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Back to optimality: A formal
framework to express the dynamics of
learning optimal behavior

Eduardo Alonso1,2,3, Michael Fairbank1,2 and Esther Mondragón2,3

Abstract
Whether animals behave optimally is an open question of great importance, both theoretically and in practice. Attempts
to answer this question focus on two aspects of the optimization problem, the quantity to be optimized and the optimi-
zation process itself. In this paper, we assume the abstract concept of cost as the quantity to be minimized and propose
a reinforcement learning algorithm, called Value-Gradient Learning (VGL), as a computational model of behavior optimal-
ity. We prove that, unlike standard models of Reinforcement Learning, Temporal Difference in particular, VGL is guaran-
teed to converge to optimality under certain conditions. The core of the proof is the mathematical equivalence of VGL
and Pontryagin’s Minimum Principle, a well-known optimization technique in systems and control theory. Given the simi-
larity between VGL’s formulation and regulatory models of behavior, we argue that our algorithm may provide psycholo-
gists with a tool to formulate such models in optimization terms.

Keywords
Optimality, Principle of Least Action, bliss point, reinforcement learning, Value-Gradient Learning

1 Background

Of all the possible trajectories that an object thrown
into the air can follow, why does it follow a parabola?
Why doesn’t it go up, stay a while at its highest point
and then rush down?

Typically, we explain the object’s motion in terms of
the force of gravity and Newton’s second law. Starting
with a description of the initial state (the object’s initial
position and velocity). we will obtain a complete specifi-
cation of the path the object takes by generating it, one
infinitesimal piece at a time. It will be a cumbersome
exercise, but we know we will get the correct answer.
And yet, we will be wrong. Modern physics teaches us
that the true trajectory is the one that makes the
action ‘‘least’’, or, more precisely, stationary (Goldstein,
1974).

Consider the trajectory of the object: on the one
hand, it wants to spend as much time as possible where
the kinetic energy is least and the potential energy is
greatest, that is, at the top of its trajectory; on the other
hand, if it spends too much time at the top of its trajec-
tory, it will need to rush to get up there and get back
down and this will take a lot of action. The perfect
compromise is a parabolic path (Baez, 2005).

Formally, the action to be minimized is the integral
of the Lagrangian function, over time. The Lagrangian

itself describes completely the dynamics of the system
under consideration as the difference between its kinetic
energy (the energy due to its motion, how much ‘‘is hap-
pening’’) and its potential energy (the energy due to its
position or configuration, how much ‘‘could happen’’).
The object follows a particular trajectory not because
of the effect of gravitation per se, but because Nature
minimizes the action by taking the shortest path. This is
the Principle of Least Action (de Maupertuis, 1744;
Euler, 1744; although first formulated by Pierre de
Fermat as the principle of least time in the 17th
century).

Crucially, this principle is equivalent to the Euler–
Lagrange equation of motion. This equation is more
elegant (it works with energy scalars rather than force
vectors) and universal (it applies to any generalized
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co-ordinates) than Newton’s, and, when transformed
into its Hamiltonian form, reflects, via Noether’s theo-
rems, the symmetries of Nature. These are fundamental
concepts upon which modern physics is founded,
including electromagnetism, general relativity and the
Standard Model (Feynman & Hibbs, 1965; Landau &
Lifshitz, 1975; Taylor & Wheeler 2000).1

It has been suggested recently that the Principle of
Least Action is not circumscribed to physics but rather
that it is a general law that also applies to biological
phenomena and even to natural selection (Kaila &
Annila, 2008).

The question is: can we export this analysis to the
study of behavior? Consider the curves depicting the
cumulative number of responses under simple reinfor-
cement schedules as described in Skinner (1959). They
show a correlation between the rate of responding and
the rate (and magnitude) of the reinforcement. Of all
the possible curves, why do animals follow these curves
in particular?

