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Abstract

The disruption of the serotonergic (5HT) system has been implicated in causing major depression and the standard

view is that a lack of serotonin is to blame for the resulting symptoms. Consequently, pharmacological interventions

aim to increase serotonin concentration in its target areas or stimulating excitatory 5HT receptors. A standard approach

is to use serotonin reuptake inhibitors (SSRIs) which cause a higher accumulation of serotonin. Another approach

is to stimulate excitatory serotonin receptors with psychedelic drugs. This paper compares these two approaches by

first setting up a system level limbic system model of the relevant brain areas and then modelling a delayed reward

paradigm which is known to be disrupted by a lack of 5HT. Central to our model is how serotonin changes the

response characteristics of decision making neurons where low levels of 5HT allow small signals to pass through

whereas high levels of 5HT create a barrier for smaller signals but amplifying larger ones. We show with both

standard behavioural simulations and model checking that SSRIs perform significantly better against interventions

with psychedelics. However, psychedelics might work better in other paradigms where a high level of exploration is

beneficial to obtain rewards.
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1 Introduction

Serotonin (5HT) has been implicated in causing major

mood disorders such as depression (Chaudhury et al. 2015).

Consequently, influencing the serotonergic system with

pharmacological interventions has been shown to be

effective. In particular, serotonin reuptake inhibitors (SSRIs)

have positive effects on a patient’s mood (Barker and Blakely

1995; Cipriani et al. 2012; Stahl 1994). However, this well

established therapy has its critics who favour psychedelics

instead of SSRIs as a drug for combating depression

(Carhart-Harris and Nutt 2017). Psychedelics are mainly

known for their ability to alter the perception of sensor

stimuli as shown with drugs such as LSD (Winter 2009).

In addition SSRIs change the perception of emotionally

related stimuli so could be used to indirectly influence a

subject’s mood (Harmer 2008). The fact that 5HT can alter

cortical processing suggests that the role of the serotonin

receptors should be investigated more closely (Mengod et al.

2009). While there are over 7 different 5HT receptors,

5HTR1 and 5HTR2 have been mainly implicated in mood

disorders (Carhart-Harris and Nutt 2017). This means that to

understand the action of 5HT we must at least determine how

5HTR1 and 5HTR2 operate together to influence neuronal

processing.

However, mood is not just linked to serotonin but also to

dopamine (Schultz 1998; Cofer 1981). This means serotonin

cannot be understood in isolation but must be considered

in conjunction with the dopaminergic system (Schildkraut

1965; Martin-Soelch 2009). In the past dopamine was

prominent in models of reward based processing and

serotonin was viewed as an inverted dopamine signal.

Daw et al. (2002) provided a model of serotonin and

dopamine whose signals represented mirror opposites in

terms of computations of reward, punishment and long-

term average of these signals. Boureau and Dayan (2011)

also viewed serotonin as an inverted dopamine signal but

in relation to both reward (punishment) and behavioural

approach (inhibition/avoidance). However this view has

been abandoned (Dayan and Huys 2015) in the light of

recent experimental results which show that 5HT tracks the

long term anticipation of a reward (Nakamura et al. 2008;

Bromberg-Martin et al. 2010; Li et al. 2016). Thus, serotonin

codes distinctly different information to dopamine.

What kind of behaviour is improved by the release of

serotonin? From recent studies it has become apparent

that serotonin is required for situations where an animal

needs to wait to obtain a delayed reward (Li et al.

2016; Bari and Robbins 2013) and that 5HT “integrates

expected, or changes in, relevant sensory and emotional

internal/external information” (Homberg 2012).

To understand the role of 5HT we need to investigate the

following:

1University of Glasgow

Corresponding author:

Bernd Porr, University of Glasgow, Glasgow, G12 8QQ, Scotland

Email: Bernd.Porr@glasgow.ac.uk

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

• the action of 5HT on the major 5HT receptors, in

particular 5HTR1 and 5HTR2

• processing of emotionally relevant stimuli from sensor

to action via both cortical and subcortical structures

• how processing/perception of these stimuli is

altered/controlled by 5HT

• earmarking behavioural paradigms which require a

functional 5HT system

• how the reward system is impacted by altered 5HT

signal processing

In other words: we claim that it is only possible to

understand the 5HT system by using a holistic approach

including all levels starting from 5HT receptors up to

behaviour. This means that possible interventions cannot be

seen in isolation but need to be viewed in combination.

The standard approach of testing a system model such as

ours is to run simulations of the model many times for each

proposed set of parameters and perform statistical analysis

on the results in each case. This has the advantage that

both behaviour and system can be modelled in great detail.

However, running multiple simulations is time-consuming

and does not guarantee complete coverage (how many

simulations should we run?). In this paper we use an

additional approach: Model Checking. This is a technique

in which a system is expressed using a formal language and

converted into a finite state model. This underlying model

can then be used to exhaustively check properties (e.g. the

probability of an event occurring in the long run) for a

range of parameter values. In particular here we will use

model checking to investigate the link between the neuronal

response characteristic and its impact on delayed reward

learning. Both the behavioural simulator and the model are

available via an open access repository (Porr et al. 2019).

The paper is structured as follows: first, we present a

behavioural experiment which involves a rat waiting for

a delayed reward. Then we describe the information flow

from sensor inputs to actions via cortical and sub-cortical

structures. We then focus on how information processing is

altered with the action of serotonin (5HT), how sensor inputs

are processed differently depending on the concentration

of 5HT and how this is achieved with the two 5HT

receptors 5HTR1/5HTR2. Finally the model is completed

by adding the dopaminergic reward system. We then run

simulations where 5HT is reduced and different interventions

such as SSRIs, psychedelics and environmental changes are

introduced so that the rat receives more rewards. We will then

draw our conclusions as to which of these interventions are

successful and under which conditions.

2 Methods

2.1 The behavioural experiment: patience to

obtain a reward

Fig. 1 illustrates our experiment, which can loosely be

described as “having patience to receive a reward” (Li et al.

2016). A rat needs to learn to approach the green landmark

on the left and then wait there until food becomes available

Figure 1. Behavioural experiment

and thus visible. The blue landmark on the right is for

distraction: it will never show any reward but it generates

visual information. We can divide the learning behaviour into

five steps:

1. the rat happens to wait in front of the landmark and

receives the reward

2. next time the rat has associated the visual information

of the landmark with the reward and approaches it

3. at the same it has also associated the area around the

landmark as a place to wait

4. the food appears and the rat approaches the food

5. (as in 1) the food results in a reward

These steps emerge naturally just by walking through the

behaviour and our task now is to identify neuronal structures

which generate this behaviour.

Figure 2. The signal flow from the cortex (mPFC) to the

nucleus accumbens (NAcc core)

2.2 From sensor to action: the limbic system

model

By building our limbic system model we first need to focus

on those nuclei which translate a pre-processed sensor signal

into an action, thus enabling our simulated rat to approach

a landmark which eventually releases food. We will then

expand it to the complete model.

2.2.1 Action selection in the mPFC and NAcc We first

describe how a sensor signal causes an action and how this

processing is modulated by both serotonin and dopamine.

Fig. 2 shows the relevant nuclei: medial prefrontal cortex

Prepared using sagej.cls



Porr, Miller and Trew 3

(mPFC) and Nucleus Accumbens (NAcc) (Berthoud 2004).

