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Abstract

This paper explores the application of genetic algorithms to the learning of local robot
navigation behaviors for reactive control systems. Qur approach evolves reactive con-
trol systems in various environments, thus creating sets of “ecological niches” that can
be used in similar environments. The use of genetic algorithms as an unsupervised
learning method for a reactive control architecture greatly reduces the effort required
to configure a navigation system. Unlike standard genetic algorithms, our method uses
a floating point gene representation. The system is fully implemented and has been
evaluated through extensive computer simulations of robot navigation through various
types of environments.
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1 Introduction

Navigation through a cluttered environment to a specified destination without hitting obsta-
cles is a common, but complex and underconstrained robotic task. Apart from the computa-
tional constraints on the navigation system, the system must be robust enough to navigate
through a large number of possible environment configurations.

Traditional robotics research has focused on symbolic representations and world modeling
to solve navigation problems (Albus, McCain, & Lumia, 1987; Elfes, 1987). A large part of
the work that these systems perform concentrates on the mapping of sensor data to a high-
level symbolic representation of the environment. Such systems combine data from different
types of sensors, process this data to keep their internal world models up to date, and perform
path planning from this world model. While these systems perform well in constrained
environments, their performance is less robust in dynamic, realistic environments. Symbolic
robotic navigation systems rarely meet real-time constraints in tasks that seem trivial to
humans, and do so only under highly constrained and closely supervised conditions.

An alternative approach to robot navigation is reactive control, which ties sensor data
directly to the actions of the robot. The behaviors of these robot systems emerge from the
careful organization of these reactions. The behaviors thus operate without the use of a
world model, and are computationally less demanding than those of a symbol processing
robot navigator. These architectures can act in real time, and are more robust in dynamic
environments than their symbolic architectural counterparts (Anderson & Donath, 1991;
Arkin, 1989; Brooks, 1989b; Payton, Keirsey, Krozel, & Rosenblatt, 1992). Developing a
reactive system thus requires the selection and structuring of the control parameters that
underlie the behaviors of the robot. While simpler than modelling a complex and dynamic
environment, selecting parameters to control robot behaviors can be difficult.

This paper describes the application of genetic algorithms to the problem of optimizing
robot navigation control parameters in a reactive control system. Genetic algorithms provide
an unsupervised learning method that greatly reduces the effort required by the designer
to configure a navigation system. Furthermore, since the genetic algorithms are run as
simulations on a computer and do not require that the learning occur on the actual robotic
system, they greatly decrease the amount of time required to present the system with a
sufficient number of learning trials.!. Our approach is to train a reactive control system in
various types of environments, thus creating a set of “ecological niches” that can be used in
similar environments that were not presented in the learning phase. Further, by variously
weighting the different costs of the robot navigation, we can create robots optimized for
safety, speed, or distance.

1From a robotics perspective, simulation results must be viewed with some skepticism as the transition
to real robotic hardware is often a difficult one. The simulation used in this research is based upon the
simulators we have used in the past in porting our research to our Denning robots. A good correlation
between simulation and robotic performance has been observed in these cases (e.g., (Arkin, 1989; Arkin &

Murphy, 1990).)



2 Robotics

2.1 Reactive Control for Robot Navigation

The reactive control approach to robotic navigation grew out of a dissatisfaction with tra-
ditional robotics architectures. Reactive control draws from the Behaviorist school of psy-
chology, in that there are no explicit symbolic representations of the external world. The
subsumption architecture (Brooks, 1989a), which typifies the purely reactive control model,
is composed of simple behaviors (like wandering, obstacle avoidance, and goal following) that
combine to produce emergent behaviors that were not explicitly designed to be exhibited
by the system. The simple behaviors of a reactive control system acquire the information
about the environment directly from the sensors, instead of through an intervening world
model. These behaviors are closely tied to the effectors that carry out the behavior of the

robot (Kaelbling, 1986; Payton, 1986).

These non-representational systems avoid many of the pitfalls experienced by the tra-
ditional symbolic and world-model driven systems, but at some cost. The subsumption
architecture does not allow explicit representations of high-level goals, so it is difficult to
reconfigure the systems for different tasks or for reasoning about unperceived objects. Fur-
ther, as behaviors are added to the system and its complexity increases, the interaction of the
various behaviors often becomes difficult to predict and debug. Robust individual behaviors
must first be designed and implemented, then tuned to fit the response characteristics of the
sensors and effectors.