In a way, we are facing the same questions as with
the trajectories of objects in motion. And, as with
Newton’s laws of motion, several models have been
proposed to explain these patterns of behavior, from
the Matching Law (Herrnstein, 1961) to the
Mathematical Principles of Reinforcement (Killen &
Sitomer, 2003). Yet, we are still missing fundamental
principles that guide our research in the area (although
see Anttila & Annila, 2011, for a strong argument for
the consumption of free energy in the least time for
such as principle).

In the rest of the paper, we present a meta-model of
learning and behavior based on optimal control theory
that fills this gap. In this sense, our proposal is close to
Hanson (1977) and Killeen (1992). First we introduce
the underlying formal framework, described as a rein-
forcement learning process in its broadest sense; in
Section 3 we formulate our model, that we call Value-
Gradient Learning (VGL); in Section 4, we demonstrate
the relation between VGL and Pontryagin’s Minimum
Principle and its convergence to optimality; VGL’s con-
vergence to optimality is proved in Section 5; finally, a
parallelism between regulatory theories of behavior and
our algorithm is drawn.

2 Basic framework

The basic assumption of our proposal is that animals
behave (choose actions, make decisions) to optimize a
given quantity, e.g., to maximize an accumulative
reward signal in reinforcement learning, to minimize
the distance between a distribution of behaviors and
the bliss point in regulatory models, or to maintain a
steady ratio of energetic gain to cost in foraging the-
ories. We acknowledge that it is controversial whether
behavior obeys an optimality principle (e.g., Staddon,

2007). Nevertheless, we endorse the idea that Nature
follows one form or another of the Principle of Least
Action, and that, in any case, such principle is a valid
tool to formulate the laws of behavior dynamics.

Given its generality (Wörgötter & Porr, 2005), we
take reinforcement learning as our basic framework
and express it in terms of optimal control systems. At
the end of the day, animals are behavior systems—sets
of behaviors that are organized around biological func-
tions and goals, e.g., feeding (Timberlake & Silva,
1995), defense (Fanselow, 1994), or sex (Domjan,
1994). More specifically, a behavior system is a closed-
loop control system: The control (response) affects the
system’s output (whether it is reinforced), which in turn
is measured and fed back to alter the control.

A typical scenario is an animal inhabiting a state
space S � R

n, such that at t time it ‘‘lives’’ in state vec-
tor ~xt 2 S. The state space represents any features the
modeler considers relevant, typically a collection of sti-
muli but can also include internal constructs. At each
time, the animal chooses an action ~ut (from an action
space~ut 2 A), which takes it to the next state according
to a model function:

~xt+1 = f ~xt,~utð Þ ð1Þ

and gives it an immediate scalar Ut, given by the cost
function:

Ut =U ~xt,~utð Þ ð2Þ

The animal keeps acting, forming a trajectory of states
~x0,~x1, :::ð Þ indefinitely or until a given terminal state is
reached (for instance, the end of a trial). In this problem
the animal must learn to choose actions that minimize
the expectation of the total long-term cost received
from any given start state~x0. Formally, the problem is
to find an action network A ~x,~zð Þ, where ~z is the para-
meter vector of a function approximator (typically, a
neural network), which calculates actions:

~ut =A ~xt,~zð Þ ð3Þ

such that the following cost-to-go function (aka value
function) is minimized:

J ~x0,~zð Þ=
X

t
gtUt ð4Þ

subject to Equations 1, 2 and 3, where g 2 0, 1½ � is a
constant discount factor that specifies the relative
importance of long-term costs over short-term ones.
Throughout the rest of the paper, we assume that the
action network is differentiable with respect to all of its
arguments, and similar differentiability conditions
apply to the model and cost functions.

At this point, it must be emphasized that the model
function, Equation 1, can represent any given model of
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behavior (Staddon & Cerutti, 2003), and that the quan-
tity to be optimized can be any quantity.

