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Abstract
Contemporary swarm indicators are often used in isolation, focused on extracting information at the individual or
collective levels. Consequently, these are seldom integrated to infer a top-level operating picture of the swarm, its
members, and its overall collective dynamics. The primary contribution of this paper is to organise a suite of indicators
about swarms into an ontologically-arranged collection of information markers to characterise the swarm from the
perspective of an external observer—, a recognition agent. Our contribution shows the foundations for a new area
of research that we title swarm analytics, whose primary concern is with the design and organisation of collections
of swarm markers to understand, detect, recognise, track, and learn a particular insight about a swarm system. We
present our designed framework of information markers that offer a new avenue for swarm research, especially for
heterogeneous and cognitive swarms that may require more advanced capabilities to detect agencies and categorise
agent influences and responses.
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Introduction

Artificial agents sit between two theoretical extremes;
reactive and cognitive agents (Ferber, 1999). Reactive agents
have direct mappings from their sensorial information to
their actuators. Cognitive agents embed an architecture that
sits between the inputs and outputs, performing deliberate
planning and thinking. In practice, agents are often designed
to be sitting between these two extremes, with some aspects
of their behaviours sitting more on the reactive side while
others are on the cognitive side. The decision on the
architecture is influenced by many aspects, including the
availability of fast models to act as shortcuts between the
inputs and outputs and the complexity of the operating
environment (El-Fiqi et al., 2020). Research remains ongoing
to clearly define boundaries for architecture classification,
further compounded by complexities related to artificial
agents (McGivern, 2020).

Swarm systems consist of artificial or biological agents
whose joint action displays order and coordination in
time and space. A classic example of a swarm is bird
flocking, fish schooling and sheep herding (Reynolds, 1987).
Nearly all of the literature on swarm systems rely on
reactive agents. The simplicity of these agents comes
with advantages in real-world situations, including light
computations, speed and simplicity in the logic used inside
each agent for transparency of individual behaviours. Despite
this simplicity, the swarm as a whole displays complex
self-organised behaviours. The non-linear dynamics that
aggregate the behaviour of individuals into the behaviour of
the whole can hardly be reversed; leading to a few challenges
described below:

1. How to guide and control the swarm without impacting
intra-swarm dynamics?

2. How to explain the swarm’s performance to an
external human observer?

3. How to make the individuals smarter without
increasing the complexity of the internal logic of a
swarm member?

One solution for the first challenge lies in shepherd-
ing (Long et al., 2020), a bio-inspired swarm guidance
method that mimics how sheepdogs guide a swarm of
sheep. The concept of shepherding for swarm guidance
has been applied in many applications including agricul-
ture (Strömbom et al., 2014), crowd control (Li et al.,
2012; Mould et al., 2014), and uninhabited vehicle (UxV)
navigation (Abbass & Hunjet, 2021b), and has proved viable
in limited communication settings (Mohamed et al., 2021).
The two remaining challenges also exist in shepherding
research. Long et al., (2020) note that there is a scarcity
of tools to analyse the interactions between the sheep,
between the shepherds and between the sheep and shepherds,
going on to discuss the need to understand influence vec-
tors amongst agents, where analytical tools such as social
network analysis may be viable (Long et al., 2020). Iden-
tifying the critical pieces of information which discriminate
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particular states or infer specific strategies is difficult without
domain knowledge, requiring complex transformations of
signal data. Designing the space of information and features
to focus on can often be complex, requiring substantial
domain contextualisation with features crafted bottom-up at
the instance level.

The second challenge motivated a line of research on
activity recognition of human-swarm interaction (Hepworth,
2021), as well as designing ontologies to represent the space
of concepts lying between humans and the swarm (Abbass
& Hunjet, 2021a; Baxter et al., 2021; Hepworth et al., 2022),
contributing to a holistic theory to inform how humans and
swarm should interact (Hasbach & Bennewitz, 2021). The
third challenge motivated the design of contextual indicators
that could be extracted from the sensorial information to
guide the swarm. These indicators could inform the three
challenges. A preliminary attempt is presented in (Hepworth
et al., 2020).

This paper attempts to answer the question: what
indicators can we purely design from the positional
information of the swarm to inform a dashboard on
the collective behaviour of the swarm? Answering this
question contributes to all three challenges above. The
indicators could inform the swarm’s guidance, explain
swarm performance to an external observer, and create
smarter individuals within a swarm. Positional information
are the only pieces of information required by almost
all reactive agents in the swarm literature. By relying
only on positional information, we do not overload the
swarm with further requirements, such as additional sensors.
Swarm information markers are complementary to research
first proposed by Matarić (1995), who explored “common
properties across various domains of multiagent interaction
for the purpose of classifying group behaviour” (pg.52),
introducing the idea of a basis behavior to describe agent
interactions at the spatial level.

The proposed swarm markers offer three extra advantages.
The first is through the lens of the swarm agents, enabling
activity recognition of other agents and the collective (Baxter
et al., 2021). The second is through the lens of an
external observer who can classify behaviours and infer
intents (Hepworth, 2021). The third and shared between the
first two advantages is a requirement to enhance an agent’s
situational awareness (Abbass & Hunjet, 2021b) to develop
individual and collective understanding. By using a suite of
markers, an agent could polarise its attention to particular
aspects in the environment by using a subset of the markers.

The remainder of this paper is organised as follows. In
the following section, we present a review of contemporary
swarm modelling approaches that highlight the methods and
techniques to analyse swarm systems, focusing on measures
as indicators with discriminatory power. We then structure
the problem space and provide supporting definitions before
introducing information and swarm markers. Following
this, we discuss our proposed situation recognition system
of swarm markers and highlight critical challenges. Next,
our Experiment Design and Analysis sections present a
systematic experiment to evaluate the swarm markers.
Finally, we conclude the paper with a discussion on open
research questions for future investigation.

Background Materials
This section is structured into two sub-sections. In the first
sub-section, we present a high-level summary of indicators
to analyse a swarm system covering geometric, spatial,
information-theoretic, time series, physics and graph-based
indicators. We then use three lenses to look at the literature.
An individual-agent lens focuses on individuals and their
traits; an influence lens focuses on the role of an agent
in a group, including leadership and followership; and an
emergence lens, where the focus is on the global observable
dynamic of the swarm as a whole. Our literature review has
identified over 40 methods, techniques and measures.

Swarm Indicators
The literature on indicators of swarm behaviour is multi-
disciplinary, with some indicators focusing on extracting
information on individuals in the swarm, while others focus
on the swarm’s interaction level and aggregate level as a
whole. In addition, some indicators rely on information
theoretic foundations, while others utilise theories in physics,
time-series analysis and graph theory.

Indicators that focus on characteristics of individuals
in a swarm tend to analyse information on an agent’s
level, such as angular velocity (Hepworth, 2021), speed,
and acceleration. Some indicators are borrowed from the
biological literature, such as the Overall Dynamic Body
Acceleration (ODBA), an integrated measure of body motion
in the three spatial dimensions (Gleiss et al., 2011). These
individual-based indicators usually act as raw indicators that
get used in more complex ones, such as information-theoretic
indicators (Crosato et al., 2018).

Agent interaction indicators are concerned with capturing
the dynamics among agents, the relationships between
swarm agents and the collective, and between swarm agents
and external agents, such as a control agent. This includes
measures such as distance to a global or local swarm centre
of mass or level of alignments between an individual and
its neighbours; neighbours here can be the closest k, or the
number of agents within a sensing range. These indicators
are used in swarm control methods, including the seminal
works of Reyolds (1987) and Strömbom et al., (2014). Others
relied on observations from biological field trials (Yaxley
et al., 2021b) to derive more systemic indicators that capture
high-level interaction such as predation risk and situation
awareness (Hepworth et al., 2020). Predation risk is designed
to illuminate a swarm’s proximity to a predator relative to
the configuration of the swarm, whereas situation awareness
captures the amount of obstruction between an agent and a
predator.

A broad selection of information-theoretic measures are
used to analyse swarm systems, often to qualitatively
describe swarm dynamics (pg.115) (Bossomaier et al.,
2016). Information-theoretic analyses often seek to quantify
the information transfer in a swarm, demonstrating the
flow of information through time. Transfer Entropy and
its derivations are widely adopted (Bossomaier et al.,
2016), often selected because of the intuitiveness of
its interpretation and the established body of research
use (Miller et al., 2014; Wang et al., 2012; Crosato et al.,
2018; Pilkiewicz et al., 2020; Porfiri, 2018). Transfer
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Entropy is a model-free, non-parametric approach that
measures the directed information flow from a source to
a target process (Bossomaier et al., 2016). Derivations of
TE often seek to answer specific questions on the swarm,
be it looking at the aggregate as with Global Transfer
Entropy (average collective Transfer Entropy) (Bossomaier
et al., 2016), or individual level (Crosato et al., 2018;
Bossomaier et al., 2016). A complementary measure to that
of Transfer Entropy is Information Storage, capturing the
amount of historical information relevant to predicting the
future state of a process (Wang et al., 2012). Other entropic
formulations are also employed, for example ranging
from classic Shannon Entropy to investigate emergent
behaviour (Hamann et al., 2011), cross-entropy to evaluate
swarm robustness (Cofta et al., 2020) or causation entropy to
identify causal relationships (Lord et al., 2016).

Time series analysis techniques are often used to develop
a higher-order understanding of what the swarm and its
agents are doing. For example, Dynamic Time Warping
(DTW) is used to infer agent leadership traits in a
collective (Amornbunchornvej, 2021). Spectral analysis is
highlighted as a technique to evaluate collective behaviour
in crowds, for instance, applying spectral-based techniques
to determine motion dynamics by measuring flow-field
information (Andrade et al., 2006). Finally, complexity
measures are employed to investigate causality, such as the
compression-complexity causality (Kathpalia, 2021), based
on the effort-to-compress measure (Nagaraj et al., 2013).

Physics-based approaches are distinct from other methods
in that they treat the swarm as a continuous collective, in
contrast to techniques discussed that consider the swarm as
an aggregate of individual agents. Haeri et al., (2020) employ
a thermodynamics approach to assess collective behaviour,
using the context of fluid flow to define macroscopic swarm
states (Haeri et al., 2020). Such approaches are aimed
to enable more accessible state information representation
and classification of emergent behaviours, especially for
unknown swarms (Haeri et al., 2020). Mavridis et al., (2021)
investigate coordinated movements of swarms, proposing a
scheme to infer the laws for inter-agent coordination by
observing the swarm density evolution over time (Mavridis
et al., 2021).

Graph-theoretic approaches provide a connectivity lens
to analyse agents, swarms and their dynamics and
infer the influence between agents in a swarm. Shang
& Bouffanais (2014) analyse biological swarms using
network and graph theoretic approaches, noting that the
predominant approach to swarm model development has
been in “generating consensus behaviors, often in the
form of group alignment or polarization” (pg.5) (Shang &
Bouffanais, 2014). Reséndiz-Benhumea et al., (2019) study
a swarm robotic system inspired by biological systems. The
approach integrates social network analysis with agent-based
modelling to investigate swarm influence and emergent
dynamics, suggesting that social network analysis can lead
to a better understanding of the emergent properties in
swarms (Reséndiz-Benhumea et al., 2019).

Categories of Swarm Analysis
In this section, we group the indicators into three categories,
presenting information on the swarm from a particular lens.

Leadership, Coordination
and Influence

Dynamics and
Emergent Behaviour

Agents and Individual
Characterisation

A B

C

D

E F

G

Figure 1. Synthesis of swarm and related intelligent agent
literature, depicting the prevalence of approaches across the
three focal lenses identified. The literature identified in each
segment is presented in Table 1.

Our lenses cover the three groups of information required
to characterise a swarm: individual traits, the role of an
individual in a group, and group dynamics. The three lenses,
when combined, offer an overall picture of the swarm. We
represent the methods and measures contained in Table 1
as a Venn Diagram of categorisations in Figure 1. This
figure describes the use of source literature in one or
more categories of analysis for swarms, highlighting the
distribution present. An extension of Figure 1 and Table 1 is
given in the appendix at Table 15. We summarise each lens
below.

