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Abstract
The behavioural ecological approach to anthropology states that the density and distribution of resources determine
optimal patterns of resource use and also sets its constraints to grouping, mobility and settlement choice. Central Place
Foraging (CPF) models have been used for analysing foraging behaviours of hunter-gatherers and to draw a causal
link from the volume of available resources in the environment to the mobility decisions of hunter-gatherers.
In this study we propose a spatially explicit agent-based CPF mode. We explore its potential for explaining formation of
settlement patterns and test its robustness to the configuration of space. Building on a model assuming homogeneous
energy distributions we had to add several new parameters and an adaptation mechanism for foragers to predict the
length of their stay, together with a heterogeneous environment configuration.
The validation of the model shows that the spatially explicit CPF is generally robust to spatial configuration of energy
resources. The total volume of energy has a significant effect on constraining sedentism as predicted by aspatial model
and thus can be used on different environmental conditions. Still the spatial autocorrelation of resource distribution has
a linear effect on optimal mobility decisions and needs to be considered in predictive models. The effect on settlement
choice is not substantial and is more determined by other characteristics of settlement location. This limits the CPF
models in analysing settlement pattern formation processes.
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Introduction

Mobility is one of the most distinctive features of hunter-
gatherer lifeways and therefore has attracted a significant
amount of research. Studies of empirical material collected
by ethnographers have shown that varying rates of
both residential and logistical mobility, i.e. respectively
settlement decisions and day to day movements to get
the required resources, are related to subsistence behaviour
and environmental conditions. Mobility patterns observed
in ethnographic studies have been used for explaining
archaeological settlement patterns using correlates between
known mobility and environmental variables. This allows
archaeologists to draw hypotheses about the economy and
organization of past societies. (Binford 1980, 2001; Kelly,
1983, 2013; Lee and Devore, 1968)

Hunter-gatherer mobility patterns have often been
explained by foraging requirements. They need good
locations for foraging for resources and move when the
conditions become less favourable due to diminishing
foraging returns. The explanations are formalized in a
number of models, mostly based on Optimal Foraging
Theory (Emlen, 1966; MacArthur and Pianka, 1966;
Schoener 1979) and marginal value theory (Charnov
1976). Both models were originally developed to predict
animal behaviour while foraging the environment to fulfill
their energetic requirements. Hunter-gatherers have more
complex foraging organization than non-humans and their

mobility strategy has been described as Central Place
Foraging (CPF). They are assumed to set up a central base
from which they make logistical forays to acquire food
and other resources. In the present paper, we consider in
particular the CPF mobility model of Kelly (2013, p. 96-
101), which formalizes the effects of the environment on
mobility and assumes that the active foragers in a group
dominate the choice of residential moves.

We construct an Agent-Based Model (ABM) that builds
on Kelly’s work in order to test CFP model robustness and
explore residential mobility in the context of heterogeneous
landscapes, hence heterogeneous environment and spatially
varying distributions of resources. Spatial variations in
environmental conditions and its influence on hunter-
gatherer mobility patterns have been analysed before, but
not in the context of CPF mobility modelling. Landscape
heterogeneity can result from exogenous causes such as
natural variations (soils, vegetation types, proximity to
water, etc.) or arise endogenously from resource depletion
due to foraging habits. If the environment is the key to
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understanding mobility patterns and the spatial distribution
of Central Place foragers, we question here how its spatial
distribution impacts our understanding of foraging and
settling behaviour. In addition, since hunter-gatherers, by
their actions, change the spatial distribution of the resources
through time, we think it is important to consider the impact
several hunter-gatherer groups have on a given landscape.

Kelly’s original model assumed homogeneous distribution
of energy resources in the environment. It involves a choice
between staying or moving to alternative sites and focuses
on the timing of this decision and the distance between
sites. We introduce these decisions in a spatio-dynamic
Agent Based Model. Our framework allows for multiple
locational alternatives (not only distance) to be modelled in
a spatial explicit environment where there is heterogeneity
in the availability of resources. The likelihood of choosing
a new base site, i.e. the utility of a particular location, is
deterministically defined by a measure of access to resources
from the location and idiosyncratic variability among agents
(hunter-gatherer groups).

We explore the new insights that the spatially explicit
model could offer us regarding settlement pattern formation
processes and whether the CPF model can be used as a link
to empirical settlement data. Kelly’s model is an aspatial
model, hence moving decisions are made irrespective of the
existence of alternatives. By introducing a spatially explicit
landscape, we add multiple choices and an interaction
between the decision to move and the choice of alternative
sites. Adding spatial dimensionality allows us to understand
the emergence of settlements across a given area. To
do so we introduced several new components including
the calculation of utility values of all locations in the
environment, generalizing the foraging process without
simulating individual foragers moves, depletion and recovery
of resources and adaptive expectations of agents about their
duration of stay in a settlement location.

The remainder of the paper is organized as follows: in
the next section ”Theory”, we position our model within
existing theories and models of hunter-gatherer mobility. In
the section ”Model description” we describe the components
and the functioning of our model. Our experimental results
are presented in the section ”Simulation results” where
we show the effect of varying environments on residential
mobility and how this effect is mediated by two parameters
of the model: the general level of resource available and the
costs of moving. We then discuss the effect of heterogeneous
resource distribution on mobility parameters. Conclusions
follow in the last section. The details of implementation
following ODD+D protocol are described in appendix of the
article.

Overall, we find that the CPF model is generally robust
to initial environmental conditions. But we find that the
energetic resource dispersal in the environment has a
significant effect on the time at which move decisions are
made. Environments with more clumped energy resources
lower mobility rates while a more even spatial distribution
increases mobility. We also show that the settlement location
choice aspect of mobility can not be well explained by
just energy distribution. Placement configuration of critical
resources and local affordances in space play a more
significant role. We discuss the CPF mobility model as a way

to explain empirical settlement patterns in a spatially explicit
way and conclude that it would require including information
about critical resources and local affordances required at a
prospective site location.

Theory
In this section, we contextualize our work within the hunter-
forager modelling literature. A comprehensive literature
review is out of scope rather we bring the essential theoretical
(mostly from Kelly, 2013) and empirical elements related
to foraging and mobility, from which we build our model,
then position it with regards to other agent-based models of
hunter-gatherers’ behaviour.

Central place foraging and mobility
Theories of hunter-gatherer land use are mostly based on
optimal foraging theory, originally developed as a part
of behavioural ecology describing animal behaviour. The
anthropological version of the theory asserts that, in several
domains, human decisions are made to maximize the net
rate of energy gain. Together with dietary choices, foraging
time, group size, residential mobility and settlement location
decisions belong to those domains (Bettinger, Garvey, and
Tushingham, 2015, p. 92). As mobility and settlement choice
are the basic choices behind the emergence of settlement
pattern formation Optimal Foraging Theory (OFT) can be
used to explain at least a part of the process. According
to OFT, hunter-gatherers choose their location in the
environment so that they can gain maximal amount of energy
with minimal effort. The choice of the location of a site is
expected to be close to critical resources (eg. fuel or water)
in case the resource is rare and bulky. But more generally
it will be placed next to the acquisition center of food and
mentioned critical resources (Winterhalder, 2001, p. 21).

