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Abstract

Achieving tasks with a multiple robot system will require
a control system that 1s both simple and scalable as the
number of robots increases. Collective behavior as demon-
strated by social insects is a form of decentralized control
that may prove useful in controlling multiple robots. Na-
ture’s several examples of collective behavior have moti-
vated our approach to controlling a multiple robot system
using a group behavior. Our mechanisms, used to invoke
the group behavior, allow the system of robots to perform
tasks without centralized control or explicit communica-
tion. We have constructed a system of five mobile robots
capable of achieving simple collective tasks to verify the
results obtained in simulation. The results suggest that
decentralized control without explicit communication can
be used in performing cooperative tasks requiring a col-
lective behavior.

1 Introduction

Can useful tasks be accomplished by a homogeneous team
of mobile robots without communication using decentral-
1zed control? The hypothesis implicit in this question 1s
that such a synergistic robot system—one whose capabil-
ities are greater than the sum of its individuals—can be
created. Recent interest in task-achieving systems of mul-
tiple robots has led to several approaches in the design
of their controllers. Among them, the Animat approach
[46], which models whole, albeit simple, animal-like sys-
tems, offers a computational model in which perception
and motor control may be studied. Using this approach,
and motivated by several examples of cooperative behav-
ior in social insects, we conjecture that decentralized con-
trol techniques can be used with multiple robots to achieve
tasks in a cooperative fashion. In this paper, we describe
our approach to collective robotics, the Collective Robotic
Intelligence Project (CRIP), in which social insects are

first studied, interesting examples of cooperative behavior
are then simulated, and finally real robots are constructed
on which we run our experiments.

The fact that man has yet to invent a highly au-
tonomous robot capable of functioning in a changing en-
vironment has led researchers to propose the organization
of several simpler robots into collections of task-achieving
populations [9, 13, 33, 12, 25]. It has been conjectured
that systems of multiple robots should prove more effi-
cient and more fault-tolerant due to their number, more
cost-effective due to their individual simplicity, and more
flexible in their working configurations due to their re-
dundancy, than a single robot [38]. These conjectures
are shared by researchers in Distributed Robotic Systems
(DRS) [30], especially those involved with Distributed
Intelligence—often referred to as Swarm Intelligence—and
Multi-robot robotic systems [5]. Research in DRS con-
centrates on three areas: the construction of physical sys-
tems, the use of communication to form cooperative sys-
tems, and the creation of task-accomplishing algorithms.
Of the three areas of research, creating a system capable
of displaying intelligent behavior from unintelligent units
is dependent on progress being made in algorithms that
produce “swarm intelligence” [5].

Before starting on the intellectual challenges connected
with designing a team of multiple robots, let us first con-
sider eligible tasks. Collective tasks for such teams are ei-
ther noncooperative or cooperative. Noncooperative tasks
gain efficiency in execution due to the parallel divide-and-
conquer approach, but can be accomplished by a single
robot given enough time. For example, a lawn mowed
by a team of robots can also be mowed by one robot in
a longer period. Other such tasks include sorting [13],
searching [18], map making [32], material handling [15],
and harvesting [19, 2]. On the other hand, cooperative
tasks cannot be accomplished by a single robot and re-
quire the cooperative behavior of several machines work-
ing together. Such jobs include material-transport [34],
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box-pushing [11, 4], tandem movement [27], and formation
marching [41]. With the advances of micromachine tech-
nology promising to deliver multiple-robot applications as
diverse as aircraft engine maintenance, microsurgery, and
waste disposal [39], comes a growing need to develop con-
trol strategies suitable for a collective or cooperative be-
havior.

In our research, a bottom-up approach to controller
design 1s taken, where tasks are accomplished using many
homogeneous robots which function collectively in groups.
In this regard we share many similar goals with Mataric
[25]. We design feasible versus optimal solutions, with
emphasis on ease of design. We design algorithms with an
emphasis on locally sensed information, which allows for
a decentralized control solution without the use of explicit
communication.

Although it seems intuitive that communication be-
tween robots would allow greater cooperation, researchers
have begun to investigate cooperative behavior without
communication between robots [1, 34, 15]. The advantage
of such a noncommunicating system lies in its ability to
scale upwards without incurring a communication bottle-
neck as more robots are added. As found in Nature, tasks
are solved with feasible versus optimal solutions, with a
resulting reduction in the complexity of both the system’s
controller and the computation mechanisms of the indi-
vidual robots. The results, presented by these researchers,
based on simulation, suggest several strategies exist which
produce task-achieving cooperative behavior.

Our own investigation of cooperative behavior, via a
box-pushing task, has resulted in a decentralized system of
five mobile robots capable of simple collective tasks with-
out use of explicit communication [21, 22]. Our strategy
involves group behaviors, and simple mechanisms to in-
voke them. Since explicit communication is not possible
among our first system of reflexive robots, a form of posi-
tive feedback was necessary to ensure each robot was mak-
ing progress in the task. The lack of any internal memory
in the robots has led to problems with stagnation and
cyclic behavior, both to be explained in the sequel, and
motivated the development of our second multiple robot
system.

In this paper, our research on collective behavior is de-
scribed. Social insects provide the inspiration for our ap-
proach to collective robotics, and in Section 2 we discuss
why their study is a useful starting point in the design
of decentralized control strategies. In Section 3, based
on these observations, we describe how group behaviors
are used to control multiple robots and the mechanisms
used to trigger them. In Section 4 we present our sim-
ulation results, obtained in our multiple robot simulator
SimbotCity, and some initial results obtained with a neural
net controller used for behavior arbitration. Verifying our

simulation results by constructing real robots is a main re-
quirement in our research and in Section 5 we discuss our
first system of five mobile robots controlled using simple
combinational logic, which eventually led to the design of
a second system of 10 programmable robots. Finally, in
Section 6 we discuss the problem of designing tasks suit-
able for collective robotics, and the direction of our future
work.