Agents and individual characterisation. This category
includes research focused on swarm parameterisations
and investigations of agent decision models, abilities
and traits. Swarms containing homogeneous agents are
most prevalent in the literature; for example, the seminal
formulation of Reynolds (1987) relies on homogeneous
agents. Recently, heterogeneous swarm formulations have
gained more attention as complex swarm behaviours can be
generated from simple heterogeneous behaviours (Kengyel,
Hamann, Zahadat, Radspieler, Wotawa & Schmickl, 2015)
to develop new agent types or re-parameterise existing
agents in a swarm. Research into swarm heterogeneity is
consistent with literature from the biological shepherding
domain. Williams (2007) characterises different individual
abilities and traits of a herding agent (swarm control
agent—a sheepdog), noting that these are the markers to
identify how well-trained a herding agent is. Classifying
distinct behaviours within heterogeneous swarms has been
explored, such as by Hepworth et al., (2020) who
employed an Information Theoretic approach to distinguish
between swarm agent types, based on the underlying model
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Segment Literature

A

Mocanu et al.,(2014), Surasinghe & Bollt (2020), Nagaraj et al., (2013), Kathpalia (2021), Spinello
C & M (2019) , Mavridis et al., (2021), Lord et al., (2016), Pilkiewicz et al., (2020),
Reséndiz-Benhumea et al., (2019), Wang et al., (2012), Bossomaier et al., (2016), Papaspyros et
al.,(2019)

B

Wu et al., (2011), Reynolds (1987), Jankovic (2018), Puckett et al., (2015), Haeri et
al.,(2020), Hamann et al., (2011), Gleiss et al., (2011), Martı́n López et al., (2022), Andrade et
al.,(2006), Bossomaier et al., (2016), Cofta et al., (2020), Wang et al., (2011), Baldi &
Frasca (2019) , Brown & Goodrich (2014b), Traboulsi & Barbeau (2019)

C
Gleiss et al., (2011), Martı́n López et al., (2022), Hepworth (2021), Andrade et al.,(2006), Schaerf
et al., (2021), Hepworth et al., (2020), Strömbom et al., (2014), Valentini et al., (2019a),
Chakraborty et al., (2020), Abbass and Hunjet (2021b)

D
Amornbunchornvej (2021), Mateo et al., (2017), Bossomaier et al., (2016), Lord et al., (2016),
Shang & Bouffanais (2014)

E Crosato et al., (2018)

F
Hepworth et al., (2020), Wang et al., (2012), Crosato et al., (2018), Bossomaier et al., (2016), Li et
al., (2004)

G
Amornbunchornvej (2021),Wang et al., (2012), Bossomaier et al., (2016), Porfiri (2018), Spinello C
& M (2019), Mert Karakaya et al., (2020), Valentini et al., (2019b), Butail et al., (2016)

Table 1. Synthesis of swarm and related intelligent agent literature, depicting the prevalence of approaches across the three focal
lenses identified: leadership, coordination and influence; dynamics and emergent behaviour; and agents and individual
characterisation. Segments sets are listed in reference to Figure 1, with an exhaustive summary presented in Table 15.

introduced by Strömbom et al., (2014). The approach was
to parameterise sensing and interaction weights amongst
agents, identifying the impact on a swarm. Szwaykowska et
al., (2015) analyse agents with heterogeneous capabilities,
where agent decision capabilities are homogeneous, but the
interaction dynamic weights are not. Kengyel et al., (2015)
analyse four behaviour types in a biological swarm,
identifying that complex behaviour can be generated from
simple heterogeneous behaviours.

Leadership, coordination and influence. This category
includes studies that seek to uncover leadership and follow-
ership roles within swarms, understand coordination mech-
anisms in both biological and simulated swarms, and deter-
mine causal interactions of influence. Understanding influ-
ence responses may help design biologically-inspired agents
to serve more complex swarm applications. For example,
Yaxley et al., (2021a) discuss the roles of leaders, followers
and uncooperative followers in biological shepherding and
Duikman (2012) characterise the underlying organisational
leadership and followership structures of a swarm. Butail et
al., (2016) and Basak (2021) employ information-theoretic
approaches with biological agents, with Butail et al. success-
fully inferring leadership in zebrafish pairs using trajectory
data. Porfiri (2018) suggests that Information Theory offers
a robust framework for the objective analysis of cause-effect
relationships using raw data (e.g., behavioural observations
or individual trajectory tracks). This is supported by a range
of experimental studies with similar analysis approaches, for
instance (Crosato et al., 2018; Hepworth et al., 2020; Bosso-
maier et al., 2016; Mert Karakaya, 2020).

Swarm dynamics and emergent behaviour. This category
includes work that seeks to uncover rules for individual and
collective movement, analysing emergent properties of the
swarm from seemingly simple interactions (for instance, see
Reynolds (1987)). Learning swarm behaviours is vital to
understanding how individual agents cooperate to achieve
a global, swarm-level behaviour (Park et al., 2018). A
common approach to the behaviour recognition problem
is to observe features of the swarm through time (sensor-
based recognition), for instance, characterising underlying
swarm interactions (Gong et al., 2020; Park et al., 2018),
quantifying the strength and asymmetry of interaction
dynamics (Hepworth et al., 2020), or investigating how
information propagates (Wang et al., 2012; Sipahi &
Morfini, 2020). Model-based approaches identify particular
typical and a-typical swarm behaviours (Brown & Goodrich,
2014a). Information Theory is used by Liu et al., (2018)
to detect emergence over time, identifying intervention
opportunities to influence the swarms resulting state. Wang
et al., (2011) investigate the propagation of information
through swarms with an Information Theoretic framework,
demonstrating that such measures can be applied to non-
trivial models to reveal the dynamics that cannot otherwise
be visually detected.

Methodology Conceptualisation
The primary scope of this work is the existence of an agent
external to the swarm with interest in understanding what
the swarm does. In particular, we call a swarm agent as a
sheep and the swarm controller as a sheepdog (Baumann
& Büning, 2016). We assume that the sheepdog’s interest
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is to understand the swarm and its influence on the swarm.
We denote the swarm controller agent (sheepdog) as β,
and swarm agents (sheep), given by Π = {π1, π2, . . . , πN}.
Both β and π sense raw data from their independent
sensors, process this data to transform it into information,
decide what to do with it, and generate an action. Each
π is reactive to other agents, employing a combination
of attraction and repulsion actions (cohesion, separation,
and alignment (Reynolds, 1987)) to actuate. The agent β
is also reactive, employing a combination of collect and
drive actions to actuate (Strömbom et al., 2014), guiding Π
towards a designated goal location. The actions of each agent
may manifest as an influence on another agent, transmitted
through the environment as a type of information—, a force
vector. When β positions itself, the influence vector is a
portion of the total information propagated β → π. The
resulting action of π is, in part, a response to an action of
β.

The context of this paper is whether or not we can design
indicators; we call them information markers, to detect state
information on the swarm from their positional data. In
effect, information markers transform functions with pre-
defined meanings in a domain. They enable the recognition
of situations and contexts by detecting information in
the three categories presented in the previous section:
information about a single agent, information about the
role and behaviour of an agent relative to others, and
information on the global dynamics of the swarm. We use
positional data as a single information type, which could
be obtained in a real-world situation using one of many
sensors, including vision-based sensors, LIDAR, or even
a remote sensing system. Using a single sensor source
in context recognition is prevalent in both simulation and
real-world studies (for example, see Table 3 in Pernek &
Ferscha (2017)). Nevertheless, a single information type,
such as the position of an agent, is used to calculate multiple
pieces of information, such as the speed and acceleration of
an agent, the centre of masses for groups of agents, and the
speed and acceleration of groups. The state flow from raw
data to information to information markers is depicted in
Figure 2.

Figure 2 depicts the conceptual flow of data to information
to information markers. For example, positional information
are considered the data in this particular instance. One
can then transform these into velocity and acceleration
vectors and aggregate these on a group level. These are the
classic information used by Boids and Shepherding for an
agent to act. We call these information ”states”. Information
markers take these information states and generate situation
states as a higher-order aggregate state of information.
We call these ”concepts”, which then form an ontology.
These ontologies inform recognition systems to distinguish
particular situations in a swarm. For example, a sheepdog
must collect or drive the sheep in a classic shepherding
problem in the most specific setting.

These two situations are characterised by particular
information markers on whether or not an astray sheep exists
and whether the sheep are grouped. An external observer
may be interested in other information, such as whether or
not the level of energy in the sheep is diminishing or whether
or not the sheep’s actions are coordinated. Information
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Information StatesSensors States Markers States

Figure 2. The flow of information from D → I →M, where D
are the raw positional data (P t), I are operations on the raw
data, generating information features, and markers are
transformations of information that act on the intermediate
representation, I.

markers offer objective measures of state information
with discriminatory power to reach these conclusions.
Information markers offer benefits such as illuminating what
is occurring, providing historical understanding, warning
of potential dynamics change, identifying individual and
collective risk factors, and uncovering causal factors of
influence. More concisely, information markers aim to
leverage historic positional information to illuminate what
is occurring and what is expected to occur regarding risk
factors or potential dynamics change.

Formal Definitions
We provide formal definitions that illustrate information flow
in the recognition system. We define an external observer
(κ) as an agent that is not allowed to actuate or produce an
influence vector in the system but can receive information
from the system and with interest in understanding what the
system is doing. This assumption of passivism of κ ensures
that κ can understand the system without needing to be
proactive about probing it. We define stπi to be the state
vector for agent πi at time t and stΠ to be the state vector
of the swarm, Π, at time t.

We use a classic definition of data and information, where
data, D, “(Davis, 2000, p. 71) consists of representations of
events, people, resources, or conditions. The representations
can be in various forms, such as numbers, codes, text, graphs,
or pictures”. Information, I, (Davis, 2000, p. 71) is a
result of processing data. It provides the recipient with some
understanding, insight, conclusion, decision, confirmation,
or recommendation, that is I ← F (D), with F a vector
function transforming D into I. An agent transforms data
into information that it can use to generate actions. While
these actions are outputs by agents, they are also the sensed
data by agents. Hence, we can generalise the behaviour of
an agent to be a set of information. If I is the superset
of information an agent possess, then a behaviour Σk,
is a subset of this set transformed into actions, Σk =
{g(I1), g(I2), . . . , g(In)}. The set of all d behaviours in a
system is denoted Σ = {Σ1, . . . ,Σd}.
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Definition 1. Behaviour is a label associated with a set
of information, Σk = {g(I1), g(I2), . . . , g(In)}, describing
the actions displayed by an agent, k = 1 . . . , d.

Behaviours in our formulation are ontological con-
cepts/labels, associating some contextual meaning to partic-
ular pieces of information, Σ ⊆ I. As a form of information,
behaviours may be considered observable messages between
agents.

An Information Maker is a subset of information
that could reveal aspects of an agent’s behaviour; thus,
an information marker (M) possesses some semantics
to recognise the situation an agent is facing and the
corresponding actions it generates to handle these situations.

Definition 2. An Information Marker, is a set of
transformed informationMl = {f(I1), f(I2), . . . , f(Im)},
correlated with a subset of the information in Σ. Information
markers are information that can reveal the presence or
absence of a particular behaviour.

We assume that as more marker states are obtained
towards the complete set of Ml required to identify a
particular behaviour Σk perfectly, that opportunity exists
to anticipate (predict) response states and behaviours.
Prior to the complete set of I ∈ M , each new Ml

identified reduces the search space for the plausible Σ
which may be observed. The sequence of markers identified
contributes to an explanation of why a particular Σ has
been identified, offering an opportunity to detect the early
presence of an influence event and post-event to assist with
an explanation of why a particular decision was made, or
behaviour was completed. In scenarios requiring increased
system transparency, M may fulfil the requirements to
evaluate a system and report to the user (Hepworth et al.,
2021), providing a quantitative way to measure tenets of
transparency.