In order to learn the optimal trajectory we use a sec-
ond function approximator, ~J ~x,~wð Þ 2 R, with weight
vector ~w, known as the critic. The idea is to train the
critic to approximate the cost-to-go function, so that
~J ~x,~wð Þ ’ J ~x,~zð Þ for all ~x 2 S. If this is achieved per-
fectly, and if simultaneously the action network always
chooses actions according to the greedy policy:

~u= arg min
~u2A

U ~x,~uð Þ+ g~J f ~x,~uð Þ,~wð Þ
� �

8~x ð5Þ

then Bellman’s Principle of Optimality (Bellman, 1957)
establishes that the trajectories produced will be opti-
mal. Choosing actions by Equation 5 is called the
greedy policy, as it chooses actions that the critic rates
as best.

The question is to ascertain the conditions under
which convergence to optimality is guaranteed and
whether such conditions are behaviorally plausible. In
particular, Temporal Difference (TD)2 comprises a col-
lection of reinforcement learning algorithms that have
become popular in modeling real-time error-correction
learning. TD is model-free, that is, it does not assume
knowledge of Equations 1 and 2. As a consequence, in
order to meet Bellman’s equation, it predicates that
animals learn optimal policies by exploring the whole
state space by repeatedly trying all possible actions at
every possible state. Unfortunately, in most biologically
relevant problems the space state is too large (Ludvig,
Bellemare, & Pearson, 2011), and approximations can
diverge (Fairbank & Alonso, 2012a).

3 Value-Gradient Learning

The Value-Gradient Learning algorithm (VGL) that
we present as an alternative addresses the issue of the
Bellman equation needing to be solved over the whole
state space, in that it turns out to be only necessary to
fully learn the value gradient along a single trajectory,
under a greedy policy, for it to be locally extremal, and
often locally optimal (Fairbank & Alonso, 2012b;
Fairbank, Prokhorov & Alonso, 2013). In describing
VGL, we use what we call trajectory shorthand notation,
according to which subscripted t variables attached to
a function name indicates that all arguments of the
function are to be evaluated at time step t of a trajec-
tory. For example, ~Jt + 1[~J ~xt + 1,~wð Þ, Ut[U ~xt,~utð Þ and
~Gt[~G ~xt,~wð Þ. A convention is also adopted that all
defined vector quantities are columns, whether they are
coordinates, or derivatives with respect to coordinates,
using the transpose of the usual Jacobian notation.

The approximate value gradient, or critic gradient, is
defined to be

~G ~x,~wð Þ= ∂~J ~x,~wð Þ
∂~x

ð6Þ

and the target value gradient is defined as

G
0

t =
DU

D~x

� �
t

+ g
Df

D~x

� �
t

lG
0

t+ 1 + 1� lð Þ~Gt + 1

� �
ð7Þ

where
D

D~x

� �
t

is a shorthand for

D

D~x
=

∂

∂~x
+

∂A

∂~x

∂

∂~u
ð8Þ

and l is a fixed ‘‘bootstrapping’’ constant, described
further below.

The target value-gradients, G
0
, are so called because

the VGL objective is to achieve ~Gt =G
0
t for all t along

a trajectory. The VGL system must also make sure the
greedy policy Equation 5 is satisfied at every time step.
Achieving these two goals simultaneously will achieve
optimality, as discussed and proven in Section 5.

In order to achieve these two goals, the VGL system
is comprised of two weight updates. The first is a weight
update to the critic ~G x,wð Þ, given by:

D~w=a
X

t

∂~G

∂~w

� �
t

Ot G
0

t � ~Gt

� �
ð9Þ

where a.0 is a learning-rate constant. The objective of
Equation 9 is to make each critic gradient ~Gt match its
target, G

0
t. The Ot matrix is any positive-definite matrix,

included for generality, and chosen by the researcher.
Its presence (and positive-definiteness) will force every
component of ~Gt to move towards its corresponding
component of G

0
t. It is common to just choose Ot as the

identity matrix.
The second weight update is to the action network

A x, zð Þ, given by

D~z=b
X

t

∂A

∂~z

� �
t

∂U

∂u

� �
t

+
∂f

∂u

� �
t

~Gt + 1

� �
, ð10Þ

where b.0 is the learning rate for the action network.
This weight update aims to make the action network
more ‘‘greedy’’, i.e., to become closer to Equation 5.