2 Social Insects

One of Science’s most challenging questions is how the
behavior of large systems is generated from its individual
components. Examples of task achieving societies abound
in Nature. Social insects such as bees, ants and termites
live in societies and exhibit collective behaviors in main-
taining their societies [43]. Can the study of social insects
motivate the design of decentralized controllers for robots?
Several researchers [40, 13, 33, 10] have proposed models
based on the study of social insects to control groups of
interacting robots. By allowing Nature to guide us, by
example, valuable lessons in population dynamics and its
control may aid in the development of task specific collec-
tive robotic systems.

2.1 Sensing

Without a master architect to orchestrate the actions of
individual ants, what initiates these behavioral programs?
The answer may lie in the ant’s sensing abilities. Behav-
ioral biologists examine the sensor physiology of a species
as the first step in understanding its behavior [43]. Be-
havior in social insects is thought to be like a stored pro-
gram whose execution is a result of specific sensory stimuli.
Moser [26] writes:

Insects function like tiny robots programmed to
do specific jobs. Their nervous systems act like
biological computers; they are activated, as if
by punch cards, when their receptors are stim-
ulated. The external receptors respond to pres-
sure, sound, light, heat, and chemicals.

The study of social insects has concentrated on four
main species: ants, termites; bees and wasps. Of these,
most 18 known about ants and bees. Considered the fore-
most social insect, ants are the most abundant with a
population of roughly 10'®, or 1.5 million ants for every
person on the planet.

Honeybees are the most studied insect species with a
large repertoire of sensing capabilities. With its almost
omnidirectional view, the honeybee sees fuzzy images of
objects, but with a high sensitivity to broken patterns,
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glimmering light, and sudden movement. Ants possess vi-
sion ranging from complete blindness in some species to
bee-like acuity in others. Both bees and ants are able
to estimate sunlight’s plane of polarization providing di-
rectional information that allows them to navigate using
the Sun, even on overcast days, due to their ability to see
ultraviolet light.

Hearing of groundborne sound by bees and ants is ac-
complished through their feet. The sense of smell in both
bees and ants is comparable to that of humans. The sense
of taste is less sensitive, with coarser selection, than that
of man. Bees and ants have an excellent sense of balance
allowing them to orient to gravity at a constant angle.

Bees are capable of sensing temperature changes of one
quarter of a degree, allowing them to maintain a constant
temperature during honey production. A bee’s ability to
sense odor using its antennae allows it to estimate the dif-
ference between two sources [24]. Tt is with this array of
sensing systems that bees and ants display their fascinat-
ing repertoire of behaviors.

These stored behavioral programs can be invoked by
researchers using appropriate stimuli. In ants, corpse re-
moval is a collective behavior invoked by chemical odor.
Workers dispose of dead ants by carrying them from the
nest to a refuse pile. Wilson et al. [44] were able to in-
voke the same behavior in ants by treating bits of paper
with acetone extracts of dead corpses. In fact, by daub-
ing small amounts of acetone extract on live ants, they
too were carried away by nestmates and dumped on the
refuse pile! Thus, stimulus sensing serves to trigger stored
patterns of behavior and ultimately forms the basis for
the behavior-based approach to robot control.

Without a complex computational mechanism how
can insects’ sensory mechanisms solve the myriad prob-
lems presented by the peculiarities of their environment?
Wehner suggests “matched filters,” which are spatially
placed receptors specialized to some feature in the envi-
ronment, as Nature’s simple solution [42]. An example
cited is the flat world of the Saharan salt pans inhabited
by desert ants. This environment, dominated visually by
the horizon, 1s particularly well suited to the structure of
the ant’s optics, in which a rather large number of horizon-
looking photoreceptors are found. Wehner explains it is
these “band-like zones” of receptors that provide the high
degree of visual acuity. “These ‘visual streaks’ are per-
fectly aligned with the horizon, irrespective of the load an
ant may carry” [42].

Animals living in open environments are all found to
have visual streaks. Among them, crabs were found to
have visual systems even more elaborate with receptor
spacing varying at right angles to the visual streak [48].
This variation in receptor spacing results in the stimula-
tion of a constant number of receptors. This allows the

crab to detect objects that appear near the horizon of a
constant absolute size without regard to its distance away.
Because of this spacing, and the eye’s stabilization against
pitch and roll axis displacements, retinal images of objects
larger than the crab appear above the eye’s horizontal, and
those objects smaller appear below [48]. This would al-
low for a flee behavior to easily determine predators based
on size alone. Thus, these carefully evolved sensory sys-
tems tuned to features unique to the animals environment
produce robust behavior without complex processing.

Given the simple stimulus-response mechanisms in-
volved in behavior activation, it is a wonder that tasks
are achievable by these insect societies. When the soci-
ety i1s viewed as a whole, a behavioral complexity emerges
that seems to be more than just a composite of individual
behaviors.

2.2 The Social Machine

An insect colony is often referred to as a superorganism
due to the resemblance between the many social phenom-
ena it displays and the physiological properties of organs
and tissues. These behavioral attributes of the superor-
ganism are an emergent property resulting from the in-
teraction of the colony’s many members each displaying
their own simple repertoire [43]. Deneubourg and Goss
[14] raise the question of whether the colony’s behavioral
complexity lies within the individual members or between
them? Being able to deduce collective activity from in-
dividual behavior is one of the main problems faced by
behavioral biologists; since as Pasteels et al. pointed out
“collective behavior is not simply the sum of each par-
ticipant’s behavior, as others emerge at the society level”
[29].

As the superorganism’s individuals are brought into fo-
cus, one is startled to find the display of antagonistic ac-
tions involved in a collective activity. Wilson provides an
example in the process of moving a nest [43]:

As workers stream outward carrying eggs, larvae,
and pupae in their mandibles, other workers are
busy carrying them back again. Still other work-
ers run back and forth carrying nothing.

