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Transformations in the Scale of Behaviour  

and the Global Optimisation of Constraints in Adaptive Networks 

The natural energy minimisation behaviour of a dynamical system can be interpreted as a simple 

optimisation process, finding a locally optimal resolution of problem constraints. In human problem 

solving, high-dimensional problems are often made much easier by inferring a low-dimensional 

model of the system in which search is more effective. But this is an approach that seems to require 

top-down domain knowledge; not one amenable to the spontaneous energy minimisation behaviour 

of a natural dynamical system. However, in this paper we investigate the ability of distributed 

dynamical systems to improve their constraint resolution ability over time by self-organisation. We 

use a ‘self-modelling’ Hopfield network with a novel type of associative connection to illustrate how 

slowly changing relationships between system components can result in a transformation into a new 

system which is a low-dimensional caricature of the original system. The energy minimisation 

behaviour of this new system is significantly more effective at globally resolving the original system 

constraints. This model uses only very simple, and fully-distributed positive feedback mechanisms 

that are relevant to other ‘active linking’ and adaptive networks. We discuss how this neural network 

model helps us to understand transformations and emergent collective behaviour in various non-

neural adaptive networks such as social, genetic and ecological networks. 
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1. The computational abilities of dynamical systems 

Physical dynamical systems with a large number of simple equivalent components have been shown to 

exhibit “emergent collective computational abilities” (Hopfield, 1982) such as implementing content-

addressable memory or solving constraint satisfaction problems (Hopfield & Tank, 1986; Hopfield & 

Tank, 1985). In the latter, Hopfield and Tank equate the energy minimisation behaviour (Strogatz, 

1994) of a dynamical system with an optimisation process – i.e., the system moves to configurations 

that better-resolve the conflicting constraints between system variables. But actually, energy 

minimisation in a simple dynamical system is equivalent to the simplest possible optimisation 

algorithm, namely gradient descent (or incremental improvement), which in anything but the simplest 

of problems tends to find only locally optimal solutions. In human design-engineering and 

optimisation, high-dimensional problems are often made much easier by inferring a low-dimensional 

model of the system (e.g., a high-level representation that exploits modularity/problem 

decomposition), such that ‘local’ search in this new or rescaled space is better able to find a globally 

optimal resolution of constraints. This is an approach that seems to require top-down domain 

knowledge and design intelligence, and does not appear to be amenable to the spontaneous energy 

minimisation behaviour of a natural dynamical system. But, can other types of dynamical systems, 

specifically self-organising systems, perform more sophisticated forms of optimisation? And 

conversely, can an optimisation framework help us to better understand the behaviour of natural self-

organising systems? 

 Our questions are motivated by consideration of self-organising multi-agent systems, such as 

species in an ecosystem or agents in a socio-economic network, and their potential to exhibit emergent 

collective behaviours. In particular, we are interested in the possibility that such systems can 

spontaneously transform into a new system, operating at a higher level of organisation (Simon, 1969; 

Maynard Smith & Szathmary, 1995), and that such a dynamical transformation may facilitate (or may 

even be equivalent to) a transition in the ability to resolve constraints between the system components. 

Our earlier work in this area, using abstract optimisation algorithms loosely inspired by symbiogenesis 

(Mills, 2010; Mills & Watson, 2011) suggested that simple associative rules could, in the right 

context, be sufficient to identify and exploit higher-level problem structure; and individual-based 

evolutionary models of the formation of new units of selection (Watson, et al., 2009b; Watson, 

Palmius, Jackson, Mills, Powers, Buckley & Penn, in prep.) showed that such associations could be 

favoured by natural selection and thereby occur spontaneously under suitable conditions.  

To formalise the formation of such relationships we can characterise multi-agent ecosystems 

or socio-economic network systems as ‘adaptive networks’ (Newman, 2003; Newman, Barabasi & 

Watts, 2006; Gross & Sayama, 2009); exhibiting the property that the structure of connections 

between agents affects changes to the agent behaviours and, vice versa, that the agent behaviours 

affect changes to the structure of connections between agents. The Hopfield network (Hopfield, 1982) 

easily accommodates such state/topology coadaptation and, at a very abstract level, provides a suitable 

system with which to explore how self-organisation in adaptive networks alters their ability to resolve 

conflicting constraints between system components. Working with this analogy implied that the 

associative connections exploited by evolution and by our abstract algorithms might be directly 

analogous to associative learning (Hopfield, 1982; Hinton & Sejnowski, 1985) in the Hopfield 

network. Investigation of this potential homology has been fruitful (Watson et al., 2009a; Watson, et 

al., 2010a; Watson, et al., 2010c; Davies, Watson, Mills, Buckley, Noble, 2010), but we found that the 

usual interpretation of learned associations in the Hopfield network did not provide the same ability to 

resolve constraints as the associations that were exploited in the formation of new evolutionary units 

(or in our abstract algorithm). Specifically, the usual interpretation of learned associations in the 

Hopfield network provided an interesting improvement to what is essentially a gradient descent or 

incremental improvement method – but it did not really provide a scaling-up in the dynamical 
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behaviour of the system. However, in the current paper we find that a different interpretation of 

learned associations in the Hopfield network does provide a true re-scaling of the dynamical behaviour 

and constraint optimisation ability. The current paper now provides a formal description of this 

difference (contrasting the usual type of associations, which we refer to as selective associations, with 

the new interpretation, which we call generative associations) and relates the findings more closely 

with self-organised dynamical systems and formal optimisation methods. 

For example, unlike simple gradient descent methods, state-of-the-art computational 

optimisation techniques (e.g., Pelikan, 2002; Pelikan, Goldberg & Lobo, 2002) have the option to use 

advanced model-building mechanisms that can identify and exploit high-level structure in a problem 

domain automatically (Mills, 2010; Mills & Watson, 2011). In general terms, such methods seek to 

identify a low-dimensional search space within a high-dimensional problem domain by ‘memoising’ 

(Michie, 1968) partial solutions (Angeline & Pollack, 1992; Koza, 1994), or ‘chunking’ (Rosenbloom, 

& Newell, 1986) sequences of actions, to re-use them as macro-operations that rescale the search 

process. The resultant lower-dimensional space can facilitate global constraint optimisation far 

superior to local search methods (Mills & Watson, 2011). But it has not previously been shown that it 

is possible for simple distributed mechanisms of self-organisation, gradually changing the connections 

of an adaptive network, to cause it to effectively rescale its dynamics and hence move from local to 

global energy minimisation in a similar manner.  

Our aim is therefore to provide a concrete model of how an adaptive network can be 

transformed from one scale of dynamics to another via simple fully-distributed self-organising 

mechanisms. More narrowly, our objective is to devise a simple distributed mechanism that modifies 

the connections of a self-modelling (Watson, et al., 2010a) Hopfield network such that its dynamics 

change from local to global energy minimisation. In particular, we aim to exploit implicit modular, or 

nearly-decomposable (Simon, 1969; Watson & Pollack, 2005), structure in the constraints of the 

system such that, whereas the original dynamics of the system search combinations of the original 

state variables, the transformed dynamics search combinations of higher-level emergent variables.  

Working within an adaptive networks framework, we restrict attention to a self-organising 

mechanism that changes the connections between components – i.e. causes changes to weighted 

connections in the network. Specifically, we assume connections grow in strength in a manner that 

reflects observed correlations between state variables as per our prior work. This is a simple and fully-

distributed, positive feedback mechanism familiar in neural network research as associative or 

Hebbian learning (Hinton & Sejnowski, 1983; Hinton & Sejnowski, 1985; Ackley, Hinton & 

Sejnowski, 1985; Hebb, 1949). We refer to this as a self-organising mechanism rather than a learning 

mechanism since the patterns that are ‘learned’ are created by the system’s own dynamics (rather than 

an external training regime). Although in this paper we simply mandate that such changes to 

connections occur in our network, our recent work shows that Hebbian changes to connections are 

natural in many types of complex adaptive systems, and not just neural systems (Watson, et al., 

2010c). Accordingly, we aim to demonstrate a mechanism that rescales the optimisation ability of the 

Hopfield network and thereby to provide a formal model that helps us understand transformations in 

the scale of ‘problem solving’ behaviour in other types of adaptive networks.   

A central focus of the current paper is the contrast between two types of associative 

connection. Specifically, characterising the energy minimisation behaviour of the system as a 

‘generate and test’ (Winston, 1992) optimisation process, we show that learned associations can 

straightforwardly modify either the generate function or the test (or ‘selection’) function of this 

process. We find that associations that alter the generate function are much more effective at enabling 

global minimisation of energy. Such generative associations (in contrast to the conventional selective 

associations) have the effect of producing probabilistic, correlated, simultaneous state changes in 

multiple variables and correspond to emergent ‘macro variables’ that encapsulate sub-solutions. We 
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find that it is possible for a self-organised dynamical system with generative associations, using only 

simple distributed mechanisms, to transform into a new system operating at a higher level of 

organisation, and we show that this transformed system minimises total system energy more reliably 

and more completely than the original system. In effect this provides a novel distributed optimisation 

algorithm. But more important for our current aims, this transformation is enacted through very 

simple, and fully-distributed, positive feedback mechanisms that are relevant to other ‘active linking’ 

systems and adaptive networks (Pacheco, Traulsen, & Nowak 2006; Santos, Pacheco & Lenaerts, 

2006; Van Segbroeck, Santos, Pacheco, Lenaerts, 2010; Gross & Sayama, 2009). We therefore 

suggest that this neural network model helps us to understand transformations and emergent collective 

behaviour in various non-neural adaptive networks such as social, genetic and ecological networks – 

for example, the emergence of coalitions in social systems and of higher-level adaptive units in the 

major transitions in evolution. 