Before arriving at our final definition in this section, two
concepts require further discussion: contexts and situations.
First, we will define a context to be the effective superset of
information in a problem space; with that, we mean if the
problem space consists of a system and the environment it
is operating within, then a context is all information in the
system and its environment that are needed to operate the
system and the environment, including different constraints
and goals. By effective, we mean that information not used
by the system or the environment is excluded.

Definition 3. A context, C, is the effective superset of
information, I, required by a system and its environment to
operate autonomously.

A context may contain sub-contexts. An agent may not
have access to information to know the actual context;
instead, we define Co as the observable context by an
agent. Situations representing information subsets do not
change for a period of observation and get repeated in a
context. Situations have a timeless property. Situations “are
ultimately founded on objects, their properties, relations and
the occurrences they participate in” (Almeida et al., 2018,
p. 32), where the subset of information they represent is
unique for that circumstance and time.

Definition 4. A situation, s, is an invariant subset of I
over a period of time, t, given as Its (Fernandez-Rojas et al.,
2019).

In classic shepherding, herding is a context. Within this
example context, a sheepdog recognises and acts on two
situations. The first situation is when the sheep are clustered,
the sheepdog needs to drive the sheep towards the goal.
The second situation is when an astray sheep is away from
the flock, wherein the sheepdog needs to collect that sheep
towards the flock. It is important to note that a situation is
associated with a system boundary; that is, the situation from
a sheepdog perspective is invariant information in those held
by the dog, while a situation from an external observer would
be an invariant subset in the information held by the external
observer. Relating this description to Definition 3, herding
as the context contains the unique information required to
instantiate a particular situation, recognise an element, or
bound an environment.

A type of information marker in our problem is a swarm
marker, which has value in inferring context towards a
situation on swarms. Swarm markers are used to make
decisions about the swarm by an external observer; for
instance, they could be used to

• Understand what the swarm is doing and the
manifestation of influences in the swarm.

• Detect a category of agent types as traits, such as a
weighting system for decision making.

• Focus the attention of an observing agent on some
aspect of the swarm’s behaviour.

• Overcome some of the observing agent’s internal bias
on how to look at the swarm.

Definition 5. A Swarm Marker is an information marker,
MS , about a swarm rather than the individuals in the
swarm.

Figure 3 summarises the relationships between the defini-
tions discussed, highlighting the nuance between behaviours
and markers as both transformations of information subsets.
Information markers are indicators which provide evidence
for specific contexts, guiding the transformation of informa-
tion. To define a formal relationship between Σ and M,
we must first consider the perspective of each subset of
information. Our first is the action pathway, focused on the
agent(s) under observation. The action agent uses particular
aspects of the full information to make decisions about their
actions in the system, displayed through behaviours.

The second perspective is that of an agent observing the
actions of another, which is the recognition pathway. The
recognition agent uses a transformation of a subset of the
total information available to calculate M from features
of the information focused on a particular agent or swarm
behaviour. The marker state vector for each swarm or agent is
the context which contributes to recognising a situation. The
situation is the estimated behaviour (Σ̂) under observation,
s→ Σ̂. The key idea here is that markers are information
transformations that identify the context(s) and situations to
describe the observed behaviour.

Figure 4 depicts the links between each concept, showing
how markers are designed to correlate with behaviours for
recognising situations. A context contains a set of situations
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Figure 3. The system boundary of key concepts which describe
the flow of computations from data (D) to information (I) to the
correlation required between that information associated with
behaviours (Σ) and those associated with information markers
(M). The overall figure represents all information forming the
context (C). Two pathways exist in the system: an action
pathway, where an agent uses the information available to it to
act, thus, generating behaviours, and a recognition pathway,
where an agent uses the information available to it to create
markers correlated with the behaviours it observes.

and acts as a set of constraints on situations. Situations
trigger particular behavioural responses, necessitating a need
to act, triggering a particular set of markers. Markers provide
a way to recognise a situation and allow context inference.
The combination of each available marker generates the
entire information situation for an agent, with each marker
having a context that may or may not provide unique
information —markers contain redundant information.

Markers (𝑀)

Situations (𝑠) Behaviours (Σ)

Context (𝑐)

Trigger

TriggerRecognise

Infer

Define

Figure 4. Conceptual relationships between the definitions
introduced in the methodology conceptualisation section. This
figure highlights the role of markers to recognise situations and
infer contexts, being triggered by behaviours of the swarm and
its agents in an environment.

Designing Information Markers
After introducing key definitions in the previous section,
we now synthesise our literature review and methodology
conceptualisation discussions, connecting methods and
measures from the swarm analysis literature and integrating
these to describe their use. The primary opportunity for a
swarm system is to apply markers as part of the recognition

process. Such an approach may enable us to discover
a system’s causal rules and agent influences, offering
potentially more robust strategies to deal with increased
sensor noise (Nguyen et al., 2020) and environmental
complexities (El-Fiqi et al., 2020). Our first task is to
systematically select the appropriate markers that lead us
to recognise agent contexts in the system. Our review of
literature in the background section identifies five primary
fields to analyse swarms across three swarm-focus areas.

We first discuss the organisation of information markers
for recognition, highlighting what constitutes a subset of
information and the interdependencies between markers. We
then present the markers selected in our study to recognise
swarm situations and contexts. Designing an ontology of
markers requires an understanding of what needs to be
recognised for each category of indicators in the literature
review. Table 2 depicts a configuration of characteristics
and swarm perspectives, synthesising the discussed literature
review. The columns contain the agent perspective, being
the individual agent and collective swarm levels, with rows
containing the traits of either the individual or collective.
Traits are categorised as either stationary or non-stationary.

It is essential to clarify that the value of the method,
measure or technique used to estimate information, be it
stationary or non-stationary, can be dynamic. The main
point of difference here is in what is being evaluated.
Stationary information to be evaluated does not change in the
environment, such as an agent’s desire to be part of a group, a
propensity to separate from a threat or other swarm members,
and maximum speed. At the swarm level, stationary traits
could include the number of swarm teams in the environment
and the speed of the swarm. Non-Stationary information
to be evaluated may change over time, such as an agent’s
relative propensity for leadership or followership, indicating
the influence and interaction of an individual. At the swarm
level, dynamic information could include collective actions
and tactics. Discriminating characteristics at the individual
and collective levels provide an opportunity to discover and
exploit heterogeneous information in the swarm, providing
novel insights.

Following the identification of markers in the literature
review and arrangement of markers in Table 2, Figure 5
outlines an organisation of the information markers with
meaning, highlighting the recognition requirements for each
category (agent and swarm focus with stationary and non-
stationary types). Our ontology systematically organises
markers to identify particular aspects of the agent and swarm,
for instance, illuminating properties of an agent, the link of
interaction for leadership dynamics, and the link between
the agent and the swarm. As we move between information
categories, the type of information required to calculate and
recognise each category changes, as described in Table 2.

The marker ontology is designed from the perspective of a
recognition agent, viewing the swarm and its agents. The top-
level ontology classes swarm and agent are composed of sub-
classes representing aspects in the system that are desired
to be uncovered. The sub-classes that comprise an agent are
traits and triggers. Traits are categorised as stationary (innate
properties) or non-stationary (functional capability roles),
with triggers representing individual decision thresholds
based on traits. The sub-classes constituting a swarm
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Individual Agent Swarm

Stationary Information Traits

Transfer Entropy
Synchronicity
Situation Awareness
Predation Risk
Spatial Distance
Speed
Dynamic Body Acceleration
Acceleration
Angular Velocity
Spatial Measures
Correlation Function
Heading

Transfer Entropy
Shannon Entropy
Spatial Distance
Speed
Frequency Analysis
Correlation Function
Heading
Acceleration
Dynamic Body Acceleration
Dynamic Time Warping
Granger Causality
Lyapunov Exponent

Non-Stationary Information Traits

Transfer Entropy
Information Flow
Dynamic Time Warping
Correlation Function
Lyapunov Exponent
Frequency Analysis

Transfer Entropy
Information Flow
Dynamic Time Warping
Correlation Function
Lyapunov Exponent
Nodal Analysis
Frequency Analysis

Table 2. Synthesis of techniques identified the literature review (Table 1 and Table 15), organised by focus (individual agent or
collective swarm) and trait type (stationary or non-stationary). This table provides the basis of rationale for information marker
selection in the following design and analysis sections and informs further analysis techniques to uncover particular aspects of the
swarm and its agents. Contained in the Appendix is a summary of select mathematical expressions and interpretations.

Agent

hasA

SwarmConfiguration

Tactic

isDoneBy

doesA

Thing

Role

isA

isMemberOfhasA

acitvatesA
Traits

Desire to Group 
(𝑊!")

Trigger
(Decision)

Desire to 
Separate (𝑊!!)

activatedBy

influencedBy

influences

influencesinfluencedBy

hasA

isA isA

characterisesA

isA

isA

hasA
acitvatesA

activatedBy

Desire to 
Separate (𝑊!#)

isA

Speed (𝑆!) 
isA

influences

influencedBy

Agent Strength 
of Influence +  

Interaction (ℑ!)

isA

Speed (𝑆$)
isA

hasA

Group (|Π%|)
isA

isDoneBy

doesA

Swarm Influence 
+ Interaction 
Network (Πℑ) isA

hasA

Range (𝑅!) 
isA

Heterogeneity 
(Η$)

isA

characteriseA

hasA

constitutesA

isConstitutedBy

isConstitutedBy

constitutesA

Figure 5. The ontological organisation of markers includes those aspects of the agent or swarm characteristics that are revealed
(be these stationary or dynamic information traits), the information that the metric is acting on (for instance, being focused within an
agent, on an agent property, or a link between multiple agents), and what information is used by each metric (the input elements of
information).

are configuration (stationary properties) and tactic (non-
stationary properties). For each of our agent and swarm
stationary and non-stationary classes, we select a marker
set to identify the desired aspects; the marker sets used for
this study are as indicated in Table 2. This organisation now
enables us to guide the development of analyses discussed in
the following section.

Experimental Design

Our experiments investigate how markers represent distinct
situations by understanding marker sets’ contribution to
answering a given question. We are guided by the ontological
relations given in Figure 5, using the sets defined in Table 2.
Our experimental design is based on the particle-based
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Parameter High Medium Low

WπΛ 1.50 1.05 (Strömbom et al., 2014) 0.50 (Hepworth et al., 2020)
Wππ 3.00 (Hepworth et al., 2020) 2.00 (Strömbom et al., 2014) 1.50 (Mohamed et al., 2021)
Wπβ 1.90 (Mohamed et al., 2021) 1.00 (Strömbom et al., 2014) 0.50 (Himo et al., 2022)
sπ/sβ 1.00 0.67 (Strömbom et al., 2014) 0.50 (El-Fiqi et al., 2020)

Table 3. We formulate πi-agents as particle models with parameter variations identified in the literature, providing the basis for
homogeneous and heterogeneous agent-profile implementations. Note that the agent decision models are homogeneous, with
interaction weights (W ) and agent speed (sπ, sβ) varied in our study.

shepherding model introduced by Strömbom et al., (2014).
To develop heterogeneous contexts for swarm agents in
this model, we parameterise the value of three weights
(WπΛ, Wππ , Wπβ) and the speed differential between the
swarm agent and control agent (sπ/sβ). The use of parameter
variations to generate heterogeneous agent types is well
established; see, for instance, Lee and Kim (2017) and
Himo et al., (2022). These characteristic parameterisations
are defined as

• WπΛ, the attraction strength for π to their local centre
of mass Λ.

• Wππ , the repulsion strength for a π to another π.
• Wπβ , being the repulsion strength for a π to the control

agent β.
• sπ/sβ , being speed differential between a π agent and
β.

Agent Parametrisation and Swarm
Heterogeneity
We surveyed the available shepherding literature based on
the model of Strömbom et al., identifying variations from
the original model for these weights. Varying specific agent
parameters in shepherding models are well established,
capturing distinct abilities and traits of agents (Abbass
& Hunjet, 2021b; El-Fiqi et al., 2020; Strömbom et al.,
2014; Hussein et al., 2022; Mohamed et al., 2021). Table 3
summarises our agent weight values selected across three
levels (high, medium and low), with citations provided
where weights are drawn directly from the literature. Where
weights exist without citation to a particular study, we select
a weight that ensures we have a magnitude-appropriate
setting that remains faithful to the descriptions given by
Strömbom et al. (2014).