The mPFC receives excitatory inputs from primary sensor

areas such as visual, smell and tactile. In addition it might

also receive input from the hippocampus and other higher

level areas which are strongly linked to sensor information

and context. These inputs are generally glutamatergic (GLU)

and excite the neurons in the mPFC. The prominent

neuromodulator here is serotonin (5HT) which is released

into the mPFC and other cortical areas from the dorsal

Raphe nucleus (DRN) (Linley et al. 2013). A major output

target of the mPFC is the NAcc, in particular the NAcc

core (Heimer et al. 1991; Brog et al. 1993). The NAcc core

is closely related to the more dorsal areas of the striatum

and is responsible for action selection. Synapses here

are strongly modulated by dopamine. The output of the

NAcc core then triggers motor actions via a polysynaptic

pathway which targets the motor cortices (Kelley 2004;

Humphries and Prescott 2010). In our example there are

only two actions: approach the green landmark or approach

the blue one. The approach action is initiated when the

value in the corresponding core unit reaches a threshold

and makes the agent approach the corresponding landmark

in a simple Braitenberg-like behaviour-based approach

(Braitenberg (1984) inspired by Prescott et al. (2002)). The

higher the NAcc core value the higher the speed at which

the agent approaches the landmark (with a maximum speed

of one). Of course a real animal has more pathways but we

focus on two processing streams which are sufficient for our

simple experiment. Because the sensor signals progress from

the sensor areas through the mPFC and then the NAcc core,

we first describe the mPFC and then the NAcc core.

2.2.2 The action of 5HTR1 and 5HTR2 receptors

in the mPFC As outlined above the mPFC integrates

information from numerous primary and secondary sensor

areas but the important aspect is that it receives a

strong serotonergic innervation. Serotonergic fibers originate

in the dorsal Raphe Nucleus (DRN) and from there

they mainly target prefrontal cortical areas and to a

lesser extent primary sensor areas and subcortical areas

(Linley et al. 2013). However, we simply focus on the

strongest innervations of 5HT and these occur in the

prefrontal areas. There are two major receptors in the cortex:

5HTR1 and 5HTR2 (Palacios et al. 1990; Mengod et al.

2009). While 5HTR1 is inhibitory, 5HTR2 is excitatory.

This may seem contradictory (Andrade 2011). However

the interplay between these two receptors results in a

non-linear interaction between them (Servan-Schreiber et al.

1990; Andrade 2011). This has been confirmed directly

by measuring neuronal responses in the visual cortex

(Shimegi et al. 2016; Seillier et al. 2017) and also in the

prefrontal cortex (Cano-Colino et al. 2014) with the help of

a neurophysiological simulation model which confirms the

responses measured in the visual cortex.

5HTR1 Based on the work by Cano-Colino et al. (2014)

we model the action of the receptor 5HTR1 as a parameter

in a psychometric function (Servan-Schreiber et al. 1990)

which slowly saturates towards one (see a reproduction of the

original result for comparison in the appendix A in Fig 13):

mPFCG/B(inputsG/B , 5HTR1 ) = 1− e
−

(

inputsG/B
5HTR1

)5HTR1

(1)

where inputsG/B is the sum of the inputs to the mPFC (see

Fig. 2)

inputsG/B = vis1,G/B + vis2,G/B + . . . (2)

mPFCG/B is the output of the mPFC and 5HTR1 the

activation of the 5HTR1 receptor. The subscripts “G/B”

indicate that these are two pathways through the mPFC:

one to target the green landmark and one to target the

blue one. Fig. 3A shows the response of an mPFC neuron

at different 5HTR1 activations (1,2,3). At low 5HTR1

activations (5HTR1 = 1) low cortical inputs (inputs < 1.5)

are amplified whereas when the 5HTR1 activation is high

(5HTR1 > 2) lower cortical input values (inputs < 1.5) are

suppressed. This means that when 5HT is small signals are

amplified which in turn makes the animal very attentive to

small/noisy cues. On the other hand if 5HT is high lower

input signals to the cortex are suppressed. Weak cues or any

kind of distraction will be suppressed whereas strong stimuli

will be more amplified which we can also interpret as the

control of the signal to noise ratio (Servan-Schreiber et al.

1990).

5HTR2 The action of the receptor 5HTR2 can be

formulated in a much simpler way: it adds a certain gain to

the processing in a cortical neuron which can be seen as a

multiplicative term which then scales Eq. 1 and reflects the

model by Carhart-Harris and Nutt (2017) and the findings by

Shimegi et al. (2016); Cano-Colino et al. (2014). It can be

seen in Fig. 3B that the effect of the gain is seen mainly

for strong cortical inputs and these are then disproportionally

amplified. This means that strong cortical inputs receive an

additional boost and might be executed with a strong vigour

Cofer and Appley (1964).

Combined action of 5HTR1 and 5HTR2 in the mPFC

We can now combine the action of both serotonin receptors

which results in the following equation describing how

serotonin influences cortical processing:

mPFCG/B(inputsG/B , 5HTR1 , 5HTR2 ) =
(

1− e
−

(

inputsG/B
5HTR1

)5HTR1)

· 5HTR2 (3)

where inputsG/B and mPFCG/B are the total input and

output to/from the mPFC respectively. In our example we

have two pathways to consider: one for the green landmark

and one for the blue.

We need to establish a relationship between the 5HT

concentration and the activation of the receptors 5HTR1 and

5HTR2 . In general this means that we have a mapping from

the 5HT concentration to the receptor activation which we

assume to be linear:

a5HTR1 = 1 + 5HT (4)

a5HTR2 = 2 + 5HT + HTR2OFFSET (5)

where adding the constants 1 and 2 for a5HTR1 and

a5HTR2 respectively guarantees a baseline throughput of

Prepared using sagej.cls



4 Journal Title XX(X)

Figure 3. The response functions of mPFC neurons: A) altered by 5HTR1 alone and B) by 5HTR1/R2 combined.

the signals in Eq. 3 so that a signal passes through even

when DRN = 0. This means that the minimum value of

a5HTR1 = 1 transforms Eq. 3 into a standard neuronal

response curve (Servan-Schreiber et al. 1990) which is then

gradually altered with increasing 5HT concentration, thereby

suppressing increasingly smaller inputs to the mPFC . The

minimum value of a5HTR2 ,min = 2 is the baseline gain of

the mPFC and matches the maximum DRN activity which

is about 2 in our simulation runs so that this results in

transmission gains through the mPFCG/B of between two

and four. In other words, the DRN can increase the gain of

the mPFC by a factor of two. The constant HTR2OFFSET

is usually zero but is set to a positive value if we want

to simulate the effect of psychedelics. This will allow us

to investigate whether psychedelics are able to reverse the

deficit caused by excessive 5HT inhibition.

Overall this means that with high 5HT concentrations

inputs to cortical circuits need to have a high salience to

coincide with other inputs. For example the visual cue of a

food dispenser needs to coincide with the visual input of the

food itself at the moment it is delivered. This means that the

cortex is both an integrator of information and a gatekeeper.

It transmits information to the decision making circuitry in

the NAcc core.

2.2.3 Reward based learning in the NAcc core So

far we have shaped the signals in terms of attention

or signal to noise but have not associated it with any

reward. The mPFC projects to the NAcc core which

receives a strong dopaminergic (DA) modulation. This has

a certain baseline concentration and can either increase or

decrease causing a corresponding increase or decrease in

synaptic strength of the mPFC input (Beckstead et al. 1979;

Humphries and Prescott 2010):

NAcccore,G/B = ρ ·mPFCG/B (6)

∆ρG/B = µcore(DA−DA0) ·mPFCG/B (7)

where ρG/B are the weights of the projections from the

mPFC to the NAcc core, DA the dopamine in in the

NAcc core released from the ventral tegmental area (VTA)

and DA0 the baseline DA concentration. This means that

a DA concentration above or below baseline corresponds

to an occurrence of long term potentiation (LTP) or

long term depression (LTD) respectively. This implements

weight changes which are compatible with the classical

reward prediction error (Schultz et al. 1997). If a reward is

encountered unexpectedly the DA concentration increases

and if a reward is omitted unexpectedly the DA concentration

decreases (referred to as the “dip”).