2. Methods 

The Hopfield network (Hopfield, 1982) is an abstract model of neural architecture and a well-

understood example of a simple dynamical system that has provided a vehicle for studying adaptive 

behaviour (e.g. Goetz & Walters, 1997; Paine & Tani, 2005) and the computational properties of 

physical systems across many disciplines. Hopfield and Tank’s work (Hopfield & Tank, 1985; 

Hopfield & Tank, 1986) makes an explicit bridge between the language of dynamical systems energy-

minimisation and the language of optimisation or search which is very useful for formalising the type 

of dynamical transformation we wish to study. Studying multi-level structure and multi-level 

optimisation (Mills, 2010; Mills & Watson, 2011) in the context of a neural network model has the 

advantage that the ability of distributed neural mechanisms to identify high-level features in a set of 

training samples (McClelland, Rumelhart & the PDP Research Group, 1986; O'Reilly & Munakata 

2000), and the potential of recurrent neural networks to find solutions to constraint optimisation 

problems (Hopfield & Tank, 1985; Tsirukis, Reklaitis & Tenorio, 1989), are already well-understood. 

Our recent work brings these two well-known uses together (Watson et al., 2009a) in what we call a 

‘self-modelling’ system (Watson, et al., 2010a) – a system that (implicitly) models its own behaviour.  

In overview, the model operates as follows. An energy function encodes an optimisation 

problem which governs the initial energy minimisation dynamics of the system (Hopfield & Tank, 

1985). We implement an energy function that represents a constraint optimisation problem by using a 

set of weights corresponding to constraints imposed by an external environment. The system is then 

repeatedly relaxed from many different random initial conditions, causing it to visit many different 

dynamical attractors in this energy function. If the transients of each relaxation are short compared to 

the duration of each relaxation this causes the system to spend most of its time at local minima in the 

energy function. Over the course of many relaxations, Hebbian learning is used to modify a set of 

internal weights. This has the effect of enlarging the dynamical basin of attraction for the system’s 

current state configuration, and therefore tends to make the system more likely to visit state 

configurations that have already been visited – i.e. simple positive feedback. But this will also enlarge 

the basin of attraction for other state configurations, even if they have not yet been visited, in 

proportion to their similarity to state configurations that have been visited. This associative 

generalisation has the effect of increasing the likelihood that the system visits low energy attractors, 

including the globally minimal energy attractor, and increases the speed with which it is first found.  

2.1 Discrete Hopfield network with restarts, rHN 

The state of a network consisting of N discrete states si = ±1 where i=1,2,…,N can be written as 

S=(s1,…,sN). The dynamics of the recurrent network used by Hopfield can be described by updates to 

individual states: 
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where ωij  are elements of the connection matrix Ω, and θ is the Heaviside threshold function (taking 

values -1 and +1 for negative and non-negative arguments respectively). The Hopfield network is run 

by repeatedly choosing a unit, i, uniformly at random and setting its state according to the above 

expression. 

Hopfield showed (Hopfield, 1982) that if the connection matrix is symmetric, ωij=ωji, and 

under suitable constraint on the self-weights (here ωii=1), all trajectories described by Eq. 1 converge 

on point attractors which are minima of an energy or potential function given by: 

∑−≡Ω=
N

ij

jiijS ssSHE ω),( .      (2) 

Consequently one can describe the asymptotic behaviour of such a network in terms of a process that 

minimises this function. Accordingly, if the weights of a network are appropriately defined they can 

be used to define an energy function that represents an optimisation problem, and running the network 

finds locally optimal solutions to the problem (Hopfield & Tank, 1985). The Boltzmann machine 

(Hinton & Sejnowski, 1985) is a discrete stochastic counterpart of the Hopfield network where a 

single state change is accepted probabilistically according to the change in energy it produces. We can 

describe such a dynamical process more generally via a probability of accepting a stochastic change to 

the system state: 

P[S(t+1)  a f(S(t))]=σ(T,∆E) , (3) 

where the variation operator f is, in the Boltzmann or discrete Hopfield cases, a ‘bit flip’ operator 

defined as ),…,,-…,(=)( 1 NX sssSf  where X is a uniform random variable on [1,...,N], ∆E=ES′-ES is 

the change in energy implied by the new state S′=f(S), and σ(T, x) = 
)exp(1

1
1 x
T
−+

 is a sigmoid function 

of x where T is the temperature of the system; a parameter that indirectly controls the probability of an 

increase in energy. When the temperature is reduced gradually this describes a simulated annealing 

process (Kirkpatrick, Gelatt & Vecchi, 1983). But for a deterministic system, as T=0, we can simply 

write: 

P[S(t+1)  a  f(S(t))]= λ(∆E) ,     (4) 

where λ is a threshold function taking values 0 and 1 for negative and non-negative arguments, 

respectively. Thus, the discrete Hopfield network and the Boltzmann machine with T=0 are both 

equivalent to a bit-flip gradient descent algorithm. Although the continuous state version of the 

Hopfield network and the non-zero temperature Boltzman machine are, in many circumstances, better 

optimisers than the bit-flip gradient descent algorithm, the discrete deterministic process is sufficient 

to illustrate the effect we wish to demonstrate in this paper. This type of ‘generate and test’ (or 

generate and select) energy descent process, i.e. updating the network by accepting a stochastic change 

in state if and only if it decreases system energy, is conventional in stochastic local search or mutation-

based evolutionary models (see Section 4.5), whereas the Hopfield equations of motion, which modify 

system states deterministically in the direction that minimises energy, are conventional in neural 

networks and physical dynamical system models. However, these frameworks are interchangeable for 

the basic Hopfield network, and the generate-and-test framework naturally affords the incorporation of 

generative associations described below.  
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 Since these deterministic dynamics will quickly find a local optimum in the energy function, it 

is useful to consider a ‘random restart’ version of the Hopfield network, rHN, where the state of the 

system takes a random state configuration, R={-1|1}
N
, every τ time steps. More generally, we may 

suppose that the system is occasionally radically perturbed so as to cause it to move into the basin of a 

different attractor (this corresponds to many attempts at solving the problem, finding different locally-

optimal solutions). We refer to each inter-reset duration of τ time steps as a relaxation, and assess the 

minimum energy and average energy of states visited by the system over many relaxations. Note that 

the energy of configurations visited within a relaxation will be minimal at the end of that period, so it 

is often useful to monitor the energy of the system at that time. If each relaxation is long enough for 

the system to reach a local optimum, this will thus monitor the local optima visited by the system. We 

refer to this default type of restart Hopfield network (with no learning) as rHN-0.  

 Hopfield and Tank (Hopfield & Tank, 1985) showed that the weights of a Hopfield network 

can be used to encode the constraints of a combinatorial optimisation problem such that minima in the 

energy function correspond to local minima in the optimisation problem. This provides a fully-

distributed problem solving or optimisation mechanism but the solutions that this basic mechanism 

produces are only locally optimal and, in general, may be far from globally optimal. 

2.2 Hebbian learning and self-modelling in the Hopfield Network 

In the following experiments we modify the dynamics of the restart Hopfield network described above 

using self-modelling (Watson, et al., 2010a). This simply means that Hebbian learning (see below) is 

applied to the connections of the restart Hopfield network whilst it is running. Given that the duration 

of relaxations is long enough for the system to spend most of its time at local optima then in effect 

these locally-optimal configurations become ‘training samples’ for an associative memory. In this 

manner the system implicitly uses observations of its own optimisation dynamics to identify problem 

structure and modify its dynamics, hence self-modelling. Clearly, if the system spent most of its time 

in arbitrary state configurations then this self-modelling could not yield any useful information. But 

given that the system spends most of its time at configurations that are low in energy, the model that is 

induced is not arbitrary even though it is modelling its own state dynamics. Importantly, a distribution 

of locally optimal configurations sampled by rHN-0 has the potential to exhibit correlations that can 

reveal problem structure. Thus the self-modelling protocol causes a network to implicitly self-generate 

a set of training samples from an energy function with the possibility of revealing the system’s 

constraint structure. 

 The original connection matrix, Ω, representing the problem, remains unaltered by this process 

but Hebbian learning is applied to all mij, i≠j, in an internal connection matrix, M, as below. 

Alternatively, two sets of weights are not required if H(S,Ω) is replaced by a potential function (or 

‘fitness function’) of arbitrary construction representing environmentally imposed problem constraints 

that produce correlations in neural activations and M represents the (single) set of internal weights 

representing the learned response to those activations. The initial value of all mij is 0. 

)]()()([)1( tststmtm jiijij τ
δ

γ +=+ , 

where (δ/τ) is a learning rate and γ is a linear threshold function capping all learned weights at a 

magnitude of 1 (i.e. γ(x)=max(-1,min(1,x))). If we assume that τ>>t
*
, where t

*
 is the time for the 

system to reach a local optimum then the cumulative effect of learning over a relaxation will be 

approximately equal to a single application of learning at the end of each relaxation: 

)]()()([)1( ττδτγτ jiijij ssmm +=+ .     (5) 
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This end-of-relaxation learning is computationally less expensive to implement so we use this in our 

experiments, but a continuous learning process may be more natural for models of some systems. We 

can see that M will become an associative memory model of (the local minima of) the original energy 

function (implicitly defined by Ω).  

2.3 Modifying dynamics with selective associations, rHN-S 

This associative memory can then modify the dynamics of the system in two different ways depending 

on how these learned associations are interpreted. The first of these, which here we term selective 

associations, is to modify the energy function (Watson, et al., 2010a; Tsutsumi, 2003) such that 

stochastic changes to individual states are accepted if they decrease the value of a new energy function 

E΄ (Watson, et al., 2010a), i.e. 