After developing our parameterisation levels, we reviewed
the available biological shepherding literature to identify
essential characteristics, abilities and traits able to be
represented with our model. Our agent parameterisations
are contained in Table 4. Our first agent (A1) we describe
linguistically as a scout. The scout has a lower propensity
to swarm, higher resistance to the swarm control agent’s
influence, and equal speed with the control agent. Our second
agent (A2) we label as a control detractor, who has a higher
propensity to swarm, higher resistance to the swarm control
agent (Himo et al., 2022) and a lower relative speed than
that of the swarm control agent. We characterise the third
swarm agent (A3) as a swarm detractor, who possesses a
lower propensity to swarm and higher repulsion to other
swarm agents. We describe the next agent (A4) as a nomad,
who has a lower propensity to swarm and higher repulsion
to the swarm control agent. We label our fifth agent (A5)

as a dispersed swarmer, characterised by a higher repulsion
to other swarm agents. The sixth agent (A6) we label as
unwilling is characterised by a lower repulsion to other
swarm agents and lower relative speed than the swarm
control agent. Our final agent (A7) is the classic agent
introduced by Strömbom et al., (2014).

Agent State Name WπΛ Wππ Wπβ
sπ
sβ

A1 Scout 0.50 2.00 0.50 1.00

A2 Control Detractor 1.50 2.00 0.50 0.50

A3 Swarm Detractor 0.50 3.00 1.00 0.67

A4 Nomad 0.50 2.00 1.90 0.67

A5 Dispersed (Protector) 1.05 3.00 1.00 0.67

A6 Unwilling 1.05 1.50 1.00 0.50

A7 Classic 1.05 2.00 1.00 0.67

Table 4. Summary of agent state vector parameterisations
used for swarm agent parameterisations in this study. Seven πi
profile types are presented, developed from available studies
and empirical field trials.

We reviewed biological shepherding literature after
developing the agent parameterisations and available field
experiment studies to design both homogeneous and
heterogeneous swarms for marker experimentation. We
developed a homogeneous swarm with each agent type and
established four heterogeneous swarm distributions between
two and four agent types per swarm. Table 5 describes
the distribution of each agent type within the 11 swarms
developed.

Generating Simulation Data
In our simulation environment, we implement the 11 swarm
scenarios in Table 5. These were implemented as described
in Strömbom et al., (2014), with agent parameterisations and
swarm agent distributions described per the previous section.
We used a swarm size of N = 20 agents for our simulations
with a single β. Information markers were calculated over
marker windows consisting of 20 to 100 observations,
with 25-75% overlap between each window (Kleanthous
et al., 2022). This resulted in 165 variations across the 11
scenarios. Data were shuffled randomly to break time series
associations and split into a training set (80%) and a test set
(20%). We verified consistency in the representation of each
agent type across both data sets.

Figure 6 depicts exemplar outputs for a single scenario
(S1), providing two perspectives. Figure 6a and Figure 6b
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Scenario State Name A1 A2 A3 A4 A5 A6 A7

S1 Find and Guide (Hepworth et al., 2020) 0.20 0.80
S2 Disrupted (Yaxley et al., 2021a) 0.20 0.20 0.20 0.40
S3 Separated (Nowak et al., 2008) 0.80 0.20
S4 Dispersed Search 0.20 0.20 0.60
S5 Strömbom et al., (2014) 1.00
S6 Homogeneous A1 1.00
S7 Homogeneous A2 1.00
S8 Homogeneous A3 1.00
S9 Homogeneous A4 1.00
S10 Homogeneous A5 1.00
S11 Homogeneous A6 1.00

Table 5. Distributions of agent types (presented in Table 4) constitute the swarm scenarios in this study, represented as
proportions of each agent type. Scenarios S5 to S11 are homogeneous swarm types, with Scenarios S1 to S4 representative of
natural-system heterogeneous swarm types.

(a) Mean of the Situation Awareness Marker (M15) for each agent in Π

over the simulation observation period.
(b) Maximum of the Distance Marker (M19) for each agent in Π over the
simulation observation period.

(c) Marker subset M1,...,23 for agent π15 over the simulation
observation period, depicted as sequence of state vectors.

(d) Marker subset M1,...,23 for agent π3 over the simulation observation
period, depicted as sequence of state vectors.

Figure 6. Visualisation of scenario S1 (Table 6), depicting a single marker output across all the agents in the swarm (sub-figure a
and b), as well as a subset of markers (M1,...,23) for a single agent type in the swarm (sub-figure c and d). Note that figures are
depicted as normalised values, given as a vector-wise z-score for each window (column), with mean 0 and standard deviation 1.

show the state value of M15 and M19 for all agents,
Π in scenario S1. With these sub-figures, we conduct the
Kruskal-Wallis to demonstrate the individual power of a

marker to highlight particular aspects of each swarm agent.
In Figure 6a we reject the null hypothesis that each agent has
the same profile distribution for M15 (H(19) = 501.07, p <
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0.001); for Figure 6b we also reject the null hypothesis
that each agent has the same profile distribution for M19

(H(19) = 781.92, p < 0.001). Expanding this analysis to
the 23-marker sub-group, only two markers failed to reject
the null hypothesis at the p = 0.05 level, with the remaining
21 markers rejecting it.

We observe that markers discriminate a particular aspect
of each agent in the swarm, such as π14...18 having disparate
state values to other members in the swarm. Common to both
figures are key system changes in the simulation. At t ≈ 18,
we observe a change in marker states, aligning to a control
state change where β is actively shepherding Π. At t ≈ 55,
we observe another marker state change, corresponding to
the simulation stage where β is at the final phase of simulated
shepherding. Figure 6c and Figure 6d depict a complete
marker state (as described in Table 6) consisting of 23
markers for each agent in observation window (per Table 2).
These figures show the individual footprints of π15 and π3

through the scenario, quantifying the unique state of an agent
over time. We also compare the marker state values for each
agent, using the Kruskal-Wallis to test if markers provide
redundant information on an agent. In Figure 6c we reject the
null hypothesis that each marker has the same distribution for
π15 (H(22) = 1121.16, p < 0.001); for Figure 6d we also
reject the null hypothesis that each marker has the same
distribution for π3 (H(22) = 973.89, p < 0.001). Again, we
expand this analysis to all 20 agents of the swarm; we reject
the null hypothesis for all agent cases at the p = 0.05 level.

Analysis
Our analysis aims to demonstrate the application of the
information marker method through examples. The first is
to illustrate the marker overlap by investigating the pairwise
correlation between all markers, which seeks to quantify
the information similarity between markers and identify
existing groupings. The second analysis reports key findings
from the marker set in Table 2. These focus on swarm
and agent profiles (classification). Our final analysis aims to
detect a change in an agent’s interaction role as the swarm’s
tactic. The analyses are ontologically guided to answer
particular questions about what is desired to be understood
on the swarm. There are endless possibilities for analysis to
inform on new aspects of the swarm, limited only by the
imagination of an analyst and desired aspects sought to be
understood. Figure 7 outlines the conceptual flow from data
to information to markers and the analysis types presented in
this section.

Exploration of Marker State Vector
Our initial task is identifying the information dependencies
between information markers and their contribution to
classifications. We include 23 of the 42 information markers
from nine methods and measures in Table 15, ensuring
coverage across the three focal lenses identified (per Table 2).
Table 6 contains our summary of markers for this study.
Next, we formulate the learning of distinct agent types from
markers as a classification problem. This task is consistent
with the depiction given in Figure 3, illuminating our intent
to uncover the behaviour of swarm agents through the
detection of context.

Marker Method, Technique or Measure Variation

M1 Speed Segment
M2 Distance Segment Rate
M3 Speed Mean
M4 Speed Var
M5 Heading Mean
M6 Heading Var
M7 Situation Awareness Mean
M8 Situation Awareness Var
M9 Predation Risk Mean
M10 Predation Risk Var
M11 Dynamic Body Acceleration Mean
M12 Dynamic Body Acceleration Var
M13 Dynamic Body Acceleration Cumulative
M14 Rate Of Change (Angular) Velocity
M15 Cross Correlation Mean
M16 Cross Correlation Var
M17 Distance Mean
M18 Distance Var
M19 Distance Max
M20 Distance Min
M21 Synchronicity Mean
M22 Synchronicity Var
M23 Transfer Entropy Net
M24 Dynamic Time Warping Mean
M25 Dynamic Time Warping Var
M26 Active Information Storage Mean
M27 Transfer Entropy Total
M28 Effort to Compress <value>
M29 Transfer Entropy Internal Net
M30 Transfer Entropy External Net
M31 Transfer Entropy Agg. Infl.
M32 Transfer Entropy Net Source
M33 Information Flow Mean
M34 Information Flow Var
M35 Information Flow Mean
M36 Information Flow Var
M37 Lyapunov Exponent Mean
M38 Lyapunov Exponent Var
M39 Noise-to-Signal Mean
M40 Noise-to-Signal Var
M41 Power Spectral Density Entropy
M42 Shannon Entropy <value>
Table 6. Summary of the 42 markers selected for use in this
study to classify agent types. Each marker is selected to
generate a distinct perspective on the swarm agents, designed
with high discriminatory power. Markers selected are derived
from MTMs in Table 15 and organised into information marker
states per Table 2.

We conducted a high-level assessment of five different
classification models, selecting the decision tree as our
classification model for its established use in recognition
tasks (Priyadarshini et al., 2022), interpretability of its model
output, limited input data preparation, fast training and
prediction costs. Model hyperparameters were optimised
with a Bayesian scheme, with 10-fold cross-validation
used throughout the training. Model training resulted in a
classifier accuracy (validation) of 81.5% for 23 markers
(M1-M23). Our analysis focus here is to understand the
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Methods, Techniques and Measures Marker Ontology 

Agent Stationary Information

Swarm Stationary Information

Swarm Non-Stationary Information

Agent Non-Stationary Information Swarm Attention Points

Agent Network Characteristics

Agent Type Profiles

Swarm Type Profiles

Experimental Analysis & EvaluationInformation Marker DesignAnalysis Library

Figure 7. Conceptual methodological process for experimental design, depicting the information marker organisation and state
flow, from the collection of methods, techniques and measures in Table 15, conceptual organisation of the ontology in Figure 5, and
analysis detailed in the following sections.

contribution of each marker to the overall classification
of each agent and swarm state, with markers used
for this experimental recognition task. The evaluations
were conducted on the marker inputs to determine the
classification impact of missing markers. Our motivation is
to understand the level of confidence in settings of swarm
control for recognitions provided to a swarm control agent.

Our regime to explore the marker state vectors consists
of two evaluation stages. The first stage (E1, Table 7)
is a feature ablation to study the system performance
by varying different features on the dataset (Sheik-
holeslami, 2019). We retained our model with a leave-
one-out policy, systematically removing each marker to
assess the impact of that marker on the overall clas-
sification. We then computed the Mutual Information
(MI) between markers to measure information uniqueness.
Our goal here is to select the minimum set of mark-
ers that provided > 95% of the cumulative MI unique-
ness from the complete set (MMI(95)), where MMI(95) =
{M1,M3,M4,M5,M6,M11,M12,M13,M14,M15,
M16,M22,M23} is the minimum marker set containing
> 95% of the mutual information variance. We then removed
the Centre of Influence (Hepworth et al., 2020), where
MCOI = {M7,M8,M9,M10,M21,M22}. Our results for
this stage of the ablation study are contained in Table 7,
which indicate that the ablation of an individual marker has
a predominantly negligible impact on the performance of a
pre-trained classifier for swarm agent behaviour. The notable
exception to this is the ten markers not included within
the MMI(95) group, resulting in a substantial decrease in
accuracy.