Honeybees exhibit the same disarray in the construction
of comb cells. Workers, in search of pieces of wax for cell
construction, will usually tear down walls that their nest-
mates are in the process of building [23]. This seemingly
chaotic activity usually results in a well constructed nest
and 1s an example of Nature’s feasible versus optimal solu-
tion approach. So how is it possible then, for the colony to
display such a purposeful collective behavior? The answer
may lie in the positive feedback mechanism responsible for
collective decision-making.
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One can not help but ponder, when viewing a two me-
ter high termites’ nest, the intelligence behind its con-
struction, especially in light of the fact that, as Sudd [37]
describes, “each of the grains of soil of which the nest is
built has been carried separately and placed by a termite
perhaps half a centimeter long.” The mechanism involved
in this task-achieving collective behavior is allelomimess,
or positive feedback, which Deneubourg and Goss roughly
translate as “do what my neighbour is doing”[14]; coupled
with a set of common simple rules and invoked by sensing
a stimulus, this decentralized system generates a colony-
level response characteristic of the behavioral attributes
often ascribed to a superorganism.

How does the behavior of such a system arise? Sudd
suggests that cooperative behavior is a result of the ap-
plication of a three phase approach of disorder, search,
and order. The effect of each is judged by positive feed-
back communicated through the work itself. Thus, or-
der “arises through the trial of many possibilities” [37].
An example is nest construction by Weaver ants [45, 37].
Nest walls are constructed from folded green leaves held
together by sticky larval silk. In order to fold a leaf, ants
begin by spreading over the leaf’s surface and randomly
pulling at any graspable edge. Some edges are more easily
turned, while unsuccessful efforts are quickly abandoned,
causing a search for a new edge. The success of a turning
edge reinforces the continuance of the effort. The result is
an ordered and collective effort of pulling on successfully
turned edges, with a folded leaf as the final outcome.

The effect of positive feedback and the simple rules
shared by each individual can result in the performance
of the system exceeding the sum of its parts. An example
is the prey-transport task. Franks conducted experiments
in group retrieval of prey by army ants. The evidence
gathered suggested that workers in a retrieval group were
“able to assess their own performance and their potential
contribution to a group effort” [16]. Franks cites a simple
algorithm used in this prey-transport task [17]:

If there 1s a prey item in the trail moving below
the standard retrieval speed, and you are not car-
rying an item, then help out; otherwise continue.

Franks attributes the “superefficiency” of the group to its
ability to overcome rotational forces in the object being
transported; forces too large for the individual to success-
fully balance on its own [16].

Simple shared rules also seem to play a part in a hon-
eybee colony’s collective ability to select the most prof-
itable nectar sources. Seeley et al. [31] suggest if foragers
of a honeybee colony all share the same rules for food
gathering, and adjust their response threshold between
recruitment and abandonment accordingly, a collective re-
sponse will result. The response threshold adjustment re-

sults in the bees varying their foraging behaviors, such as
the strength of their waggle dance—used to recruit other
bees—and how often they visit or decide to return to the
nectar source. How the bee is able to compare nectar
sources for profitability—determined by such variables as
sugar concentration, distance from the hive, difficulty in
acquisition and amount of nectar—is not known, but 1t 1s
presumed their nervous system is somehow calibrated to
differentiate between low and high sources [31].

As biologists uncover some of Nature’s solutions to the
sensing complexities faced by social insects, we stand to
gain much by the study of this natural example of decen-
tralized control. In the next section we present several
mechanisms, motivated by social insects, used to control
a team of robots.

3 Collective Behavior

Constructing tools from a collection of individuals is not
a novel endeavor for man. A chain is a collection of links,
a rake a collection of tines, and a broom a collection of
bristles. Sweeping the sidewalk would certainly be diffi-
cult with a single or even a few bristles. Thus there must
exist tasks that are easier to accomplish using a collection
of robots, rather than just one. Of course the difficulty in-
creases when the individuals are somewhat autonomous,
and there lies the challenge.
telligent task-achieving collective behavior from a group
of simple robots? By studying Nature’s many examples
of task-achieving collective behavior we hope to uncover
some of her more useful mechanisms.

How do we create an in-

3.1 Controlling Robots Using Group Be-

havior

A group behavior is the task-achieving activity for which
the multiple robot system is designed, and 1t consists of a
common set of rules for accomplishing the task. The group
behavior is simply the activity all the robots are engaged
in, and some tasks may consist of two or more group be-
haviors, like synchronized steps in a dance performed by a
group of dancers. A simple example of a collective task is
emptying a room of heavy furniture which consists of two
group behaviors: lifting-furniture and moving-furniture.
From the examples seen in social insects, several mecha-
nisms exist which may be used to invoke the group behav-
ior. Mechanisms are ways to control the system of robots
and may consist of shared goals, as in the common task
mechanism, useful behaviors, such as following that keep
robots together in a floor-washing group behavior, or cues
in the environment, which may serve to either invoke a
single group behavior or cause the transition between two
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group behaviors. These mechanisms by no means repre-
sent a comprehensive set, but rather serve to illustrate our
initial exploration into task-achieving collective behavior.

The first mechanism is a common goal shared by all
the robots in the system. Such a single purpose system
is controlled by having only one activity to choose from.
Leaf folding by Weaver ants could be considered such an
activity, as could the previously described corpse-removal
behavior. In the sequel we examine how a common goal,
in the form of box-pushing, can be used to control a group
of robots.

Collective tasks requiring groups of robots in close prox-
imity may make use of a follow behavior to accomplish
the group behavior. Several examples of a follow behav-
ior can be found among ants. Odor trails, tactile sensing
used in tandem running, and visual stimulus used in rapid
running are examples of group movement, which results
from the activation of a follow behavior. A follow behav-
ior may be used to maintain a formation and could prove
useful in a system designed for distributed environmental
sensing. These mobile sensors, traveling in herds, could
spatially cover a search area while gathering data. For
tasks which involve some dynamically changing physical
parameter such as the size of an area covered by a liquid
spill, or the advancement of a rapidly spreading fire front,
quicker response by the system is possible when robots are
kept together.

