approach is 

that the notion of an autonomous agent represents the 

infant as an active organism that learns by interacting with 

its world.   

 There are, of course, a number of additional 

advantages for adopting an agent-based perspective.  In 

the next section, I briefly describe a major debate in the 

field of infant cognition that has reached an impasse.  I 

suggest that this debate can be addressed by implementing 

an agent-based model of infants’ visual tracking, which 

simulates infants’ moment-to-moment visual activity.  

The model not only provides several new ways to measure 

infants’ visual expectations, but also offers a novel 

perspective on cognitive development in young infants.   

3 The "car study" 

Baillargeon (1986; Baillargeon & DeVos, 1991) presented 

young infants with a simple mechanical display, in which 

a car rolls down a ramp, behind a screen, and out the other 

side.  Figure 1A presents a schematic display of this 

Habituation event, so named because infants watch this 

event repeat several times until they gradually lose 

interest in it.  Note that at the start of the Habituation 

event, the screen is raised to show the infant that nothing 

is behind it.   

 Once habituated, infants then see two test events in 

alternation (see Figures 1B and 1C).  During both the 

Possible and Impossible test events, a box is revealed 

behind the screen.  During the Impossible event, however, 

the box is placed on the track, in the path of the car.  

Nevertheless, during both test events the car reappears 

after passing behind the screen.   

 Baillargeon found that by at least age 6 months, and 

perhaps even earlier, infants look significantly longer at 

the Impossible event than the Possible event.  How did 

she interpret these findings?  First, she suggested that 

infants mentally represent both the occluded box and the 

car as it passes behind the screen.  Second, she proposed 

that infants use these representations to "compute" when 

the car should reappear, and are consequently surprised to 

see the car reappear during the Impossible event even 

though its path is obstructed by the box.  Thus, because 

the Impossible event is surprising or anomalous to infants, 

they spend more time looking at it.   

3.1 The "competent infant" debate 

Experiments such as Baillargeon's car study have sparked 

a broad debate among infant cognition researchers.  Some 

researchers agree with Baillargeon's conclusions, arguing 

that developmental psychologists have tended to 

underestimate the infant's ability to represent the physical 

world, as well as their capacity to reason or think 

systematically about events in the world (Baillargeon, 

1999; Spelke, 1998).   

 This representational account has been challenged by 

a group of theorists who advocate a perceptual-processing 

account, arguing instead that conclusions about infants' 
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Figure 2:  Schematic display of selected frames from the animation events used in Study 1 to  

train (A) and test (B-C) the eye-movement model (frame number displayed in upper right corner).   

knowledge of the physical world should not be based 

solely on the amount of time an infant spends looking at 

possible or impossible displays (Haith, 1998; Smith, 

1999).  These researchers propose that other measures of 

infants' visual activity, and particular, of their 

expectations during possible and impossible events, 

should be studied in order to corroborate standard 

looking-time measures.   

3.2 Modeling infants' eye movements 

In order to address this debate, I have developed an 

oculomotor control model that simulates the tracking 

behavior of an infant (Schlesinger & Barto, 1999; 

Schlesinger & Parisi, 2001).  Like human infants, the 

model watches simple mechanical displays and learns to 

track salient moving objects.   

 It should be noted that the eye-movement model 

employs a bottom-up approach, consistent with the 

perceptual-processing account of infant cognition.  

Accordingly, the model has:  (1) no prior knowledge of 

the physical world (i.e., no internal model), (2) no explicit 

(e.g., declarative) memory systems, and (3) no built-in 

capacity for prediction.  Nevertheless, the model quickly 

learns to track moving objects, and like human infants, 

also learns to correctly anticipate the future location of 

objects that are temporarily occluded.   

 However, it should also be noted that while the eye-

movement model is "autonomous", insofar as it controls 

what it sees (i.e., by shifting its gaze from one part of the 

display to another), it is not able to physically manipulate 

the events it observes.  Thus, it is only capable of a 

limited form of interaction with its environment, and 

therefore, does not exploit all of the advantages of an 

epigenetic process.   