The question of when a decision to move is made is
addressed by the marginal value theorem, which states that
optimal foragers leave a patch when its declining marginal
return rate equals the average level of the environment
(Charnov 1976). The timing of the move will then be
determined by the gain curves of available resources.
Although the theorem is originally developed for explaining
animal behaviour it has been successfully applied for
hunter-gatherer residential mobility (eg. Winterhalder 1981;
Hames 1980; O’Connell & Hawkes 1981; O’Connell &
Hawkes 1984). The empirical study of Batek showed
that camp movements coincided with the point at which
resource acquisition declined to a certain threshold level
(Venkataramana et al 2017).

Describing the timing of residential moves leads us to
the concept of mobility which has long been considered as
one of the most characteristic features of lifeways of hunter-
gatherers. In his influential paper ”Willow smoke and the
dog tails”, Binford (1980) introduces a distinction between
residential and logistical mobility. Residential mobility
refers to the movement of inhabitants from one residential
base to another. Logistical mobility is the daily mobility
required for acquiring resources and transporting them to
the residential base. Drawing from this distinction, Binford
proposed the concept of a forager-collector continuum.
Compared to collectors, foragers have higher residential
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mobility, i.e. moving people to resources, while collectors
rely more on logistical mobility, i.e. moving resources to
people.

Residential mobility and logistical mobility are interde-
pendent behaviours: a higher residential mobility lowers
the logistical mobility and vice versa. Each hunter-gatherer
group can be situated on the continuum based on how
much use of both types of mobility is adopted. The optimal
strategy (i.e. bundle of residential and logistical mobility) is
the one that provides higher net foraging returns (Binford
1980). Empirical evidence compiled by Binford (2001) from
records documenting hunter-gatherers in ethnographic obser-
vations show significant variations in residential mobility.
The number of residential moves per year ranges from 0 to
60 and the distance of the move ranges mostly from 5 to 10
km. In some cases residential moves go beyond 60 km (Kelly
2013, p. 80-84 Table 4-1).

In order to explain the observed variations in residential
mobility, Kelly (2013, p. 96-104) links individual foraging to
camp movements and introduces the Central Place Foraging
(CPF) mobility model. The CPF itself has been considered
a distinctive feature of human foragers (as opposed to
other animals, eg. Washburn & DeVore, 1961; Isaac, 1978;
Lovejoy, 1981) who form camps and make logistical forays
around them for gathering resources. The CPF model links
individual foraging decisions to settlement pattern formation
as seen in the archaeological record. It helps us explain
how residential bases and their choice is related to foraging
preferences. Formally, Kelly defines an effective foraging
radius (re) as the distance at which the net return rate of
foraging satisfies the calorific requirements of the group.
The net return rate itself includes the energetic value (gross
calorific returns) minus the costs of processing the food and
commuting between the base and the the foraging location.
In the case of a homogeneous environment it is then optimal
to move the residential base to a new location, at a distance
of 2re rather than make foraging trips beyond the threshold
distance re. The forager-collector continuum is then simply
a function of the the effective foraging radius:higher values
of re correspond to lower residential mobility and the
collector strategy while lower re corresponds to higher
residential mobility and the forager strategy. Variations in
re are then crucial and may depend on the environment,
especially its level of resource availability. Hence, one can
move from the effective foraging radius to the mean overall
return rate (r) of the environment given daily averaged trips
(t), and formalize the foraging return associated with an
environment. Following Kelly (2013, p.97) and assuming 8
hours of daily foraging, the daily net return (R) for foraging
is:

R = r(8− 2t)− (2Cmt+ Ctt) (1)

which is expressed in number of calories per day, with: r =
mean overall return rate of the environment (in calories per
hour of foraging) t = time of moving to foraging location (in
distance / speed (km / h)) Cm = energetic costs of a foraging
trip due to moving to the location (in calories) and
Ct = energetic costs of a foraging trip due to carrying the

foraged food back to camp (in calories)
Obviously after foragers settle in a camp, the resources

start depleting, forays get longer and returns are diminishing.

As soon as the return rate (R) no longer satisfies the energy
requirements of a group (ρa), foragers are forced to resettle.
According to Sahlins (1972, p. 33) foragers don’t wait for
resources to deplete completely but weight the costs of
remaining at a place i and foraging further out against the
benefits of moving to a new location j. Therefore, following
Kelly (2013, p. 97-102), the camp is moved when the return
rate (Rj) of a new location j, minus the moving costs are
higher than the return rate (Rj) of staying in the base for
a certain time. While theoretically elegant, the timeframe
hunter-gatherers use for evaluating returns as well as the
perceived costs of moving to another location are however
not evident from empirical observations (Kelly 2013, p. 100)

Agent based simulations of settlement choice
and foraging
Our proposed conceptual framework is based on Agent-
based modelling (ABM) a computational simulation method
that let’s us observe how the relatively simple behaviours of
components of a system lead to the emergence of complex
phenomena. ABM offers an opportunity to test theories
based on behaviour of individuals and project them to
multiple social and spatial scales (Kohler 2000) creating a
means of constructing scenarios that could never normally
be observed (McGlade 2005, p. 558). ABM allows us to
join the analytical nature of CPF model with simulated,
artificial landscapes which can include a higher complexity
of problems and use local knowledge to guide agent decision
making. Agent-based models have been extensively used
to study residential choice in urban and land use change
contexts (for a review see Huang, Parker, Filatova, and
Sun, 2014). Those models generally include a decision
making process and push and pull factors related to specific
locations. The factors can be differentiated as coming from
environmental, economic or social domains, or both of them
(Thober et al 2018).

ABM simulations have also been created to model hunter-
gatherer foraging processes and its implications to other
aspects of their lives. Some of the models are used to develop
theory of optimal foraging to implement it in archaeological
inquiry (eg. Costopoulos 1999, 2001; Lake 2000; Janssen &
Hill 2016). Several domains of hunter-gatherer lives have
also been studied from the standpoint of OFT by ABM
including social cooperation (Premo 2006, 2012), cultural
transmission and diversity (Reynold 2001; Premo 2015),
cooperation while foraging (Santos et al 2015; Janssen & Hill
2014).

Premo (2015) constructed a spatially explicit ABM based
on aforementioned Kelly’s central place foraging model
and explores how effective foraging radius (re) affects the
size of the metapopulation composed of CPF groups. The
results show that higher logistical mobility can inhibit group
interaction and increase effective size of population.

An agent-based model was developed by Janssen and
Hill (2016) to explore Ache mobility based on explicit
environmental data of their actual environment. The purpose
of the model was similar to our study, namely to assess
the influence of heterogeneity of resource distributions on
mobility and group size. The results showed that much
greater heterogeneity in resource distribution does not favour
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larger camp size as expected (Kelly 2013) and has a modest
effect on camp mobility.

While the Ache mobility model is constructed based on
ethnographical data, a similar model has also been published
to reconstruct Stone Age foraging behaviour. Wren at al
(2019) constructed a Paleoscape model based on the model
of Janssen and Hill (2016) using explicit paleoreconstruction
of the environment of the South African coastal landscape.
They published several model outputs analysing proportions
of food resources, effects of population size change and
planning while making foraging decisions.

The inquiry behind those models is aligned with the goals
of this paper, but is based on simulating individual hunter-
gatherers’ actions in an explicit case. Different patterns of
individual food procurement activities are extremely varied.
As our purpose is to create a generic model we generalize
the process of individuals foraging based on CPF theory and
create a decision model based on camp level without going
into details about specific foraging activities. We also create
a generalized model which can be used with artificial random
resource distributions and measure its impact to central place
foragers mobility and settlement location choice.