P[S(t+1)  a  f(S(t))]= λ(∆E΄).      (6) 

where E΄=H(S,Ω)+H(S,M)=H(S, Ω+M). That is, the new energy function is simply the original 

energy function (Eq. 2) plus the additional energy derived from the learned weights. This has the 

effect of changing the relative importance of different constraints in a manner that ‘warps’ the energy 

surface (Tsutsumi, 2003). Since this is equivalent to modifying the original weights (that are supposed 

to represent the problem we are trying to solve) this is a somewhat strange thing to do to a Hopfield 

network that is being used for optimisation. However, the effect of this is interesting for three reasons:  

a) Because the associative memory that is learned is trained at locally optimal solutions to the 

problem, and the effect of Hebbian learning is to increase the basin of attraction for the 

training samples, the effect of this learning is to increase the basin of attraction for the locally 

optimal configurations that are visited.  

b) Because low-energy configurations tend to have larger basins of attraction (Gardner, 1988; 

Coolen, 1991; Kryzhanovsky & Kryzhanovsky, 2008), the lower energy attractors tend to be 

visited more often, and are therefore enlarged more often, than higher-energy locally optimal 

solutions.  

c) Because sub-patterns that are common to many local optima tend to also be common to the 

global optimum, the generalisation of patterns provided by associative memory (Fontanari, 

1990; Jang, Kim & Lee, 1992) has the potential to enlarge the basin of attraction for the 

globally optimal configuration even before it is visited for the first time (Watson, et al., 2010a; 

Watson, et al., 2010c). Since there is no optimisation benefit in recalling a solution only after 

it has been discovered by chance, this generalisation ability is crucial for a memory process to 

become an optimisation process. 

Note that although the trajectory of the system through state space is modified by the new energy 

function, E΄, as external observers of how the system has changed we will assess the quality of the 

solutions with respect to the original system constraints, i.e. E. 

This model, rHN-S, is a distributed means to increase the optimisation ability of the Hopfield 

network (Watson, et al., 2010a). The learned associations in rHN-S modify the energy function, or the 

test (i.e. selection) part of a generate-and-test process – hence selective associations. We have 

investigated self-organisation using selective associations in recent work (Watson et al., 2009a; 

Watson, et al., 2010c; Watson, et al., 2010b; Mills, 2010; Watson, et al., 2010a; Davies, Watson, 

Mills, Buckley, Noble, 2010). But we find that this does not provide a true scaling-up in the dynamical 

behaviour of the system. In this paper we introduce a different type of association which we call 

generative associations.  
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2.4 Modifying dynamics with generative associations, rHN-G 

Generative associations modify the generate part of the generate-and-test process, rather than the test 

part. Specifically, learned connections (probabilistically) produce correlated state changes in multiple 

state variables simultaneously (and the test or selection part of the process is unchanged) (Fig.1).  

 

 

     
Fig. 1 Different complementary ways to modify the trajectory of a dynamical system with respect to 

an energy surface. A) Original dynamics: The current system configuration (black dot) is depicted in a 

local minimum on an energy surface (solid curve), single-state variants on either side (white dots) are 

higher in energy and hence the local trajectories of the system (arrows) return it to the original 

location. B) Modified selection: the energy values of the neighbouring positions when measured in 

the modified energy surface (dotted curve) enable the system to move to the right and thereby 

escape this local optimum in the original energy surface. C) Modified generation: Here the system 

escapes the local optimum because the variants that are generated are not single-state changes but 

specific multi-state changes, one of which is lower in energy.  

 

  

In Fig.1.B the selection criteria of variants is altered but the generation of variants is 

unchanged; whereas, in C the generation of variants is altered but the selection criteria of variants is 

unchanged. Another analogy that might be useful is that whereas rHN-S modifies the fitness values of 

a landscape, rHN-G can be understood as a process that modifies the neighbourhood structure of a 

fitness landscape (Mills & Watson, 2011).  

Generative associations are implemented with a modified variation operator, g, (replacing f ). 

This operator interprets the learned weights, M (containing explicit knowledge of the problem 

structure), as defining probabilities of correlated state changes. To facilitate a unified definition of f 

and g, we can redefine f in terms of g and a correlation matrix C. C=I, were I is the identity matrix, 

then represents the state changes produced by f in the sense that single-variable state changes are 

allowed but no other variables are correlated with them – i.e. under f, each variable is (with respect to 

generating state changes) ‘correlated’ only with itself (i.e. it has only self-connections). In contrast, 

under more general usage of g, single state changes are augmented by correlations defined in M by 

using C=I+M. Thus initially, when all mij = 0, g(S)=f(S), i.e. both implement single-variable state 

changes at random. But later in the learning process, if some node i has strong learned connections to 

another node j, then when a new state is assigned to node i, an appropriate state is also assigned to 

node j, with probability proportional to correlations observed in the past. Formally,  

),…,,…,(=)( 1 NX sssSg ′′′ , (7) 

where X is a uniform random variable on [1,...,N], and s′ takes the new value -θ(cXjsX) if |cXj|>r, where 

r is a random threshold (drawn once for each application of g) uniformly in the range (a,1], and a is 

the mean magnitude of values in M. Thus, because C=M+I, the state of sX is necessarily flipped (as 

was the case in f ), but additionally all other states, sj≠X, will either be changed to agree with this new 

state when mXj > 0, or disagree with the new state when  mXj < 0, with a probability that increases with 

A) B) C) 
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the magnitude of mXj. The adjustment, a, ensures that only learned correlations with above-average 

strength will cause additional state changes. 

Thus, quite straightforwardly, this new operator recreates sub-patterns in the state 

configuration according to the frequency with which they have been observed in the past and does so 

using only the distributed network of pairwise associations generated by normal Hebbian learning – 

but the mechanistic effect of these associations is interpreted differently. Of course, if the learning rate 

is too high this will have the effect of moving the system directly to a configuration (e.g. a local 

optimum) that has been visited before. But if the learning rate is appropriate, this mechanism offers the 

possibility of recalling commonly occurring partial solutions (since a given partial solution may occur 

in many different complete solutions) and importantly, creating new combinations of these sub-

solutions to explore the search space more efficiently. Thus correlated state changes that canalise 

commonly occurring partial solutions effect a rescaling of the dynamical behaviour and effect a search 

process operating at a higher level of organisation. But note that if M has arbitrary entries, then the 

effect of g is merely to produce random ‘macro-mutations’ (Forrest & Mitchell, 1993) which are not 

sufficient to solve problems of the form we study here (Watson & Jansen, 2007).  

As in rHN-0, a (single-variable or multi-variable) state change produced by g is tested against 

the original energy function, E, to see how it affects energy (a calculation based on the change in 

energy for each variable that changes state, rather than total energy, may be sufficient). If it reduces 

energy, the new state configuration is retained, else it is rejected, i.e.: 

P[S(t+1)  a  g(S(t))]= λ(∆E).      (8) 

Whereas we might think of the effect of selective associations as learning to respond to 

correlations in a stimulus, we can interpret the effect of generative associations as learning to generate 

correlations in an output or behaviour. Generative associations, like selective associations, are 

consistent with Hebb’s fundamental conjecture (Hebb, 1949) that learning happens by modifying 

connections between neurons, and also consistent with Hebb’s rule that builds connections in 

proportion to past correlations. They also have the same effect as Hebbian learning in the sense that 

they make future system states more likely to recreate past correlations. But in conventional neural 

models (i.e. Eq. 1) attention is placed on single state updates, decided on the basis of activation 

potentials that are fed into one neuron from many pre-synaptic neurons. This can only change the 

activation of one neuron at a time. In contrast, in this generative model, the focus is on the effect of an 

action potential that is fed out from one neuron into many post-synaptic neurons, producing correlated 

state changes in many neurons simultaneously (e.g. see ‘synchronous firing chains’ (Abeles, 1982), 

and ‘in star’ versus ‘out star’ configurations (Grossberg, 1978)). But clearly, our emphasis in this 

paper is not on the physical implementation of the mechanisms involved but in the dynamical and 

computational properties of such associative connections. 

More generally, we are interested in the dynamical and computational properties of a 

dynamical system undergoing self-organisation via the formation of this type of association. For 

example, coadaptation between species that modifies the effective evolutionary unit, such as group 

formation and symbiogenesis (Mills & Watson, 2009; Powers, Penn & Watson, 2007; Watson & 

Pollack, 2003; Watson, 2006), is analogous to  generative associations whereas coadaptation that 

modifies the ‘interaction coefficients’ between species, i.e. ordinary coevolution, merely affects the 

selective environment of the original evolutionary units (Powers, 2010; Lewis, 2009) and is analogous 

to selective associations. We will briefly discuss this and other non-neural systems later. But our 

narrow aim in this paper is to show that although the effect of self-organisation with generative 

associations corresponds to that of a model-building optimisation algorithm, the ‘information’ required 

for these mechanisms can be discovered by a simple distributed process and can be ‘represented’ 

implicitly in the distributed network of simple associative connections.  



11 

2.5 Summary of models  

Our underlying model is a Hopfield network with discrete state dynamics and multiple relaxations 

restarted from random initial conditions after each τ time steps. Modifications to the default model 

using either selective or generative associations can be understood as a logically complementary pair 

of processes within the generate-and-test search framework. Specifically, the default generate-and-test 

procedure, rHN-0, generates a candidate state configuration from some probability distribution, e.g., 

the set of single-bit-flips, then tests for an improvement (decrease in energy). rHN-S generates the 

same distribution of candidates as rHN-0 but uses a modified test – accepting decreases in the 

modified energy function. In contrast, rHN-G uses a modified generate procedure (macro-variations) 

but the original test function. 