Our second evaluation stage (E2, Table 8) replicates the
methodology process of stage one; however, employing
only the classification model trained on the subset of 23
markers, with all markers present during the classifications.
We conducted the same systematic changes per the policies
outlined for stage one. We modify this through the systematic
transformation of each marker input. To achieve this, every
observation of the relevant marker(s) under evaluation was
set as the mean of that marker (Emmanuel et al., 2021).
Our purpose for this evaluation is to investigate impacts on

Marker Set Accuracy % Change

M 83.0 —

M – {M1} 80.1 -3.5
M – {M2} 78.6 -5.3
M – {M3} 79.6 -4.1
M – {M4} 81.2 -2.2
M – {M5} 83.2 +0.2
M – {M6} 81.1 -2.9
M – {M7} 83.0 0.0
M – {M8} 82.9 -0.1
M – {M9} 81.1 -2.9
M – {M10} 82.9 -0.1
M – {M11} 83.0 0.0
M – {M12} 81.0 -2.4
M – {M13} 83.0 0.0
M – {M14} 83.7 +0.8
M – {M15} 83.2 +0.2
M – {M16} 82.9 -0.1
M – {M17} 80.3 -3.6
M – {M18} 78.0 -6.2
M – {M19} 80.4 -3.1
M – {M20} 83.0 0.0
M – {M21} 83.1 +0.1
M – {M22} 82.8 -0.2
M – {M23} 83.0 0.0
M – {MI 5%} 54.1 -34.8
M – {COI} 81.2 -2.2

Table 7. Detailed analysis results continued from the analysis
section, evaluating the discriminatory power of markers for
detecting different different profiles (classification) for M1,...,23,
as given in Table 15 and Table 6. This table reports feature
ablation results for the systematic removal of individual features,
as well as two designed feature groups (MMI andMCOI ).
Each row indicates the training of a new classifier based on the
identified marker set, with results representing the overall
accuracy and change in accuracy compared to the complete
marker set (M = 23). This analysis highlights information
inter-dependency between markers, contributing to the overall
classification performance.
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a marker when dealing with changes in the underlying data.
This is important during swarm control for tactic and strategy
selection, where sensor inputs may impact the control
agent decisions. This is particularly important for settings
where data acquisition cannot be guaranteed and imputation
must occur dynamically. Our evaluation uses the F1 score,
observing an increased variance in classifier performance. E2
highlights the potential for non-linear interactions between
markers, mainly observed for both theMMI(95) and Centre
of Influence marker groups, as well as for some individual
markers (see, for example, M18).

Marker Set F1 Score % Change

M 81.0 —

M – {M1} 70.3 -13.2
M – {M2} 66.5 -17.9
M – {M3} 69.6 -14.1
M – {M4} 71.3 -12.0
M – {M5} 77.8 -3.9
M – {M6} 72.7 -10.3
M – {M7} 75.2 -7.2
M – {M8} 79.9 -1.4
M – {M9} 72.6 -10.4
M – {M10} 78.5 -3.1
M – {M11} 80.7 -0.4
M – {M12} 79.9 -1.4
M – {M13} 81.0 0.0
M – {M14} 79.7 -1.6
M – {M15} 79.1 -2.4
M – {M16} 79.4 -2.0
M – {M17} 55.8 -31.3
M – {M18} 47.7 -41.1
M – {M19} 54.3 -33.0
M – {M20} 81.0 0.0
M – {M21} 81.1 +0.1
M – {M22} 80.1 +0.1
M – {M23} 81.0 0.0
M – {MI 5%} 29.5 -63.6
M – {COI} 64.8 -20.0

Table 8. This table reports the impact of marker transformation
evaluations, representing modulated inputs. At each row, the
identified marker or sub-set of markers was set to their mean
value across all observations. This analysis assesses the
F1-score impact of a transformed marker for the setting where
a classifier is trained with all markers present (M1,...,23). We
note that classic feature selection methods, such as excluding
the bottom-k% of features based on Mutual Information,
significantly impact classifier performance, with the bottom 5%
of features resulting in a 63.6% classification performance
decline.

Agent and Swarm Profiles
For our agent and swarm profile classifications, we use
the same underlying methodology discussed in the previous
section; however, we now include the full set of 42
markers identified in Table 6. The decision tree model
classifier is optimised with a Bayesian scheme, with 10-
fold Cross Validation and a train/test data split of 80/20
applied across all generated data. This analysis aims to
classify agent and swarm types based on the marker state

vector generated and understand the impact of observation
window size and observation window overlap on classifier
performance. Observation window variation is established
to improve accuracy, latency, and the associated cost of
processing (Jaén-Vargas et al., 2022). We initially train
a classifier to discover agent profile types (Table 4) for
each observation window size {20, 40, 60, 80, 100} and
observation window overlap, {0.25, 0.50, 0.75}. Our results
are in Table 9, reporting validation test model accuracy
across 7 classes (A1,...,7). We observe maximum classifier
performance for detecting agent profiles for a window size
of 20 and window overlap of 0.75 (75%), [20, 0.75].

Type 20 40 60 80 100

75% V 87.9 83.8 85.5 85.7 85.5
T 88.7 84.4 87.2 86.7 86.0

50% V 83.4 83.1 83.6 84.4 86.4
T 83.0 85.9 83.8 86.5 86.9

25% V 79.4 80.2 82.1 79.5 80.9
T 79.7 80.0 83.1 79.5 80.2

Table 9. Summary agent profile classification performance
results, reported as validation and test model accuracy for 7
classes (π1, . . . , π7). Our selected model is a decision tree
classifier optimised with a Bayesian scheme (opt. max
n = 30).Columns with numbered headers report the window
observation size; rows with percentages report the window
overlap. Type refers to validation or test data results. No feature
pre-processing of marker state vectors is conducted; each
classifier usesM = 42 marker state vectors for the
classification task. 10-fold Cross Validation with a train/test split
of 80/20 is applied for all model data, with temporal
dependencies between data broken with observation
permutation prior to training. This table reports the classifier’s
performance for 15 distinct hyper-parameter settings across all
scenarios (Table 5). The hyper-parameters varied are window
size (number of observations per marker state vector
calculation) and sliding window overlap (percentage), with
maximum classifier performance achieved with window size
w = 20 and window overlap o = 75%.

We evaluate classifier performance in recognition settings
by considering the computational cost, reported as mean
compute-time (µt) and total compute time (T ) for each
observation window size and observation window overlap
(Table 10). In this setting, the hyperparameters that maximise
classification accuracy, [20, 0.75], are associated with the
highest computational cost, with marginal classification
performance increases over less computationally intensive
hyperparameter variations. Through this lens, it is prudent
to determine the optimally cost-efficient hyperparameters,
particularly for online implementation settings. Figure 8
depicts the coupling observed between classification
accuracy and the proportional computation time, defined as
the average total marker computation time per simulation
scenario, divided by the average mean marker computation
time for a single observation period, T/µt. The best-identified
trade-off between classification accuracy and proportional
computation time for agent type profile classification
is given by a window size 100 and window overlap
0.5 (50%), given as [100, 0.5], identified by the orange
marker (accuracy = 86.9%, mean computation time per
window = 2.85 seconds). We compare the mean compute
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time for each setting described in Table 10 and reject the null
hypothesis that compute times are equivalent (F14,16832 =
13888.19, p < 0.001).

Type 20 40 60 80 100

75% µt 1.1 1.6 2.0 2.5 2.9
T 444.5 281.7 240.8 215.4 199.2

50% µt 1.1 1.6 2.0 2.4 2.9
T 193.7 147.4 114.3 115.6 105.5

25% µt 1.1 1.6 2.0 2.6 2.9
T 120.1 87.2 77.7 61.0 59.5

Table 10. Summary of classification compute-time data
(reported in seconds), for the hyper-parameter settings
described in Table 9. Columns with numbered headers report
the window observation size; rows with percentages report the
window overlap. Type refers to mean time per calculation or
mean cumulative computation time per simulation. The mean
represents the average compute time for a marker state vector
under the specified conditions (window observation size and
overlap percentage) across all scenarios, with the total time
representing the average cumulative marker computation time
across all scenarios. We observe that the optimal
hyper-parameter settings (w = 20, o = 75) from Table 9 are
associated with the greatest computational cost, with only
marginal performance increases above other results with
substantially lower computational costs. Figure 8 and Figure 9
highlight the trade-off between information gain and
computational cost.

Figure 8. Depiction of agent profile classifications contained in
Table 9 and Table 10 data, depicting the trade-off between
classification accuracy and compute time. Classification
accuracy is given from test data (20% withheld). Proportional
computation time is calculated as the average total marker
computation time per simulation scenario, divided by the
average mean marker computation time for a single observation
period. As classification accuracy increases, we observe an
increase in the total number of computations conducted per
scenario, characterised by decreased observation periods and
increased total computation time. A window size gives the
best-identified trade-off between classification accuracy and
proportional computation time 100 and window overlap
0.5 (50%), identified by the orange marker (accuracy = 86.9%,
mean computation time = 2.85 seconds).

At the swarm level, our objective is to classify the swarm
profile in two ways. The first is to identify the scenario

as observed (11 classes, S1,...,11, contained in Table 11)
and the second is to identify if the swarm is homogeneous
or heterogeneous (2 classes, contained in Table 12). We
observe optimal classifier performance for detecting 11-
class swarm profiles with a window size of 20 and window
overlap of 0.75 (75%), [20, 0.75], depicted in Figure 9a. In
contrast, we observe optimal classifier performance for the
2-class swarm profile with a window size of 60 and overlap
of 0.25 (25%), [60, 0.75], depicted in Figure 9b. As with
our agent classification, we seek to find the optimal trade-
off between classification performance and computational
efficiency. For the 11-class setting, the hyperparameters
[20, 0.5] are identified as optimal, whereas [60, 0.25] is
identified as optimal for the 2-class setting. The figures
contained at Figure 8 depict relationships akin to those
observed for the agent type profile classifications in Figure 8,
with an observed super-linear increase in computation time
for a given classification.

Type 20 40 60 80 100

75% V 81.7 66.5 68.2 60.1 59.0
T 83.3 66.8 65.3 67.4 56.3

50% V 73.0 67.3 60.0 53.9 55.2
T 77.7 69.1 50.0 47.5 65.4

25% V 59.3 51.7 49.9 48.6 43.9
T 57.3 55.8 58.3 34.6 33.3

Table 11. Summary of swarm profile classification results,
reported as validation and test model accuracy (11 classes,
S1, . . . , S11, defined in Table 5). Columns with numbered
headers report the window observation size; rows with
percentages report the window overlap. Type refers to validation
or test data results. Model selection, optimisation and training
are as described in Table 9, with results indicating a reduction in
accuracy over agent-type classifications. Additional simulation
data were generated to understand the impact of sample size
on accuracy across the 11 classes; however, there is a lack of
evidence to suggest that additional samples are statistically
significant in increasing classifier performance. The
hyper-parameters varied are window size (number of
observations per marker state vector calculation) and sliding
window overlap (percentage), with maximum classifier
performance achieved with window size w = 20 and window
overlap o = 75%.

In real-world applications, selecting only a single
hyperparameter pair (window size and overlap) for
both agent and swarm-level classifications is practical,
minimising the required computational cost. In Figure 10,
we depict the relationship between agent-time normalised
swarm-time normalised classification for both the 11-class
(Figure 10a) and 2-class (Figure 10b) swarm settings.
We observe a linear relationship between each dataset,
indicating the feasibility of selecting a single hyperparameter
pair for online classification settings. Four categories of
data are highlighted in this figure. The first is the blue
markers that represent non-optimal window/over pairs.
The second (orange diamond) and third (orange square)
categories represent identified feasible data that feature
increased classification accuracy over the first category
while not substantially increasing compute time. The fourth
category (orange star) represents the optimal classification
setting for both agent and swarm settings; however, we see
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(a) Summary of Table 11 and Table 10 data, depicting the trade-off
between classification accuracy and compute time (11-class). The
best-identified point is given by window size 20, window overlap
0.75 (75%) and mean computation time 1.07 seconds.