 Nevertheless, because the eye-movement model 

simulates visual activity on several levels (e.g., eye-

movements, gaze-shifts, scanpaths, etc.), it is an ideal tool 

for developing novel measures of infants' visual activity 

that complement conventional looking-time methods.  

Consequently, a key goal of the model is to present it with 

a series of events like those in Baillargeon's car study, and 

to use the behavior of the model to suggest new ways to 

study infants' expectations in comparable situations.   

4 The eye-movement model 

I present here a brief description of the stimuli used to 

train and test the eye-movement model, as well as the 

structure of the model itself.  For additional details on a 

previous version of the model, the interested reader may 

refer to Schlesinger and Barto (1999) and Schlesinger and 

Parisi (2001).   

4.1 Training & test displays 

The training and testing of the model is designed to mimic 

the experiences of an infant in Baillargeon's car study.  

Consequently, three computer-animation events were 

constructed as analogs to the Habituation, Possible, and 

Impossible events.  However, note that because the model 

is explicitly trained rather than habituated (see Section 

4.4, below), the Habituation event is renamed as the 

Training event in the model.   

 Each event is rendered in grayscale, with a duration 

of 82 frames.  Figure 2 presents selected frames from each 

of the events, corresponding to the respective events in 

Figure 1 (frame number is noted in the upper right 

corner).  The animations simplify many aspects of the real 

events (e.g., they are 2D rather than 3D), while capturing 

the most relevant perceptual features of the car study (e.g., 

occlusion of the "car" behind the screen; relative salience 

of the car, screen, and box, etc.).   

 During all three events, the screen moves up then 

down.  Next, the car (i.e., the black square) appears on the 

left of the display, and passes behind the screen and out 

the other side.  During the Training event, there is nothing 

behind the screen; during the Possible and Impossible 

events, the box (i.e., the small, gray rectangle) is revealed 

as the screen moves up.  The box is above the path of the 

car during the Possible event, while it is within the path of 

the car during the Impossible event.   
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4.2 Model architecture 

The oculomotor control system is composed of a 3-layer 

feedforward neural network.  The input layer is divided 

into three sensory channels:  a low-resolution, peripheral 

visual system (33 units), a high-resolution fovea (144 

units), and an eye-position system (2 units).  The input 

layer is fully connected to the hidden layer (20 units), 

which is in turn fully connected to the output layer (10 

units).   

 Each of the animation events is "projected" onto the 

retina.  While the position of the peripheral system is 

fixed, it spans the entire event display.  The fovea, 

meanwhile, fixates no more than 12% of the display at a 

time, and can be moved from one part of the display to 

another.   

 The output system is composed of 2 banks of 5 units; 

each bank controls movement of the fovea in either the 

vertical or horizontal direction, respectively.  Motor 

signals from the 2 banks are superimposed, producing a 

net movement in any of 8 directions.  Within a bank of 

output units, four of the units encode either a small (i.e., 

smooth pursuit) or large (i.e., saccade) movement, in 

either a positive or negative direction.  The fifth unit in 

each bank produces no movement in the respective 

direction.   

 During training and testing, the network is presented 

with an appropriate animation event, one frame at a time.  

On each timestep, a single animation frame is projected 

onto the retina (i.e., periphery and fovea), and activation 

values are propagated forward.  The movement of the 

fovea is computed by selecting the output unit within each 

bank with the highest activation (i.e., "winner takes all" 

selection rule), and updating the fovea's position 

according to the movement encoded by the two winning 

units.  After the fovea's position (i.e., the fixation point) is 

updated, the next animation frame is presented.   

4.3 Learning algorithm 

Two key assumptions of the eye-movement model are:  

(1) the car in Baillargeon's study is the most salient object, 

and (2) that infants learn to track the movement of the car.  

Accordingly, the model employs a reinforcement-learning 

algorithm, in which the network is rewarded for each 

timestep that it succeeds in fixating the car.   