The motor schema approach to reactive control has proven to be a powerful method
in the field of robotics (Arkin, 1989). This model of robotic systems allows researchers to
construct robots that can function robustly and in real time in a dynamic, open world.
Specifically, this method enables the integration of a high-level planner to configure and
instantiate these behaviors, thereby introducing more flexibility than provided by the purely
reactive approach. A more detailed description of the motor schema method is given in the
following section. However, while this approach overcomes the limits of the purely reactive
paradigm, the problem of parameter tuning remains. Much effort is often required on the
part of the user to determine the proper parameter settings for a given type of environment.

2.2 Schema-Based Reactive Control

The design of a reactive control architecture has two parts: a structure and a set of control
values. The structure is determined by the tasks that the robot must perform, since this
constrains the collection of behaviors that the robot can exhibit. Simple robots that are
designed to avoid predators need few behaviors, while more complex robots may also have
goal seeking and exploratory behaviors. Once the structure of the system has been defined,
the system is tuned by adjusting the parameters that control the behaviors. Because a
single parameter setting can affect a particular behavior, its relation to other behaviors, and
emergent behaviors, it is difficult to fine tune schema parameters manually.

In the Autonomous Robot Architecture (AuRA), motor schemas provide the reactive
component of navigation (Arkin, Riseman, & Hanson, 1987). Instead of planning by prede-



termining an exact route through the world and then trying to coerce the robot to follow it,
motor schemas (behaviors) are selected and instantiated in a way that enables the robot to
interact successfully with unexpected events while striving to satisfy its higher level goals.
Motor schemas are manifested as analogs of potential fields (Arkin, 1989). Multiple active
schemas are typically present, each producing a velocity vector driving the robot in response
to its perceptual stimulus. The individual vectors are summed and normalized, yielding
a single combined velocity for the robot. These vectors are continually updated as new
perceptual information arrives, resulting in immediate response to new sensory data.

Some of the schemas we have already developed include:

e avoid-static-obstacle — move away from a non-threatening impediment to motion.
e move-to-goal — move towards an attractor.

e move-ahead — move in a pre-specified compass direction.

e stay-on-path - find a path in the environment and stay near its center.

e noise — move in a random direction, useful for both exploration and handling problems
with local maxima.

e docking — move in a ballistic then controlled motion towards a docking workstation.

e Various maintain-altitude, move-up, and move-down schemas useful for naviga-
tion in rough terrain.

e probe — move toward the most open space.
e avoid-past — avoid areas that have been visited recently.

e escape and dodge — avoid moving or potentially aggressive obstacles.

These schemas have been developed for navigating dynamic environments, although the
schema-based approach could be applied to other robot behaviors and higher level tasks,
such as “survive” or “deliver-mail.” Other work in our lab has used schemas for manipulator
positioning.

For this paper, we used three schemas, move-to-goal, avoid-static-obstacle, and
noise. The schema parameters controlling the behavior of these schemas were determined
autonomously using a genetic algorithm, as discussed below. Our results show that the
method can be used to tune schema-based reactive control systems by learning parameter
settings that optimize performance metrics of interest in various kinds of environments.

2.3 Robot Learning

There are several factors to be considered in designing a robot navigation system that learns.
To ensure adequate generalization of a given environment, many trial runs are required during
training. Due to the time and wear costs for both robot and teacher, it is impractical to
have a human instruct the robot during training. This problem is compounded by training
the robot for multiple environments. Therefore, unsupervised learning is required. Further,
because a goal is reached or an obstacle hit through the combination of many simple actions,



it is impossible to choose a particular behavior that led to either good or poor performance.
It is therefore difficult to assign credit and blame in navigation. The navigation system
must evaluate its own plans and learn via a cost/benefit analysis based on easily measurable
characteristics of the system. For example, the time of travel of a robot from start to goal
can be easily and objectively measured and used by the training system.

Although learning is an important feature of intelligent and autonomous robot systems,
work beyond the conceptual stage is limited. Fikes, Hart, and Nilsson extended the STRIPS
robot navigation system to allow it to learn from its failures (Fikes, Hart, & Nilsson, 1972).
Barto, Anderson, and Sutton attempted to solve nonlinear robot navigation tasks using a
two-layer connectionist network (Barto, Anderson, & Sutton, 1982). This simulation allowed
the robot to learn associations between landmark and the directions of travel that would
lead it to the goal, which would provide positive reinforcement. Previous workers have also
applied genetic algorithms to robot navigation. Dorigo and Schnepf used this method to train
simulated robots to avoid obstacles and follow moving targets (Dorigo & Schnepf, 1991). The
genetic algorithm was used to determine when the robot should switch from one behavior
to another, as only one behavior is active at a time. Thus the grain size of the learning is
at a fairly high level; the robots could not learn how to optimize their individual behaviors.
Grefenstette, Ramsey, and Schultz’s SAMUEL system takes a different approach; rather than
optimize individual behaviors (“decision rules”), a genetic algorithm is used at the level of
tactical plans comprising an entire set of decision rules for a given task (Grefenstette, Ramsey,

& Schultz, 1990).