The parameter l 2 0, 1½ � from Equation 7 determines
how much the target is based on the critic’s estimation,
and how much on the actual future total trajectory cost.
That is, the parameter l specifies the degree to which
an estimate is updated towards itself—what is called
bootstrapping in reinforcement learning parlance. In
practice, l gives the modeler flexibility in adjusting the
speed of learning to the dynamics of the environment.
When l= 1, the above recursion simplifies down to

G0t =Gt =
∂J

∂~x

� �
t

, i.e., in this extreme the target equals

the true cost-to-go of the trajectory.
Table 1 presents the on-line version of the VGL algo-

rithm, where e 2 R
dim ~wð Þ3 dim ~xð Þ is an eligibility trace

workspace matrix and~d 2 R
dim ~xð Þ is a workspace vector.

The derivation of this algorithm from Equations 9 and
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10 is described in Fairbank (2014). This implementation
works forwards in time and can be continually applied
as trajectories are expanded. Modelers can use an alter-
native batch mode implementation, which is applicable
to completed trajectories (Fairbank & Alonso, 2012b).
Both algorithms are mathematically equivalent.

VGL is an extension of well-known methods in
adaptive (a.k.a. approximate) dynamic programming,
Dual Heuristic Programming and Generalized Dual
Heuristic Programming in particular (Prokhorov &
Wunsch, 1997; Wang, Zhange, & Liu, 2009; Werbos,
1992). VGL extends these methods, that can be seen as
VGL(0) methods, with a lambda parameter, as TD(l)
does with TD(0) (Sutton & Barto, 1998). See the
Appendix for a detailed argument on the relationship
between TD(l) and VGL(l).

To summarize, we have restored optimality. If we
learn the gradient of the value function and choose
greedy actions that follow the full model of the system,
the trajectory so built is guaranteed to be locally opti-
mal.3 Why is that? Can we relate this result to general
laws such as the Principle of Least Action? Yes, we
can—as VGL is equivalent to Pontryagin’s Minimum
Principle.

4 Back to the Principle of Least Action

Pontryagin’s Minimum Principle (PMP) (Pontryagin,
Boltyanskii, Gamkrelidze, & Mishchenko, 1962) can be
seen as the application of the Principle of Least Action
to optimal control. More precisely, the Hamiltonian of
a control system is defined as H ~x,~p,~uð Þt = L ~x,~uð Þt +
~pT

t f ~x,~uð Þt, where L stands for the Lagrangian of the
system such that, if the state given by the function rep-
resents constraints in the minimization problem, the
costate ~pt (also known as adjoint state or Lagrange
multiplier) represents the cost of violating those

constraints. In other words ~pt is the rate of change of
the Hamiltonian as a function of the constraint.
Intuitively, the constraint f can be thought of as com-
peting with the desired function to pull the system to its
minimum or maximum (or to a steady state), and ~pt

can be thought of as measure of how hard f has to pull
in order to make those forces balance out in the con-
straint surface.

In its discrete-time version (Todorov, 2006), PMP
means that the following three equations must be satis-
fied for all time steps t of a trajectory for the trajectory
to be optimal:

~xt + 1 = f ~xt,~utð Þ ð11aÞ

~pt =
∂U

∂~x

� �
t

+ g
∂f

∂~x

� �
t

~pt + 1 ð11bÞ

~ut = min
~u2A

U ~xt,~utð Þ+ gf ~xt,~utð ÞT~pt + 1

� �
ð11cÞ

Equation 11b specifies how the costate vectors are
recursively calculated, by working backwards from the
end of the trajectory. Equation 11a states how the state
vector~xt is recursively calculated, by working forwards
along the trajectory. If these forward and backward
passes match up according to Equation 11c, then PMP
is satisfied.

Bellman’s and Pontryagin’s principles are related by
the fact that the costate vector ~pt in PMP satisfies
∂J�

∂~x

� �
t

[~pt, where J � ~xð Þ is Bellman’s optimal value

function. However, PMP applies to local trajectories
rather than to whole state spaces and avoids the ‘‘curse
of dimensionality’’.