To our knowledge, so far no ABM s have been developed
to link optimal foraging theory to settlement choices. In
previous models using residential moves the location choice
has been based on distance and not on specific utility of the
evaluated location. An ABM model of animal foraging has
been created, extending MVP into spatially explicit space
with the purpose of assessing foraging effectiveness with
different spatial distributions of resources (Nonaka & Holme,
2007).

To formalize the agents’ residential decision process, we
use the principles of a discrete choice model, often used to
describe residential mobility. Discrete choice model implies
the existence of a finite choice set and an abstract utility
value assigned to every choice. For settlement choice the
set is composed of possible locations known to an agent
with abstract utility values used to quantify the attractiveness
of the locations. As described before, according to CPF
theory, the utility value for hunter-gatherer residential choice
is based on foraging net return rates accessible from a given
location.

Model description
In this section we describe the general purpose, structure and
concepts behind the model. The technical overview of the
implementation of the model will be given in the Appendix
to the article.

Purpose The purpose of the model is to evaluate how the
abundance and placement of resources in the environment
affects hunter-gatherer residential mobility and settlement
choice. As implied by optimal foraging theory and empirical
observations we assume that settlement choice is to an
extent determined by foraging conditions which in turn are
shaped by access to food resources (Kelly 2013; Binford
2001). We are studying how differences in distributions
of energy resources influence optimal foraging behaviour
of hunter-gatherers. The simulation model is designed as

an experiment to isolate the effect of energy resource
topography on hunter-gatherer mobility and settlement
choice and thus test the robustness of Kelly’s model and CPF
approach in general to spatial configurations.

Model structure The model has two kinds of entities: the
environment representing the resource distribution landscape
and agents representing groups of people inhabiting the
landscape by forming residential camps on it.

Environment is presented as a raster grid with each cell
(i) in it having a state variable representing the potential
net return rate of energy (Ri). It is the amount of energy
that can be foraged from it during a day by a camp
of given population with available technology and social
organization. As the net return rate depletes after resource
use the amount of currently available energy is stored in an
additional variable.

The environment is generated by an external model
configuration which determines the general characteristics of
it. Configuration variables are selected so that the summed
energy rate of the environment will not be depleted by
artificial population and will achieve a stable equilibrium
state.

As the goal of the model is measuring spatially
explicit mobility patterns we decided not to use a toroidal
environment and thus it has a certain edge effect. The edge
effect makes edge areas less desirable for habitation. As
a result agents move away from it so it does not have a
significant impact on the overall results of the model. The
edge area is ignored while measuring spatial autocorrelation
of the environment.

The model is a stylized representation of settlement
pattern formation processes, not meant to be used in
comparison with empirical data. But in order to draw
conclusions that have meaning in empirical reality and to
avoid anomalies of scale we fit it into realistic spatiotemporal
frames. For this we assume that every cell in the grid has an
area of one km2 making the whole area of the landscape 10
000 km2. Every step in the modelling process is equivalent
to one week of time as being a realistic minimum time of stay
(Kelly 2013, p. 88), so a run of 52 steps would be equivalent
to one year.

Agents represent hunter-gatherer residential units com-
posed of an amount of people. As every individual in the
camp is having energetic needs, the population value is used
for determining the energy consumption of an agent. The
measure of population is included in the system as a constant
agent parameter (N = 20) because the demographic dynamics
are irrelevant for current research goals. Each agent in a
system is located in a specific position in the environment
and consumes resources it can access by logistical mobility.
Agents also include a state variable representing the duration
an agent is expecting to stay at it’s next location.

Process overview All agents are selected in random order
and their tasks are then executed. The first agent action
is evaluating the costs of staying at its current location as
opposed to the best alternative location for a base. As a result
the agent then either moves or stays depending on the choice.

As agents needs to satisfy an energy consumption rate
determined by their population, the agents first harvest
cells around it. We generalize the process without explicitly

Prepared using sagej.cls



Sikk and Caruso 5

simulating the activities of individual foragers as done
in OFT simulations presented in the previous chapter. A
number of adjacent cells are selected and their return rate
is decreased in proportion to required energy.

Over a specified time period the resources recover and
original rate is restored. The resource and recovery processes
are described in the submodels section.

Theoretical and Empirical Background of the Conceptual
Model The essential component in agent based models
involving discrete choice is a currency or utility which an
agent tries either to maximize or to satisfy it’s requirements.
In this section we discuss the construction of such an utility
value.

Any mobility theory based on depletion of resources
implies that agents have certain required resources that are
depleted during the usage. The current model is based on
food resources, namely how much energy hunter-gatherers
can obtain from the environment during a period of time, a
measure which is called the net return.

The net return rates in particular cases have been estimated
by ethnographers, and vary to large extent. For example the
Ache are estimated to gain 1115 kcal/h from hunting with
foraging offering even higher returns (Kelly 2013 p. 52). On
the other end of the spectrum Smith (1981) estimated hunting
Inukjuak obtaining only 1700 kcal per hunting party member
per day with 2000 kcal per day usually considered to be
minimal energy requirement for adults.

The return rates depend on specific resources, ease of
access, technology of their procurement and a lot of other
details. Also an area usually includes a variety of resources
eg. small game animals and plant food for foraging. As we
are creating a generalized model we don’t take into account
the huge variety of circumstances affecting the rates. In our
model the rate Ri represents aggregated rates of resources
at a given cell i including local searching, harvesting and
handling costs. As Ri stands for a local potential it does not
include costs of moving from base camp to a given area.

Our implementation of Kelly’s model (2013, p. 97102)
involves settlement choice. The original is explained using
an environment with a homogeneous energy distribution.
Although it has a sound analytical meaning we want to
test it’s applicability with different and dynamic energy
distributions.

Before we do so we simplify the model and remove
individual foragers energy expenditure of logistic mobility
from the formula determining range size. The energy
expenditure would be important if an individual forager
would be foraging for itself, social sharing mechanism
would be implemented or if foraging would use significantly
more energy than other activities. In the current model
energy requirements will be satisfied and there is no intra-
group sharing implemented. Also we consider individual
foragers requirements as part of the requirements of the
whole camp population. It has been argued that an individual
spends more energy while procuring a resource, for example
Grimstead (2010) has provided model calculating energy
expenditure of long distance hunting. However some recent
studies contradict it by showing that energy expenditures and
thus requirements of hunter-gatherers are not significantly
dependant on their activities (Pontzer et al 2015), but are

more dependant on their personal features. Thus we consider
individual energy expenditure during foraging insignificant
in the scope of the model and remove it from the formula
without contradicting the original CPF model.

For our model we create environment configurations
where every cell is assigned a local energy rate Ri
that would result in foraging at the location for a fixed
period of time (details explained in environment generation
section the Appendix). As we are currently building a
stylised theoretical model we use the human daily energy
requirement ( 2000 kCal / day) as a unit of variable Ri.

This rate is obviously not enough to rank the location as a
potential place for settlement. Hunter-gatherers move around
in the landscape as part of their logistical mobility and thus
other cells in the logistical range of the camp are also used
for food procurement. To calculate the energy rate accessible
from a base positioned at given cell i, assuming an 8 hour
working day as was done in Kelly’s original model (Kelly
2013, p. 99), we calculate accessible return rate Pi:

Pi =

|N |∑
n=1

Rn =

|N |∑
n=1

(rn ∗ (8− 2
d

s
)) (2)

where: N is the set of neighboring cells around i in a
maximum logistic range (12 km from base in case of speed
of 3 km/h); s is the speed of moving to the foraging location,
we use 3 km/h which is measured foraging speed as used by
Kelly (2013, p. 97); d is the distance between base i and cell
n and has a maximum value of 12 km with used movement
speed; rn is the local hourly energy rate for location n in
vicinity N.