 Specifically, the network receives a scalar reward 

between 0 and 1 on each timestep, for the proportion of 

the car that is visible within the fovea.  (Note that no 

reward is possible before the car appears, and while it is 

occluded behind the screen)  Standard temporal-difference 

learning was employed, including Q-learning at the output 

layer, followed by back-propagation of prediction errors 

to the hidden layer (see Sutton & Barto, 1998).   

 In less formal terms, each output unit encodes a 

specific eye movement.  The activation of each unit is an 

estimate of the reward expected to follow by producing 

that unit's particular movement.  Thus, a greedy action-

selection rule is employed, in which the unit within each 

bank that estimates the highest reward is chosen to 

produce an eye movement.  Exploration of non-optimal 

movements is achieved by selecting a random eye 

movement 1% of the time (i.e., -greedy action selection, 

with  = 0.01).   

4.4 Simulation overview 

In contrast to infants in Baillargeon's car study, the model 

is trained rather than habituated during the Habituation 

event.  Thus, the first event experienced by the model is 

called the Training event.   

 Note that optimal tracking of the car generates a 

reward of 40 points.  In order to avoid overtraining the 

model, which may lead to highly stereotyped tracking 

strategies, training only continues until average 

performance is at least 75% optimal (i.e., average reward 

is 30 or more points).  This training criterion is also in line 

with the assumption that infants have several goals during 

the car study, including tracking the car, and therefore 

they may not track the car optimally.   

 After the training criteria is reached, learning is 

turned off (i.e., connection weights are frozen; no 

exploratory actions are selected), and the Possible and 

Impossible events are presented to the model.  In the 

following studies, the results of each simulation represent 

the average performance over a population of 50 networks 

that are initialized randomly, trained, and then tested.   

5 Simulation studies 

Two simulation studies are described here.  In both 

studies, the model first learns to track the car during the 

Training event.  After training, the Possible and 

Impossible test events are presented.   

5.1 Study 1:  On vs. behind the track 

Study 1 simulates the events presented in Figure 1.  In this 

condition, infants see the box placed either behind the 

track (Possible event) or on the track (Impossible event) 

during the test phase.  In the animation events, these 

relative positions are translated into above (Possible) or 

within the path of the car (Impossible event, see Figure 2).   

5.1.1 Results, Study 1 

Recall that 50 networks were trained and tested, and that 

the training criteria was at least 75% optimal tracking 

(i.e., a total reward of 30 points out of 40 per trial).  On 

average, 145 training trials were required per network to 

reach criteria.   

 After training, connection weights were frozen and 

the exploration parameter was set to 0 (i.e., only optimal 

eye-movements were chosen).  In order to establish a 

performance benchmark, the model was first re-presented 

with the Training event, now referred to as the Control 

event since no learning occurred during this phase.  The 

Possible and Impossible test events were presented next.   

 Tracking performance was defined as the sum of 

rewards obtained over the entire event duration (i.e., 82 

frames).  Figure 3 presents the average total reward as a 
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Figure 4:  Scanpaths produced by a typical network during the test phase of Study 1.  The  

"x" indicates the center of the fovea, while the trailing dots indicate recent fixations.   

 

Figure 3:  Tracking performance (average total 

reward) in Study 1 during the Control, Possible,  

and Impossible events (error bars plot  

95% confidence intervals).   

function of event type (error bars plot 95% confidence 

intervals).  Average total reward during the Control event 

was 32.20 points, while it was 24.69 and 18.01 for the 

Possible and Impossible test events, respectively.   

 Tracking was significantly lower during the Possible 

and Impossible events than during the Control event.  In 

particular, tracking in the Possible event was significantly 

lower than the Control event (t(49) = 11.65, p < .001), and 

tracking in the Impossible event was significantly lower 

than the Possible event (t(49) = 4.51, p < .001).   

5.1.2 Discussion, Study 1 

The eye-movement model is more successful at tracking 

the car during the Training event, than during either of the 

test events.  These results suggest the conclusion that it is 

the appearance of the box, during the Possible and 

Impossible events, that specifically disrupts tracking.  

This conclusion is supported by an inspection of the 

model's tracking behavior during the Control event.   