(b) Summary of Table 12 and Table 10 data, depicting the trade-off
between classification accuracy and compute time (2-class). The
best-identified point is given by window size 60, window overlap
0.75 (75%) and mean computation time 2.03 seconds.

Figure 9. Classification accuracy is given from test data (20% withheld). Proportional computation time is as described in Figure 8.
As classification accuracy increases, we observe an increase in the total number of computations conducted per scenario,
characterised by decreased observation periods and increased total computation time. The orange marker identifies the
best-identified trade-off between classification accuracy and proportional computation time in each sub-figure. We observe a
non-linear increase in computation time for a given classification accuracy, with the notable outlier being for window size 20 and
window overlap 0.75 (75%).

Type 20 40 60 80 100

75% V 88.3 82.6 85.3 77.7 79.7
T 87.6 81.4 84.9 82.4 84.1

50% V 81.7 81.7 81.7 75.1 82.2
T 82.0 81.2 79.7 80.8 80.2

25% V 81.5 77.1 75.7 82.1 65.0
T 78.0 80.0 85.7 61.5 64.4

Table 12. Summary of swarm profile classification results,
reported as validation and test model accuracy for 2 classes,
being homogeneous (S5,...,11) or heterogeneous (S1,...,4),
based on Table 5. Columns with numbered headers report the
window observation size; rows with percentages report the
window overlap. Type refers to validation or test data results.
Model selection, optimisation and training are as described in
Table 9, with results indicating a reduction in accuracy over
agent-type classifications. We observe an increased
classification performance over those reported in Table 11. The
hyper-parameters varied are window size (number of
observations per marker state vector calculation) and sliding
window overlap (percentage), with maximum classifier
performance achieved with window size w = 20 and window
overlap o = 75%.

disproportionately higher compute times in both sub-figures.
The best-identified overall observation window periods and
window overlaps are either [20, 0.5] or [40, 0.75], with
proportional classification accuracy and computation time
across all three settings. We suggest these window settings
from this sensitivity analysis for agent and swarm-type
profile classifications in swarm shepherding settings.

Interaction Dynamics
The objective of our final analysis with information markers
is to develop statistics of the network among agents,

developing an understanding of role and tactic concepts from
Figure 5 that focuses on non-stationary information about the
agents and swarm, using the markers identified in Table 2
at the agent and swarm levels. This analysis addresses an
aspect of the challenges introduced earlier in the paper,
specifically identifying those critical pieces of information
that discriminate particular states or strategies.

The first interaction dynamics analysis focuses on the
agent level, where our objective is to identify agent
associations and interaction distributions. Algorithm 1
summarises the following method outlined. For each marker
observation period (Mp), we calculate and build a sub-
state of identified markers, calculating statistics from
markers about each agent (Mπi). We use the statistics for
summarising each agent’s state in reference to all other
swarm agents. We achieve this by normalising each agent’s
marker sub-state as a proportion of the total, calculating each
marker independently (M

p
/||Mp||). We obtain an interaction

state vector for each agent, with each value in the vector
being a summary measure of interactions calculated through
each marker. We summarise this vector by calculating the
L1-Norm (||Mπi ||1), normalised for that observation period
with the swarm.

Our goal is to calculate the association of each agent
with other agents across the evolution of a scenario (πi →
πj , i 6= j), assuming we know the number of agent types in
the swarm; this could be calculated prior, such as using the
classifier methods introduced previously. For each marker
observation period, we cluster all swarm agents using the
k-means algorithm based on the number of agent profiles in
the swarm, establishing an undirected, unweighted adjacency
matrix for agent connectivity (A(πi)). If an agent πi is
in the same cluster as another agent πj in that period,
then we say that the agents are connected with weight
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(a) Comparison of agent and swarm classification accuracy for the
11-class swarm setting (swarm type classification target).

(b) Comparison of agent and swarm classification accuracy for the 2-class
swarm setting (swarm type as either homogeneous or heterogeneous).

Figure 10. Visualisation of Table 9, Table 10, Table 11 and Table 12, depicting highly linear relationships between agent and swarm
classification accuracy and computation time. This figure aims to identify an optimal marker window size and window overlap
percentage for the computation of both agents and swarm markers. Four categories of data are highlighted in this figure. The first is
the blue markers that represent non-optimal window/over pairs. The second (orange diamond) and third (orange square) categories
represent identified feasible data that feature increased classification accuracy over the first category while not substantially
increasing compute time. The fourth category (orange star) represents the optimal classification setting for both agent and swarm
settings; however, we see disproportionately higher compute times in both sub-figures.

one else; if not in the same cluster, then we say that πi
and πj do not share an edge. Our method is somewhat
similar to the clustering coefficient discussed by Novelli &
Lizier (2021) and partially inspired by the early work of Li
et al., (2004), who propose a clustering method to estimate
swarm diversity and specialisation. Across all observation
periods, we generate the graph and calculate centrality
statistics based on a πi-degree.

The use of network analysis to generate statistics on the
agent interaction is well established, with many examples
proposed in the literature (Rezaei et al., 2022; Shang
& Bouffanais, 2014; Mocanu et al., 2014; Reséndiz-
Benhumea et al., 2019). We define the scenario agent
association score (Aπi) as the proportion of total pairwise
interactions an agent has across a scenario (propensity of
cluster association). Table 13 summarises these calculations
across all scenarios, subsequently depicted via the mean
percentage value of agent association in Figure 12, with
heterogeneous scenarios depicted in Figure 11. We interpret
lower association values as an agent wanting to associate
with different agents across a scenario, measuring traits
such as gregariousness (Hauschildt & Gerken, 2016).
We compare an agent’s association across the four
heterogeneous scenarios; our goal here is to demonstrate that
each parameterised agent type possesses a unique association
profile. Using the ANOVA test, we conclude that there
are differences between each agent type association profile
(F19,60 = 52.66, p < 0.001).

When considered in conjunction with Figure 12 and
Figure 13a we can establish agent role profiles, for instance
suggesting that π1 (type A1) in S4 associates with many
different agents in the swarm, accounting for high proportion
of total swarm interactions. In contrast, π13 (type A7)
in S4 (Figure 12) more frequently associates with the

Algorithm 1 Agent Association (πi ∈ Π)

1: Set observation window size and window overlap
2: for Mp do
3: for πi ∈ Π do
4: CalculateMp

πi . Marker p for agent πi.
5: end for
6: SummariseMp . Marker-wise πi-vector.
7: Normalise Mp, such that Mp

/||Mp||

8: Calculate ||Mπi ||1 . L1-norm.
9: Calculate k-clusters ∀ πi ∈ Π

10: Build A(πi) ∀ πi ∈ Π
11: end for
12: Calculate Aπi =

∑
A(πi) . Cumulative associations.

13: Return Aπi∀πi ∈ Π . Agent association.

same collection of agents while accounting for a below-
average proportion of the total swarm interactions. Relative
to other agents in a swarm, we can begin to detect
non-stationary swarm roles. This may help to identify
agent adaptation and learning over time, particularly for
cognitive settings where an agent’s desire may be stationary;
however, their swarm role may not be. This could be of
interest for analysing differences between homogeneous
and heterogeneous swarms, particularly the configuration of
constituent agents. When further considered with a measure
of interactions as given in Figure 12, we could begin to assign
leadership and followership roles in a swarm (Garland et al.,
2018).

The second interaction dynamics analysis focuses on the
swarm level, where our objective is to identify attention
points across the swarm, building on our understanding of
agent associations. Algorithm 2 summarises the following
method outlined. This analysis builds from that outlined in
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Scenario Max Min Range

S1 28.76 0.57 19.28
S2 22.94 0.49 13.49
S3 23.71 0.54 14.20
S4 20.27 0.62 11.50
S5 20.64 0.65 11.91
S6 23.12 0.67 14.27
S7 17.93 0.76 9.91
S8 20.76 0.63 11.26
S9 25.62 0.49 16.19
S10 27.01 0.63 18.17
S11 14.37 0.78 6.42

Table 13. Summary of agent interactions (non-stationary traits)
for each scenario given as percentages, as depicted in
Figure 11 and Figure 12. Agent statistics report the maximum,
minimum and mean contributions across all interactions.
Markers used for this analysis are as discussed in Table 2. Our
objective is to identify agent network characteristics to evaluate
individual πi and collective Π over time, for instance, to assess
the change in agent roles.

Figure 11. Agent association is calculated from data in
Table 13, given as the pairwise propensity of agents to cluster
together. We calculate the agent association for a marker
observation period by first clustering agents using the k-means
algorithm; we assume that the number of swarm agent types in
the swarm is known or able to be determined, such as
described for the agent type profile classifications in Table 7,
Table 8 and Table 9. We build a binary agent adjacency matrix
and calculate the centrality of agents using degree importance,
normalising each agent’s association across the swarm. The
resulting mean percentage value of agent association is
visualised. We interpret lower association values as an agent
with a desire to associate with different agents across a
scenario, measuring traits such as gregariousness. When
considered in conjunction with Figure 12 and Figure 13, we can
establish agent role profiles, for instance, suggesting that π1

(type A1) in S4 associates with many different agents in the
swarm, accounting for a high proportion of total swarm
interactions. In contrast, π13 (type A7) in S4 more frequently
associates with the same collection of agents while accounting
for a below-average proportion of the total swarm interactions.

Algorithm 1, branching after the calculation of the L1-norm
(||Mpii ||1). We employ a user-defined threshold, η ∈ (0, 1],
selecting the set (Q) of minimum number of πi agents

Figure 12. Scenario distribution of agent interactions,
visualising data summarised in Table 13. Note that πi are sorted
for the largest to smallest proportion of Π interactions. We
observe a non-linear distribution of agent interactions across
each scenario, typically with non-negative skew.

where the cumulative sum of values is greater than or
equal to η, given as Q = minπi such that

∑
||Mπi ||1 ≥ η.

An agent who is a member of the set Q is considered
an attention point for the given marker observation period.
Table 14 summarises the distribution of swarm attention
points over each scenario for η = 0.5. In Figure 13, we
illustrate both the scenario and agent perspective of attention
point distributions, particularly highlighting the variance
over each agent type across all scenarios (Figure 13b).

We conduct ANOVA to test for statistically significant
differences in each sub-figure. For Figure 13a, we fail to
reject the null hypothesis (F10,209 = 1.72, p > 0.05) and
conclude that there is insufficient evidence to detect a
difference in the scenario attention point distributions. We
expect this outcome as Algorithm 2 considers the agent
interaction and not the scenario context of the agent,
supporting our interpretation that for a constant of η, each
scenario should contain similar distribution properties. For
Figure 13b we reject the null hypothesis (F6,217 = 5.64, p <
0.001) and conclude that there are differences between agent
types across all scenarios, returning a result that supports the
claims made regarding Figure 11 in earlier sections. This
is the expected outcome, as each agent type is designed
with distinct interaction properties. Selection of the attention
point threshold η impacts the granularity of insights on the
swarm, for instance, where a low threshold may be used
to identify individual centres of influence (Hepworth et al.,
2020) or a high threshold be used to identify a stable centre of
mass (Strömbom et al., 2014). Values of η → 1 will increase
the number of agents considered as attention points in the
swarm, whereas η → 0 will observe fewer agents.

Findings Summary
Our objective in this work has been to introduce information
markers based on the low-level positional information of
swarm agents to understand the individual and collective
behaviour of the swarm. We summarise our findings relative
to the design outlined in Table 2, highlighting an example
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(a) Scenario distribution of attention points, visualising data summarised
in Table 14 for η = 0.5.

(b) Agent distribution of attention points, visualising data from Table 14
organised by agent type for η = 0.5.

Figure 13. The selection of η impacts the distribution of agents as attention points, with η → 0 observing an increased variance
and η → 100 observing a decreased variance of attention point distributions. The agent perspective (Figure 13b) highlights the
potential roles of an agent type within different swarms, quantifying interaction behaviours.