As we can calculate both Pi and Ri for all the cells in
the environment we get two distributions local return rate
distribution (Sr) and accessible return rate distribution (Sp)
that can be used for describing the current environment.

For formulating settlement choices we need to relate
accessible energy rates of cells (Pi) to agents a, which are
defined by their location and energy requirements. For this
we define a function Ui that returns an utility value cell i has
for an agent.

Kelly’s model and empirical data suggest that a forager’s
goal is to maximise foraging return rates (Kelly 2013).
For central place foragers it implies that the purpose is to
minimize travel time (Orians & Pearson 1979). Our goal
is to create an abstract model and not to solve an explicit
problem using any energy data, therefore it proved to be more
straightforward to use time costs as a reversed utility value to
be minimized instead of energy rate.

The marginal value theorem is based on the concept
that while resources are foraged their amount in the
environment is reduced leading to diminishing returns.
Empirical equivalents of the decline of energy rates are hard
to study.

Venkataramana et al (2017) evaluated asymptotic,
sigmoidal and linear functions for describing gain curves
based on data collected while observing Batek foraging
activities by Kirk and Karen Endicott. They found that some
of the resources were not depleting before the move, but
the best fitting depletion models for the remaining cases
were based on firstly sigmoidal and secondly asymptotic
functions. The dataset used was not big enough to create
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any data calibrated functions but the shape of the depletion
curve is enough to use in our current stylized model.
Although the sigmoidal curve starts collection of resources
slower in the long run the general shape is very similar
to asymptotic function, which we simulate in our energy
depletion function.

The declining returns according to MVT have been
defined by Charnov and Parker (1995) as a negative
exponential function of acquired energy at a given moment:

gt = G(1− e−ct) (3)

where c is a scaling factor and G is the initial energy.
In the current model we also want to isolate the rate of

the energy needs of the population and relate it to the rates
at a given location. We assume that the depletion process
lowers the return rate by a similar scaling factor, D. We also
take into account ρa which is the energy requirements of
an agent (a) as calculated by the population multiplied by
the energy requirement of one person.The agent with smaller
requirements deplete a plot in a longer time period. For this
we multiply D with ρa

Pi
multiplied by the requirements of

agents ρa relation to environmental rate. We use a simple step
function to describe the depletion of a cell with calculating
it’s current accessible return at time step t:

Pit = Pi(t−1) −
DPi(t−1)ρa

Pi(t−1)
= Pi(t−1) −Dρa (4)

where D is the depletion rate after the foraging event of the
cell and Pi(t-1) is the the rate before the current time step. We
notice that as the requirement grows relative to the remaining
resource rate the function takes a linear form.

To get time the costs of the agents fulfilling their needs we
write a differential equation so that:

dPi
dt

= −Dρa (5)

The differential equation is solved as:

Pit = P0 − (Dρat) (6)

As we are interested in the inverse gain function - time costs
used for foraging to satisfy need during a specified time
period (Tt), we can use the formula

Tt =
ρa
Pit

(7)

and write it as a differential equation

dTt
dt

=
ρa

P0 − tρaD
(8)

which could be solved as a time costs function, used as a
costs function for agents

Uait = Tt =
log (P0)

D
− log (P0 − tDρa)

D
(9)

with boundary conditions of tDρa < P0 and P0 > 0.
Time variable t in the function is the considered time frame

for staying in one location. The function returns time costs of
foraging to satisfy the energy needs of the population of an
agent for a given time period t assuming depletion at rate D.

Decision-Making of Agents At every iteration of the model
every agent chooses its next place of residence. The choice
can be broken down into two decisions of when and
where to move. According to Kelly’s theory the central
place foragers decision to move is based on optimizing the
workload of individual foragers with food procuring. We
deduce from his model that if the foraging time expenditures
of the current location grow higher than the foraging
costs plus the costs of moving to the new location, the
foragers move. In addition to just mobility costs the costs
of moving involve camp breakdown, setup and movement
of populations and belongings from one site to another. In
archaeology those fixed costs are brought together under the
umbrella term of site investment. We include those fixed
costs in our implementation as a separate global variable
(MOVE-START-COST). In the agent based simulation for
every agent all cells j in the vicinity are evaluated so that V is
the time effort put into foraging in order to satisfy the needs
of agents (a) population during given time frame t including
the moving costs Cij to a new base location including fixed
costs.

Vjt = Ujt + Cij (10)

Cij are the moving costs from agents’ current position i to j.
The best alternative location is selected, which has a minimal
V value. If

Ujt + Cj < Uit (11)

the decision is made to move to the best alternative location
j. In the reverse case, the agent stays at the current position.
The agent decision described here includes the anticipated
timeframe (t) of staying at a new location. In Kelly’s model
the timeframe of stay is not specified as there is no empirical
evidence to back it. For our ABM model we create a simple
agent learning process for finding an optimal timeframe of
consideration.

Adaption process of timeframe t The agents’ learning
process considers finding an optimal time of stay (t) while
evaluating alternative locations for the next settlement. To
illustrate this we describe the optimal time frame problem.
If the time frame is very small then moving costs (Cj) are
relatively high in comparison to time used for harvesting
leading to small returns. For example when considering
the time costs of only one day and moving costs of 6
hours, it is not worth moving because the day will be lost
on just moving. This leads to a situation where moving
does not offer any gains until the resources are completely
depleted and the move will be made after a period of time
longer than one day. Conversely, when the group plans a
longer time period, the residential move becomes profitable
relatively quicker, meaning that the in case of a homogeneous
environment there is an optimal duration somewhere in
between.

Although there is no empirical evidence, we assume that
hunter-gatherers evaluate the length of stay by the timeframe
set by their previous experience. The timeframe of stay is
optimized by an adaptive process so we assign the t variable a
mean value of the two last durations of residential stay. In this
way the t reaches an optimal value for a given environment
by the choice process and should approximate an average
length of residential stay. In our model implementation the
agents will get a stochastic number of turns as a starting
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t value and although no collective learning is included the
standard deviation of the considered timeframes decrease
quickly as the simulation progresses.

Information in the model Agents in the model have
complete information about the Ri values of each cells in
their residential range. This information is used to calculate
the utility which is based on the location choice. Effectively
though as the moving costs grow the cells further away are
not evaluated just because of their significantly lower return
rates considering the costs of moving.

Although having information on the current status of all
locations is never the case in real-life situations, hunter-
gatherers had an impressive knowledge of their surrounding
landscapes. For example according to Binford (Binford
1983, p. 206) Nunamuit maintained general knowledge of
250000 km2 and Pintupi had knowledge of 52000 km2

(Long 1971).
Individual agents don’t process any information about

other agents as direct interactions between agents are not in
the scope of the current model.

Agents don’t have direct interactions in the model,
site selection and resource depletion processes imply that
competition rises between agents sharing a territory. An
agent already depleting an area will make it less attractive for
others who tend to choose their next residential site further
away from depleted areas. Therefore, competition creates a
spatial dispersal force for agents’ placement.

Implementation and experiments

Implementation and variables To introduce a spatially
explicit heterogeneous space and control the generation of
environments we introduce two variables: the mean energy
rate of the cells in the environment (MEAN-ENERGY-
RATE-KM) and the standard deviation of energy rate
distributions (STD-ENERGY). We process those randomly
generated environments with a smoothing algorithm with
differing diffusion strength, resulting in energy rate
distributions having different spatial autocorrelations.