Note that the cortex also receives DA modulation

(Beckstead et al. 1979) and the NAcc 5HT modulation

(Vertes et al. 2010). However, these effects are small

in contrast to cortical 5HT modulation and NAcc DA

modulation. Thus, to keep the model clear and distinct we

broadly state that the cortex is modulated via 5HT while the

subcortical areas perform reinforcement learning via DA.

As a final step we add the circuitry which computes

both the 5HT and DA activity which are released from the

ventral tegmental area (VTA) (Beckstead et al. 1979) and the

dorsal Raphe nucleus (DRN) respectively. This leads to the

complete limbic system model.

Figure 4. Full limbic circuit. vis1: visual information of the

landmark, vis2: visual information of the reward, HC:

Hippocampus, mPFC: medial prefrontal cortex, OFC:

orbitofrontal cortex, DRN: dorsal Raphe nucleus, m-shell:

medial shell, l-shell: lateral shell, core: nucleus accumbens

core, VTA: ventral tegmental area, m-VP: medial ventral

pallidum, vl-VP: ventrolateral ventral pallidum, EP:

Entopeduncular Nucleus, RMTg: Rostral Medial Tegmental

Nucleus, LH: lateral hypothalamus.
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2.3 Complete circuit model

So far we have dealt only with the novel aspects of our

limbic system model which explain how a variable response

curve in the cortex and learning in the NAcc core leads

to behaviour associated with waiting for a delayed reward.

However, we also require the circuitry which generates the

signals for both the VTA and the DRN. While the DRN

becomes active in anticipation of a reward, the VTA exhibits

a classical error signal which only becomes active when the

reward is unexpected, and then its amplitude slowly decays.

We need to describe how these two signals are computed and

the corresponding circuit is shown in Fig. 4.

2.3.1 VTA We start with the activity in the ventral

tegmental area (VTA) (Sesack and Grace 2010). A direct

pathway from the lateral hypothalamus (LH) to the VTA

drives the VTA whenever a primary reward has been

encountered. The lateral hypothalamus is well known to

respond to primary rewards. However it is also well known

that once the reward can be predicted the activity in the VTA

will diminish. This is achieved by the pathway: OFC – l-shell

– vl-VP – EP – LHb – RMTg and then VTA. Overall this path

is inhibitory. The OFC and the NAcc l-shell learn to associate

cues with the primary reward (Sackett et al. 2017) which in

turn inhibit the VTA. In addition cues or conditioned stimuli

cause bursts in the VTA which are conveyed via the m-shell –

m-VP – VTA pathway (see appendix A for the mathematical

description). This pathway is not modelled as we do not need

second order conditioning here.

2.3.2 DRN The main focus of this paper is serotonin

(5HT) which is mainly released from neurons in the

dorsal Raphe nucleus (DRN) (Michelsen et al. 2007;

Pollak Dorocic et al. 2014). The DRN receives an excitatory

input from the lateral hypothalamus (LH) (Aghajanian et al.

1990; Lee et al. 2003) which becomes active when a primary

reward is experienced. Again, as with the VTA the signal in

the DRN diminishes via the slowly increasing activity in the

RMTg – DRN pathway. However, the main difference to the

VTA is the intimate reciprocal connection to the prefrontal

cortex (Zhou et al. 2015; Roberts 2011), in particular we

are interested in the orbitofrontal cortex (OFC). Apart from

the input from the LH this is the main excitatory input to

the DRN (Zhou et al. 2015). We propose that the sustained

activity of the DRN in anticipation of a reward is solely

generated by cortical structures and in particular by the OFC.

As mentioned above the OFC learns to associate stimuli

with the reward. These could be direct sensor inputs or

pre-processed ones. In our case we assume that the OFC

receives place information from the hippocampus and can

then “remember” that a reward has occurred at that place. Of

course the OFC has many additional abilities. In particular

for reversal learning to provide persistent activity which lasts

after a reward has been omitted and can provide long lasting

depression of both VTA and DRN neurons via the RMTg.

However, this is beyond the scope of this paper in which we

just focus on reward acquisition.

This leads us to the following equations to calculate the

activity of the DRN. Since the OFC projects into the DRN

we need to define its activity first:

OFC = ρPFG
· PFG + ρPFB

· PFB (8)

where PFG ,PFB are hippocampal place fields around the

green and blue landmarks respectively and ρPFG
, ρPFB

the

weights feeding these place fields into the OFC. The two

weights from the hippocampus to the OFC change according

to:

∆ρPFG/B
= µOFC ·DRN · PFG/B (9)

at a learning rate of µOFC and where the activity of the DRN

is calculated as:

DRN =
LH + a ·OFC

1 + (b · RMTg +DRNSUPP )
+DRNOFFSET

(10)

and LH is the activity of the lateral hypothalamus (LH)

which becomes active when encountering a primary reward.

The RMTg provides a negative feedback on the OFC via

the same subcortical pathway as for the reward prediction

error and a, b are scaling constants. The inhibition of

the DRN by GABA-ergic projections from the RMTg

and other pathological inhibitory sources (DRNSUPP ) is

modelled as shunting inhibition, mediated by GABA-

controlled Cl− conductance (Mitchell and Silver 2003). The

reversal potential of Cl− as measured in the DRN is

about −70 mV (Pan and Williams 1989) which is virtually

identical to the resting potential of the DRN neurons which

is about −67 mV (Jin et al. 2015). This means that there

is little or no hyper-polarisation but results in GABA

controlling the incoming excitatory gain in the form of a

division operation (Mitchell and Silver 2003).

To test the pathological cases we have introduced two

constants: DRNSUPP is zero under control conditions and

set to positive values to simulate excessive tonic inhibition

for pathological DRN hypoactivity. Similarly DRNOFFSET

is zero for control but will be set to a positive value to

simulate the effect of the serotonin re-uptake inhibitor.

When does the DRN become active? Consider Eq. 10 that

shows how the DRN fires via the LH pathway at the moment

a reward appears. We propose that 5HT causes learning in the

OFC and associates the place field with the reward. Note that

it is likely that a small VTA innervation will cause plasticity

in the OFC to be increased. However we separate the roles

of 5HT and DA between cortical and subcortical processing

and propose that plasticity in the OFC is triggered by 5HT

(Peñas-Cazorla and Vilaró 2015; Roberts 2011; Mlinar et al.

2006; Phillips et al. 2018).

Before we run simulations we examine graphical traces of

the relevant signals to prepare for the more complex signals

in the real simulation run.

2.4 Linking behaviour to the signals

How is the behaviour of the rat in our experiment linked

to the neuronal model described above? Before stating the

equations we go through the activity with the help of the

traces in Fig. 5 which represent a cortical mPFC neuron

processing approach behaviour to the left reward site which

will provide delayed rewards.

1. When the rat encounters the primary reward at the

green landmark the LH fires which in turn makes the

NAcc core learn to associate the visual information

of the landmark vis1,G with the reward. This will

guarantee that the rat will approach the green landmark

Prepared using sagej.cls
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Figure 5. Activity cartoon traces. vis1: visual information of the

landmark, vis2: visual information of the reward, 5HT: serotonin

activity/release, mPFC: medial prefrontal cortex, VTA/DA:

dopamine (DA) release from the ventral tegmental area (VTA).

from this distance. At the same time the primary

reward is transmitted from the LH to the OFC which

associates the place field (circle around the landmark)

with the reward.