Our method, GA-RoBOT, also uses genetic algorithms to optimize a reactive control
system but, unlike the above methods, it focuses on optimizing the individual reactive be-
haviors themselves. An interesting direction for future research would be to combine our
technique for optimizing robot behaviors with other methods for selecting and composing
behaviors (e.g., (Dorigo & Schnepf, 1991; Grefenstette, Ramsey, & Schultz, 1990; Ram,
Arkin, Moorman, & Clark, 1992)), as well as with other kinds of learning algorithms such
as operationalization, case-based reasoning, or reinforcement learning (e.g., (Gordon & Sub-
ramanian, 1993; Ram & Santamaria, 1993)).

The genetic algorithm approach differs from other learning techniques in that popula-
tions of robots learn, not individuals. Each robot is given a fixed set of parameters which
control its behavior. The robots are then run through the simulated environment and their
performances evaluated. New parameters are generated and given to another generation.
Only after many generations have been simulated will good parameter sets emerge. Thus,
the learning is said to occur on an evolutionary time scale.

Our method uses a floating point representation, which has been tried before with suc-
cess (Davis, 1991; Janikow & Michalewicz, 1991). Janikow and Michalewicz used a standard
crossover operator, except that it crossed between the genes, leaving them unmodified. Davis
proposed a crossover operator that averaged the parent genes at every position to produce
a new offspring genome. Our method defines crossover as point-exchanges rather than sub-
string exchanges. At a crossover point, the new value is the average of the parent values plus
or minus part of their difference. Thus, the offspring values can grow beyond the range of
the parents while remaining closely related.



3 Genetic Algorithms

A genetic algorithm (GA) is a hill-climbing search method that finds near-optimal solutions
by subjecting a population of points in a search space to a set of biologically-inspired opera-
tors (Goldberg, 1989). The “fitness” of each member of the GA population is computed by
an evaluation function that measures how well the individual performs in the task domain.
The best members of the population are propagated proportionately to their fitnesses, while
the numbers of poorly-performing individuals are reduced or eliminated completely. By also
exchanging information between individuals to create new search points, the population ex-
plores the search space and converges to the neighborhood of the optimal solution to the
problem. The algorithm may find the optimal solution, but is not guaranteed to do so.

Genetic algorithms apply their operators to a representation of the search-space points
chosen to facilitate the genetic operators. In a traditional GA, the representation is a
position-dependent bit string, where each bit is a “gene” in the string “chromosome” (Gold-
berg, 1989). The choice of bit strings allows chromosomes to be conveniently cut into sub-
strings, enabling the exchange of information between individuals.

Typically, each iteration of the GA begins by decoding the bit-string into search-space
points and using the search function to evaluate the fitness of the individual. If a minima is
sought, the individuals which return lower search-function values will be assigned higher fit-
nesses. Once the population has been evaluated, a set of genetic operatorsis applied. Several
genetic operators have been proposed, but the three most frequently used are reproduction,
crossover, and mutation. These operators are expressed graphically in Figure 1. Note that
each of the rectangles in the figure represents a single bit of the string (in practice, most
representations use much longer strings).

The reproduction operator selects the fittest individuals and copies them exactly, re-
placing less-fit individuals so the population size remains constant. This increases the ratio
of good individuals to the number of poorly-performing ones. The selection process uses
a weighted roulette wheel; the best individuals are preferred, but not guaranteed, to be
reproduced.

The crossover operator allows two individuals to exchange information by swapping some
part of their representations. This creates a pair of new individuals that may or may not
perform better than the parents. For example, if the string [00000000] was crossed with string
[11111111] the result might be [00011111] and [11100000]. The choice of which individuals
to cross and where to cut the chromosome is random. This random search component gives

GAs much of their power (Goldberg, 1989).