To study the effect of environment to mobility we observe
two groups of variables first containing information about
environment and second collecting information about formed
mobility patterns.

The first group contains I-RESOURCE and I-UTIL,
the Moran’s I spatial autocorrelation coefficients of the
raster of energy distribution Sr and accessible energy
distribution Sp (determined by access to adjacent resources)
of the environment. For randomly generated landscapes, the
Moran’s I value ranges from 0 to 1, with 0 having the most
rough and 1 having most evenly distribution of values.

The observed variables describing mobility are a
subset of mobility measures defined by Kelly (1983):
MOVESPERYEAR number of residential moves per year
(mean of all agents); MOVELEN mean length of a
residential moves during the model run by all agents;
MOVELEN-STD standard deviation of the length of a
residential moves during the model run by all agents;
LOGMOBTURN length of the logistical foray per
residential stay (mean of all agents).

Figure 1. Achieving equilibrium of expected time of optimal
expected stay (t) in one settlement location. Darker line is the
mean value of all agents (10) over runs (n = 41), and the lower
line is standard deviation of those values.

Although the calculation of the first two variables is
straightforward and can be quite similar to the empirical
observation, the length of logistical forays is hard to measure
as logistical mobility is not really simulated by agents. So it
is calculated as a sum of distances to locations of resources
made during a residential stay. The results emerging while
observing the parameters are described in section (4).

Experiments We present three experiments that we con-
ducted with our ABM implementation of the CPF model.
The first experiment was run for face validation of the new
mechanisms added into Kelly’s interpretation of CPF.

To show how logistical mobility and residential mobility
are influenced by the spatial heterogeneity of the landscape
we conducted two ABM experiments.

To verify whether the classic CPF results still hold
in the spatially explicit model we tested whether it
responds to global parameters the mean environmental
return rates and the moving costs as assumed by CPF. In
experiment 2 we vary the environmental variable MEAN-
ENERGY-RATE-KM and the fixed costs variable MOVE-
START-COST for different environments (see submodels
section in the Appendix for description of environment
generation) resulting in varying values of I-UTIL and
I-RESOURCE. Other values in the model were held
constant and the correlation between the mentioned variables
and the variables defining mobility (MOVESPERYEAR,
LOGMOBTURN, MOVELEN) were studied.

We conducted experiment 3 to assess the model’s
sensitivity to spatial autocorrelation of resource and utility
destribution. We varied the landscape generation parameters
smoothness and standard deviation, and held other variable
constant. We measured spatial autocorrelations of both
energy distribution in the environment (I-RESOURCE) and
the utility distribution measured by the access every location
has to energy resources (I-UTIL). We analyse changes
in the 3 variables describing mobility(MOVESPERYEAR,
LOGMOBTURN, MOVELEN) along changes of the spatial
autocorrelation of the landscape and global parameters of
STD-ENERGY.
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Simulation results

Experiment 1: base model evaluation
Adapting to optimal duration of a stay at one location
The adaption mechanism of calculating the optimal time
range of a stay at one location is required to run original
Kelly’s model as a simulation. To solve this currently lacking
mechanism, we use agents experience for predicting their
time of stay by calculating the mean values of their previous
stay durations. Results of the simulations showed that the
strategy quickly leads to an equilibrium optimum value. Here
we illustrate this convergence (Figure 1) with the standard
deviation of the return rate of environment being set to 1.
The simulations start with all agents having a time span of
planning for just one turn. Given this time span it makes it
worthwhile at step=1 to move only after local resources have
been depleted, which results in a longer period of stay in the
beginning of the simulations which peaks at about step=7
of the current simulation. Then the time span of planning
lowers slowly and achieves an equilibrium of optimal value
(around value t=6.5). The values relate to the given particular
example but it illustrates simple, intuitive logic of planning
future behaviour using previous experience. Although it has
not been empirically documented it is obvious that hunter-
gatherer cultures have a more complex memory process of
predicting conditions. Our simple solution can be used as
an heuristic for current purposes, but it must be taken into
account that optimal choices for a given environment might
start to be taken only after certain number of steps (about 25
with current model configuration)

Resource depletion process The process of resource use
and depletion significantly changes the characteristics of
the environment itself. The change is illustrated in figure
2 showing the depletion process impacting the initially
relatively homogeneous return rates distribution. In figure 3
it can be seen that the spatial clustering of return rates of
environment (I-RESOURCE) decreases significantly while
the accessible returns distribution (I-UTIL) remains almost
the same. We can observe a declustering of the landscape
until approaching equilibrium. It illustrates the significant
change of resource distribution on the landscape in the case
of mobility driven by depletion.

As utility is calculated as a sum of neighboring energy
rates it functions as a smoothing function. Though the
available energy in the environment decreases the utility
values of the landscape, in general it remains relatively
constant. Thus the depletion process is not significantly
influencing the settlement location choice.

While every agent is depleting resources around itself
it makes the area less attractive to other agents which in
turn creates a force of dispersal for agents. This leads to
a more dispersed form of the settlement pattern which in
turn impacts the pattern of depletion. Note that the dispersal
of agents may be balanced by social and cooperative
interactions in reality but these are not incorporated into this
model.

Experiment 2
The second simulation experiment demonstrated that
resource abundance of the environment and moving costs

have a significant effect on the mobility patterns. Figure
4 illustrates the inverse non-linear relationship between
yearly residential mobility (MOVESPERYEAR) and mean
return rate of the environment (MEAN-ENERGY-RATE-
KM) and cost of residential moves (MOVE-START-COST).
We find negative exponential relationships with a much
lower range of variation in yearly mobility by the move cost
as compared to the environmental return rates. The increase
of the environmental return rate can lead to sedentism while
the residential move costs can become extremely large but
agents are still forced to move when the resources in the
environment are depleted.

Similarly the effects of MEAN-ENERGY-RATE-KM and
MOVE-START-COST on logistical mobility (measured by
LOGMOBTURN) are illustrated in figure 5. The results
show that the mean environmental return rate has a negative
exponential effect on the effort put into logistical mobility,
but the cost of theresidential move has a modest positive
linear effect.

The results were expected by both analytical predictions
which serves as an internal validation of the spatial CPF
model. It has also been shown in the empirical observations
that high abundance and accessibility of resources is
negatively correlated with residential mobility rate, in the
case of terrestrial foragers (Kelly 2013, p 88; Kelly 2013 p.
103, 104).

The positive correlation between residential move cost and
logistical mobility can be explained intuitively. In the case of
higher costs of moving to another camp it is preferable to put
more effort into local forays before undertaking the costly
move. The influence is modest compared to the influence on
residential mobility which can be explained by the impact of
environmental configurations influencing the effort put into
logistical mobility.

Finally, residential move length is another important
characteristic especially because of its potential for
explaining past settlement processes. Surprisingly there is no
correlation between MEAN-ENERGY-RATE-KM and mean
residential move length over the runs as seen in figure 6.
But there appears to be an increase in the standard deviation
of residential move length with higher MEAN-ENERGY-
RATE-KM values. This implies that environments with high
returns support variance in mobility strategies and perhaps
more freedom in location choice.

The positive correlation between residential move costs
(which does not include moved distance) and move length is
a spatial nature of depletion processes. Increased costs force
a longer stay and results in extended depletion area which
requires agents to move further away from their previous
location.