2. The rat sees the landmark from a distance so input

vis1,G is active. The food is not yet shown so vis2,G
is zero. The activity of 5HT is zero which allows the

activity vis1,G to progress easily via the mPFC and

NAcc core to the motor circuits, thus causing the rat to

approach the landmark.

3. The rat enters the place field. The hippocampus now

provides place field information to the OFC which

in turn drives the DRN. This means that the 5HT

is released in the mPFC where it changes the signal

to noise ratio of the incoming signals. Recall that

at this point vis1,G is greater than zero (indicating

“go to landmark”) whereas vis2,G is zero. This will

effectively make the output of the mPFC smaller

which can be seen in the cartoon.

4. After a delay the food appears and vis2,G > 0 which,

in conjunction with vis1,G > 0, results in a strong

input to the mPFC which can progress to the NAcc

core and cause the animal to approach the food.

In summary we have described a model of a decision-

making network that spans cortical and subcortical areas.

The cortex shapes the signals so that with low 5HT

concentrations small stimuli cause an action whereas with

high 5HT concentrations only strong or combined stimuli

can progress to the NAcc core to trigger actions. The

subcortical areas are therefore responsible for reinforcement

learning.

2.5 Scenarios to investigate drug action

Central to this paper are models against depression. It is

widely accepted that a hypofunction of the DRN causes less

5HT to be released. There are several proposed solutions to

this problem and we will investigate them in this paper. Our

aim is to determine which of the proposed solutions will

indeed prove to be beneficial, and which will be shown to

be counterproductive. To achieve this, after a successful run

of a healthy animal we will reduce the release of 5HT by

enabling excessive inhibition of the DRN. We will observe

the behavioural effects and measure the impact of different

interventions.

The scenarios for the statistical analysis have an additional

parameter which complements the pathological interventions

above: the time the agent must wait for a reward. The default

number of time steps is 150. By reducing this period to 100

steps in some cases we can model two interventions:

1. Pharmacological intervention: SSRIs or 5HT receptor

agonists such as LSD or magic mushrooms.

2. Environmental intervention: the time the agent needs

to wait till it receives its reward.

As we have a scenario where waiting is crucial to obtaining

a reward a reduced waiting time is the obvious intervention

here. This can then be compared to the pharmacological

intervention in terms of its effect.

We combine our (two pharmacological and one environ-

mental) interventions to allow us to consider the following

scenarios. In all cases the reward is delayed the default

number of time steps unless a reduced reward delay is

indicated:

1. Control: the simulated rat successfully waits in front of

the landmark. When the reward appears it approaches

it and eats it.

2. Reward early: the parameters are the same as in 1 but

the food appears earlier (reduced reward delay).

3. DRN suppress: the DRN activity is suppressed by a

excessive GABA-ergic influence (DRNSUPP > 0 in

Eq. 10).

4. DRN suppress & reward early: the parameters are the

same as in 3 but with a reduced reward delay.

5. DRN suppress & SSRI: DRN suppression as in 3 but

now the action of the SSRIs cause a constant baseline

shift of the 5HT receptor activations because of slow

5HT reuptake (DRNSUPP > 0, DRNOFFSET > 0 in

Eq. 10).

6. DRN suppress & SSRI & reward early: the parameters

are the same as in 5 but with a reduced reward delay.

7. DRN suppress & 5HTR2 agonist: the DRN activity

is suppressed as in 3 (DRNSUPP > 0 in Eq. 10)

but additionally the 5HTR2 receptor is tonically

stimulated (HTR2OFFSET > 0, Eq. 5) so that the gain

of the transmission is increased.

8. Same parameters as in 7 but with a reduced reward

delay.

These different scenarios can be investigated both in single

runs to gain a deep understanding of the interactions between
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the nuclei, and by conducting multiple random runs to

determine statistics indicating how successful learning has

been. For the behaviour based approach we conduct Monte

Carlo based experiments for each scenario to calculate the

relative reward. We then use a computational technique

known as Model Checking to analyse behaviour during

the crucial period between when the agent slows down in

anticipation of the reward and speeds up when the reward

appears.

2.6 Probabilistic Analysis

2.6.1 Traditional behaviour based runs We need to define

a performance parameter which reflects how successful the

agent has been in obtaining rewards. Since this paradigm is

about waiting for delayed rewards we compare the number of

successful rewards against all encounters with the landmark:

rr =
Number of rewards obtained

Number of times the landmark has been approached
(11)

This average reward is not just an academic measure but

is monitored within the limbic system (Daw et al. 2002)

and then drives the levels of both serotonin and dopamine

amongst others (Niv 2007). The complete code including

scripts running all scenarios are part of our open access

repository (Porr et al. 2019).

Traditionally performance measures are obtained by

running the experiment many times and performing a

statistical analysis. They have the advantage of being close

to the biological model (the behaviour of the animal) but

are very time consuming to run. An alternative is model

checking.

2.6.2 Model checking An alternative approach used

extensively in computing science is model checking. We

represent the neuronal activity and behaviour via a formal

language. We then use an automatic software tool called a

model checker to analyse our system using both simulation

and verification. The model checker does this by first creating

an underlying mathematical representation, which is then

explored to evaluate properties. Note that, for convenience,

we refer to both the formal description and the underlying

mathematical representation as the model in this paper.

Creating a model necessarily requires us to abstract

behaviour – to only contain aspects that are relevant to the

properties being verified. We use model checking to focus

on the core aspect of this paper, namely waiting for a reward.

The property that we want to evaluate using our model is:

pp =
What is the probability that the agent will

collect the reward at some point during its

complete journey?

(12)

which is directly comparable to the relative reward (Eq. 11)

obtained by multiple runs.

We use the model checker PRISM (Kwiatkowska et al.

2011) to determine the probabilities for our 8 scenarios from

Section 2.5. PRISM is a probabilistic model checker that

allows for the analysis of a number of probabilistic models

including Discrete Time Markov Chains (DTMCs), Markov

Decision Processes (MDPs) and Continuous Time Markov

Chains (CTMCs). All of the models used in this paper

are DTMCs. Models in PRISM are expressed using a high

level modelling language based on the Reactive Modules

formalism (Alur and Henzinger 1999) and properties used

in the verification of DTMCs are based on Probabilistic

Computation Tree Logic (PCTL) (Hansson and Jonsson

1994). In a Prism model, each module has a set of finite-

valued variables which contribute to the module’s state, the

global state space of the system is given by the product

of the states of each module. Transitions of the model

are established by way of commands, where a command

consists of an (optional) action label, guard (i.e. a condition

which must hold for the transition to be executed) and

probabilistic choice between updates. The update specifies

how the variables of the module are updated when the

command is executed. The probabilities for each update sum

to 1. Modules interact through guards and synchronise via

action labels.

Figure 6. Linear representation of the behavioural experiment

As outlined above, in contrast to the behaviour based

approach we focus on the crucial moment when, after

learning, the agent sees the landmark, approaches it and

waits in front of it to obtain the delayed reward. Our model

assumes a linear search area as depicted in Fig. 6 which

is our one dimensional place field from Fig. 1. Central to

this is Eq. 3 which controls the speed of the agent while it

approaches the landmark. The reward can then appear at any

of the seven positions marked on the central line. The agent

should then speed up to reach the reward. The variable σ is

set in a way that the seven positions are spread evenly over

the place field. See Porr et al. (2019) for the complete Prism

code, and the appendix B for the parameters.