VGL is related to PMP in that both attempt to learn
an optimal value gradient.4 If the VGL objective is
attained all along a trajectory found by a greedy policy,
i.e., if ~Gt =G

0
t for all t, then ~Gt will become equal to~pt

for all t along that trajectory. This means that VGL
can gain the efficiency benefits of PMP if just one tra-
jectory is learned, i.e., meeting the VGL objective along
one greedy trajectory is a necessary condition for the
trajectory to be extremal.

Finally, note that in PMP, and likewise in VGL, in
order to achieve optimality, it is not sufficient to take a
fixed trajectory found by the greedy policy and fully
learn the costate vectors (value-gradients) along it. By
the time the costate vectors have changed, the third
condition of PMP will be violated. We need to learn
the costate vectors along the trajectory while simultane-
ously making the trajectory greedy with respect to those
costate vectors.

5 Proof of optimality

In order to prove the optimality result we first intro-
duce a syntactic sugar for greedy policies and

Table 1. Actual characteristics of the fabricated module.

1. e 0
2. t 0
3. while~xt not final do
4.~ut  A ~xt;~zð Þ
5.~xtþ1  f ~xt;~utð Þ

6. ~δ ∂U

∂~x

� �
t

þ ∂A

∂~x

� �
t

∂U

∂~u

� �
t

þ γ
∂f

∂~x

� �
t

þ ∂A

∂~x

� �
t

∂f

∂~u

� �
t

� �
~Gtþ1 � ~Gt

7. e eþ ∂~G

∂~w

 !
t

�t

8. ~w  ~w þ αe~δ

9. e λγe
∂f

∂~x

� �
t

þ ∂A

∂~x

� �
t

∂f

∂~u

� �
t

� �

10.~z ~z� β
∂A

∂~z

� �
t

∂U

∂~u

� �
t

þ γ
∂f

∂~u

� �
t

~Gtþ1

� �
11. t tþ 1
12. end while
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reformulate total trajectory-cost functions in terms of
actions (rather than in terms of the action network’s
weight vector).

We define ~Q ~x,~u,~wð Þ=U ~x,~uð Þ+g~J f ~x,~uð Þ,~wð Þ and
rewrite the greedy policy accordingly as

~u= argmin
~u2A

~Q ~x,~u,~wð Þ
� �

, for any~x 2 S ð12Þ

A greedy action is any action ~u that satisfies Equation
12. A greedy trajectory is a trajectory in which all the
actions that parameterize it are greedy actions. The
function ~Q is differentiable, and its derivative with
respect to~u is,

∂~Q

∂~u

� �
t

=
∂U

∂~u

� �
t

+ g
∂f

∂~u

� �
t

~Gt + 1 ð13Þ

The total trajectory-cost function, which depends upon
a full list of actions ~u0,~u1, :::ð Þ, is defined as

J ~xt,~ut,~ut + 1, :::ð Þ=U ~xt,~utð Þ+gJ f ~xt,~utð Þ,~ut+ 1,~ut + 2, :::ð Þ
ð14Þ

We define a trajectory parameterized by
~x0,~u0,~u1,~u2, :::ð Þ to be a locally extremal trajectory
(LET) if, for all t and all action components i,

∂J

∂~ui

� �
t

= 0 ð15Þ

which is a standard sufficient condition for a stationary
point.

Lemma 1. For a greedy trajectory and any fixed

l 2 0, 1½ �, if ~Gt =G0t for all t, then ~Gt =G0t =
∂J

∂~x

� �
t

for

all t.

Theorem 1. Any greedy trajectory satisfying ~Gt =G0t for
all t, where actions are chosen from an unbound action
space, must be locally extremal.