We can define all three algorithms using a general model denoted rHN(A,B) where A is a 

matrix defining the correlations used to generate variants (via the operator g), and B is a matrix 

defining the energy function used to assess the variant state configurations thus created (via the 

Hopfield equation, H(S,B), eq. 2). Specifically, rHN-0 = rHN(I, Ω) where I is the identity matrix 

(producing single state-changes only) and Ω is the original energy function. Then rHN-S = rHN(I, 

Ω+M) such that the energy function is augmented by M, and conversely, rHN-G = rHN(I+M, Ω) such 

that the correlations in the variations produced are governed by the learned matrix M. This also 

suggests a general framework using M in both the generator and the test function, rHN(I+αM, Ω+(1-

α)M), creating an algorithm that can be parameterised from one to the other (i.e., α=0 defines rHN-S 

and α=1 defines rHN-G), but we have not investigated other values of α in the current paper.  

Note that when δ=0, both rHN-S and rHN-G are identical to the original non-adaptive 

Hopfield network, rHN-0. Similarly, the initial behaviour of rHN-S and rHN-G before significant 

learning has taken place will also be qualitatively identical to rHN-0. 

In some respects, rHN-S and rHN-G are very different mechanisms: the former uses standard 

bit-flip exploration but distorts the energy function and the latter enables macro-exploration over the 

original energy function. However, they both use a matrix, M, generated by the same fully-distributed 

Hebbian learning mechanism, to exploit correlations in the state variables observed at locally optimal 

configurations (however, note that since M is learned from a self-referential examination of the 

system’s own dynamics, the values of M learned by rHN-S will diverge over time from those learned 

by rHN-G even though the distribution of locally optimal configurations is initially identical). Also, 

both algorithms use this data to make patterns of activation that have been observed in the past more 

likely to occur again in future dynamics (by either rewarding those sub-patterns or generating those 

sub-patterns). Both therefore have the potential to exploit problem structure and in particular the 

ability of associative memory to generalise over a set of patterns (vital for finding novel patterns of 

low energy). However, clearly rHN-S, being wedded to single-variable state changes, does not have 

the possibility of rescaling the search space into a higher-level abstraction. Accordingly, we shall see 

that the way in which rHN-G uses learned correlations has capabilities that are not provided by rHN-S. 

rHN-S is nonetheless a more obvious way of adding Hebbian learning to a Hopfield network than 

rHN-G and the comparison between the abilities of rHN-S and rHN-G is useful to verify that this more 

simplistic approach to ‘recalling past solutions’ in a dynamical system with selective associations is 

not sufficient to solve problems that can be solved by rescaling the search space in a dynamical system 

with generative associations. 

2.6 An Idealised Nearly-Decomposable Constraint Optimisation Problem 

In an optimisation framework, our aim is to provide a conceptual illustration of a generic capability to 

exploit problem structure using distributed mechanisms. This relies, of course, on the existence of 

structure in the problem domain/original system dynamics that can be exploited. Accordingly, rather 
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than measure the impact of this mechanism in a specific application where the presence or absence of 

high-level structure is unknown, we investigate it using abstract cases where we can control the 

structure present in the system in a systematic manner.  

Our test problems are represented using a multi-modal energy function defined by different 

types of weight matrices, Ω, as below and the Hopfield equation (Eq. 2) – this ensures that the 

problem class is a superposition of pair-wise constraints (Watson, et al., 2010a; Watson, et al., 2010c). 

We examine two different classes of system: random constraints (RC); and an explicitly modular 

constraint problem (MC) that facilitates supporting analysis and illustration. The modular problems are 

defined as a macro-scale version of the random problems as discussed below.  

 Both these problems are equivalent to instances of MAX-SAT, graph-colouring and simple 

resource-allocation optimisation problems (Watson, et al., 2010a) and are used here to illustrate the 

optimisation capabilities and limitations of our model in a domain-independent manner. These 

investigations illustrate the conceptual idea behind rHN-G and also help us to understand exactly the 

limitations of the model and, in particular, MC assists us in understanding the limitations of selective 

associations and the different affordances of generative associations.  

The aim in defining MC is to construct an idealised exemplar – a system that can be solved easily 

by a process that can discover and exploit structure appropriately, but one that is, at the same time, 

pathologically difficult for a process that is unable to discover and exploit modularity. At the micro-

scale MC has neat and easily identifiable modular structure, but at the macro-scale it has a random 

structure.  

RC.  Random Constraints: A symmetric weight matrix of n variables where weights take 

values:  ωij=1, if i=j else ωij ={-p, p} with equal probability. 

MC. Modular Constraints: A symmetric modular connectivity weight matrix of size N=kn  

variables: ωij=R 



















k

j

k

i
,

 
, where R is a matrix from the RC definition above with size n. 

 (for example, the main experiments use N=200, n=20, k=10 to define 20 modules of 10 

variables each).  

A small example RC matrix and corresponding MC matrix is given in Table. 1. The MC matrix is 

simply a ‘macro-scale’ version of the RC matrix, but to exploit this structure successfully an algorithm 

will need to first identify which variables in MC belong together in a module and then search 

combinations of module sub-solutions as though each module were a single ‘emergent’ variable. 
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     1 1 1 0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 0.1 0.1 

     1 1 1 0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 0.1 0.1 

     1 1 1 0.1 0.1 0.1 -0.1 -0.1 -0.1 0.1 0.1 0.1 

     0.1 0.1 0.1 1 1 1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

     0.1 0.1 0.1 1 1 1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

     0.1 0.1 0.1 1 1 1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

     -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 -0.1 -0.1 -0.1 

     -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 -0.1 -0.1 -0.1 

1 0.1 -0.1 0.1  -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 -0.1 -0.1 -0.1 

0.1 1 -0.1 -0.1  0.1 0.1 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 

-0.1 -0.1 1 -0.1  0.1 0.1 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 

0.1 -0.1 -0.1 1  0.1 0.1 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 1 1 

Table. 1. Left) A small random RC matrix (n=4, p=0.1). Right) A corresponding modular, MC, matrix (N=12, n=4, 

k=3). For illustration, one of the weights in R and the corresponding set of weights in MC are shown in bold.  

The RC matrices create energy functions that tend to have many locally optimal configurations but for 

problems with n=20 it is not particularly difficult to find low-energy configurations (i.e. significantly 

better than random configurations) using rHN-0 (i.e. a restart bit-flip hill-climber). A corresponding 

MC with k=10, creating a problem with N=200, is in contrast, very difficult to optimise effectively 

with a local search process. Given that p is sufficiently small, the relatively strong and consistent intra-

module weights on the block diagonal create local optima that correspond to each of the state 

configurations in the language, S={-1
 k
,1

 k
 }

n
 (where n is the number of modules), and k is the size of 

each module (Fig. 2). For example, in a MC system with k=5 and n=6 the state configuration 

(1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1,-1,-1,-1,-1,-1,1,1,1,1,1), or (1
5
-1

5
1

5
1

5
-1

5
1

5
), is locally 

optimal. Note that such a configuration is equivalent to the state configuration (1,-1,1,1,-1,1) in the 

underlying R problem, and the set of locally optimal strings in MC correspond to arbitrary binary-

strings in this lower-dimensional state space. Accordingly, solutions found by running rHN-0 on MC 

will (with respect to inter-module dependencies) be no better than random configurations in R. 

Moreover, the likelihood of escaping such locally optimal configurations in MC using random k-bit 

state changes would decrease exponentially with k even if one knew which bits needed changing (but 

not what values to change them to) and decreases exponentially in N if the module partitions are 

unknown (Watson & Jansen, 2007).  

But, in the case where an adaptive system is able to identify the high-level problem structure 

in MC, and manipulate modules as if they were ‘emergent bits’ of a lower-dimensional macro-scale 

problem, MC problems will become as easy as hill-climbing in the underlying problem R. (Note that 

the ordering of rows and columns in MC may be randomly shuffled thus precluding any algorithm 

from exploiting adjacency information as a heuristic for identifying problem structure (Watson, 2006). 

Likewise, applying logical-XOR with a constant, randomly generated bit-string may be applied to the 

state configurations to preclude any assumption that all 1s or all -1s are special configurations.) In MC 

problems we will often measure only the energy contribution from inter-module constraints since the 
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intra-module constraints are easily resolved and any resolution to them adds the same constant to total 

energy. 

 

a) b)  

 

Fig. 2 Cross-sections through example energy surfaces: (a) RC energy surface, (b) corresponding MC energy 

surface. Specifically, the cross-section created by the sequence of state configurations in the language -1
x
1

(N-x)
 

for x=[0, N].  ‘X’ markers in (b) indicate the subset of state configurations that are locally optimal (where all 

states that are in the same module take the same value, i.e. configurations in the language -1
kx

1
(N-kx)

 for 

x=[0, n]). These correspond exactly to the points in (a) when adjusted in magnitude by a factor of p. 

Energy-minimising state-space trajectories in MC (as described by rHN-0) create an idealised 

nearly-decomposable dynamical system (Simon, 1969; Watson, 2006; Watson & Pollack, 2005). The 

strong dependencies within modules in MC are quickly and easily resolved and the aggregate effect of 

one module on another is produced via many pairwise connections that act in a coherent direction 

(governed by the corresponding entry in R). This effects an essentially low-dimensional interaction 

between any two modules (see also ‘R-matrix’, Wagner, Booth & Bagheri-Chaichian, 1997). This 

utilises our ‘modular interdependency’ formalisation (Watson, 2006; Watson & Pollack, 2005) of the 

nearly-decomposable concept in an optimisation framework. In practical terms MC can be loosely 

interpreted as a modular optimisation problem such as a resource-allocation problem with modular 

constraints (Watson, et al., 2010a). It is worth emphasising that if we were to approach the MC 

problem using a sensible problem representation that exploited the underlying n-dimensional search 

space defined by R, then it would be a fairly easy problem; But, our dynamical systems are not given 

such a representation, and without it, local search in the N-dimensional space cannot resolve the 

constraints of the underlying problem R. If the global optimum of R is unique then the basin of 

attraction for it under local search in MC may be as small as 2
-n

 of the configuration space, and to 

escape from any local optimum will require a specific k-bit change to find a configuration of higher-

fitness. 