To represent the behaviour of the agent and the

delayed reward our model consists of two interacting

modules. These are the limbic system module, and the

reward spawner module. These modules synchronise

after the agent has reached the waiting area and the

reward spawner delays releasing the reward. The

behaviour of these modules is illustrated in Fig. 7. Note

that the states in Fig. 7 actually correspond to groups of

states in the underlying DTMC. The states labelled Si or tj
in the limbic system and reward spawner modules

correspond to all states for which variables s and t have

the value i or j respectively. Note that from index 2 these
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states match those introduced in Fig. 1. States S0 and S1

correspond to the start of the behavioural model and a point

at which random movements prior to seeing the landmark

have occurred. We use the transition between the two to

set speed type - a variable which will contribute to the

likelihood of missing the reward location later in the model.

Figure 7. States and transitions for the Prism model

To describe our model we refer to Fig. 7. The states

associated with the limbic system module are described

below:

S0: Initially a probabilistic choice is made as to

the position of the reward (represented by the

first transition in the limbic system module

- probabilistic choice is denoted by a dashed

line). There is an equal probability of the reward

appearing at each of the positions r + kσ, for k ∈
{−3,−2,−1, 0, 1, 2, 3} (as illustrated in Fig. 6).

S1: One of three speed types is probabilistically chosen

(which will control the speed of the agent). In the

behaviour-based simulation this speed variation is due

to different angles at which the agent approaches the

landmark and fluctuations of the weights controlling

the speed. Both of these factors are abstracted to the

three different speed types.

S2: The agent can see the landmark (vis1 = 1) and

approaches it. The speed of the agent is set via Eq. 3

to: reward unseen speed = mPFC .

S3: The agent has reached the edge of the place field.

At this point under normal conditions the serotonin

concentration has increased and the agent should

slow down. Different pathological conditions and/or

interventions might change this and these will be the

crucial part of our investigation (see Section 2.5).

At the same time as the agent enters the place field a timer

is started which allows us to delay the release of the reward.

The reward spawner module then waits a predefined

number of time steps (delay) before the reward is released.

The two modules synchronise during this period (denoted by

transitions with thick lines in Fig. 7), preventing the agent

from speeding up until the reward has appeared.

However, if the agent is impatient and does not slow down

sufficiently it will reach the (empty) landmark prematurely

and miss the reward. This is reflected in the model by an

immediate transition to final state S6.

S4: At this point the timer has reached the set delay

time and the reward spawner makes the reward

appear (vis2 = 1) so that now both vis1 = 1 and

vis2 = 1. According to Eq. 3, the speed now

(reward seen speed ) is set to a higher value to

obtain the reward. Again, this might be compromised

or improved because of pathological cases or

interventions.

S5: The reward is collected if it has appeared and missed

otherwise.

S6: The final state - entered whether the reward has been

obtained or not.

3 Results

We present our results in three subsections. First we describe

instructive single simulation runs which show the activities

in the different nuclei and relate these to the activities. We

then give statistical results from traditional behaviour based

simulations followed by our model checking results.

3.1 Single simulation runs

In this section we show how we can use our simulation

model to examine the different activities in a qualitative

way to gain an intuition of the processing involved in this

complex cortical and subcortical network. This is done by

performing eight single instructive simulation runs according

to the different scenarios (section 2.5).

3.1.1 Control run Fig. 8 shows the signal traces of a

successful run where the agent learns to approach the green

landmark and to wait in front of it. The numbers in the

figure correspond to those we used previously in Fig. 5.

Before step 1 the agent wanders randomly. The visual signal

vis1,G indicates that the agent sees the green landmark. It is

strongest when the agent is close to it.
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Figure 8. Control: Successful learning and waiting. Signal traces of (from top to bottom): 1) Place field around the reward site

(dashed) and visual distal landmark signal vis1 , 2) visual signal of the reward vis2 , 3) output of the medial prefrontal cortex (mPFC,

Eq. 3), 4) dorsal raphe nucleus (DRN) activity (Eq. 10), 5) synaptic weight in the NAcc core to approach the green landmark (Eq. 7),

6) activity in the ventral tegmental area (VTA, Eq. 14) and 7) Nucleus accumbens core (NAcc core) activity switching on approach

behaviour towards the green landmark (Eq. 6). The numbers in the signal traces correspond to the steps in section 2.4 linking

behaviour to the signals.

1. The agent accidentally waits in front of the green

landmark which then delivers food before the agent

wanders off so that the agent also has a non zero

vis2,G. At the moment the agent receives the food

at 1) the VTA is triggered which then causes long

term potentiation in the NAcc core so that its weight

grows. This will cause the agent to approach the

green landmark from a distance next time. The agent

is returned to its starting point. At this point the

agent also associates the place field around the green

landmark with the reward which will cause a rise in the

DRN activity next time and subsequent strengthening

of this association. This is entirely done by the OFC

which keeps track of the reward value.

2. After an unsuccessful attempt the agent sees the

landmark from a distance at 2) and approaches it.

3. The agent enters the place field around the green

landmark and the DRN activity rises. This now

creates the crucial drop in activity in the mPFC

which is caused by the activation of the 5HTR1 and

5HTR2 receptors as described in Section 2.2.2. The

suppression of mPFC activity is crucial here. This can

clearly be seen at the point at which the DRN activity

increases. This makes the agent stop as no activity is

fed downstream to the NAcc core and consequently

no action is triggered. The agent waits. Any smaller

distracting signals would be suppressed.

4. The reward appears and with that vis2,G > 0. The

overall effect is a much stronger input to the mPFC

in the region of inputG = 2, so Eq. 3 now receives

a strong input from both vis1,G and vis2,G which are

now both amplified due to the high 5HT concentration.

The high 5HT concentration makes the agent focus on

the strong signal and approach the target.

5. The agent receives the food and obtains a reward. This

further strengthens the association between the green

landmark and the place field.

The agent is not perfect. It might miss the food because

of its limited viewing angle or because it is not able to turn

around quickly enough to approach the food. If this happens

a negative reward prediction error is generated and the agent

experiences long term depression.

Overall our simulation shows that the agent obtains

rewards because 5HT causes it to wait. This is achieved by

suppressing smaller signals feeding into the mPFC at high

5HT concentrations. This makes the agent wait and only

approach the landmark once the additional stimulus from the

food creates an overall strong and thus salient signal.

We now examine how this behaviour is altered when the

5HT is reduced and which interventions are effective.

3.1.2 DRN activity reduced Fig. 9 shows a typical

run where the activity in the DRN is suppressed (i.e.

DRNSUPP > 0 in Eq. 10) in addition to the inhibition from

the RMTg.

As before the the agent receives a reward at 1) but the

next time it approaches the landmark it does not wait and

thus does not receive a reward. This causes a negative reward

prediction error and with that a decay of the weights in the

NAcc. This means that the successful association with the

landmark is unlearned and we see this in the decay of the
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Figure 9. The DRN activity is reduced due to excessive inhibition of the DRN. Signal traces: 1) Place field and visual landmark

signal vis1 , 2) visual reward signal vis2 , 3) mPFC: medial prefrontal cortex, 4) DRN: dorsal Raphe nucleus, 5) ρg : nucleus

accumbens core weight to approach the green landmark, 6) VTA: ventral tegmental area and 7) NAcc core G: nucleus accumbens

core activity to approach the green landmark.