Algorithm 2 Swarm Attention Points (Π)

1: Set η
2: Sort ||Mπi || . Sort descending from Algorithm 1.
3: for i = 1, . . . , |Π| do
4: if

∑
i ||Mπi || > η then

5: Set Q(πi) = 0
6: else
7: Set Q(πi) = 1
8: end if
9: end for

10: Return Q . Vector of swarm attention points.

Scenario Mean Std. Dev. Range Max Min

S1 42.18 8.27 29.61 64.53 34.93
S2 40.20 8.03 32.18 62.63 30.45
S3 38.21 7.97 26.28 55.26 28.98
S4 42.93 10.87 43.27 76.22 32.96
S5 43.07 7.14 24.72 55.93 31.20
S6 42.57 3.93 16.24 53.10 36.86
S7 43.68 8.46 45.87 66.28 20.41
S8 41.11 7.21 29.13 57.68 28.55
S9 36.36 8.29 31.37 57.46 26.08
S10 43.13 5.56 27.15 63.36 36.22
S11 42.60 9.02 34.90 63.18 28.29

Table 14. Summary swarm attention points given as
percentages, as depicted in Figure 13a. Agent statistics are
reported as mean percentages for each scenario, where 100%
is the total scenario length. Our objective here is to identify
swarm attention points, defined as an agent with traits of focus
in the swarm. For each observation period, an agent is
considered to be an attention point if they are a member of the
set, k.

range of analysis and recognition insights possible with
the information markers framework for decision-making.
The classification analysis demonstrates that information
markers can discover an agent and swarm profiles and deliver

meaning about the swarm. With stationary information
traits on an agent, we have shown that markers can
discover agent desires and traits as profiles to understand
the strength of response and interaction-type similarity.
The swarm stationary information traits extend this to
characterise the type of swarm with information markers,
be it homogeneous or heterogeneous. We have shown that
heterogeneity presents additional challenges to identifying
information vectors and understanding the role of an agent
in a swarm, often not required in the models used for
homogeneous swarming. Information markers overcome
this challenge by dissecting these elements and uncovering
differences between agents, their interactions and the impact
on the collective.

For agent non-stationary traits, pairwise information
markers quantify the relationship of interactions between
agents and their associations over time, identifying the
agent’s role and how this changes concerning a swarm’s
configuration. Understanding the movement complexity
and coordination similarity highlights the importance of
interactions between each agent type in the environment.
Extending this to the swarm level, we enable the assessment
of attention points within the swarm as the link between
agent and swarm level indicators, where detecting change
points in the evolution of tactic execution (interaction types)
identifies to an observer specific agents to focus on as
potentially crucial in a swarm. The non-stationary markers
situate an agent in the swarm and enable us to assess change
through time. Figure 5 captures the relationship between the
stationary and non-stationary aspects, where the behavioural
responses of an agent do not change (stationary traits), but
the nature of the interaction (non-stationary traits) does,
informed by the environmental context that an agent is
situated.
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Conclusion
We have designed information markers to detect changes
in context across a swarm and its agents, framed within
the setting of swarm shepherding. Our review of the
literature with this particular perspective grounds the context
recognition performance of the information markers. Our
objectives were to evaluate situation and context recognition
performance for markers across both homogeneous and
heterogeneous settings, investigating the value of markers
as inputs to an agent recognition system. In this work, we
have presented information markers as a method to recognise
the situations and infer particular contexts of a swarm as
a unified approach to analysing swarms. The experimental
analyses confirmed the recognition power of the information
markers in answering questions on both the agent and swarm
levels. Notably, the information markers enable identifying
agent behavioural characteristics and interaction tendencies.
At the swarm level, the markers identify points of influence
critical to induce change in the swarm state. These types of
information are essential for an observer to get insights into
swarm intricacies and for a control agent to plan for the best
courses of action for a given objective.

As presented in this work, we indicate several new
directions to expand on information markers for recognition.
The first future direction is for marker selection. In this study,
we employ an inclusive policy that enumerates the measures
and metrics in the swarm literature. While suitable to ensure
we uncover all aspects of an agent, this could become
computationally expensive for settings with a magnitude
increase in the number of markers identified.

The second new direction considers adaptive swarm
agents. Information markers support an external observer
in understanding the context of a swarm and its agents.
The analyses conducted in this work were limited to
swarm agents with static profiles where an agent’s traits
do not change over time or in response to environmental
conditions. Future studies should relax these assumptions to
consider agent adaptation through a scenario or learning over
multiple scenarios, such as the introduction of environmental
obstacles, additional influence vectors or adversarial agents.
Empirical studies in biological settings support the inclusion
of swarm agent adaptation and learning; evaluating the
effectiveness of information markers across these settings
offers many rich opportunities to enhance the understanding
of decision-making processes in swarms. The third new
direction is for use in swarm control, where a control
agent is supported with information markers to recognise
the swarm scenario and select an appropriate behavioural
response. Evaluating the comparative performance of a
markers-enabled agent to a non-markers-enabled agent in a
range of homogeneous and non-homogeneous settings offers
an exciting extension to this work.

Declaration of conflicting interests

All authors declared that they have no conflicts for the research,
authorship, and/or publication of this article.

Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

References
Abbass, H. & Hunjet, R. (2021a). Smart shepherd-

ing: Towards transparent artificial intelligence enabled
human-swarm teams. In Shepherding UxVs for Human-
Swarm Teaming: An Artificial Intelligence Approach to
Unmanned X Vehicles (p. 1–28). Springer.

Abbass, H. A. & Hunjet, R. A. (2021b). Shepherding UxVs
for Human-Swarm Teaming: An Artificial Intelligence
Approach to Unmanned X Vehicles. Springer.

Almeida, J. P. A., Costa, P. D. & Guizzardi, G. (2018).
Towards an ontology of scenes and situations. In
Conference on Cognitive and Computational Aspects of
Situation Management (CogSIMA) (pp. 29–35). IEEE.

Pilkiewicz et al., K. (2020). Decoding collective
communications using information theory tools. J. R.
Soc. Interface, 17: 20190563.

Valentini et al., G. (2019a). Revealing the structure of
information flows discriminates similar animal social
behaviors. bioRxiv preprint.

Amornbunchornvej, C. (2021). mflica: An r package for
inferring leadership of coordination from time series.
SoftwareX, 15, 100781.

Andrade, E., Blunsden, S. & Fisher, R. (2006). Modelling
crowd scenes for event detection. In 18th International
Conference on Pattern Recognition (ICPR’06), Volume 1
(pp. 175–178). ICPR.

Baldi, S. & Frasca, P. (2019). Adaptive synchronization
of unknown heterogeneous agents: An adaptive virtual
model reference approach. Journal of the Franklin
Institute, 356(2), 935–955. Special Issue on Modeling,
Analysis and Control of Networked Autonomous
Agents.

Basak, U. S. (2021). Study on Identification of Leader
and Follower Agents and its Interaction Domain from
Trajectories in a Collectively Moving Colony. PhD
thesis, Hokkaido University.
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Matarić, M. J. (1995). Designing and understanding adaptive
group behavior. Adaptive Behavior, 4(1), 51–80.

Mateo, D., Kuan, Y. K. & Bouffanais, R. (2017). Effect of
correlations in swarms on collective response. Sci Rep,
7.

MathWorks (2022). xcorr: Cross-correlation.
Mavridis, C., Tirumalai, A. & Baras, J. (2021). Learning

swarm interaction dynamics from density evolution.
arXiv.

McGivern, P. (2020). Active materials: minimal models of
cognition? Adaptive Behavior, 28(6), 441–451.

Mert Karakaya, Maurizio Porfiri, G. P. (2020). Invasive alien
species respond to biologically-inspired robotic preda-
tors. Proc. SPIE 11374, Bioinspiration, Biomimetics,
and Bioreplication, X.

Miller, J. M., Wang, X. R., Lizier, J. T., Prokopenko, M. &
Rossi, L. F. (2014). Measuring Information Dynamics
in Swarms (pp. 343–364). Berlin, Heidelberg: Springer
Berlin Heidelberg.

Miwa, M., Oishi, K., Nakagawa, Y., Maeno, H., Anzai,
H., Kumagai, H., Okano, K., Tobioka, H. & Hirooka,
H. (2015). Application of overall dynamic body
acceleration as a proxy for estimating the energy
expenditure of grazing farm animals: relationship with
heart rate. PLoS ONE, 10.

Mocanu, D. C., Exarchakos, G. & Liotta, A. (2014). Node
centrality awareness via swarming effects. In 2014
IEEE International Conference on Systems, Man, and
Cybernetics (SMC) (pp. 19–24). IEEE.

Mohamed, R. E., Elsayed, S., Hunjet, R. & Abbass, H.
(2021). A graph-based approach for shepherding
swarms with limited sensing range. In 2021 Congress
on Evolutionary Computation (CEC) (pp. 2315–2322).
IEEE.

Mould, N., Regens, J. L., III, C. J. J. & Edger, D. N.
(2014). Video surveillance and counterterrorism: the
application of suspicious activity recognition in visual
surveillance systems to counterterrorism. Journal of
Policing, Intelligence and Counter Terrorism, 9(2), 151–
175.

Nagaraj, N., Balasubramanian, K. & Dey, S. (2013). A
new complexity measure for time series analysis and
classification. The European Physical Journal Special
Topics, 222.

Nguyen, H. T., Garratt, M., Bui, L. T. & Abbass, H. (2020).
Disturbances in influence of a shepherding agent is more
impactful than sensorial noise during swarm guidance. In
2020 Symposium Series on Computational Intelligence,
Volume abs/2008.12708. IEEE.

Novelli, L. & Lizier, J. T. (2021). Inferring network
properties from time series using transfer entropy and
mutual information: Validation of multivariate versus
bivariate approaches. Network Neuroscience, 5(2), 373–
404.

Nowak, R., Porter, R., Blache, D. & Dwyer, C. (2008).
Behaviour and the Welfare of the Sheep (pp. 81–134).
Dordrecht: Springer Netherlands.

Orfandis, S. J. (1988). Optimum Signal Processing:
A n Introduction (2 Ed.). University of Michigan:
Macmillan.

Papaspyros, V., Bonnet, F., Collignon, B. & Mondada,
F. (2019). Bidirectional interactions facilitate the
integration of a robot into a shoal of zebrafish danio rerio.
PLOS ONE, 14, 1–25.

Park, H., Gong, Q., Kang, W., Walton, C. & Kaminer, I.
(2018). Observability analysis of an adversarial swarm’s
cooperation strategy. In 14th International Conference
on Control and Automation (ICCA) (pp. 992–997).
IEEE.

Pernek, I. & Ferscha, A. (2017). A survey of context
recognition in surgery. Med Biol Eng Comput, 55, 1719–
1734.

Pikovsky, A., Rosenblum, M. & Kurths, J. (2001).
Synchronization: A Universal Concept in Nonlinear
Sciences. Cambridge Nonlinear Science Series.
Cambridge University Press.

Porfiri, M. (2018). Inferring causal relationships in zebrafish-
robot interactions through transfer entropy: a small lure
to catch a big fish. Animal Behavior and Cognition, 5.

Priyadarshini, I., Sharma, R., Bhatt, D. & Al-Numay, M.
(2022). Human activity recognition in cyber-physical
systems using optimized machine learning techniques.
Cluster Computing.

Puckett, J. G., Ni, R. & Ouellette, N. T. (2015). Time-
frequency analysis reveals pairwise interactions in insect
swarms. Phys. Rev. Lett., 114, 258103.