 Figure 4 presents a typical set of scanpaths produced 

by the model, during the Control, Possible, and 

Impossible events (the "x" indicates the center of the 

fovea, while the trailing dots indicate recent fixations).  

When no box is present, the model generates at least 2 

anticipatory behaviors, including:  (1) movement of the 

fovea toward the left side of the display at the start of the 

event, before the car appears ("Control event", Frame 

17), and (2) an anticipatory saccade from the left to the 

right of the screen while the car is occluded ("Control 

event", Frame 55).   

 As Figure 4 illustrates, the first behavior, anticipation 

of the car before it appears, is disrupted during both the 

Possible and Impossible events.  In addition, the second 

behavior, anticipatory tracking of the car while it is 

occluded, is also disrupted during the Impossible event.  

This helps explain why tracking performance is lower in 

the Impossible than the Possible event.   

 Why does the box's appearance behind the screen 

interfere with tracking, and more importantly, why is the 

disruption greater during the Impossible event?  There are 

two likely explanations.   

 First, it may be that the model "confuses" the box 

with the car.  Since the box appears earlier during the 

Impossible event (and for a longer duration, see Figures 

2B-C), it may have a greater disruptive effect on the 

model's tracking behavior.  Alternatively, it may not be 

the timing of the box's appearance, but its position relative 

to the car's path that is important.  According to this 

second explanation, it is because the box appears in the 



 

 

 

 

Figure 5:  Schematic display of selected frames from the animation events used in Study 2 to  

train (A) and test (B-C) the eye-movement model (frame number displayed in upper right corner).   

Note that in contrast to Study 1, the "car" moves along the upper half of the display.   

 

Figure 6:  Tracking performance (average total 

reward) in Study 2 during the Control, Possible,  

and Impossible events (error bars plot  

95% confidence intervals).   

car's path, where it is has historically been rewarded for 

looking, that tracking is disrupted during the Impossible 

event.   

 Note that the data from Study 1 do not allow us to 

distinguish between these two accounts.  In particular, 

both accounts predict a greater disruption of tracking 

during the Impossible event.  However, by shifting the 

car's trajectory to the upper half of the display, the two 

effects can be teased apart.  In this case, the box appears 

sooner and for more time during the Possible event, but it 

appears within the car's path during the Impossible event.   

 Indeed, this condition parallels a similar condition 

studied by Baillargeon, in which the box appears either on 

(Impossible) or in front of the track (Possible).  As before, 

Baillargeon (1986; Baillargeon & DeVos, 1991) found 

that infants looked significantly longer at the Impossible 

event.  Study 2 investigates a comparable simulation 

condition.   

5.2 Study 2:  On vs. in front of the track 

Figure 5 presents selected frames from the animation used 

to test and train the eye-movement model in Study 2.  In 

contrast to Study 1, the "car" moves along the upper half 

of the display in Study 2.  Thus, in the Possible event the 

box is revealed sooner (and for more time), while during 

the Impossible event the box is located in the car's 

trajectory.  Therefore, if tracking performance is lowest 

during the Possible event, it is the timing of the box's 

appearance, and not its location, that affects tracking.  

Alternatively, if tracking is lowest during the Impossible 

event, than it is the location of the box relative to the car's 

path that is critical.   

 Except for a minor change in the trajectory of the car, 

note that the method of Studies 1 and 2 is virtually 

identical.  As before, 50 replications of the model were 

trained and tested.   

5.2.1 Results, Study 2 

Comparable to Study 1, an average of 176 training trials 

were necessary to reach criterion.  Tracking performance 

during the test phase was also comparable to Study 1.  

Specifically, average total reward was 32.19, 26.83, and 

20.04 during the Control, Possible, and Impossible events 

(see Figure 6).  Paired comparisons of the three events 

resulted in the same qualitative pattern of results as 

obtained in Study 1.  Thus, while tracking was 

significantly lower during both of the test events than the 

Control event, it was also significantly lower during the 

Impossible than the Possible event.   