The mutation operator is used to prevent the loss of information that occurs as the
population converges on the fittest individuals. Premature convergence is said to occur when
the population cannot improve because all of the individuals in the population have the same
value for a given gene. Since no amount of selection or exchanging of the same value will
change it, mutation allows lost information to be recovered, and further, maintains variety
during convergence.

A GA can be thought of as a search method that tries to maintain a balance between
exploiting points in the search space that have already been reached and exploring other
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points that are yet to be tried. The reproduction operator exploits the knowledge present
in the population by increasing the numbers of fitter individuals. The crossover operator
explores the search space by producing new points to evaluate. This simultaneous exploration
and exploitation moves the algorithm toward populations containing the fittest substrings
in the fittest combinations. The GA eventually settles on a cluster (or multiple clusters) of
near-optimal individuals with similar bit strings. The convergence time and solution quality
depend on the nature of the problem and the parameters that control the GA.

4 The GA-RoBoT Method

Since the performance of a navigational robot is determined by the values of its reactive
control schema parameters, genetic algorithms can be used to optimize these parameters
using the navigational performance of the robot as a fitness metric. We have developed
a new method, GA-ROBOT, that uses a modified version of a standard genetic algorithm
to learn optimum schema parameters under different conditions. The method is applied to
a robot simulation in a two-dimensional world composed of static virtual obstacles and a
single goal position, as shown in Figure 2. The task of each robot in a simulation is to move
from the start to the goal, while avoiding obstacles along the way. All of the simulations
use the same distance from start to goal but the clutter of environment, as measured by the
area occupied by obstacles, varies. Robots are rewarded inversely to traversal time, distance
travelled, and number of collisions. The size of a robot step can vary from zero to a maximum
value, and depends on the current values of the schema parameters and the distance and
position of the nearest obstacles and the goal. Collisions with obstacles, which are defined
as intrusions into the safety margin surrounding obstacles, do not involve physical contact
and are not lethal.

Let us consider the design of the simulations and the GA-RoBOT algorithm in more
detail.

4.1 Simulation Design
A robot in our simulation uses three primitive behaviors: move-to-goal, avoid-static-

obstacle, and noise, as described in Section 2.2. These behaviors define the structure of
the navigation system. The three behaviors are controlled by five schema parameters:

e Goal gain: strength with which robot approaches the goal.

Obstacle gain: strength with which robot moves away from the obstacles.
e Obstacle sphere-of-influence: distance from obstacle at which robot is repelled.
e Noise gain: amplitude of random wandering.

e Noise persistence: number of time steps the noise vector is held constant.

An array containing values for these five parameters forms the genome used by the
genetic algorithm. The parameters control the direction and speed at which the robots move



through the environment. The velocity vectors contributed by each schema are multiplied by
the schema gains. For example, if the robot is within the sphere of influence of an obstacle,
the avoid-static-obstacle schema will determine a repulsive vector which will be multiplied
by the obstacle gain. After the other schemas have calculated their vectors, all of the vectors
are summed and normalized to give the robot’s actual step. Because the structure of the
system is fixed, a robot always exhibits the three behaviors with some strength, although
setting a gain to zero essentially removes the behavior. Note that since the individual schema
vectors are summed and normalized, the gain parameters are significant only in their relative
magnitude.

The simulated world can vary in obstacle coverage and location. We used 1%, 10%, and
25% clutter worlds, where the clutter is defined by the percentage of the world area occupied
by obstacles. Furthermore, we varied the robots’ environments, not only with respect to
degree of clutter, but also with respect to how the worlds changed between robot trials.
There were three types: fized, varying, or general, as shown in Figure 3. In fixed worlds, the
obstacle sizes and locations remain constant throughout the evolution of the population. In
varying and general worlds, the obstacles are replaced after each simulated trial of a robot.
Thus, if a robot is given three trials per evaluation, it will be run through three different
environments. In varying worlds, the percentage of clutter is constant, but the number, sizes
and locations of the obstacles changes. For general worlds, each trial’s world is created using
a random percentage of clutter between zero and the specified percentage. The intent was
to evolve robots in different types of worlds to study the formation of ecological niches. For
example, we expected robots evolved in 25% fixed or varying worlds to be optimized for
high-clutter worlds, whereas those evolved in 25% general worlds would be more suited to a
broader range of worlds. Note that, in every case, the environment remains constant during
each trial run.