For tasks which require a dynamic stimulus to invoke
the group behavior or which are accomplished using a se-
quence of two or more group behaviors, an environmental
cue is used to control the transition between behaviors.
This mechanism is found in many examples from the col-
lective activity of ants. Food collecting behaviors are gov-
erned by the visual cue of dawn and dusk. Termites use
cues to control the transition between vertical construc-
tion of columns and their bending toward one another in
the formation of an archway.

The construction of archways by termites begins
with the random movement of pellets which eventually
results—by a seemingly random occurrence—in the place-
ment of a second pellet on top [43]. Apparently, termites
have a preference for this structure and continue to place
pellets on top constructing a column in the process. The
next step, in the construction of an archway, requires a
second column nearby. At some point in the column’s con-
struction termites, working on separate columns, begin to
bend the column towards each other thereby forming an
archway. The environmental cue that causes the transi-
tion to the bending step in the task is unknown, although
it is hypothesized by Wilson to be olfactory in nature [43].
In this manner cues serve to either initiate the group be-
havior or serve in a regulatory manner guiding transitions
between group behaviors.

There is some evidence to suggest that some species of
ants alter their behavior using group detection. Worker
ants were found to excavate soil and attend larvae at a
higher rate while in large groups. In fact, the stimulus re-
sponsible for this altered behavior was found to be carbon
dioxide [20]. Wilson also found that worker ants kept in
solitude did not respond to the natural alarm substances
of their species. However, when placed among hundreds
of their coworkers they were found to respond normally to
the same alarm substance. This could prove to be useful
as a way of invoking a group behavior once a collection
of robots had formed. Consider the task of leveling the
ground by a number of small bulldozer robots. The ef-
fect of a large blade, by a number of bulldozers with small
blades, is not realized until the group has configured itself
in an appropriate formation traveling in the same direc-
tion. Thus the formation of robots itself invokes the group
behavior.

Collective behavior by social insects is an area of re-
search rich in examples of mechanisms suitable for imple-
mentation in collective robotics. Simulation is our next
step in the investigation of some of these mechanisms, and
it ultimately results in their implementation in real robots.

4 Simulation

Inspired by the examples of cooperative behavior found in
social insects, we wish to simulate the common coopera-
tive task of box-pushing. The objective is to locate and
push a large box too heavy to be moved by a single robot
(see Figure 6). As such, it will require the cooperative
effort of at least two robots both pushing on the same
side to move the box. Like the leaf folding task, all the
robots involved will be interested in one common goal:
box-pushing. To simulate such a task we have created
a simulation environment, called SimbotCity, in which to
model a small population of robots. The robots are mod-
eled as a set of sensors, actuators and behaviors, combined
in a control architecture that uses either a subsumption [7]
fixed priority or an Adaptive Logic Network [3] behavior
arbitration mechanism. The resulting herd of box-pushing
robots are capable of accomplishing their task, and the
problems of stagnation and cyclic behavior are partially
solved by examining the social insects and their positive
feedback mechanisms.

4.1 SimbotCity:

Simulator

A Robot Population

Accomplishing tasks using a decentralized system of au-
tonomous robots without explicit communication requires
each robot’s control algorithms to make use of local in-
formation only. Acquired by the robot’s onboard sensors,
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this information mediated by behavior must be sufficient
to ensure that the entire system of robots converges to-
wards the desired goal. A task to be realized by such
a system defines the sensing requirements. For example,
our box-pushing task requires the ability to sense the box,
in order to locate it, sense other objects including other
robots in order to avoid collisions, and sense task progres-
sion in order to assess performance. Can these decentral-
1zed control mechanisms accomplish cooperative tasks?

To successfully function as a group our system will
need some form of cooperation. Cooperation might sim-
ply equate to noninterference as suggested in [47] without
explicit communication, or may involve a more elaborate
explicit form of communication. Can cooperative tasks be
accomplished without explicit communication?

Allocation, also referred to as density dependence by
Brooks [8], is the problem of how many robots to use in
a collective task. Since the box-pushing task can be ac-
complished with two or more robots, what is the optimal
number of robots to be employed for the task, given a
performance measure?

Our initial exploration of these questions resulted in the
creation of our robot population simulator SimbotCity, in
which we have simulated the box-pushing task. Robots
are modeled as a collection of sensors, actuators and be-
haviors presently combined using one of two arbitration
mechanisms. A configuration file specifies the number of
robots along with their initial positions. A simulation may
be run continuously or single stepped while each robot’s
sensor readings are displayed. Performance is measured
as a function of simulated time steps versus distance the
box has moved. The robot’s model is based on our current
capability to construct its physical counterpart.

4.1.1 The Robot Model

A population consists of a group of robots with each robot
composed of a sensor model, an actuator model, and a
behavior model. Models can be further subdivided into
model types. For example, sensor types may consist of in-
frared for near obstacle detection, light for brightness cal-
culations or sonar for long range distance measurements.
The box-pushing task makes use of three sensors: a goal
sensor, an obstacle sensor, a robot sensor, and two actu-
ators: left and right wheel motors (see Figure 1). There
are five behaviors: a goal behavior directing the robot to-
ward the box, an avoid behavior to handle collisions, a
follow behavior allowing one robot to follow another, a
slow behavior which adjusts motor speed preventing rear-
end collisions, and a find behavior used in exploration.

S S2 Goal Sensor Range
S0 Robot Sensor Range

S1 Obstacle Sensor Range

Direction Indicator
A0 Right Wheel Motor

Robot body
Al Left Wheel Motor

Figure 1: The box-pushing robot model. Each robot is
equipped with a goal sensor, an obstacle sensor, a robot
sensor, and two actuators: a left and right wheel motor.