3. Simulation Results 

Fig. 3 shows some example trajectories of rHN-0 in a random (RC) problem. We see clearly that this 

problem has several different locally optimal configurations but it is not difficult to make significant 

reductions in energy (compared to the initial conditions) using rHN-0. 
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Fig. 3 a) ten example trajectories of rHN-0 in a random (RC) problem (n=20). b) the distribution of energies for 

initial (random) configurations in comparison to final (locally optimised) configurations (1000 samples of each). 

 

Fig. 4 shows some example trajectories of rHN-0 in the modular problem corresponding to the random 

problem of Fig. 3. We see that rHN-0 makes significant reductions in energy as we might expect. But, 

as predicted, rHN-0 is unable to resolve any of the inter-module dependencies in MC and 

improvements shown in Fig. 4.a come solely from resolving the trivial-to-solve intra-module 

dependencies. This is revealed in Fig. 4.b where only the energy contribution from inter-module 

weights are plotted. These show almost no improvement on average because the intra-module weights 

are over-powering inter-module weights and causing the network to settle on whichever random 

configuration of R was closest to the initial condition.  

 

a) b)  

Fig. 4 Ten example relaxations of rHN-0 on modular problem corresponding to random problem of Fig. 3 (here, 

and henceforth except where noted, n=20, k=10, N=200, p=0.01, τ =2000). a) reporting total energy, b) 

reporting only the energy contributions from inter-module constraints. Values in (b) may increase because 

inter-module constraints are violated in favour of satisfying relatively strong intra-module constraints.  

In Fig. 5 we apply rHN-G to the modular problem (reporting energies from the inter-module 

constraints only, as per Fig. 4.b). The initial trajectories are identical to those of rHN-0 (compare Fig. 

5.a and Fig. 4.b). The distribution of the end-points of these trajectories, i.e. locally optimal attractors, 

is shown in relaxations 1-1000 of Fig. 5.b. When associative learning is activated (at relaxation 1001 
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onwards) we see that within a very small number of relaxations rHN-G has significantly improved its 

ability to resolve inter-module constraints and the distribution of attractor states is very different from 

rHN-0. After associations have been learned, we see trajectories that fall in energy faster and to lower 

energy attractors (Fig. 5.c). By the end of the learning process, rHN-G is not only climbing out of the 

locally-optimal configurations created by the intra-module weights, but it is consistently finding the 

best resolution of inter-module weights as well. This is because rHN-G is not (merely) equivalent to 

running rHN-0 on the underlying RC problem, but in fact it becomes equivalent to running itself, i.e. 

rHN-G, on the underlying RC problem – with the consequence of canalising correlations in this 

reduced search space also. 
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Fig. 5 rHN-G applied to the modular problem (Fig. 4), (energies measured using only inter-module 

constraints). a) ten example trajectories before learning, b) end points of all relaxations without 

learning (relaxations 1-1000) and during learning (1001-2000), the broken horizontal line indicates 

the lowest energy attractor found over all non-learning relaxations, c) 10 example trajectories after 

learning, d) histogram of energies found before learning (=rHN-0) and after learning. Example 

trajectories show that before learning (equivalent to rHN-0) inter-module constraints are not 

resolved on average (mean reduction in energy is negligible), whereas after learning rHN-G is 

resolving many inter-module constraints very quickly. (learning rate for rHN-G, δ=0.0003). 

 Fig. 5 already shows that generative associations significantly improve the ability of the 

system to globally optimise constraints; but is rHN-G succeeding in the manner we hypothesised? Is it 

transforming the scale of behaviour/re-scaling the search space to search in combinations of modules 

instead of combinations of the original problem variables? Because we know where the modules are in 

MC we can easily assess whether rHN-G is creating state changes that correspond to modules. Fig. 6 
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examines the behaviour of rHN-G on the modular problem in more detail. This shows that rHN-G 

learns the intra-module correlations quickly (Fig. 6.a) revealing the modular structure of the problem 

correctly (Fig. 6.b). Note that the individual squares in Fig. 6.b are blocks of 10x10 variables, not 

individual pixels - this neatness results from learning intra-module correlations from locally optimal 

configurations. rHN-G exploits this learned structure to create correlated state changes that correspond 

to modules (Fig. 6.c - e). Thus rHN-G is effectively moving from one local minimum to another, 

corresponding to the discrete points in Fig. 2.a, and hence behaving very like rHN-0 would behave in 

the underlying R problem.  

Moreover, towards the end of this experiment, rHN-G is recalling combinations of multiple 

modules of very high quality (Fig. 6.f - i) – thus it not only learns the basic modularity of the problem 

in order to operate like rHN-0 at the macro-scale but additionally, learns inter-module structure above 

the level of individual modules. This means that it is no longer using search in the space of module 

combinations but is simply recalling more or less complete state configurations – so the ability to 

exploit modularity, although vital to finding good solutions, is transient and becomes redundant (this is 

reminiscent of (Hinton & Nowlan, 1987; Mills & Watson, 2005) where the ability to find solutions 

becomes redundant when complete solutions can be remembered/inherited). There is, of course, no 

special feature of the system that pre-specifies the scale of problem structure that might be discovered, 

so if higher-level correlations exist, learned multi-module correlations that exploit them are to be 

expected (this indicates potential for exploiting hierarchical (Lenaerts, Chu, & Watson, 2005; Watson, 

2006) or multi-scale modularity not examined in this paper). 
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e)     i)    

Fig. 6 Details of rHN-G on MC. a) The ratio of learned intra-module to inter-module average weight magnitudes. 

This shows that for some period the correlations identified within each module are more than five times 
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stronger than the correlations between variables in different modules. b) The learned weight matrix, M, after 

30 relaxations. This shows that the intra-module (block-diagonal) weights are strongly positive whilst the inter-

module weights are lower in magnitude and vary in sign (mii values are visualised as 0 to facilitate appropriate 

image scaling). Note that the individual squares apparent in this figure are not individual pixels but blocks of 

10x10 pixels (compare with Fig. 7.a). c) The frequency of state changes generated by this matrix that change 

more than one state variable simultaneously, and the frequency with which these improve the solution (i.e. 

lower energy). These are measured during relaxations 30-60, showing that at this stage ‘block-flips’ of size k=10 

are common, but changes smaller than this do not occur (except changes of size 1). d) example state 

configurations over one relaxation (relaxation 60) visualising example block-flips, e) example trajectories 

(relaxations 50-60, energies measured using only inter-module constraints), f)-i) as per b-e, for relaxations 230 

to 260, showing that at this later stage in learning rHN-G is making more multi-state changes and a greater 

proportion of them are likely to make multi-block state changes that update several modules simultaneously – 

i.e. it is recalling useful combinations of modules, and creating larger instantaneous decreases in energy. 

Fig. 6 shows that generative associations enable the system to sample specific high-quality 

configurations that are distant in Hamming space from the current configuration without visiting the 

lower-quality intermediate solutions, and this gives the system the opportunity to escape from poor 

quality, locally-optimal solutions that would otherwise trap the local search process. These operate by 

effectively modifying the neighbourhood of the space such that particular correlated macro-variations 

occur with high probability. A search trajectory using these correlated changes may violate local 

energy minimisation by skipping over intermediate configurations of higher energy. 

The ability to exploit structure in this manner is not to be taken for granted despite the neat 

structure of the modules in the MC problem. Fig. 7 is a control experiment using relaxations of length 

200 timesteps rather than 2000 (measured over the same number of learning updates, relaxations 30-

60, as per Fig. 6 b-e.) This therefore reduces the separation of timescales between the use of 

associations (occurring every timestep) and the modification of associations (occurring at the end of 

each relaxation). These relaxations are not long enough to ensure that a local optimum is reached, and 

therefore the associations learned are much less neat than those shown in Fig. 6.a. Although the 

learned weight matrix does still show evidence of the modules on the diagonal, the average size of 

multi-variable state changes is not neatly peaked at multiples of k (compare Fig. 7.b with Fig. 6.c), and 

the multi-state changes that do occur do not necessarily correspond to whole blocks (compare Fig. 7.c 

with Fig. 6.d). As a result, the ability to reduce energy (Fig. 7.e) is severely impaired. 
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  d)  

Fig. 7 Details of rHN-G on MC using short relaxations (t=200). Frames a-d are otherwise as per frames b-e of 

Fig. 6. 

In Fig. 8 we compare rHN-G with the ability of rHN-S. We see that when p=0.1 rHN-S is able to find 

good quality solutions (albeit more slowly than rHN-G). With inter-module dependencies of this 

strength, all configurations that resolve intra-module constraints are (still) locally optimal, but local 

optima where more inter-module constraints are resolved have larger basins of attraction than those 

where less inter-module constraints are resolved (this is true to some extent for all non-zero p). Thus 

some correlations between modules are observable in the initial dynamics of the system that rHN-S 

can learn and exploit. However rHN-S can only make progress when inter-module weights are 

strengthened sufficiently to remove local optima (Watson, et al., 2010a; Watson et al., 2009a), and 

when inter-module weights are initially weak this must be done slowly to avoid accidentally 

reinforcing spurious correlations. rHN-G, in contrast, is not limited by weak between-module 

correlations (see Supplementary on-line materials); so long as it can learn the within-module 

correlations (which are easy to identify from locally optimal configurations) it will be able to 

flip/exchange one module-solution for another as required to search configurations at the macro scale. 

It can thereby reveal whether one module configuration resolves the inter-module dependencies better 

than another. This difficulty of learning inter-module correlations with selective associations is 

exacerbated when inter-module weights are weaker (Fig. 8.c and d), but generative associations are 

relatively insensitive to this change since the intra-module correlations that need to be learned are still 

obvious (see also Fig. S1). Once the intra-module correlations are encapsulated, the energy-changes 

gained by resolving inter-module constraints are easily revealed even if small.  