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey,
L. G., Shepard, E. L. C., Gleiss, A. C. & Wilson,
R. (2012). Tri-axial dynamic acceleration as a proxy
for animal energy expenditure; should we be summing
values or calculating the vector? PLoS ONE, 7.
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Supplemental material

Swarm Literature Summary Methods, Techniques and Measures

Method,
Technique or
Measure
(MTM)

Source Primary Field
Leadership,

Coordination
and Influence

Swarm
Dynamics and

Emergent
Behaviour

Agents and
Individual

Characterisation

Synchronicity Hepworth et al., (2020)
Information
Theory

X X

Conditional
TE

Bossomaier et
al., (2016)

Information
Theory

X X

Local TE
Crosato et al., (2018),

Bossomaier et
al., (2016)

Information
Theory

X X

Information
Storage

Wang et al., (2012),
Bossomaier et

al., (2016), Wang et
al., (2011)

Information
Theory

X X

Global TE
Bossomaier et

al., (2016)
Information
Theory

X X

Shannon
Entropy

Hamann et al., (2011),
Bossomaier et

al., (2016)

Information
Theory

X

Cross Entropy
Bossomaier et

al., (2016), Cofta et
al., (2020)

Information
Theory

X

Causation
Entropy

Pilkiewicz et al., (2020),
Lord et al., (2016)

Information
Theory

X

Time Delayed
TE

Sipahi & Morfini (2020)
Information
Theory

X

Effort-to-
Compress

Kathpalia (2021),
Nagaraj et al., (2013)

Information
Theory

X

Information
Flow

Bossomaier et
al., (2016), Wang et

al., (2012), Li et
al., (2004)

Information
Theory

X

Polarisation
Crosato et al., (2018),

Brown &
Goodrich (2014b)

Geometric &
Spatial

X X

Geotaxi Spinello C & M (2019)
Geometric &
Spatial

X
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Situation
Awareness

Hepworth et al., (2020)
Geometric &
Spatial

X X

Predation Risk Hepworth et al., (2020)
Geometric &
Spatial

X X

Spatial
Distance

Strömbom et al., (2014),
Valentini et al., (2019b)

Geometric &
Spatial

X

Escape
Trajectory

Chakraborty et
al., (2020)

Geometric &
Spatial

X

Speed

Schaerf et al., (2021),
Abbass and

Hunjet (2021b),
Traboulsi &

Barbeau (2019)

Geometric &
Spatial

X X

Heading
Schaerf et al., (2021),

Abbass and
Hunjet (2021b)

Geometric &
Spatial

X

Acceleration
Schaerf et al., (2021),

Abbass and
Hunjet (2021b)

Geometric &
Spatial

X

Angular
Velocity

Hepworth (2021),
Brown &

Goodrich (2014b)

Geometric &
Spatial

X

Dynamic
Body
Acceleration

Gleiss et al., (2011),
Martı́n López et

al., (2022)

Geometric &
Spatial

X

Topological
Analysis

Papaspyros et al.,(2019)
Geometric &
Spatial

X

Geometric
Information
Flow

Surasinghe &
Bollt (2020)

Geometric &
Spatial

X

Spatial
Alignment

Reynolds (1987)
Geometric &
Spatial

X

Spatial
Cohesion

Reynolds (1987)
Geometric &
Spatial

X

Spatial
Separation

Reynolds (1987)
Geometric &
Spatial

X

Centre of
Mass

Strömbom et al., (2014),
Valentini et al., (2019b)

Geometric &
Spatial

X

Dynamic Time
Warping

Amornbunchornvej (2021)
Time Series
Analysis

X X
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Granger
Causality

Lord et al., (2016)
Time Series
Analysis

X X

Lyapunov
Exponent

Wu et al., (2011), Baldi
& Frasca (2019)

Time Series
Analysis

X

Frequency
Analysis

Puckett et al., (2015)
Time Series
Analysis

X

Spectral
Analysis

Andrade et al.,(2006)
Time Series
Analysis

X

Correlation
Function

Mateo et al., (2017)
Time Series
Analysis

X X

Thermo &
Fluid
Dynamics

Haeri et al.,(2020),
Jankovic (2018),

Mavridis et al., (2021)
Physics X

Fluctuation
Theorem

Hamann et al., (2011) Physics X

Density and
Pressure

Andrade et al.,(2006) Physics X

Social
Network
Analysis

Reséndiz-Benhumea et
al., (2019)

Graph Theory X

Nodal
Analysis

Mocanu et al.,(2014),
Shang &

Bouffanais (2014)
Graph Theory X

Table 15. Summary of methods, techniques, and measures identified in this study, organised by primary academic field
(column 3). The three primary swarm lenses introduced in the literature review summarise the use of each MTM for swarm
analyses (columns 4-6).
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Information Marker Equations & Experimental Design Marker Set
We use the term segment throughout this appendix to reference the period of observation for a marker. A segment period consists of
k observations over the window ∆k = t1 → tk, with each marker output summarised over ∆k. The sequence of segments ∆k1 ≺
∆k2 ≺ . . . ≺ ∆kK contain a consistent overlap of α, given as ∆α

k . The following common notations, vide Abbass and Hunjet (2021b),
are throughout

• πi, swarm agent i.
• β, swarm control agent.
• St, speed at time t.
• P t, position of an agent at time t.
• PT , the position of an agent at an end time T .

Table 6 contains the set of markers (M) used throughout this study that are identified numerically as Mi. There are three primitive
information elements in our work being speed (M1, M3—M4), heading (M5—M6) and distance (M2, M17—M20), which are calculated
by standard methods. In addition, there are derivations of these calculations for the segment of observation, including mean and variance.
These primitive markers are used both in the discrimination of agent and swarm types and inputs to higher-order markers.

Situation Awareness (M7—M8)
Our first higher-order marker is Situation Awareness (SA), calculated as defined in Hepworth et al., (2020). There are two variations for
SA: the mean and variance of each agent ∈ ∆k. The SA is formulated to capture the perspective of each swarm agent relative to the swarm
control agent. SA is maximised “when there exists an unobstructed line-of-sight” (pg.4) between a swarm agent and the swarm control
agent and is “minimum at the furthest point of the convex hull from” (pg.4) from the swarm control agent with the maximum number of
line-of-sight obstructions. The SA is given as

SAtπi =
1

d2
πi→β

dπi→ΓΠ ∗ dΠ→β
∗Θ + 1

, (1)

which is calculated with a measure of distance from a swarm agent to the swarm control agent, the number of swarm control agents
impeding the line-of-sight, and distance to the swarm Global Centre of Mass (ΓΠ). The number of line-of-sight impediments is given as
Θ, distance between agents denoted by d for πi → β ∀ πi ∈ Π.

Predation Risk (M9—M10)
The next higher-order marker is Predation Risk (PR), calculated as defined in Hepworth et al., (2020). There are two PR variations,
the mean and variance of each agent ∈ ∆k. The PR is formulated to capture the perspective of each swarm control agent, relative to
the “likelihood of an agent encountering a predator and the potential to safety, should this predator (perceived or real) attack the same
agent” (pg.4). The PR may be characterised as capturing the centre-seeking behaviour of a swarm agent, given as

PRtπi =
1

Ob
∗ N

Ωππ + 1
, (2)

where the number of bins (B) is determined by the ceiling-integer square root of the number of swarm agents (B = d
√
Ne), Ob is the

bin-order, and N is the cardinality of Π. Each Ob is uniformly distributed between the agent closest to the swarm control agent to the
furthest agent, with O1 representing the closest, OB representing the furthest, and the highest PR observed in O1.

Dynamic Body Acceleration (M11—M13)
Our higher-order marker Dynamic Body Acceleration (DBA) is calculated as defined in (Gleiss et al., 2011; Martı́n López et al.,
2022; Miwa et al., 2015; Qasem et al., 2012), with three variations being the cumulative DBA (Overall DBA, ODBA), mean and variance
of each agent. The DBA is the tri-axial acceleration (a) of the agent, given as

DBAtπi =
√
a2
x + a2

y + a2
z, (3)

where ax, ay, az are the vector-component accelerations of an agent. For our purposes in simulation, we reduce this to two dimensions,
omitting the vertical dimension (z). ODBA is the cumulative DBA, given as

ODBAkπi =

|k|∑
t=1

|atx|+ |aty|+ |atz|. (4)

ODBA is the “sum of the DA magnitude over a reference interval used as an activity and energy proxy” (pg.10) (Martı́n López et al.,
2022).
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Rate of Change (M14)
The higher-order marker rate of change is calculated as defined in (Hepworth, 2021), with one marker for the angular rate of change being
the velocity. This marker “calculates the rate of change for the direction of the angle of . . . motion” (pg.157). An underlying assumption of
this calculation is that there exists a smoothness throughout the change, given as

δ =
atan2

(
||P t+1 − P t||

)
− atan2

(
||P t − P t−1||

)
∆t

, (5)

where the present coordinate of an agent is denoted by P t, the previous position of an agent is denoted by P t−1 and the future position of
an agent is denoted by P t+1.

Cross Correlation (M15—M16)
The use of Cross-Correlation is as described in (Mateo et al., 2017) and defined in (Stoica & Randolph, 2005; Orfandis, 1988). There are
two cross-correlation markers, the mean and variance for a given period of observation, k. The cross-correlation computes the “similarity
between a vector x and shifted (lagged) copies of a vector y as a function of the lag” (MathWorks, 2022) and is computed via standard
means.

Transfer Entropy (M23, M27, M29—M32)
Our higher-order marker for Transfer Entropy (TE) is calculated as defined in (Crosato et al., 2018; Bossomaier et al., 2016). One marker
for TE is the Local TE (Net). The TE is a “a non-parametric approach that provides a measure of the asymmetric, directed transfer of
information between two stochastic processes” (pg.3) (Hepworth et al., 2020). Schreiber (2000) first defined TE as

TJ→I(k, l) =
∑
i,j

p
(
it+1, i

(k)
t , j

(l)
t

)
· log

p
(
it+1|i(k)

t , j
(l)
t

)
p
(
it+1|i(k)

t

)
 , (6)

teJ→I = t(i, j, n+ 1, l) = lim
k→∞

log
p(xi,n+1|x(k)

i,n , x
(l)
i−j,n)

p(xi,n+1|x(k)
i,n)

. (7)

In our system we assume as first-order Markov process, with the embedding dimension (k), embedding delay (τ ) and lag (l) equal, such
that k = τ = l = 1 (Lizier et al., 2008; Bossomaier et al., 2016). With this assumption, Equation 7 is implemented as

teJ→I = t(i, j, n) = log
p(xi,n|xi,n−1, xi−j,n−1)

p(xi,n|xi,n−1)
, (8)

where the NetTE as defined in Porfiri (2018) is given as

T net
J→I = NetTEJ→I = teJ→I − teI→J . (9)

The net is widely used to infer the dynamics of swarms (D et al., 2020; Porfiri, 2018; Butail et al., 2016), where non-zero NetTE provides
insight as to the asymmetry of interactions between two agents. The net value may be interpreted for three cases.

• T net
J→I > 0 infers that J is informative, or influences I .

• T net
J→I < 0 infers that J is misinformative, or influence by I .

• T net
J→I = 0 infers that there is no detected coupling between J and I , or that the interaction between these agents is symmetric.

The Total TE (TotTE) is a measure of the “magnitude of total influence for a pairwise interaction” (pg.3) (Hepworth et al., 2020), differing
from the NetTE as it does not consider the directionality of interaction between agents. We define TotTE here as

T tot
J→I = TotTEJ→I = teJ→I + teI→J , (10)

intuitively capturing the intensity of interactions between agents.

Synchronicity (M21—M22)
Our equation for Synchronicity is defined in (Hepworth et al., 2020). There are two markers for synchronicity, the mean and variance.
Synchronicity is defined as the “alignment in time and space of action resulting from a significant influence” (pg.3) (Hepworth et al., 2020),
based on the work of Pikovsky et al., (2001). The Synchronicity is calculated based on TE, combining the NetTE and TotTE defined in
Equations 9 and Equation 10, given as

StJ→I = sgn
(
T net
J→I

)
∗ |T tot

J→I |, (11)

where the direction NetTEJ→I agent interaction is returned by sign(.). As with TE, we highlight three cases of interaction between a
source agent J and target agent I

• SJ→I > 0. J is informative, or influences, I .
• SJ→I < 0. J is misinformative or is influenced by I .
• SJ→I = 0. J does not inform, or does not influence, I .

Where SJ→I >> 0 or SJ→I << 0, Hepworth et al., (2020) suggest that this represents the “intensity of the relationship between J and
I” (pg.4).
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