Sensors Implemented as an abstract data type (ADT),
the sensor model has six attributes: sensor number, type,
sensor direction, view angle width, an input value for ac-
tive sensors, and an output value. Processing is based
on sensor type with macros providing access to the sen-
sor’s data structure. Currently there are five sensor types
corresponding to the physical sensors available in our
lab. These types are: sonar, acoustic, infrared, light and
switch. Since sensor types may only represent physical
sensors, hardware implementation i1s easier and ensures
the simulated robots may be built using the same sensing
techniques.

Actuators The actuator model is also implemented as
an ADT with five attributes: actuator number, type, posi-
tion on the robot, input value, and on/off switch. Access-
ing and processing is also based on type, with four types
of actuators available: motor, hand, plow, and solenoid.
For the box-pushing robots only the motor type is used,
with one each for the left and right wheel motors. Steer-
ing the robot is achieved by turning one motor on at a
time. For example, to turn right the left motor is turned
on with the right motor turned off. This switching takes
place for each simulation time step. Actuator and robot
dynamics are not modeled.

Behaviors A behavior maps sensor inputs to actuator
outputs to define a stimulus-response relationship. For
example, a Braitenberg [6] vehicle that seeks light may be
created by cross connecting the left-light sensor with the
right wheel motor illustrated in Figure 2.

Sensors provide input to a behavior which then pro-
cesses the data to provide output commands to actuators.
During a simulation time step, each behavior reads its
connected sensors and calculates an appropriate response,
with the resulting command sent to a behavior arbitration
module. Behavior processing may include thresholding
where only signals of a certain strength are acted upon.
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BO seek-light

SO0 right light sensor A0 right wheel motor

OO

D

S1 left light sensor

A1 left wheel motor Sensors

I
Actuators :

Behaviors 1

gor

Figure 2: The seek-light stimulus-response behavior in
a simple Braitenberg vehicle is implemented by cross-
connecting the opposite side sensor and wheel-motor ac-
tuator pairs.

‘6 BO seek-light

A0 right wheel motor
SO right light D 7@ B RREEE R X
I K |
S1 left light D 7@ | ey I
! I
Al left wheel motor | !
threshold !
I

I
|
S2 crack-switch P ’

B1 off-elevator?

Figure 3: Behavior processing may include simple thresh-
olding, which may be of fixed value (i.e. < 6) or set by
another behavior.

Thus our Braitenberg light-seeking vehicle may have a
preference for very bright lights. Thresholds may be ex-
ternally set by other behaviors or fixed as illustrated in
Figure 3.

Memory mechanisms may also be incorporated into a
behavior. For example, a progress monitoring behavior
could be created which counts to some predetermined
amount of time when it then becomes active. However,
if progress is being made in the task, then a positive feed-
back stimulus constantly resets the time counter never
allowing the behavior to become active as illustrated in
Figure 4. This addition of a memory device creates what
Wilson has termed a “Virtual stimulus-response” and al-
lows behaviors to incorporate “intention memory” [46].

4.1.2 Behavior Arbitration

In a bottom up approach to designing robot control sys-
tems, a problem arises as how to best arbitrate conflicting
actuator commands. One approach, the subsumption net-
works [7], uses a fixed priority assignment between behav-

‘6 BO seek-light

A0 right wheel motor " Key v‘

S0 right light D— » ! !

I T |

S1 left light D T ! threshold !

I

| Oreset Al left wheel motor ! memory device!

8 ! [e] !

S2 wheel-motion . )
B1 progress?

Figure 4: A progress “virtual stimulus-response” behavior
monitors wheel-motion and constantly resets an interval
counter.

iors. The resulting actuator commands are simply those
belonging to the highest priority behavior. This requires
the designer to consider all behaviors in the control sys-
tem and decide on how to assign priority. As the number
of behaviors increases, so does the burden on the designer
to make a priori decisions about behavior arbitration.

An alternate approach to the behavior arbitration prob-
lem which we have been exploring [22], is to formulate the
problem as a pattern classification problem on which an
Adaptive Logic Network (ALN) [3] can be trained. ALNs
are neural networks formed in binary tree configurations
with nodes eventually assigned either the Boolean func-
tion AND or OR. The base of the tree receive its input
comprised of behavior actuator commands, with the root
of the tree forming a single output bit. A supervised train-
ing procedure takes a subset of all possible behavior out-
puts and classifies each of them into one of many actuator
commands. If the behavior output subset is truly repre-
sentative of all possible outputs and a functional relation-
ship between behavior outputs and actuator commands
exist, then the ALN will learn the relationship and cor-
rectly classify yet unseen behavior outputs to the desired
actuator commands. The power of the technique only
becomes evident as the ALN’s input space (behavior out-
puts) becomes large. In the sequel we will examine both
approaches to behavior arbitration using the box-pushing
collective task.

4.2 Box-Pushing

The objective in the box-pushing task is to locate and
move a large box using a group of robots. The task is de-
signed such that moving the box requires the net force
of at least two robots both pushing on the same side.
We have experimented with two approaches in simula-
tion, implementing the first in hardware. The first was a
subsumption style behavior-based controller with a fixed
priority behavior arbitration. This controller was then fur-
ther simplified and implemented with five mobile robots
discussed in the sequel. We then came back to our simula-
tion environment and revisited the problem using reflexive
behaviors and an ALN for behavior arbitration. This sec-
ond approach allowed us to train the controller with a
supervised training algorithm. It was not our intent to
do a strict comparison between the two controllers, and
although the ALN proved to be less efficient in terms of
accomplishing the task, it was much simpler to design.

4.2.1 Subsumption Networks

To accomplish the task each simulated robot was given
three sensors, two actuators, and five behaviors illustrated
in Figure 5. The lowest priority and default behavior is
find, which requires no sensor inputs and causes the robot
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Figure 5: The box-pushing robot’s behavior architecture.
A behavior’s actuator commands may be suppressed (the
circles with an ‘S’) and replaced by those of a higher pri-
ority.