Proof. As a greedy trajectory minimizes ~Q ~x,~u,~wð Þ with
respect to ~ut at each time step t, and we have assumed
that the action space is unbound, we know that at each
t and for each action component i,

∂�Q

∂~ui

� �
t

= 0 ð16Þ

Therefore, as

∂J

∂~u

� �
t

=
∂U

∂~u

� �
t

+ g
∂f

∂~u

� �
t

∂J

∂~x

� �
t+ 1

(by differentiating Eq:(14))

=
∂U

∂~u

� �
t

+ g
∂f

∂~u

� �
t

~Gt+ 1(by Lemma 1)

=
∂~Q

∂~u

� �
t

(by Eq:(13))

we have
∂J

∂~u

� �
t

=
∂~Q

∂~u

� �
t

, for all t. Therefore the conse-

quences of a greedy trajectory, Equation 16, become
equivalent to the sufficient condition of LET, Equation
15, which implies the trajectory is a LET.

Q.E.D
The above proof was applicable to unbound action

spaces. An extension to bound action spaces is given by
Fairbank (2014).

The conclusion of this proof is that merely learning
the value-gradients and a greedy policy all along a tra-
jectory will make the trajectory locally extremal. Simply
learning these two quantities along a trajectory is suffi-
cient to bend that trajectory into a locally extremal
shape, without having needed to perform any explicit
exploration. This is because the target value-gradients
are vectors that ‘‘point’’ in the direction of the best
neighboring states. When the VGL system learns those
target vectors, and when coupled with a greedy policy,
the system will automatically exploit better actions
whenever a better action choice appears. This explana-
tion is summarized as follows:

� The target vectors G
0
t act as arrows, which point in

the best direction.
� The VGL system learns those target vectors (i.e., it

makes ~Gt match G
0
t).

� The greedy policy follows the learned vectors ~Gt.

Hence VGL addresses the classic ‘‘exploration versus
exploitation’’ dilemma, in that it is possible to behave
greedily and learn about better alternatives at the same
time.

This is a remarkable efficiency saving for VGL as
opposed to critic learning by scalar values across the
state space. In those scalar methods, which include the
TD learning method, the relevant optimality condition
is Bellman’s, which requires full knowledge (and there-
fore full exploration) of the whole state space.

An explicit comparison in learning speed between
these two different methods shows the speed up in
learning can be of several orders of magnitude when
VGL methods are used (Fairbank & Alonso, 2012c),
and this confirms the automatic exploration and trajec-
tory bending of VGL.

Caveats must be highlighted in that the VGL method
only addresses local exploration of the value function.
In practice, it may be necessary to supplement this
automatic local exploration with some explicit explora-
tion to find a global optimum. Also, the VGL method
does not address the exploration of the functions f x, uð Þ
and U x, uð Þ, which would need learning by a separate
explicit exploration if they were not given a priori.

Another caveat is that it is hoped that Equation 9
will eventually converge. Whether this eventually hap-
pens is a separate issue, but convergence has been

Alonso et al. 5



proven in one major case by Fairbank, Alonso, and
Prokhorov (2013).

Although the optimality result of this section
requires a greedy policy, any approximation to a
greedy policy would produce approximately optimal
trajectories. The learning Equation 10 is not a greedy
policy, but it is something that aims to move towards
greediness, and, in practice, this is sufficient to have a
robust learning system.

6 Behavioral optimal systems

Behavioral regulation theory is perhaps the most intui-
tive instantiation of how our approach can be applied
to the study of behavior (Allison, 1983; Hanson &
Timberlake, 1983; Timberlake, 1984). When behavioral
systems, that is, animals, are free to act as they please,
their preferred or optimal distribution of activities
defines a behavioral bliss point (BBP) or baseline level
of activity. In dynamic terms the BBP is a natural,
steady and stable, attractor.

This view encapsulates behavioral regulation theory
and generalizes the concept of homeostasis and nega-
tive feedback from cybernetics to physiology and psy-
chology (Ashby, 1952). Physiological homeostasis
keeps physiological parameters such as body tempera-
ture close to an optimal or ideal level. This level is
‘‘defended’’ in that deviations from the target tempera-
ture trigger compensatory physiological mechanisms
that return the system to its homeostatic levels. In
behavioral systems, what is defended is the animal’s
BBP against instrumental contingencies that create dis-
turbances to which the system adapts. Other metaphors
are possible, after all the bliss point represents an equi-
librium in a population of behaviors—pretty much as
the equilibrium observed in the number of different
types of ants in a colony or between competing (prey–
predator) species in an environment.