Figure 10. DRN activity reduced due to excessive inhibition but serotonin reuptake inhibitors (SSRI) cause a tonic serotonin

concentration modelled here mathematically by introducing a shift in the DRN trace. Signal traces: 1) Place field and visual

landmark signal vis1 , 2) visual reward signal vis2 , 3) mPFC: medial prefrontal cortex, 4) DRN: dorsal Raphe nucleus, 5) ρg :

nucleus accumbens core weight to approach the green landmark, 6) VTA: ventral tegmental area and 7) NAcc core G: nucleus

accumbens core activity to approach the green landmark.

weight. Thus, no waiting leads to fewer rewards and negative

prediction errors which will lead to even fewer rewards in the

future.

So far we have focused on sub-cortical processing.

However it is well known that OFC tracks reward value

as well as the NAcc shell. Indeed the OFC is possibly the

more important area. We stressed earlier that this brain area

is much more influenced by 5HT than by DA. Plasticity is

also likely to be driven by 5HT. With reduced 5HT release

plasticity changes will become slower. As a result it will be

longer before the OFC learns that the area around the green

landmark is potentially rewarding. This can be seen by the
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Figure 11. DRN activity reduced because of excessive GABA-ergic inhibition. Psychedelics stimulate the 5HTR2 receptor which

cause a strong output from the mPFC because of increased transmission gain. Signal traces: 1) Place field and visual landmark

signal vis1 , 2) visual reward signal vis2 , 3) mPFC: medial prefrontal cortex, 4) DRN: dorsal Raphe nucleus, 5) ρg : nucleus

accumbens core weight to approach the green landmark, 6) VTA: ventral tegmental area and 7) NAcc core G: nucleus accumbens

core activity to approach the green landmark.

slow rise of the DRN activity which eventually saturates at a

lower level than in the healthy condition.

In summary there are two effects caused by a depletion of

5HT:

1. Poor signalling that a reward is imminent means that

the agent does not wait for the reward. This leads to

fewer rewards in total.

2. Because of a lack of 5HT in the OFC plasticity is not

increased when there is the potential of a reward. The

OFC thus does not effectively learn the association

between rewards and reward-potential cues.

3.1.3 Restoring activity with SSRIs Serotonin reuptake

inhibitors (SSRIs) are important and effective drugs against

depression. Fig. 10 shows the traces of a run where we have

simulated the action of the SSRIs: because 5HT is not re-

absorbed it continues to stimulate the receptors at a certain

baseline level. We have simulated this with a bias added

to the 5HT concentration (DRNOFFSET > 0 in Eq. 10). In

order to make it visible in the traces we have added the

bias to “DRN” which is identical from the perspective of the

simulation, namely that the receptors experience a constant

stimulation.

The shift in the baseline has two positive effects on the

learning. Learning of the reward value in the OFC is much

faster because it initiates the positive feedback between OFC

and DRN as soon as a reward has been triggered. We see that

the increase of the DRN activity is much faster and saturates

only after a few contacts with the landmark. In addition the

maximum concentration of 5HT is higher which leads to the

agent waiting in front of the landmark, so receiving more

rewards.

In summary the SSRIs provide good relief against the

problems caused by low DRN activity: enhanced plasticity in

the OFC and greater reward value due to a higher 5HT signal.

A point to note is that learning will become less specific due

to the increase in plasticity. However, because learning is still

triggered by the reward from the LH this is of minor concern.

3.1.4 Restoring activity with psychedelics Recently

psychedelics have been suggested as a means to counteract

the effect of loss of 5HT. Fig. 11 shows a relevant

simulation run. Psychedelics particularly stimulate the

5HTR2 receptor which is responsible for the gain of the

neuronal transmission. In order to understand how this

is beneficial we recall the different contributions of the

5HTR1 and 5HTR2 receptors. The 5HTR1 receptor decides

how small signals are to be treated. At low concentrations

of 5HT small signals are amplified whereas at high 5HT

concentrations they are suppressed. When the DRN is not

able to release much 5HT small signals are amplified even

more. This means that the agent will approach potential

food sources even if their stimulus is small (and so the agent

will approach any object). On the other hand the stimulation

of the 5HTR2 receptor introduces a bias on the 5HTR2

receptor so that it constantly boosts the gain of the target

neuron. We have simulated this by adding a constant value

(HTR2OFFSET > 0) to the 5HTR2 activation in Eq. 5.

Returning to Fig. 11 we can observe the effect of this bias.

As the agent was attracted to the blue landmark as well as

the green one it did not receive a reward until time step 6700.

On the other hand, learning is probably enhanced because

of higher 5HT activity. This leads to a mild beneficial effect

overall and the agent eventually learns to wait in front of the

landmark.
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Figure 12. A) Behaviour based simulation results – means and standard deviations of the normalised rewards (rr, Eq. 11) and B)

Model checking results – reward probabilities (pp, Eq. 12) for the eight scenarios.

In summary the benefit of 5HTR2 agonists are in their

ability to enhance exploration. This leads to more contact

with the landmarks but also more disappointment.

Having developed our model and obtained intuition as

to how processing in cortical and subcortical areas works,

we now perform a quantitative evaluation of the overall

reward obtained. First we use the simulator from the previous

section by running all experiments many times. We then

show the results of using model checking to investigate the

crucial stage of waiting for a reward.

3.2 Statistical evaluation

For our eight scenarios defined in section 2.5 we ran

traditional statistical runs in which the simulated rat

experiment was run 63 times with different start directions

in the arena. The simulations ran until the simulated rat

had reached the landmark 50 times (irrespective of whether

food was shown) and the number of rewards obtained was

counted. The resulting values of rr calculated via Eq. 11

were averaged over the 63 runs and their standard deviation

calculated. These values are shown in Fig. 12A, ordered from

bottom to top according to the eight interventions described

in Section 2.5. We have compared the results for each case

using a two sided t-test for dependent distributions (p <

0.05) which indicated significant differences between all 24

unique pairs. We now describe our findings for each scenario.

In the control condition in about 75% of all approaches to

the landmark the agent receives the reward. This marginally

increases when the reward is presented early.

Suppression of the DRN activity generates a very poor

performance with about 25% success and a very narrow

error rate. An earlier reward can improve this significantly

as can the administration of SSRIs. Combining the use of

SSRIs with a shorter reward delay increases performance to

about 50%. This means that the agent receives the reward

about half of the time. In contrast, the chance of an agent

running aimlessly through the arena receiving the reward is

close to zero. The improvement is still not as good as the

control but has a significant improvement against the pure

“DRN suppress” condition with about twice as many rewards

obtained. This means that the circuits in the limbic system

which track reward value will reach a higher level which in

turn will feed back into the cortex.

The other approach is the use of psychedelics to increase

the number of obtained rewards. In accordance with the

single trial run psychedelics make it worse in this scenario

where the agent needs to be patient. Stimulating the 5HTR2

receptor increases the gain of cortical processing which

means that the animal becomes more impulsive and won’t

wait. This leads to a significantly worse performance with

5HTR2 agonists against in particular the 3rd scenario “DRN

suppress”. However, this can be significantly improved when

the reward is presented earlier. This points to an interesting

twist revealing under which conditions psychedelics will

work: they will only work in conjunction with environmental

changes - just administrating them could make the situation

worse.

However the application of SSRIs plus an earlier reward

is significantly better than the administration of 5HTR2

agonists in conjunction with an earlier reward.

Overall these simulations show that even a slightly earlier

reward is beneficial in both cases but is essential for 5HTR2

agonists such as LSD. This is because they increase the

impulsivity of the agent meaning that it cannot cope with

long delayed rewards.