Experiment 3
The third simulation experiment was conducted to measure
the sensitivity of the CPF model to initial spatial
configurations by varying environments and measuring
mobility. For fixed MEAN-ENERGY-RATE-KM random
environments were generated and diffused at different levels.
The variables STD-ENERGY, I-RESOURCE and I-UTIL
were then measured and used for describing the spatial
configurations. During simulation runs characteristics of
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(a) Initialized map. (b) 5 steps. (c) 30 steps.

Figure 2. Netlogo model running process with energy distribution and agent locations (colored markers) visualized. Lighter green
pixels have more available energy and the darker less energy. A declustering of the landscape can be observed until reaching an
equilibrium. We can see different equilibrium states with and without agents.

Figure 3. Moran’s I autocorrelation value dynamics of
resources (dark gray) and utility (light gray) based on access to
them

residential and logistic mobility (MOVESPERTURN and
LOGMOBTURN) were measured.

The experiment showed that the tested variations spatial
configurations influence mobility patterns. There was a weak
correlation between I-RESOURCE and MOVESPERYEAR
(r=-0.19) and LOGMOBTURN (r=0.36) so spatial clustering
in itself does not have a significant effect on mobility.
But by isolating the standard deviation of the energy rate
STD-ENERGY (figure 7 ;figure 8) we can see that the
clumpedness, measured as a combination of STD-ENERGY
and I-RESOURCE, reduces residential mobility, n.

In figure 7, three regression lines illustrate the effect
of standard deviation of energy distribution on residential
mobility. The environment with a high standard deviation
and high spatial clustering represent clumped environments
and leads to a decrease in residential mobility. The result is
in line with the experiment of Janssen and Hill (2014) who,
by simulating individual hunters’ movements, concluded
that clumped habitats favour lower residential mobility.
Similar empirical conclusions have been proposed for patchy
environments (Binford 1980; Fitzhugh & Habu 2002, p. 261)
but not explained as a spatial effect on settlement choice

but by predicting more complex hunter-gatherer procurement
strategies.

Counterintuitively, any relation between spatial clustering
of return rates and logistical mobility is weak and
environments with higher I-RESOURCE lead to higher
mobility costs. The pattern is caused by different residential
strategies adopted in those case, which result in longer stays
and thus longer overall logistical activity in one camp.

Overall it has to be concluded that the mobility model is
less sensitive to spatial distribution of return rates over the
environment than mean overall return rate. For example in
the current simulation, the variance of MOVESPERYEAR
while modifying environment configurations is just 5, while
modifying the overall mean rate covered the whole range of
the experiment of 1 to 25 moves per year. This shows that the
CPF model is generally robust to initial spatial configurations
in spite of some influence from spatial clustering of the
environment.

It must be considered though that the model is only
manually calibrated to variables and we have no information
on the spatial structure of hunter-gatherer energy resources in
empirical data. This might lead to lack of coverage of output
space, thus for analysis of real life situations variables should
be calibrated based on empirical data.

The relations between utility distribution I-UTIL (figures
7, 8) and residential and logistical mobility (MOVESPER-
TURN and LOGMOBTURN) are significantly weaker. The
reason for it lies in the nature of the two spatial distributions
used. As explained above, the utility value describes a
locations access to resources in the logistical range. As the
access is calculated by summing values of other locations
in the vicinity it works as an averaging filter kernel with the
size of the logistical mobility range. Because of its effect as a
smoothing function it increases spatial autocorrelation of the
original energy distribution with Moran’ I values in range of
0.925 0.981. The range is about 10 times smaller than the
spatial autocorrelation of energy distributions (with Moran’
I values in range of 0.023 0.948) from which it is calculated
by.

The smoothing function has a higher access range of
results in a greater degree of spatial autocorrelation and
thus smaller significance for any location choice. As the
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Figure 4. Influence of variance of residential move cost and mean environmental return rates to residential mobility while varying
one variable and keeping the other fixed. MOVE-START-COST is fixed to value 20 and MEAN-ENERGY-RATE-KM is fixed to 1
accordingly.

Figure 5. Influence of variance of residential move cost and mean environmental return rates to logistic mobility while varying one
variable and keeping the other fixed. When not varied on the diagram MOVE-START-COST is fixed to value 20 and
MEAN-ENERGY-RATE-KM is fixed to 1 accordingly.

difference is dependant on the logistical range of a given
resource it can be said that the effect of settlement choice on
mobility patterns decreases as the possible range of access
grows. Therefore the effect of the spatial configuration of
the accessible energy rate distribution is significantly smaller
than the spatial distribution of resources that require direct
access. As the utility which measures access to resources
is used for evaluating settlement location choice we can
conclude that the energy rate distribution in the environment
has a modest effect on it.

Spatial configuration of return rates is closely related to
the timing of mobility, as it determines foraging process at a
local level. Spatial configuration of utility based on access to
resources, on the other hand, is more related to the choice of
new settlement locations.

From this we can conclude that the environmental
energy return rate distribution is not enough for simulating
settlement choices in a spatially explicit setting eg. in case
of solving archaeological problems. Kelly (2013, p. 100)
discusses the issue as the stay length is also related to
move distance which is not only determined by energy.
The ethnoarchaeological studies show that settlement site
locations are determined by direct access to critical resources
like water and firewood (eg. Kelly 2013, p. 90, 100, 126).
Foragers always stay close to water resources, for example it
has been documented that Hadza carry water to camp from a
maximum distance of 700 m. Archaeological data also shows
that hunter-gatherer settlement sites were positioned close to
water and additionally had a preference for other geological
features such as sandy soil which can drain water or a
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Figure 6. Influence of variance of residential move cost and mean environmental return rates to residential move length

Figure 7. Influence of energy and utility distributions to residential mobility. As utility is a result of accessibility to resources it’s
distributions in only in Morans I spatial autocorrelation range of 0.93 .. 0.98 while energy distribution is in range from 0 .. 1. To
illustrate combined influence of clumpyness of the environment (I-RESOURCE and STD-ENERGY-RATE) three second order
regression lines are drawn with colors corresponding to STD-ENERGY-RATE

Figure 8. Influence of energy and utility distributions to logistical mobility
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(a) Initialized map. (b) 5 steps.

Figure 9. Energy distribution and utility value distribution in the same artificial environment. Lighter green has more energy than
darker and gray has zero energy.

specific elevation. In real life situations the set of possible
alternatives is reduced to locations having requirements for
a campsite. This reduction of alternatives might only have a
moderate dispersing impact on mobility choices, but could
completely change the influence the environment has on
settlement choice.

To further study the landscape effect on settlement
location choice using the CPF model the distribution of local
features required for setting up a residential base should
be included. Archaeological predictive models of settlement
locations can potentially be used to describe the distribution
of suitable places on the landscape and its relation to
residential mobility. Combining settlement choice models
with energy availability, the CPF model could potentially be
used for describing mobility, settlement choice and therefore
settlement pattern formation in general.

Conclusion
We proposed an agent based model to explore the effect
of heterogeneous environments on hunter-gatherer mobility
choices built upon Kelly’s (2013) CPF model. The first goal
of the model was to test the robustness of the CPF approach
to spatial conditions and measure the effect of spatial
autocorrelation of the environment to mobility. The second
goal was to explore the possibilities of agent-based spatial
CPF model for exploring mobility and settlement choice
as ABM opens new possibilities in addition to analytical
methods.

The original model was an aspatial model assuming
a homogeneous environment. A major addition was
the introduction of explicit geographical space with a
heterogeneous resource distribution. The model includes
abstracted agency and, alternatively to most CPF ABMs
where individuals are modelled, the agent is a whole
community. This enabled us to build a model based on the
abstract CPF theory and avoid going into details of individual
behaviours which are more complicated to link to empirical
data.