More specifically, operant behavior can be explained
in terms of time constraints and feedback constraints,
the reinforcement schedule to which the animal is sub-
jected (Staddon, 1979). Starting from its BBP, the ani-
mal finds the optimal equilibrium between instrumental
and contingent responses—the one that minimizes the
cost involved. Instrumental conditioning procedures
are response constraints. They disrupt the free choice of
behavior and interfere with how an organism makes
choices among the available responses. The instrumen-
tal conditioning procedure does not allow the animal to
return to its BBP. But the organism achieves a contin-
gent optimization by approaching its bliss point under
the constraints of the instrumental conditioning proce-
dure. Put it this way, the analysis of operant behavior is
an optimal control problem and thus we should be able
to express it in terms of VGL: L, the Lagrangian, can be
defined as the cost to be minimized, f would model time

and feedback constraints and~p, the multiplier or conju-
gate momentum, can be explicitly represented as G

0
.

Not surprisingly, this formulation matches Staddon’s
term by term (Staddon, 1979).

7 Conclusions

In this paper, we have presented a meta-model of opti-
mal behavior in the form of a learning algorithm, VGL.
The main insight is that, assuming that animals use a
greedy policy and that they use models to calculate the
gradients of a cost-to-go function at every time step, the
resulting behavior is optimal. This property follows
from VGL’s equivalence to PMP, a well-known optim-
ality principle in control theory. As a meta-model,
VGL does not commit to any particular model or quan-
tity to be optimized. Instead, it establishes the condi-
tions under which a given behavioral model will be
optimal.

Let us summarize our approach: In Nature, the
dynamics of a system minimizes the integral of its
Lagrangian over time. This quantity is known as the
action, thus systems follow the Principle of Least
Action. Animals cannot be considered as passive sys-
tems rather they interact with their environment and
receive feedback from it. That is, animals are control
systems. Control systems follow a variation of the
Principle of Least Action, PMP. This approach is alien
to psychological and biological models of behavior—
although see Staddon (1979) for a formulation of oper-
ant behavior as adaptation to constraints. In this
paper, we bridge this gap, introduce VGL, and prove
that is equivalent to PMP—from which it inherits its
optimality results.

Following David Marr’s Tri-Level Hypothesis
(Marr & Poggio, 1976), our proposal addresses the
question of how does the system do what it does, rather
than what does the system do. The former refers to the
algorithmic level, focusing on how learning works, and,
following the PLA, how does it in an optimal way. We
have provided an answer to this question. The latter,
which action is minimized as described by VGL, refers
to the computational level and is beyond the scope of
the present study. In order to provide precise predic-
tions, both levels are required. This paper presents a
formal, rigorous framework that may help in this direc-
tion. We have intentionally kept the computational
level open, so that our algorithmic proposal is not
biased. Future work in this direction includes two dis-
tinct approaches: using a richer representation of pay-
offs, including the environment and additional aspects
of an individual’s behavior, metabolism, and lifetime
traits, which are usually abstracted away in reinforce-
ment learning (both in TD and VGL), on the one hand,
and adapting the VGL algorithm to Darwinian fitness,
on the other.
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Notes

1. This exposition refers to the classical view of stationary
state dynamics; dissipation is, of course, ubiquitous and
must be taken into account in the final form of the PLA
and added to the corresponding equations.

2. Originally defined in control theory by Paul Werbos
(1977) as Heuristic Dynamic Programming, TD(0) was
extended and presented as a model of conditioning in
Barto and Sutton (1982).