3.3 Model Checking

Fig. 12B shows the results of model checking which can

be compared to those using traditional statistical methods

shown in Fig. 12A. Overall we observe that model checking

confirms the results from the behavioural simulation where

the relative rewards track closely the reward probabilities.

This is particularly the case from control up to scenario

6 involving the intervention with SSRIs. However, for

the scenarios involving psychedelics there is a stronger

difference between the pure 5HTR2 agonist and the situation

where the reward is delivered early. This means that the

environmental contribution is much more emphasised during

model checking. Remember that our model checking model

uses a one dimensional abstraction of the behaviour so

that in the case of an impatient agent there is little chance

of “accidentally” waiting for the reward by detouring
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via intermittent distractions. Our abstraction from the

behavioural model allows us to show a distinct advantage

of the SSRI approach against psychedelics, at least for the

delayed reward paradigm, by focusing on one key aspect

– namely how 5HT changes the neuronal transfer function

(Eq. 3) turning sensor stimuli into action.

4 Discussion

We have investigated how serotonin shapes the action

selection process in a simulated experiment where a rat

has to wait for a delayed reward. Waiting is achieved by

5HT tuning cortical processing. At high levels of 5HT

cortical processing only reacts to well learned and relevant

stimuli, whereas at low levels even smaller stimuli can trigger

behaviour. The pathological case of less 5HT release was

then investigated with the main finding that because of less

waiting the agent receives fewer rewards which in turn causes

negative prediction error and eventually the unlearning of

reward associations for both actions and the reward value

system. This causes a downward spiral. In order to counteract

this we then employed three different interventions: SSRIs,

psychedelics and environmental changes making it easier

to obtain the reward. Here clearly SSRIs, environmental

changes and their combination provide the best results while

the introduction of psychedelics leads to mixed results.

The first computational models of the role of serotonin

are rooted in the opponent interactions between serotonin

and dopamine introduced by Daw et al. (2002) where the

positive part of the phasic reward prediction error (RPE)

is represented mostly by dopaminergic neurons and the

negative part mostly by serotonin. In addition dopamine

carries a tonic reward signal and serotonin codes a

tonic/average punishment signal. In contrast in our model

serotonin exhibits only tonic activity (Nakamura et al. 2008;

Li et al. 2016) but this activity increases in anticipation of a

reward. See Fig. 5 which shows the cartoon version of 5HT

starting to increase when the agent is inside the place field,

and the actual activity traces in Figs. 8, 9, 10 and 11. The

opponency theory was further refined by Boureau and Dayan

(2011) where serotonin is viewed as an inverted dopamine

signal but in relation to both reward (punishment) and

behavioural approach (inhibition/avoidance). At the neuronal

circuit level this is achieved with the help of an inhibitory

projection from the DRN to the VTA which is able to

suppress VTA activity and interpreted as an opponent signal

to that of the VTA. Interestingly, while the opponency theory

has been abandoned (Dayan and Huys 2015) this does not

contradict our model at the circuit level because the DRN

activity could also be used to help to calculate the reward

prediction error (RPE) by providing a different source of

inhibition to the VTA (see Fig. 4). Recall that the RPE

is calculated by inhibiting the primary reward information

to the VTA which arises mainly from the LH. Instead of

inhibiting the VTA via the OFC-shell-VP-EP-LHb-RMTg

pathway to calculate the reward prediction error (RPE), the

OFC could also inhibit the VTA via the DRN and is thus

able to assert a direct inhibition on the VTA bypassing the

pathway through the Nacc shell.

While Daw et al. (2002) use an actor/critic model (i.e. TD-

learning) to be close to observations from biology, the model

of Balasubramani et al. (2014) is based on the more abstract

Q-learning. This has an additional “risk prediction” error

which alters the Q values in such a way that an animal avoids

risks in case of anticipated gains and seeks risks in case

of anticipated losses. In the context of this abstract model

serotonin codes the strength of risks taken into account.

However, the serotonin signal is kept at a constant value

throughout an experiment and has no dynamics which would

relate to simply straight lines in Figs. 8, 9, 10 and 11

averaging out the distinct temporal dynamic of the 5HT

concentration (Nakamura et al. 2008; Li et al. 2016) during

reward based learning.

The action of 5HT is often delayed by weeks and has been

attributed to a slow de-sensitisation of, in particular, 5HTR1

and 5HTR2 receptors (Stahl 1994). Another explanation

is the ability of 5HT to boost plasticity so that neurons

learn new positive associations (Scholl and Klein-Flügge

2018; Iigaya et al. 2018). For that reason we have controlled

cortical plasticity with 5HT. In contrast to intrinsic neuronal

effects such as 5HT receptor de-sensitisation we argue that

the slow recovery of depressed patients is because they

receive more rewards causing the reward system to attach

more value to sensor events. This in turn increases motivation

via both the shell-vp-md-cortex pathway and an increase in

tonic dopamine via the shell-vp-VTA pathway (Cofer 1981;

Dayan 2001; Niv 2007). We argue that improvements in the

5HT system need to filter down to the DA system and should

be coupled with behaviour.

While the activity of the 5HT releasing DRN has

been extensively recorded and documented (Nakamura et al.

2008; Li et al. 2016), the role of the different 5HT receptors

is hotly debated. In particular the two oldest subtypes 5HT1

and 5HT2 seem to play important roles where the 5HT1 is

inhibitory and the 5HT2 is excitatory (Celada et al. 2013).

One might argue that these two effects cancel each other

out but this is not the case: it is well established that

the application of 5HT usually causes a strong depression

of neuronal activity (Celada et al. 2013). This emphasises

the fact that the influence of the 5HT1 receptor on signal

processing is non-linear, leading to distinctly different

processing according to the level of 5HT (see Eq 3).

Recently the role of psychedelics such as LSD

as antidepressants has been widely discussed

(Carhart-Harris and Nutt 2017; Bryson et al. 2017).

The argument is that they enhance cortical processing

by boosting activity in the cortex and activating 5HTR2

receptors. However, this might not always be desirable, in

particular in tasks which require patience due to the fact

that the activation of 5HTR2 receptors increase the gain of

cortical processing (Andrade 2011; Carhart-Harris and Nutt

2017; Shimegi et al. 2016). This might lead to more rewards

because of more (random) activity but won’t provide

measured goal directed behaviour. Psychedelics might

work in situations where rewards are readily available and

increased random encounters with rewards boost the reward

system so increasing mood. For this reason we argue that

interventions with drugs requires matching environmental

interventions.

While we focus on reinforcement learning and on

the importance of the dynamics of serotonin release

during reward related behaviours (Nakamura et al. 2008;
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Bromberg-Martin et al. 2010; Li et al. 2016), the model

by (Carhart-Harris and Nutt 2017) focuses on stress and

how under these conditions the two receptor sub-types

5HTR1 and 5HTR2 are up- or down-regulated. Central

to their narrative is the claim that 5HTR2 receptors

are mainly located in the cortex and that 5HTR1

receptors are located only in subcortical/limbic areas.

In particular the 5HTR2 receptors, mainly located in

the cortex, can foster open-mindedness, environmental

sensitivity and learning/unlearning. On the other hand

the subcortical structures harbour more 5HTR1 receptors

representing stress, impulsivity resilience, patience and

emotional blunting. This leads to the suggested therapy

against depression, namely activating 5HTR2 receptors in

the cortex only via pharmacological means, in particular

with psychedelics. However this contradicts the findings

of Palacios et al. (1990); Varnäs et al. (2004); Mengod et al.