We introduced the generation of energy distribution
on artificial landscapes, generalizing the foraging process
without simulating individual foragers’ moves. It widened
the residential choice set from two choices to a wider range
of alternatives and hence adding settlement location choice
to agents. For simplicity we modified the concept of utility
not to be the energy taken from the environment but the
time costs used for various tasks. The change is based
on principles of CPF and thus has no functional impact
on the model. To experiment with a spatial heterogeneous
environment we introduced a discrete choice simulation
model, which required additional adaptations of the CPF
model and the addition of two new mechanisms.

The original analytical model missed an important
variable of a timespan of planned stay for evaluating
potential residential locations. By using ABM simulation
we could create an iterative optimization process so that
the variable was modified by agents’ previous experience
and achieved an optimal value. The adaptation mechanism
achieved an equilibrium state which responded to global
configuration variables.

To model the dynamics of human-environment interaction
we created a mechanism of depletion and recovery of
resources. Although we have no empirical data on the
depletion rate we manually calibrated its values based on
theory and known empirical ranges of mobility parameters.
The depletion mechanism caused a significant alteration of
the resource distribution in the environment. This in turn
resulted in competition between agents creating a population
dispersal force in the model.

We conducted three experiments. The first experiment
served as a face validation for the mechanisms described
above.

The second experiment confirmed the previous analytical
results of the original model and served as an internal
validation of the spatial model. The mean return rate of
the environment had a significant impact on measures
of mobility shown by a negative exponential correlation.
Residential movement costs on the other hand had a small
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positive correlation to logistical mobility. Residential move
length was also measured and surprisingly had no correlation
with the energy rate in the environment but was related to
fixed costs of moving.

The third experiment was conducted on the model’s
sensitivity to the spatial configuration of the environment.
To analyse the effect of the environment on mobility we
measured the spatial autocorrelation of return rates of cells
in the environment and the utility values calculated by the
access every cell has to adjacent energy resources. More
smooth return rate distributions resulted in higher mobility
while more clumpy environments had it reduced. Although
the effect was present it was significantly smaller than
the effect of the mean return rate. The effect of utility
values based on cells access was primarily in determining
alternatives for settlement location choice. As the utility
distribution had a very high autocorrelation compared to
return rate distribution by definition the effect was virtually
non-existent.

Those results show that the CPF model is generally
robust to initial environment configurations, however spatial
autocorrelation of the resource distribution has a certain
effect on optimal mobility decisions.

We also questioned the usability of a spatially explicit
CPF model for explaining settlement pattern formation. As
discussed above, according to CPF, the environment has
a strong influence on the mobility, which is one cause
behind settlement pattern formation. It became apparent
that in CPF models the settlement location choice is not
determined by energy dispersal at least at the given scale
of observation. Based on empirical material we know that
critical resources like water and firewood and other local
affordances like shelter and geological features determine
specific site locations. For modelling settlement choice a
submodel of those resources should be incorporated as they
might have more significant effects on formed patterns than
access to energy.

Also it must be taken into account that the current
model used an artificial environment with mean known
energy return rates of environment where the variance
was generated by a stochastic Monte Carlo process
without any specific spatial structure. Hunter-gatherer energy
resource distributions in the real landscape and their spatial
configurations, which have not been researched so far, would
be needed for validating models to data. For solving explicit
archaeological problems an environment generation process
should then be based on calibration and structured based on
empirical material.
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Appendix: ODD+D protocol overview of the
ABM model of CPF settlement choices

I Overview

i Purpose
a What is the purpose of the study?

To test the robustness of CPF model to
initial spatial configuration and evaluate its
theoretical explanatory power of settlement
pattern formation processes.

b For whom is the model designed? For
archaeologists and other scientists studying
hunter-gatherer mobility.

ii Entities, state variables and scales
a What kinds of entities are in the model?

The agents in the model are human groups.
The environment represents a resource
distribution landscape.

b By what attributes (i.e. state variables
and parameters) are these entities char-
acterised? Agents in the model have an
explicit location and a population, which
is constant (20) in the presented simulation
experiments. They possess a state variable
for the time an agent is expecting to stay
at its next location (EXPTIME). Each cell
(i) in the environment has a state variable
ENERGY which represents the potential net
return rate of energy (Ri). It is the amount
of energy that can be foraged from it dur-
ing a day by an agent. As the net return
rate depletes after resource use we store an
additional ACTIVE-ENERGY variable to
store currently available energy. The model
includes global variables which are used
during the simulation. The first one is the
fixed time costs of disassembling the old
and setting up the new camp. It does not
involve the moving process itself and thus
is not related to distance. It is a defined
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separate global variable (MOVE-START-
COST). Another global variable used for
generating the environment is the mean
energy rate of the environment (MEAN-
ENERGY-RATE-KM), which defines the
abundance of energy available.

c What are the exogenous factors / drivers
of the model? The environment is generated
by an external model configuration which
determines the general characteristics of
it. Configuration variables are selected
so that the summed energy rate of the
environment will not be depleted by an
artificial population and will achieve a stable
equilibrium state.

d What are the temporal and spatial
resolutions and extents of the model?
The environment is represented by 100x100
grid, each of which is equivalent to 1 square
kilometer. One step in the model run is the
equivalent of one week.

e If applicable, how is space included in the
model? Environment is presented explicitly
in space and agent decisions take into
account distances in space.

iii Process overview and scheduling
a What entity does what, and in which

order In the beginning the environment is
created based on a Monte-Carlo process and
is then calibrated to match the configuration
variables. At every turn agents consume
resources around them, which changes
the ACTIVE-ENERGY variable of the
environment. At every four turns resources
are restored at a certain rate. At every turn
agents evaluate the time costs of meeting
requirements at the current location during
an expected duration of stay and weight
it against similar costs in alternative site
locations. If any alternative location offers
more optimal time use the agents moves to
best (least time costs) alternative location.

II Design Concepts

i Theoretical and empirical background
a Which general concepts, theories or

hypotheses are underlying the model’s
design at the system level or at the
level(s) of the submodel(s) (apart from
the decision model)? What is the link
to complexity and the purpose of the
model? The energy return rates in the
environment are based on environmental
data and ethnographic observation. The
depletion of resources in the environment is
mostly based on theory but also on some
ethnographic studies. As the data is not
sufficient the mechanism is not calibrated
to it. The environment configurations are
generated using Monte-Carlo methods and
are not calibrated to resemble real landscape

configurations as the data is not available.
Every location has an utility value assigned,
which comes from Central Place Foraging
theory (Kelly 2013). Every cell has an utility
value - an energy rate which can be accessed
from a cell both locally and by logistic
mobility to other cells in the logistic range.

b On what assumptions is/are the agents’
decision model(s) based? The decision
model of mobility and settlement choice is
based on mobility theory from the Central
Place Foraging model (Kelly 2013) which
is a special case of Optimal Foraging
theory. The theory asserts that a human
group moves its settlement if it finds an
alternative location which promises better
returns during a certain period of time.

c Why is /are certain decision model(s)
chosen? The goal of the model is to test
a given decision model in a heterogeneous
environment.

d If the model / submodel (e.g. the decision
model) is based on empirical data, where
do the data come from? The model is not
based on empirical data.

e At which level of aggregation were the
data available? The model is not based on
empirical data.