Note that the difference between rHN-S and rHN-G in their ability to resolve inter-module 

dependencies is greatest when inter-module weights are weakest, but in the limit, if inter-module 

weights are very weak then there is correspondingly little to be gained by resolving them. An 

examination of this trade-off in a simplified version of the MC problem (Mills, 2010; Watson et al., 
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2009a) and Supplementary on-line material) indicates that there is, nonetheless, a significant middle 

ground where inter-module dependencies are difficult to learn but make a significant contribution to 

system energy when resolved (Fig. S1). 
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Fig. 8 Comparison of rHN-G, rHN-S and rHN-0 on MC. a) Energies (inter-module constraints only) of 

relaxation end-points over 1000 relaxations (relaxations 1-1000 rHN-0, 1001-2000 rHN-S, 2001-3000 

rHN-G, p=0.1, δ for rHN-S =0.00075). b) energy distributions of end-points after 1000 relaxations of 

learning. c and d) as per a and b with p=0.01, δ for rHN-S =0.0015. Showing that rHN-S can resolve 

most inter-module constraints (albeit more slowly) if they are sufficiently strong compared to intra-

module constraints, but not otherwise. Also, when inter-module constraints are sufficiently strong 

for rHN-S to operate effectively, although it is successful in increasing the probability of retrieving 

good solutions, it does not exceed the quality of the best solutions found by rHN-0. Learning rates, δ, 

for rHN-S are hand-tuned to converge as late as possible in the 1000 relaxations to give rHN-S the 

best chance of converging on low-energy configurations (learning rate for rHN-G is unchanged, 

δ=0.0003). 

4. Discussion 

The above results illustrate how a simple distributed associative mechanism can modify the structure 

and subsequent behaviour of a dynamical system in a manner that rescales, or coarse-grains, the 

dynamics of the system to a higher level of organisation. This affords search in a higher-level 

abstraction of the original configuration space and has the effect of producing more reliable and more 

complete minimisation of the system energy. rHN-G is a self-modelling dynamical system that 

rescales its own dynamics over time using simple distributed mechanisms that alter the relationships 

between its components using only local information (i.e. pairwise correlations). Using learned 

associations in the generative sense (rather than the selective sense) is intrinsic to this result. This 
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shows that, in a manner previously only seen in relatively sophisticated model-building optimisation 

algorithms, distributed dynamical systems can be transformed by very simple distributed processes 

into systems that resolve constraints between components more reliably and more completely. 

 In the following sections we briefly discuss some related optimisation concepts before 

discussing various analogues of the underlying dynamical processes in other complex adaptive 

systems.  

4.1 Optimisation and computational complexity analysis 

The optimisation behaviour of generative associations in rHN-G depends on the presence of problem 

structure that can be recognised and exploited. However, in related work (Mills, 2010), results on 

minimising the energy of a 2D Ising model demonstrate that an explicit modular structure, as per MC, 

is not required to observe the advantages of an algorithm that automatically identifies and exploits 

problem decomposition in this manner. In this case, correlations in locally optimal configurations 

reveal the lattice structure of the problem and learned associations enable a re-scaling that effects 

changes in ‘domain-spins’ rather than the spins of individual variables. This work also shows that 

whereas rHN-S requires inter-module dependencies to be strong in order to learn and exploit them, an 

algorithm like rHN-G can exploit modules even in the case where inter-module dependencies are 

obfuscated by relatively strong within-module constraints (see also, Supplementary on-line material).  

In the results above we see that the relevant modules are discovered surprisingly quickly - 

within about 30 relaxations. The lower limit on this number is determined by the probability of 

observing within-module correlations without observing spurious between-module correlations. In 

fact, any single training sample will reinforce some association between any pair of modules, so 

learned associations must develop slowly enough for many observed configurations to average-out 

spurious correlations. Analytic work (Mills, 2010) shows that this can be done in surprisingly few 

observations when local optima are used as the training samples. (In Mills, 2010, each observation is 

independent, whereas in rHN-G even the first observation biases the second observation to some 

extent; However, the results here indicate that this is not a significant hindrance). 

Our model therefore illustrates how a distributed learning mechanism can be used to identify 

and exploit problem structure efficiently without a priori domain knowledge. One might reasonably 

question, however, exactly how the cost of inducing a model (that subsequently makes solving the 

problem easy) compares with the cost of ‘brute forcing’ the solution without a model. In the 

Supplementary on-line material we show formally that it is possible in some problems to learn the 

model and solve the problem in time that is a polynomial function of the system size whereas solving 

the problem without the model takes exponential time. This result is dependent on the presence of 

appropriate problem structure, of course (Wolpert & Macready, 1997), but there exist systems, namely 

modular ones, where the mechanism demonstrated can find low-energy configurations in polynomial 

time that cannot be found by a non-adaptive model in less than exponential time on average. The 

Supplementary material also shows a numerical study of the sensitivity of rHN-0, rHN-S and a variant 

of rHN-G (Mills, 2010) to the strength of inter-module connections, p. This study shows that there is a 

significant region of p where the problem is difficult for rHN-0 and that both rHN-S and rHN-G offer 

an advantage in this region. But whereas rHN-S finds low p increasingly difficult (because inter-

module dependencies are over-powered by intra-module dependencies), rHN-G is almost insensitive 

to p. 

4.2 Building-blocks and model-building 

The idea of discovering and exploiting modules has been a ‘holy grail’ for a sub-school of 

evolutionary computation ever since the inception of the field (Goldberg, 1989; Holland, 2000). 
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Initially, the idea was that sexual recombination or ‘crossover’ would automatically identify good 

combinations of genes (‘building blocks’) and combine them to find better, larger combinations of 

genes. However, there has been significant difficulty in illustrating that genetic algorithms, GAs, can 

achieve this (Forrest & Mitchell, 1993; Watson, 2006). Importantly, it is crucial to realise that, 

although a GA with crossover can, under some circumstances, identify and recombine building-blocks 

with provably superior time complexity to a non-crossover GA (Watson, 2006; Watson, Weinreich & 

Wakeley, 2011; Watson & Jansen, 2007), this advantage relies intrinsically on the correspondence 

between epistatic dependencies and physical linkage – i.e. the bits of a building-block need to be next 

to each other on the genome. Thus the canonical GA cannot solve a problem like that which we 

address here, where adjacency information cannot be used (note that rHN-G’s ability to learn linkage 

information from observed correlations is entirely insensitive to the ordering of problem variables).   

Accordingly, there has been considerable research effort directed at methods that discover and 

exploit building-blocks without presupposing this ‘tight linkage’, as it is known. So called ‘linkage 

learning’ GAs and ‘model-building’ optimisation algorithms include ‘estimation distribution 

algorithms’ like the Bayesian Optimisation Algorithm (Pelikan, Goldberg & Lobo, 2002; Yu, 

Goldberg, Yassine & Chen, 2003; Pelikan, 2002). rHN-G can be understood as a form of model-

building optimisation algorithm (see, in particular, bivariate models, e.g. Yu, Goldberg, Yassine & 

Chen, 2003) but in addition to the differing conceptual motivations and distributed implementation 

there are also two important algorithmic distinctions (Iclanzan & Dumitrescu, 2007; Mills & Watson, 

2011; Mills, 2010): 1) Whereas previous methods have used induced models to bias the initial 

conditions of further search, we use the model to provide variation in a lower-dimensional space. This 

is essential to scale-up the search process properly (as per the original building-block intuition, 

Watson, 2006). 2) Whereas previous methods build a model from correlations observed in above-

average-fitness configurations, we build the model from locally optimal configurations. This greatly 

amplifies the ‘signal’ from which correlations can be learned and helps to separate meaningful 

correlations from spurious ‘noise’ (see Fig. 7). A separation of timescales, using repeated local search 

from many different initial conditions whilst slowly learning problem structure, is essential to achieve 

this (Watson, et al., 2010a; Mills, 2010). These features (see also Iclanzan & Dumitrescu, 2007) are 

central to the behaviour illustrated in this paper and are developed formally in related work on multi-

scale search (Mills, 2010; Mills & Watson, 2011). But crucially, in the current paper these behaviours 

are modelled in a distributed system without using centralised data structures or a centralised control 

architecture. 

4.3 Implications for analogous systems 

Cognitive problem solving: Although we are using a neural network model, our main research 

questions are not motivated by cognitive systems. Nonetheless, distributed constraint optimisation is 

relevant to cognitive problem solving (Ackley, Hinton & Sejnowski, 1985; Hinton & Sejnowski, 

1983). Implications for problem solving of the self-modelling framework with Hebbian learning are 

discussed by Fernando et al (Fernando, Goldstein & Szathmáry, 2010). These authors use Hebbian 

learning to modify the trajectory of a random-mutation hill-climbing process as per rHN-S
1
. Fernando 

et al suggest that the ability to (re)structure a local search process in this manner is relevant to solving 

‘insight problems’ that are otherwise problematic for local search processes. The additional ability (as 

demonstrated by rHN-G) to abstract-away or encapsulate low-level details and thereby reason about a 

                                                           

1
 Although these authors attribute the improved optimisation ability to natural selection (Fernando & Szathmáry, 

2010), no replication is necessary to implement this algorithm, as shown here and in (Watson et al., 2009a; 

Watson, et al., 2010a), and the associative network employed in (Fernando, Goldstein & Szathmáry, 2010) is not 

evolved but learned via Hebb’s rule from locally-optimal solutions as per rHN-S. 
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system using higher-level features or concepts, suggests aspects of cognitive problem solving that are 

also intuitive (Chase & Simon, 1973; Miller, 1956) and have been exploited in classical (symbolic) AI 

(Rosenbloom, & Newell, 1986), but not previously shown in a distributed neural architecture. 