(2009); Andrade (2011). In particular Andrade (2011)

reports that 80% of pyramidal neurons have both 5HTR1

and 5HTR2 receptors co-localised. In addition they assume

that serotonin is released in both subcortical and cortical

areas in comparable concentrations. Contrarily our model

is based on the hypothesis of Roberts (2011); Linley et al.

(2013) that serotonergic neurons of the DRN project mainly

to the cortex which also has the highest density of both

5HTR1 and 5HTR2 receptors (Varnäs et al. 2004) and much

less so to the subcortical structures which also have a lower

density for both 5HTR1 and 5HTR2 receptors (Varnäs et al.

2004). Our model assumes that both receptors 5HTR1 and

5HTR2 are co-located in the cortex (Palacios et al. 1990;

Andrade 2011) and that serotonergic influence is much

more important in this brain region than in subcortical

areas (Roberts 2011). This leads to our proposed interplay

between these two serotonin receptors in the cortex, namely

that they shape the signal to noise processing mainly in

the cortex. Adaptation to different situations is achieved

by reward related serotonin release in the cortex. On

the other hand Carhart-Harris and Nutt (2017) focus on

extreme situations of anxiety where the important aspect

is not timed serotonin release but rather up- and down-

regulation of the serotonin receptors themselves which in

turn modulate target neurons over longer time scales. In

terms of sub-cortical areas dopamine rather than serotonin

is our primary neuromodulator which has well established

strong projections from the VTA to subcortical areas such

as the NAcc (Beckstead et al. 1979; Breton et al. 2019)

and to some cortical areas while Carhart-Harris and Nutt

(2017) solely focus on serotonin in their model. In terms

of environmental factors (Hartogsohn 2016) the paper by

Carhart-Harris and Nutt (2017) stresses as we do that they

are important for a successful therapy particularly for a brain

in which activity is ramped up by LSD to a higher level of

“Entropy” and plasticity (Carhart-Harris et al. 2014). In this

situation the right environment is required to obtain rewards

as we have shown here.

While LSD acts directly on the serotonergic system,

NMDA receptor antagonists such as Ketamine have

also shown promising results (Chaudhury et al. 2015;

Llamosas et al. 2019). The positive effects of Ketamine can

be related to increased serotonin release either through

less GABA-ergic inhibition on the DRN (Chaudhury et al.

2015) or increased spontaneous activity of DRN neurons

(Llamosas et al. 2019). The exact mechanisms are still being

investigated (Pham and Gardier 2019) but the action in this

case is distinctly different because Ketamine increases 5HT

release while LSD acts specifically on the 5HTR2 receptor.

In this respect we predict that Ketamine acts in a similar way

to SSRIs while LSD has a very different effect as outlined

above.

In this paper we have shown how 5HT helps in the

acquisition of rewards when patience is required. In our

experiments 5HT made the rat focus on the relevant stimulus.

A related effect would be faster response to the omission

of rewards (i.e. learning to reprocess due to negative reward

prediction errors (Homberg 2012)). Reversal learning will be

part of future investigations.

A Behaviour based model

Lateral hypothalamus (LH) The LH fires when a primary

reward has been received.

LH = reward (13)

Ventral Tegmental Area (VTA) The VTA receives its

activity from the LH and is inhibited by the the rostromedial

tegmental nucleus (RMTg).

VTA =
LH + VTA0

1 + RMTg · shunting inhibition factor
(14)

where shunting inhibition factor = 200 defines the

amount of shunting inhibition on the VTA. This constant is

identical for any shunting inhibition in this model. VTA0 is

the baseline firing rate of the VTA. At baseline neither LTP

nor LTD is invoked. If the activity drops below the baseline

LTD is invoked in the targets and if above baseline it is LTP.

Orbitofrontal Cortex (OFC) Crucial for our model are the

plastic pathways with weights ρPFG/B
connecting the place

fields (PF) to the OFC:

OFC = ρPFG
· PFG + ρPFB

· PFB (15)

∆ρPFG/B
= µOFC ·DRN · PFG/B (16)

where µOFC = 0.01 is the learning rate.

Lateral nucleus accumbens shell The accumbens shell

also receives place field information and associates it with

the help of the plastic weights γPFG/B
:

lShell = γPFG
· PFG + γPFB

· PFB (17)

∆γPFG/B
= µshell · (V TA− VTA0 ) · PFG/B (18)

where µshell = 0.001 is the learning rate in the nucleus

accumbens shell.

Dorsolateral ventral pallidum (dlVP) The shell inhibits

the dlVP:

dlVP =
1

1 + lShell · shunting inhibition factor
(19)

Entopeduncular Nucleus (EP)

EP =
1

1 + dlVP · shunting inhibition factor
(20)
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Porr, Miller and Trew 15

Lateral habenula (LHb)

LHb = EP (21)

Rostromedial tegmental nucleus (RMTg)

RMTg = LHb (22)

Nucleus Accumbens core

NAcccore,G/B = ρ ·mPFCG/B (23)

∆ρG/B = µcore(DA−DA0) ·mPFCG/B(24)

DA0 = 0.05 (25)

where µcore = 0.075 is the learning rate in the core. The

core will then disinhibit motor commands via a polysynaptic

pathway involving basal ganglia structures and the motor

cortex which is modelled in an abstract way. Below the

agent performs exploration activity with a NAcc core

activity of 0.25. Above that threshold the agent/simulated

rat approaches the green or blue landmark respectively

depending on which is stronger.

Figure 13. Reproduced from Cano-Colino et al. (2014)

showing the action of the 5HTR1 receptor on the response

curve of a cortical neuron where the firing rate of the neuron is

plotted against an injected depolarising current. A) shows the

response curve at low serotonin concentrations and B) the

response curve at high serotonin concentration.

Medial Prefrontal Cortex (see also Fig. 13)

mPFCG/B(inputsG/B , 5HTR1 , 5HTR2 ) =
(

1− e
−

(

inputsG/B
5HTR1

)5HTR1)

· 5HTR2 (26)

a5HTR1 = 1 + 5HT (27)

a5HTR2 = 2 + 5HT + HTR2OFFSET (28)

where HTR2OFFSET = 0 under normal conditions and

HTR2OFFSET = 1 under the influence of LSD.

Dorsal Raphe Nucleus (DRN)

DRN =
LH + aOFC

1 + (bRMTg +DRNSUPP )
+DRNOFFSET

(29)

where DRNOFFSET = 0 under normal conditions and

DRNOFFSET = 0.15 under the influence of SSRIs. The

term DRNSUPP = 0 under normal conditions but is

DRNSUPP = 4 when simulating a suppressed DRN activity

due to excessive inhibition.

B Prism model

The full Prism code is available at Porr et al. (2019).

The values of r and σ (from Fig. 6) and the speed of

the agent after the reward has appeared are constants

l and reward spread which are fixed at 1000
and 330 respectively. The values of constants delay,

reward unseen speed and speed uncertainty

(representing the delay in the reward appearing once the

agent has reached the place field, the speed of the agent

while waiting for the reward to appear, and the uncertainty

in the speed - a proportion of reward unseen speed)

are varied for each experiment.

The two modules limbic system and

reward spawner synchronise after the agent has

reached the waiting area and the reward spawner delays

releasing the reward. This is achieved in Prism via the use of

action labels. Specifically all synchronised transitions have

the action label ([timed]). This forces any such transition

enabled in the limbic system module to synchronise

with an enabled transition in the reward spawner

module with the same label (if such a transition exists).
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