ii Individual Decision Making
a What are the subjects and objects of

the decision-making? On which level
of aggregation is decision-making mod-
elled? Are multiple levels of decision
making included? Agents decide on the
location for their settlement site.

b What is the basic rationality behind
agent decision-making in the model? Do
agents pursue an explicit objective or
have other success criteria? Agents select
a site location with maximum returns by
means of logistic mobility during a fixed
period of time including movement time to
new location.

c How do agents make their decisions?
Agents compare the time costs of satisfying
their needs by staying at one location and
choose the optimal location.

d Do the agents adapt their behaviour
to changing endogenous and exogenous
state variables? And if yes, how? The
environment configuration and other agents’
locations determine agents’ decisions.

e Do social norms or cultural values play a
role in the decisionmaking process? No

f Do spatial aspects play a role in the
decision process? Energy resources are
spatially explicitly distributed. The concept
of distance is used in calculating mobility
costs.

g Do temporal aspects play a role in the
decision process? The expected time of stay
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at one location has significant impact on the
decision-making.

h To which extent and how is uncertainty
included in the agents’ decision rules?
Uncertainty is not included in the decision
rules.

iii Learning
a Is individual learning included in the

decision process? How do individuals
change their decision rules over time
as consequence of their experience? The
agents’ learning process considers finding
an optimal time of stay (t, agent variable
EXPTIME). The time is calculated as a
mean of durations of two previous stays.
The durations are the result of considering
local conditions better than any alternatives.

b Is collective learning implemented in
the model? Collective learning is not
implemented.

iv Individual Sensing
a What endogenous and exogenous state

variables are individuals assumed to
sense and consider in their decisions? Is
the sensing process erroneous? Agents in
the model have complete information about
the ENERGY and ACTIVE-ENERGY val-
ues of each cells in their residential range.

b What state variables of which other
individuals can an individual perceive? Is
the sensing process erroneous? Agents do
not sense any state variables of other agents.

c What is the spatial scale of sensing? The
spatial scale is residential move range.

d Are the mechanisms by which agents
obtain information modelled explicitly, or
are individuals simply assumed to know
these variables? Agents are assumed to
know variables.

e Are the costs for cognition and the
costs for gathering information explicitly
included in the model? Cognition costs are
not included in the model.

v Individual Prediction
a Which data do the agents use to predict

future conditions? Agents use variable
ACTIVE-ENERGY for predicting future
energy rates.

b What internal models are agents assumed
to use to estimate future conditions or
consequences of their decisions? Agents
are using a model of resource depletion for
predicting future conditions.

c Might agents be erroneous in the predic-
tion process, and how is it implemented?
Agents’ predictions are correct only assum-
ing their own resource use, but they don’t
predict activities of other agents.

vi Interaction

a Are interactions among agents and enti-
ties assumed as direct or indirect? Agents
directly interact with the environment and
indirectly with each other: two agents can’t
occupy the same cell.

b On what do the interactions depend?
Interactions depend on spatial proximity of
agents and environment cells.

c If the interactions involve communica-
tion, how are such communications repre-
sented? Entities don’t use communication.

d If a coordination network exists, how
does it affect the agent behaviour? Is
the structure of the network imposed or
emergent? Model does not have interaction
network.

vii Collectives
a Do the individuals form or belong

to aggregations that affect and are
affected by the individuals? Are these
aggregations imposed by the modeller or
do they emerge during the simulation?
Collectives are not included in the model.

b How are collectives represented? Collec-
tives are not included in the model.

viii Heterogeneity
a Are the agents heterogeneous? If yes,

which state variables and/or processes
differ between the agents? Entities are
heterogeneous having different expectations
of length of stay at one location.

b Are the agents heterogeneous in their
decision-making? If yes, which decision
models or decision objects differ between
the agents? Decision-making is heteroge-
neous depending on the EXPTIME variable
and on agents’ location.

ix Stochasticity
a What processes (including initialisation)

are modelled by assuming they are
random or partly random? Environment
generation and spatial placement of agents
is partly random.

x Observation
a What data are collected from the ABM

for testing, understanding and analysing
it, and how and when are they collected?
During every simulation run the variables
I-UTIL and I-RESOURCE which repre-
sent the spatial autocorrelation of respec-
tively utility value and resource distri-
butions are collected. Agents’ expected
duration of stay at one location is col-
lected and statistics about mobility are
collected (MOVESPERYEAR, LOGMOB-
TURN, MOVELEN).

b What key results, outputs or character-
istics of the model are emerging from
the individuals? (Emergence) Model run
shows that mobility characteristics have a
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non-linear relation with mean energy rate
of the environment and moving costs of
a settlement. Spatial autocorrelation of the
environment has a modest impact on mobil-
ity.

III Details

i Implementation Details
a How has the model been implemented?

The model has been implemented in
Netlogo version 6.04 (Wilenski 1999)
modelling environment.

b Is the model accessible, and if so where?
Model will be published in github and
request from the author.

ii Initialisation
a What is the initial state of the model

world, i.e. at time t=0 of a simulation run?
Environment is generated as a Monte-Carlo
process and calibrated using configuration
variables and agents are placed at random
spatial positions in the environment.

b Is the initialisation always the same, or
is it allowed to vary among simulations?
Initialization process is the same.

c Are the initial values chosen arbitrarily
or based on data? Initial values are chosen
arbitrarily.

iii Input Data
a Does the model use input from external

sources such as data files or other models
to represent processes that change over
time? The model does not use input data.

iv Submodels
a Environment generation A surface of nor-

mally distributed cell values (ENERGY)
was generated through a Monte-Carlo pro-
cess using standard deviation given as a
input parameter (STD-ENERGY). The sur-
face was then smoothed to increase auto-
correlation according to an input smooth-
ing parameter using the diffuse function of
NetLogo. As the STD-ENERGY value is
sometimes bigger than MEAN-ENERGY-
RATE-KM the values of cells are cut off at
minimal and maximal threshold values and
the whole distribution is normalized so that
the mean energy rate still corresponds to the
global configuration variable.
As a result an environment is generated
and variables I-RESOURCE and I-UTIL are
calculated as global Moran’s I values of
local and accessible return rate distributions.
The four variables describing environment
are used for comparison with observation
variables of mobility. During experiments
the initial input configuration variables are
chosen so that the overall energy of the
environment is not depleted by agents but
agents still have a reason to move.

b Resource depletion The process of
resource depletion has not been studied
in enough detail to create an empirically
calibrated model. Only work analysing
the diminishing return of hunter-gatherer
foraging processes informs us that the gain
curve has a general sigmoid or asymptotic
shape (Venkataramana et al 2017).
To reproduce a similar dynamic we created
the following heuristic process. Every agent
has to satisfy its need for resources, so at
every turn a cell which has the best return
rate from the base will be used for foraging.
During the process the ACTIVE-ENERGY
variable is decreased by the depletion rate
(D) times energy taken from the cell. The
depletion rate configuration variable used
in the system is set to a constant value of
2/3. The experiments showed that using the
value of the mobility results are in the same
range as empirical observations, helping us
avoid anomaly of scale.
Experiments also confirm that the depletion
dynamics created in this way is a close
enough approximation to the differential
equation that agents use for predicting utility
values for potential locations.

c Resource recovery Over time energy rates
of cells gradually recover. As there is no
data to base recovery rate on, we assume
that the resources will recover over one
year. Although in practice recovery rates in
different resources are obviously different
we consider this to be a usable heuristic in
our system as it is a period during which
nature completes a seasonal cycle and we
can also observe hunter-gatherer mobility
cycles.
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