5.2.2 Discussion, Study 2 

Study 2 replicates the findings of Study 1 in two key 

ways.  First, as before, the appearance of the box during 

the test phase disrupts the model's ability to track the car.  

Second, this disruption is greater during the Impossible 
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event.  In addition, the results are also consistent with the 

conclusion that the timing of the box's appearance does 

not have a critical effect on tracking the car, while the 

position of the car—relative to the car's trajectory—does 

significantly affect tracking.   

6 Conclusions 

Taken together, the findings from the two simulation 

studies inform the debate on early infant cognition in three 

important ways.   

 First, why do infants look longer at impossible 

events?  Baillargeon proposes that when infants are 

surprised or puzzled by an impossible event, they pay 

more attention to it.  Notice that this representational 

account presupposes not only the ability to mentally 

represent the physical world, but also prior knowledge of 

the physical world that allows infants to reason about 

occluded events.   

 In contrast, simulation results from the car study 

suggest an alternative, more parsimonious account:  when 

the box appears in the car's trajectory (i.e., the Impossible 

event), infants' tracking is disrupted, and thus they pay 

more attention to the Impossible event as they search for 

the car to continue tracking it.  I discuss below the 

implications of this kind of account for infant cognition 

research.   

 Before we accept this alternative, perceptual-

processing account, it must be empirically verified.  How 

can it be tested?  Answering this question suggests a 

second major consequence of the eye-movement model:  

because the model produces overt behaviors (i.e., eye 

movements) in a quasi-realistic world, we can draw an 

analogy between qualitative behavior patterns in the 

model, and those produced by human infants in the car 

study.  Therefore, the model suggests at least 3 specific 

qualitative predictions:    

 

(1) Infants will scan the Possible and Impossible 

events in different ways (see Figure 4).   

 

(2) Infants will be more successful at tracking the 

car during the Possible event (see Figures 3 and 

6).   

 

(3) Infants' anticipatory eye-movements will be 

disrupted during the Impossible event.   

 

 Note that these predictions are valuable for a number 

of reasons.  First, they provide a direct test of the 

perceptual-processing account.  Second, they can be 

measured in parallel with infants' global looking time 

during possible and impossible events, and so offer the 

means to integrate multiple measures of infants' visual 

activity across different spatiotemporal scales (e.g., 

fixations, gaze shifts, scanpaths, etc.).   

 Most importantly, the predictions generated by the 

eye-movement model are novel behavioral measures that 

have not been investigated by infant cognition researchers 

in looking-time studies such as Baillargeon's.  By forcing 

the representational and perceptual-processing accounts to 

specify the details of infants' visual behavior at 

increasingly finer levels, we diminish the likelihood that 

both accounts will generate a similar pattern of 

predictions.   

 Finally, what if the eye-movement model's 

predictions are confirmed?  What are the implications of 

the model for infant cognition research?   

 As I noted at the outset, the eye-movement model is 

motivated by the perceptual-processing account of infant 

cognition.  Recall that the model has no prior knowledge 

of the physical world, and lacks an explicit memory or 

prediction system.  Therefore, the model suggests the 

minimal perceptual and cognitive mechanisms necessary 

for explaining how infants learn to track the car in the car 

study, and consequently, respond differentially to the 

Possible and Impossible events.   

 Nevertheless, it should be noted that in order for the 

perceptual-processing account to provide a more 

parsimonious explanation for infants' preferential-looking 

patterns than other cognitive accounts, the predictions of 

the eye-movement model most not only be tested, but the 

model itself must be extended in several ways.   

 For example, does the pattern of results described 

here generalize to other possible and impossible events?  

Similarly, in what way can a perceptual-processing 

account explain infants' reactions to static displays?  It is 

not clear how many additional assumptions must be 

incorporated into the eye-movement model to address 

these questions.  Indeed, it is logically possible that a 

simple cognitive account may ultimately be more 

parsimonious than a perceptual-processing account that 

includes dozen of qualifying assumptions (e.g., see 

Baillargeon, 1999)!  Current work is addressing these 

questions.   
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