Drobot D

to move in a large arc. Its output may be suppressed (the
circles with an “S”) and replaced with actuator commands
from follow which causes robots to form groups by follow-
ing other robots. While following, if a robot gets too close
to another, the slow behavior is activated and reduces the
robot’s speed while active. The goal behavior, activated
by a goal sensor, directs the robot towards the goal only
to be suppressed by the highest priority avoid behavior
if obstacle collision is imminent. Figure 6 shows the box
being moved after several steps into the simulation.

The design of the box-pushing controller begins by
specifying the task’s sensing requirements. Collision free
movement will require an obstacle sensor; to follow other
robots requires a robot sensor; and locating the box will
require a box or goal sensor. Next, a default behavior is
chosen. In this case, a find behavior that moves the robot
forward on a gradual arc produces movement. Starting
from an initial configuration this single behavior controller
creates motion which often results in collisions. A follow
behavior is added which uses a robot sensor to direct the
robot toward its nearest sensed neighbor. Once follow be-
comes active herds begin to form and are maintained by
adapting the follow behavior with a behavior preference.

Behavior preferences adapt a behavior by filtering sen-
sor input to suit the behavior’s state. In the case of the
follow behavior, the sensor input is filtered by consider-
ing a smaller field of view—similar to narrowing focus
of attention in visual tasks—while engaged in following.
This eliminates distractions from passing robots moving
in opposite directions. This mechanism can also allow
a collision-avoidance behavior to pass through a narrow
doorway by having the doorway behavior adjust avoid’s
behavior preference.

Without velocity control, robots moving the same
speed would not form groups, as distant robots could never
catch up. For this reason, a simple two speed system is
implemented by having robots traveling in herds move at
the slower speed. Thus a slow behavior is added which
reduces the robot’s velocity whenever neighboring robots

SimbotCity — The Robot Population Simulator

TimesStep: 404 GoalX: 409 GoalY: 170 Moved: 130.3 version 1.09 |

Figure 6: The initial configuration of the cooperative box-
pushing task (top) and after 404 simulation steps in which
the box has been moved 130 units upwards. The robots
(circles) must locate and push the large box, which is too
heavy to be moved by a single robot; therefore requiring
the cooperative effort of at least 2 robots pushing on the
same side.
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are detected.

To prevent collisions an avoid behavior is added which
becomes active and stays active as long as the obstacle
sensor has detected an obstacle. Collisions are avoided by
turning a fixed number of degrees in the opposite direction
at each simulation time step. The range of the obstacle
sensor 1s 1.5 times the robot’s diameter. Keeping task be-
haviors active, only as long as their sensory stimulus is
present, can solve some problems concerning the spatial
distribution of robots in a collective task. For example,
the box-pushing task requires the robots to spatially dis-
tribute themselves along the sides of the box. Finding
an open spot on the box can be accomplished by a robot
whose persistent goal behavior is only momentarily dis-
suaded by its noninterfering avoid behavior. As soon as
an open spot appears, avold switches off allowing the goal
behavior to move the robot in and fill the vacant spot.
To locate the box, robots are equipped with a goal sensor
capable of detecting the box at a distance of six times the
robot’s diameter. Similar in design to the avoid behav-
ior, the goal behavior turns the robot a fixed number of
degrees toward the goal while active.

The task i1s accomplished once several robots have lo-
cated the box and collectively pushed it off the edge of
their world. Robots unfortunate enough to be caught
pushing on the opposite side of a herd are quickly pushed
backward. Task progression is implied in the forward mo-
tion of a robot and a robot moving backward immediately
turns away from the box to assume a new position that
allows forward motion.

Two problems occur in which the box-pushing task does
not progress. The first involves stagnation in which a num-
ber of robots equally distribute themselves around the
box. In this situation the forces around the box cancel
each other. The solution is to introduce a behavior to
monitor positive feedback which may be determined, in
this case, by a constant forward motion. As long as a for-
ward motion 1s achieved every n time steps the behavior
remains inactive. However, once n time steps has passed
since the last forward motion was detected the behavior
becomes active with a random motion to break the stagna-
tion. The second problem involves cyclic behavior—really
another form of stagnation but with motion—and can be
illustrated by a robot moving in a cyclic pattern. Al-
though movement is occurring, no progress is being made
toward the goal. A method to detect cyclic behavior re-
mains an interesting challenge.

4.2.2 Adaptive Logic Networks

Adaptive Logic Networks (ALN) are a kind of neural net-
work designed to synthesize functions using a binary tree
of logical AND and OR operations, where complemen-

tation is allowed only at the input level (see [3]). They
are particularly well suited for Boolean input vectors, in
contrast to the more familiar backpropagation networks,
whose inputs are continuous variables, and whose out-
puts are derived by applying a sigmoidal function to a
sum of weighted inputs. The adaptive, or learning pro-
cess, adjusts a node’s logical function (equivalent to the
weight adjustment in backpropagation) based on a train-
ing set of input vectors that are representative of the input
space. Assuming generalization occurs (i.e. the training
converges) the network will correctly classify yet unseen
input vectors. Since trained ALNs are binary trees of
AND and OR functions, they are easily implemented in
Programmable Array Logic (PAL).

As previously mentioned, behavior arbitration is the
process of deciding which behaviors have control of the
actuators resources at any given moment. When the num-
ber of behaviors is small, as in our box-pushing controller,
deciding on a behavior’s relative priority is easy. However,
as the number of behaviors increases their relationship to
each other during task execution is less clear, and we begin
having difficulty deciding how to assign priority. On the
other hand, as an observer of a simulated collective task,
it 1s possible to decide what the team of robots should
do at any point, but difficult to specify how the behav-
iors should be arbitrated. Previous experience with ALNs
suggested 1t may be possible to characterize behavior arbi-
tration as a pattern classification problem which an ALN
was suitable for.