Crucially, such processes enable improvements to a proposed solution/neural activation pattern that 

cannot be explained by incremental improvement in the original space of problem variables/neural 

activations since they involve (individually inferior) changes to multiple variables that are beneficial 

only in combination.  

Multi-agent systems/games on networks: The default dynamics defined by the Hopfield equation are 

analogous to those of a multi-agent system where agents play pairwise games on a network (Pacheco, 

Traulsen, & Nowak 2006; Davies, Watson, Mills, Buckley, Noble, 2010; Van Segbroeck, Santos, 

Pacheco, Lenaerts, 2010). Each connection in the network represents a game between two agents. The 

pay-offs for those games, defined by Ω, constitute a mixture of coordination games (ωij>0) and anti-

coordination games (ωij<0) (Davies, Watson, Mills, Buckley, Noble, 2010). Each agent (node) adopts 

the strategy (state) that maximises their pay-off given the conflicting constraints of the multiple games 

in which they participate. The symmetric nature of connections (ωij=ωji) ensures that each interaction 

is a potential game, and the fact that the utility of an agent is a sum over many potential games ensures 

that the total system can be described as a potential game also (Chapman, Rogers, Jennings & Leslie, 

20; Chapman, 2009), therefore exhibiting only fixed-point attractors/Nash equilibria. Solving the 

constraint optimisation problem defined by Ω is then equivalent to the problem of maximising total 

welfare in the corresponding multi-agent network (Chapman, 2009), and local optima found by rHN-0 

correspond to Nash equilibria where no single agent can improve their utility by changing strategy 

unilaterally.  

Our recent work shows that if agents gradually change their ‘perception’ of the utility function 

with another player, so as to prefer the situations they currently find themselves in, then these 

preferences modify subsequent agent interactions according to Hebbian principles (Watson, et al., 

2010c), causing the system as a whole to improve its ability to find configurations of high total welfare 

in the same manner as rHN-S (Davies, Watson, Mills, Buckley, Noble, 2010). This is closely related to 

a simple form of reinforcement learning where agents play the strategy that maximises utility given 

the expected strategies adopted by other agents based on past behaviour (Leslie & Collins, 2006; 

Watson, et al., 2010c; Davies, Watson, Mills, Buckley, Noble, 2010). But given rapid relaxations and 

slowly changing associations (Watson, et al., 2010a), a simple habituation of observed correlations at 

equilibria achieves the same outcome as a preferential reinforcement of good correlations (Davies, 

Watson, Mills, Buckley, Noble, 2010). Generative associations in such a system would be analogous 

to the formation of coalitions where agents use a correlating mechanism (i.e. the random variable X, in 

Eq. 7) to enact simultaneous strategy changes and share the utility gained (i.e. adopt strategy changes 

if they increase group utility) (Leslie & Collins, 2006; Chapman, Rogers, Jennings & Leslie, 20; 

Chapman, 2009; Young, 2001; Hart & Mas-Colell, 2000).  

Ecological networks: Our recent work has investigated a Lotka-Volterra model of an ecosystem of 

multiple species with evolvable inter-species fitness dependencies analogous to selective associations. 

This work shows that natural selection at the species level to alter these fitness dependencies results in 

associative learning and the system level (Lewis, 2009). An abstract model of evolved symbiotic 

relationships that effect changes in the unit of selection (Watson, et al., 2009b; Mills & Watson, 2009; 

Watson, Palmius, Jackson, Mills, Powers, Buckley & Penn, in prep.) (see also Powers, Mills, Penn, 

Watson, 2009; Powers, Penn & Watson, 2007; Powers, 2010 for discussion of general concepts) 

illustrates rHN-G-style adaptation in an evolving ecosystem. This latter work provides a model for the 

major transitions in evolution where “entities that were capable of independent replication before the 

transition can replicate only as part of a larger whole after the transition” (Maynard Smith & 
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Szathmary, 1995; Watson & Pollack, 2003; Watson, 2006). In that work we endow agents with the 

ability to affect the probability of ‘co-dispersal’ with other species and we observe that the 

associations they evolve create new units of selection that canalise naturally co-occurring species in 

the same manner that rHN-G creates ‘emergent macro-variables’ that canalise partial solutions. In the 

current neural network model we are better able to formalise the adaptive capabilities of this process 

and understand its relationship to associative learning. 

Gene expression networks: At a completely different biological scale, the same principles apply to 

the evolution of connections in a gene expression network (Watson, et al., 2010b). That is, if a gene 

expression network, controlling the mapping between genotype and phenotype, is evolved on a given 

fitness landscape it will tend to increase the robustness of, or ‘canalise’ (Wagner, Booth & Bagheri-

Chaichian, 1997; Siegal & Bergman, 2002; Riegler, 2008), phenotypes that are locally optimal. 

Evolved changes to the connections in this network therefore build-up an associative memory of past 

selective environments that enables superior ability to maximise fitness. We are not yet sure whether 

this result is analogous to rHN-S or rHN-G – both seem to be possibilities.  

Since canalisation reduces the effective degrees of freedom of a system, it might seem 

counter-intuitive that it has the effect of increasing adaptability or evolvability in this manner. But 

canalisation and evolvability are really two sides of the same coin (Kirchner & Gerhart, 1998; Watson, 

et al., 2010b; Draghi, Parsons, Wagner & Plotkin, 2010). That is, removing some degrees of freedom 

whilst retaining others can enhance the ability of the system to find solutions by focussing variation in 

useful regions of configuration space. These ideas are related to evolved exploration distributions 

(Toussaint & von Seelen, 2007; Izquierdo & Fernando, 2008; Jones, Arnold & Bürger, 2007) and 

‘facilitated variation’ where an evolved ‘memory’ of past selective environments and generalisation to 

new selective environments has also been suggested (Parter, Kashtan & Alon, 2008).  

 

General Dynamical Systems: The notion that self-organisation can transform a high-dimensional 

(disordered) system into a low-dimensional (ordered) system is familiar in many domains. Often we 

are interested in characterising the emergent low-dimensional variables (see ‘order parameters’, 

Haken, 1983) to provide a description that represents this order, and in using these to characterise a 

transformation in the system dynamics to a higher-level of organisation (Fuller, 1975). Clearly, the 

behaviour of rHN-G with learned associations on an N-dimensional MC problem has a low-

dimensional description – the learned associations reduce the effective degrees of freedom of the 

system. And it arrived at this configuration of associations by self-organisation; by the application of 

simple local rules that change the relationships between system components in a manner determined 

by its own dynamics.  

However, we are not merely interested in the fact that the system has a low-dimensional 

description, but more specifically, we are interested in the similarities and differences between this 

new low-dimensional behaviour and the original behaviour of the system. That is, after some learning 

(Fig.6.b-e) rHN-G behaves like rHN-0 on the underlying n(=N/k)-dimensional RC problem. To some 

degree, this is similar to a coarse-grained description of the behaviour of its former self, i.e., of rHN-G 

without learned associations (i.e. rHN-0) on the full N-dimensional MC problem. Thus, the emergent 

variables in rHN-G reflect to the modularity/correlations in its initial dynamics. But rHN-G with 

learned associations is not exactly a low-dimensional description of its former self – if it were, it 

would reach the same attractors as rHN-0, but it reaches a different distribution of attractors than 

rHN-0. It does not find the same distribution of attractors that rHN-0 finds on the full N-dimensional 

MC problem; it finds the distribution of attractors that rHN-0 finds on the underlying n-dimensional 

RC problem. Accordingly, rHN-G is not just transforming into any low-dimensional system, nor more 

specifically into a low-dimensional model of itself – but, in fact, it is transformed into a new system, 

one with improved ability to minimise energy. It does so by creating short-cuts in the neighbourhood 
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structure of state-configuration space; enabling movements in a lower-dimensional space that skips 

over intermediate configurations of higher-energy.  

 We can make some sense of this idea of a dynamical system that spontaneously improves by 

taking a ‘meta-dynamical system’ perspective (Bourgine & Varela, 1992). Because the association 

variables are treated separately from the state variables we can treat them as parameters of the state 

dynamics even though they are in actuality (slow changing) variables. In the joint space of state 

variables and associations together we simply observe a dynamical system doing what it does naturally 

– there is no sense in which the system is improving its ability to minimise energy. But if we regard 

the associations as parameters of the state dynamics, then we can characterise the changes in the 

associations by how they transform the dynamics of the state variables. In particular, we can assess 

whether this transformation improves the ability of the state dynamics to minimise energy, as we have 

shown. This enables us to characterise the system behaviour as ‘problem solving’ rather than just self-

organising, and it enables us to say that the system is transformed into a different system (with respect 

to the behaviour of its state dynamics), even though at the same time it is merely the same system in a 

new configuration (when described in terms of states and associations together). Likewise we can 

characterise how the evolution of robustness effects an increase in evolvability (an improvement in 

ability to evolve), even though at the same time it is merely the (normal) evolution of a given system 

(the genotype and the gene regulation network together) that produced this result (Watson, et al., 

2010b). This meta-dynamical systems perspective is useful in other, non-network, models too – for 

example, the evolution of social traits with the concurrent evolution individual traits that alter the 

contextual parameters of that social behaviour (Powers, Penn & Watson, 2011). But in an adaptive 

network, the manner in which changes to connections can alter state dynamics is much richer and has 

potential to exploit principles of associative memory.  