3. VGL guarantees global optimality if applied to all
trajectories.

4. In fact, our re-formulation of PMP is somehow simpler,
as PMP conditions are reduced to two, namely, the cost-
ate and the min function that defines the greedy policy.
PMP can be described as ~u� ~x,~pð Þ= argmin

~u2A
H ~x,~p,~uð Þ,

which is a form of the greedy policy, and the adjoint equa-

tion~pt =
∂J
∂~x

� �
t
2 R, VGL’s gradient.
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Appendix

Temporal Difference (TD) is a special case of VGL.
TD is model-free VGL, that is, VGL without requiring
explicit knowledge of Equations 1 and 2. In such cases,
instead of the gradient of the cost function, animals
would learn only the cost function. As a consequence,
in order to meet Bellman’s condition and achieve
optimality, animals would need to explore the whole
state space. This is an unrealistic assumption in most
biologically relevant cases, where the state space is too
large. VGL, on the other hand, works with models
and, in so doing, learns local optimal trajectories with-
out extensive exploration. The TD algorithm can be
summarized in the following weights update rule:

D~w=a
X

t

∂~J

∂~w

� �
t

J
0

t � ~Jt

� �
ð17Þ

where the target J
0
is equivalent to Watkin’s ‘‘l-

Return’’ (Watkins, 1989). If we compare Equation 9
against its TD equivalent, Equation 17, we see that
they are analogous except for the introduction of the
model. This may give the wrong impression that
VGL(l) is just a differentiated form of TD(l). Indeed,
whereas TD(l) attempts to learn the values of the
Bellman equation, VGL(l) attempts to learn the gradi-
ent of these values. However, if the VGL weight update
is at a fixed point at every time step along a trajectory
generated by a greedy policy, for any l, then that tra-
jectory is locally extremal, and often locally optimal.
This contrasts to TD methods in that it is possible for
the TD weight update to be at a fixed point at every
time step along a trajectory generated by a greedy pol-
icy, without the trajectory being optimal. VGL meth-
ods have a much lesser requirement for exploration
than TD methods do, as the local part of exploration
comes for free with them. What we mean by this is that
provided the VGL learning algorithm makes progress
towards achieving ~Gt =G0t all along a greedy trajectory,
then provided the trajectory remains greedy (through
continued updating of the actor or use of the greedy
policy), it will make progress in bending itself towards a
locally optimal shape, and this will happen without the
need for any stochastic exploration. In comparison, the
failure of TD without any exploration in a determinis-
tic environment is dramatic and common, even when
the value-function is perfectly learned along a single
trajectory.

It is worth highlighting that in order to compute
VGL it is not enough to use the derivatives of the val-
ues. This is what the Hamilton–Jacobi–Bellman equa-
tion does in extending the Bellman equation to
continuous state spaces. However, such derivation does
not exploit fully the information contained in gradient-
values. We cannot just consider the change in J over
the steps along a trajectory. This is like forming the sca-
lar product of ∂J

∂~x with D~x, which will lose the sideways
components of the derivative, those that are not paral-
lel to D~x. In VGL, all components are used in the calcu-
lation of the target. One needs to know the model
functions in order to calculate a target value gradient,
and one needs a target in order to do a weight update.

In addition, the model functions are relevant to the
greedy policy. Using a first-order expansion of the
greedy policy gives

~u= argmin
~u2A

U ~x,~uð Þ+g~J f ~x,~uð Þ,~wð Þ
� �

’ argmin
~u2A

U ~x,~uð Þ+g~J ~x,~wð Þ+g
∂~J ~x,~wð Þ

∂~x

� �T

f ~x,~uð Þ �~xð Þ
 !

’ argmin
~u2A

U ~x,~uð Þ+g
∂~J ~x,~wð Þ

∂~x

� �T

f ~x,~uð Þ
 !

ð18Þ
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We see that the greedy policy depends on the value-
gradient but not on the values themselves.

Thus, the VGL algorithm is doubly model-based—
once for the calculation of G

0
, and once for the calcula-

tion of the greedy policy (or weight update of the actor).
Changing ∂~J

∂~x will immediately affect the greedy policy,

and, by moving it towards its correct target, we will
steer the trajectory in the correct (locally optimal) direc-
tion. Hence, TD’s paradigm ‘‘exploration vs. exploita-
tion’’ becomes ‘‘exploration and exploitation’’ or, in
other words, exploration comes for free when we com-
bine greedy and gradient.
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