The architecture illustrated in Figure 7 was used to
train four ALNs, one for each motor control output bit.
The actuators are the same left and right wheel motors
each with two control bits with their corresponding four
motor commands shown in Table 1. Training the ALN
in a supervised manner which confirms correct responses
to a given input pattern of actuator commands results
in a tree shown in Figure 8. Nodes are represented as
circles with the letters A, O, L, and R standing for the
logical functions AND, OR, LEFT and RIGHT. Upon im-
plementation, LEFT and RIGHT nodes are replaced with
connections to the left or right subtree. Input leaves are
represented as squares and receive actuator commands.
Compliments of an actuator command are represented by
a small circle on top of the leaf. Since there are five input
bits (51 to Ss), the four ALNs must learn 32 possible out-
puts. Although the input space in this example is small,
and easily handled by table lookup, we are interested in
testing the feasibility of the approach.

Training the ALN is accomplished using a supervisory
controller illustrated in Figure 9. The supervisory con-
troller sends motor commands to the simulated robots
in the same format as the ALN controller’s motor com-
mands. For example, suppose we are trying to create a
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Figure 7: Architecture used to train four ALNs. The la-
bels 57 to S5 correspond to avoid-left, avoid-right, slow,
goal-left and goal-right motor commands.

Figure 8: A trained Adaptive Logic network with 17 input
leaves.

M, My | Motor
0 0 | Stop
0 1 | Half speed
1 0 | Full speed
1 1 | Half speed

Table 1: Motor commands for left and right wheel motors;

where M; = {L;, R;}
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Sensor
Feedback

/

AL
Controller —® A
Figure 9: An illustration of how the ALN controller is
trained. A supervisory controller commands the simulated
robots whose sensor feedback (mediated by behavior) is
sent to the ALN being trained. Adaptation takes place
as the difference between the desired output of the super-

visory controller and the ALN’s actual output. Training
stops once a prespecified competence is reached.

decentralized controller to be used in a formation march-
ing task. The problem of how each robot should move
is trivial for a centralized controller which simply issues
The supervi-
sory controller is implemented as a centralized controller

the same motor command to each robot.

instructing the simulated robots to move, while their sen-
sor feedback, mediated by behavior, is sent to the decen-
tralized ALN controller being trained. The ALN uses the
difference between its motor commands and that of the su-
pervisory controller to adapt its response. Once trained,
the decentralized ALN controller is tested independently
(see Figure 10) and then transferred to a microprocessor
controller. The simulated robots are then tested using real
robots with the ALN controller implemented using PALs.

For the box-pushing task, Figure 11 illustrates the rela-
tionship between the number of robots used and the task’s
completion time, measured as the number of simulation
time steps to move the box 100 units of distance. An
ALN controller which achieved 100 percent in the train-
ing phase was chosen for the test. Robots were placed in
random positions on the left side of the box. As can be
seen from the graph, as the number of robots increases,
the task execution time decreases until too many robots
are used. In this case, “too many robots” is related to the
number of robots that fit on a box side, but how does one
determine this number for any given task? Table 2 lists
the data to produce the graph as well as the suboptimal
ALN controllers. The last column on the right shows the
average number of simulation time steps taken to move
the box 100 units of distance, and only takes into account
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Figure 10: Once trained the ALN controller is tested using
the simulator (top illustration) and then implemented us-
ing a microprocessor (middle). The simulated robots are
then constructed and controlled using the ALN controller
(bottom).
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Figure 11: The effects of population size on the box-
pushing task.

ALN Number of Robots
Quality Participating i Task
5 7 9 11 13 15 17 19
32 6o 0 o 0 0 0 0 0
31 6o 0 o 0 0 0 0 0
30 2 1 0 0 0 0 0 0
29 6 4 6 6 4 5 5 6
28 3 2 4 3 2 3 3 5
27 w 8 8 9 717 6 9 9
26 b 5 11 7 8 7 10 6
25 b 11 8 1 8 7 10 6
24 b 8 9 10 6 7 7 9
23 15 15 13 15 11 14 14 14
22 5 14 14 15 11 9 15 15

Table 3: Chances of failure in 15 trials.

the tests which completed. Table 3 lists the number of
failures in 15 trials for ALN controllers with 100 percent
quality (i.e. 32/32 correct classifications) to 68.7 percent
quality (i.e. 22/32 correct classifications).

In the next section we discuss our hardware implemen-
tation of the box-pushing task by a system of five mobile
robots controlled in a simple reflexive manner using com-
binational logic.

5 Real Robots

Based on our simulation experiments of the box-pushing
task, we now know three things about the mechanisms
involved that should prove feasible in its implementation.
First, to control the system of multiple robots in a coop-
erative task, without using any communication between
the robots, we employ two simple rules that govern the
interaction between their behaviors:

e avoid interfering with another robot;
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ALN Number of Robots

Quality Participating in Task Average

5 7 9 11 13 15 17 19
32 399 372 343 296 306 308 365 342 341
31 399 396 401 305 297 307 449 323 360
30 406 378 397 316 337 342 409 331 365
29 445 385 395 348 323 349 394  37H 377
28 456 394 400 314 325 395 402 347 379
27 548 364 413 427 343 352 411 383 405
26 N/A 576 494 520 504 471 777 515 551
25 N/A 369 407 N/A 501 339 355 368 390
24 N/A 369 438 336 339 339 291 358 353
23 N/A N/A 586 N/A 462 662 333 639 536
22 N/A 621 403 N/A 684 544 N/A N/A 563

Average | 442 437 409 415 420 370 485 371

Table 2: Results of simulation on the effects of population size and the box-pushing task. Note: N/A refers to cases in

which all tests failed to finish.

e work toward a common task while observing the first
rule.

This provides a decentralized control strategy for the sys-
tem on the whole. Second, when designing individual be-
haviors for the collective task, the behavior need only be
active as long as the stimulus in the environment—for
which the behavior’s sensors were chosen—is present, as
can be seen from the previous example, in Section 4.2.1, on
spatial distribution. Stuart’s study of nest wall repairs by
termites [35, 36] showed that wall repair behavior ceased
once the stimulus that caused the behavior (i.e. a hole
in the nest wall) was removed. Third, a mechanism to
monitor task progression is needed to ensure stagnation
does not occur. In simulation, progress was defined as
forward motion and a backward motion sensor was used
to activate the avoid behavior.