5. Conclusions 

This paper uses the Hopfield network as a model system to extend the emergent collective 

computational abilities (Hopfield, 1982) of dynamical systems. This provides a concrete model of how 

a self-organising dynamical system or adaptive network can transition from one scale of dynamics to 

another over time as a result of the changing relationships between components. The processes 

involved use only very simple, and fully-distributed, positive feedback mechanisms, which are 

relevant to other ‘active linking’ systems and adaptive networks, beyond neural network models 

(Watson, et al., 2010c). We have been investigating the effect of selective associations in various 

adaptive networks such as social (Davies, Watson, Mills, Buckley, Noble, 2010), genetic (Watson, et 

al., 2010b) and ecological networks (Lewis, 2009). However, the generative associations studied in the 

current paper offer a transformation in the dynamical behaviour of a system, and the ability of the 

system to minimise energy, that is not observed with selective associations. Specifically, whereas 

selective associations reduce degrees of freedom by guiding state trajectories in particular directions, 

generative associations ‘fold-away’ redundant degrees of freedom, effectively encapsulating partial 

configurations/partial solutions, and skipping over energy barriers/fitness valleys rather than trying to 

smooth them out. Computationally, rHN-G thus provides a distributed optimisation algorithm with 

similar capabilities to our formal optimisation algorithms that explicitly operate over several scales of 

organisation (Mills, 2010; Mills & Watson, 2011).  

This suggests a neurally plausible algorithm with potential importance for cognitive problem 

solving, but because the model with generative associations is still fully distributed it is also relevant 

to non-neural adaptive networks. For example, the behaviour exhibited in the evolution of new units of 

selection (Watson, et al., 2009b) is closely analogous to the behaviour of generative associations in the 

Hopfield model shown here. In fact, it seems that the difference between selective and generative 
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associations is closely analogous to the difference between ordinary coevolution and symbiosis that 

creates new units of selection, respectively (Watson, Palmius, Jackson, Mills, Powers, Buckley & 

Penn, in prep.). Together this suggests the exciting idea that we can view the organisation of symbiotic 

relationships in an ecosystem as a distributed optimisation process greater than the sum of the parts; 

i.e., over and above the evolution of the individual species. 

In conclusion, we find that it is possible for a dynamical system to be modified by generative 

associations into a new system, operating at a higher level of organisation, which minimises total 

system energy more reliably and more completely. The Hopfield model with generative associations 

offers an algorithmic framework for understanding transformations and emergent collective behaviour 

in various (non-neural as well as neural) domains – e.g., the emergence of coalitions in social systems 

and of higher-level adaptive units in the major transitions in evolution. 
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Transformations in the Scale of Behaviour and the Global Optimisation of 

Constraints in Adaptive Networks - Supplementary on-line material 

Richard A. Watson, Rob Mills and C. L. Buckley 

The computational cost of model-building 

Our model illustrates how a distributed learning mechanism can be used to identify and exploit 

problem structure without a priori domain knowledge. One might reasonably question, however, how 

the cost of inducing a model (that subsequently makes solving the problem easy) compares with the 

cost of ‘brute forcing’ the solution without a model. Here we show formally that it is possible in some 

problems to learn the model and solve the problem in time that is a polynomial function of the system 

size whereas solving the problem without the model takes exponential time.  

We illustrate this by considering p close to zero (p=ε), in the modular problem with idealised 

inter-module constraints (i.e. all inter-module constraints are positive) (Mills & Watson 2011 sub., 

Mills 2010, Watson, Buckley & Mills 2009a). This makes it a consistent problem such that a single-

run of a hill-climber in the underlying low-dimensional problem finds the global optimum, but the 

extreme imbalance of internal and external weights means that the basins of attraction for each local 

optimum in the high-dimensional problem are almost equal, revealing no inter-module correlations 

(see Fig. S1). In other words, in the full problem, a single-run of a hill-climber is very unlikely to find 

the global optimum (no more likely to find the global optimum than any other local optimum). 

The time to find a local optimum in this problem is polynomial in the size of the system and 

equal for rHN-0 and rHN-G, so we need only consider the number of relaxations (rather than 

individual time-steps) required to find the global minimum in these calculations. Firstly, the expected 

number of relaxations for rHN-0 to solve this problem is on average TrHN-0 = 2
n
/2, where n is the 

number of modules or blocks (c.f. the proportion of the search space that is in the basin of attraction 

for the global optimum). Whenever n is a linear function of N, rather than a constant (Watson & 

Jansen 2007), the expected time for rHN-0 to solve this problem is therefore an exponential function 

of the problem size.   

 In contrast, if it already had the information that all block-diagonal weights 
B

ijm need to be 

high, and all off-diagonal weights 
B

ijm
′
 need to be low, then rHN-G could solve this problem easily. In 

the limit where 
B

ijm =1 and 
B

ijm
′
=0, rHN-G will find the global minimum in every relaxation in 

polynomial time. More generally, suppose that when rHN-G is carrying out a macro-variation it has a 

probability of 1 of including all variables within the module of the focal variable and a finite 

probability (not a function of N) of making a mistake and also including a variable from another 

module. If it makes such a mistake it may not be able to find the global optimum in this relaxation, but 

so long as the probability of a mistake is sufficiently small, then a polynomial number of relaxations 

will be sufficient to complete a relaxation with no mistakes and find the global optimum. We therefore 

calculate the probability of learning weights that are expected to produce less than one mistake per 

application of g. 

State configurations that are locally optimal in MC will always show within-block variables 

having states that agree. Thus every training sample increases the weights within blocks, 
B

ijm . In 

contrast, pairs of states in different blocks will sometimes agree and sometimes disagree depending on 

the particular local optima sampled. When p=ε they disagree or agree with approximately equal 

probability. This is what makes p=ε difficult for rHN-S, because rHN-S needs to learn 
B

ijm
′
=1 in order 

to be successful. But rHN-G does not need to correctly learn inter-module correlations – that is, so 

long as the intra-module correlations are learned correctly rHN-G will be able to make correct macro-

variations that effectively jump from one local optimum to another. Nonetheless, although rHN-G 

need not learn correct inter-module correlations it must avoid learning incorrect inter-module 

correlations. So, if 
B

ijm
′
values increase as often as they decrease on average this means that their 

expected value is 0 as desired. However, if these weights are learned from a small number of samples 
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then they may be appreciably non-zero and cause mistakes in the macro-variations, as described above 

(see Mills (2010) for related analysis).  Thus: 

• The weights within blocks, 
B

ijm , increase linearly with T – so we choose δ=1/T such that they 

will have the value 1 on the T 
th
 epoch. 

• All 
B

ijm
′
values will undergo a random walk – with equal probability of increasing or 

decreasing in each epoch. The variance of the walk is lower if we take many small steps rather 

than a few big steps.  

• We wish to find the minimum number of relaxations, T, such that 
B

ijm
′
values will produce on 

average less than one error in a subsequent relaxation. Thus we want all 
B

ijm
′
values to be 

sufficiently small such that, conservatively, none of them imposes a state correlation between 

variables in different blocks. 

Formally, let the external weights 
B

ijm
′
 increment or decrement by m∆  with probability ½ every time-

step. It is easy to show that after T time-steps the expectation of 
B

ijm
′
will be zero, 0][ =

′B

ijmE , and the 

variance will be
22 )( mTmB

ij ∆=
′

σ . Given 
T

m
1

=∆ , the variance will simply be: 

 
T

m
B

ij

1
)(

2
=

′
σ .  Eq. 9 

For rHN-G on MC the expected value of the probability of making an erroneous association is 

][ B

ijmE
′

 (per variable, per application of the variation operator g). Consequently, the expected 

number of erroneous associations made if there are Q external weights is Qτ ][ B

ijmE
′

. As ∞→T  the 

mean number of wrongly induced states will converge on the expectation and therefore tend to zero. 

However, for finite T, a pessimistic estimate
1
 of the number of wrongly induced states, λ , is given by 

 λ = [ ] )(2 B

ij

B

ij mmEQ
′′

+ στ .   Eq. 10  

From Eq. 9 and Eq. 10 we can show that with high likelihood   

T
Q

2
0+< τλ .   

Since T must be non-negative we can drop the absolute function. Consequently, the number of time 

steps needed in order be practically confident that less than λ  states are wrongly induced is: 

2

224

λ

τQ
T > . 

To be practically confident that less than one state is wrongly induced then  

224 τQT > . 

 In conclusion, since Q and τ are each only a polynomial function of N (Q<N
2
 and, in our 

experiments, τ =10N), the number of relaxations, T, required by rHN-G to learn weights that ensure 

that almost no mistakes are made is also a polynomial function of N. (In practical terms T need not be 

as large as 
224 τQ since many errors can be tolerated without precluding success). Hence rHN-G finds 

                                                           

1
  

B

ijm
′
is normally distributed and hence 96% of points lie within two standard deviations from the mean. 
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the global optimum in polynomial time. Whereas for rHN-0 (and rHN-S), the expected time to find the 

global optimum is exponential in the system size. 

Fig. S1 shows a numerical study of the sensitivity of rHN-0, rHN-S and a variant of rHN-G 

(Mills 2010) to the strength of inter-module connections, p. This study shows that there is a significant 

region of p where the problem is difficult for rHN-0 and that rHN-S and rHN-G offer an advantage in 

this region. The remarkable finding of this study is that rHN-G is essentially insensitive to p, meaning 

that, unlike rHN-S, its ability to resolve inter-module constraints is not dependent on their strength.  

a)  

b)         

Fig. S1 The sensitivity of rHN-0, rHN-S and a variant of rHN-G to the strength of inter-module connections, p 

(see Mills (2010) pp.128-149 for details) in a simplified MC problem (N=100, k=5); a) number of time-steps to 

find the global optimum, b) difference in energy between the best-found configuration after 50,000 time-steps 

and the global optimum. Showing that, although there is a considerable range of p where rHN-S outperforms 

rHN-0, rHN-G outperforms rHN-S and rHN-0 more broadly and is, in fact, almost insensitive to p - finding the 

global optimum very quickly in all cases. 

 

For references see main text. 