Having modeled our simulated robots with the inten-
tion of later constructing them has simplified our imple-
mentation. Each robot has a left and right wheel motor
providing a differential drive mechanism. Obstacles are
sensed using a left and right infrared sensor that provides
a logic low signal when infrared energy is reflected back
from an obstacle. To locate the brightly lit box, left and
right photocells are used with adjustable thresholds.

Behaviors are implemented in hardware using simple
combinational logic. By adjusting the photocell thresh-
old, to switch on under ambient lighting conditions, a de-
fault find behavior is created as uneven lighting conditions
cause the robots to wander their environment. By confin-
ing the robots to a small area, both the follow and slow
behaviors—used to form groups in wide open spaces—
were unnecessary, and simplified the experimental setup.
The avoid behavior is created by thresholding the infrared

sensors, and connecting the left and right outputs directly
to the left and right wheel motors. The goal behavior
is fashioned in a similar manner by thresholding the left
and right photocells and cross-connecting the motor out-
puts. The completed control architecture is illustrated in
Figure 12. Behavior arbitration is a simple fixed priority
between behaviors, with avoid having the highest and find
the lowest priority, and is implemented in combinational
logic illustrated in Figure 13.

A system of five box-pushing robots were constructed
based on the architecture illustrated in Figures 12 and 13.
The system was tested using a variety of initial config-
urations first in simulation and then compared with the
actual robots. Video recordings were made for later re-
view. The robots located the brightly lit box, converging
upon and pushing it in a number of directions depending
on the number of robots on each side (see Figure 14). The
progress sensor was implemented as a micro-switch which
activated the avoid behavior when the robot was pushed
backward and moved the robot away from the side. The
avoid behavior kept robots from colliding most of the time,
with collisions occurring when sensors missed detection
due to their limited field of view.

The system demonstrated that a cooperative task is
possible using a simple common task and noninterfer-
ence control mechanism; however, it also pointed out the
importance of progress monitoring behaviors to prevent
problems with stagnation and cyclic behavior. The sys-
tem demonstrates the feasibility of cooperative tasks with-
out explicit communication in a decentralized system, a
point we are currently exploring with our new system of
10 robots.
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Figure 12: The box-pushing robot’s control architecture.
Behavior arbitration is handled using a fixed priority sub-
sumption network.

Figure 13: The box-pushing robot’s arbitration circuit us-
ing simple combinational logic.

Figure 14: Five box-pushing robots moving a brightly lit
box in a cooperative manner.
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Figure 15: New prototype robot constructed with plug-in
modules.

The control logic for our system of five robots is hard-
wired making changes tedious to implement. We are
therefore currently in the process of constructing a new
system of robots built with plug-in modules (shown in Fig-
ure 15). This new series of 10 robots is controlled using
a multitasking processor. A robot can literally be assem-
bled from its individual components in five minutes with-
out use of tools making its configuration of sensors easily
changeable. Our plans for the new system are to investi-
gate formation marching and to extend the box-pushing
task to a transport task.

6 Discussion

Designing “intelligent” autonomous robots that accom-
plish useful tasks is a challenging and still elusive goal of
scientific research. Yet its pursuit has led to several new
and unconventional approaches. Among them, achieving
tasks through the use of a system of multiple robots has an
appeal that captivates the imagination because of its anal-
ogous relationship with the task-achieving populations of
social insects. The main hypothesis of the approach lies in
the hope that such a population of machines will achieve a
higher level of competence due to an emergent property of
the system making it more than just the sum of its parts.
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It i1s also this hope that largely fuels the current research
efforts in micromachine technology with promises of ap-
plications unseen due to limitations in current technology.

Nature’s decentralized approach to achieving collective
tasks results in feasible versus optimal solutions. In fact,
admitting some randomness occurs at the individual level
is felt by some researchers as part of the society’s function-
ing [29]. Oster and Wilson [28] have suggested that social
insects can well afford behavioral variance. This variance,
they claim, could increase the probability that the col-
lective activity will eventually be performed, with their
collective reliability more than compensating for the indi-
vidual inefficiency. The usefulness of these conjectures in
controlling robot populations will only become evident as
larger systems of multiple robots are simulated and built.

Although in principle communication among robots
should improve their ability to cooperate, as a system
grows in number, noncommunicating systems should scale
more easily. This essentially amounts to a tradeoff be-
tween local and global sensing strategies, but may just
result in a degradation in response time to external stim-
ulus.

The key to controlling teams of robots using group be-
haviors lies in the mechanisms with which they are in-
voked. By combining the mechanisms, collective tasks
may be created and accomplished by robots with more
than one group behavior. Like executing the steps of a
program on a synchronized distributed computer system,
group behaviors form a nonconnected link between robots
coordinating their activity in a cooperative manner.

In our animat approach to building intelligent systems,
the study of social insects plays an important role in
guiding our selection of control strategies for our multi-
ple robot systems. Although the strategies proposed in
this paper are not a comprehensive set, they do represent
the approach we have taken and are intended as examples
of our initial exploration into collective robotics. What is
still missing in our approach is a mathematics on which to
base our models, of both robots and the tasks they are de-
signed to accomplish. Lacking this formal theory, we have
taken the approach of analyzing specific tasks, couched in
terms of their sensory requirements, in the hope that the
more salient features will generalize across specific task
domains.

The discovery, by social biologists, of the various
stimulus-cues in collective tasks motivates our mecha-
nisms in controlling tasks by multiple robots. A com-
mon theory that adequately explains the cooperative be-
havior of social insects is still missing in the field of be-
havioral biology. However, the many well researched ex-
amples of collective task-achieving behavior do provide a
starting point from which to build systems in collective
robotics. Whether these systems will show to be scalable

14

to the point of accomplishing useful tasks remains yet to
be proven; however, Nature has already provided an exis-
tence proof in social insects demonstrating its feasibility.
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