The clutter values were chosen to simulate a variety of real environments from nearly
empty to crowded. By optimizing for particular values of clutter, we created robots effective
in these different environments. Furthermore, once trained, a robot might dynamically
switch parameter sets to effectively navigate changing environments, such as in (Ram, Arkin,
Moorman, & Clark, 1992; Ram & Santamaria, 1993). Recognizing and adapting to new
environments can also be done via a high-level planner; this extension is an important issue
for future research.

In addition to optimizing the robots for different types of worlds, we also evolved robots
suited to particular niches by varying the weights on robot fitness penalties. For example,
weighting the fitnesses to minimize collisions optimizes the robots for safety. In GA-ROBOT,
the raw fitness function, shown in Figure 4 and discussed in Section 4.2, provides weights
for collisions, time, and distance. We combined these into three robot types: safe, fast, and
direct. Safe robots were optimized to avoid hitting obstacles. While both avoid collisions, fast
robots prioritized speed, whereas direct robots preferred shorter trips. Example weightings
are shown in Figure 5.

The basic problem is to choose reactive control schema parameters that create a specific
kind of robot tailored to a specific kind of environment (or range of environments). This
optimization is nontrivial, since the parameters are not orthogonal, and may interfere with
each other. For example, the robot must approach the obstacles to reach the goal; the



goal gain (which moves the robot towards the goal) and the obstacle gain (which moves the
robot away from obstacles) must be balanced. Furthermore, the environment can present
situations in which the obstacle-avoidance force cancels the goal-attraction force, such as in
box canyons. As the world clutter increases, the likelihood of these regions increases. We
used a genetic algorithm, as discussed in the next section, to evolve robots using different
combinations of robot type, world clutter, and world type, as shown in Figure 6.

4.2 Genetic Algorithm Methodology

The standard genetic algorithm requires that the search-space points be encoded as binary
strings because the genetic operators crossover and mutation are defined as bit operations.
However, this is an unnecessary requirement because the operators conceptually require only
an exchange or change of data; bit-strings are used as a conveniently splittable representation.
Our method defines the chromosome as a list of floating point robot control parameters. By
using a floating point representation for each of the parameter values, the simulation does
not need to translate from the bit string to a value that can be used by the reactive control
system, thus increasing the efficiency of the algorithm.

The algorithm starts by generating a population of robots, an environment containing
obstacles, and a single goal. Each of the robots is initialized with a set of randomly generated
values for the motor schema parameters. In each generation, the robots are run through the
environment three times. The robots move through the environment until they either reach
the goal or exceed the maximum allowed steps. Next, for varying or general worlds, the
obstacles are destroyed and recreated with the same clutter (varying) or a random clutter
(general). A running total of the raw fitnesses of each of the robots is maintained during the
simulations, and used during the application of the genetic operators. The top-level code for
the algorithm is shown in Figure 7.

Optimal robots maximize safety, speed, and efficiency. Our fitness function was designed
to combine data measurable by the robot into a single measure maximized by the GA
operators. Safety in our simulation was measured by the number of collisions with obstacles.
Speediness was measured by the number of steps taken to find the goal. Finally, directness
was measured by the distance travelled between the start and the goal. Note that since
for each step, the robot may make a large or a small movement, these metrics distinguish
between large, meandering movements, and small, direct ones. Each of these was multiplied
by a weighting factor and summed to give the raw fitness, as shown in Figure 4.

As collisions, steps, and distance must be minimized, each raw fitness was subtracted
from the largest raw fitness in the population to give the robot’s final fitness, as illustrated
in Figure 8. In addition to providing a value for the GA operators to maximize, this operation
scales the fitnesses to maintain differentiation between individuals even when the population
has converged. To see this, consider an early population whose best fitness is 750 and whose
average is 500. By roulette wheel selection, we expect 1.5 copies of the best individual. Later
in the simulation, the best is 1100 and the average is 1000. Now we only expect 1.1 copies
of the best individual. Thus, the selection pressure has been reduced (Whitley, 1989). Now
suppose the minimum fitness in the previous cases were 250 and 900. By scaling, we maintain

a constant selection pressure: (750 — 250)/(500 — 250) = (1100 — 900)/(1000 — 900) = 2.
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Although the genetic operators maximize the scaled fitness function, our goal is to minimize
penalties which are represented by the raw fitness values. In the following discussion, we
will refer to optimization in terms of minimizing the raw fitnesses.

Note that if the fitness function in Figure 4 is weighted heavily against distance, the
algorithm will produce a robot that takes extremely small steps and never reaches the goal.
If desired, the fitness function may be modified to add a penalty to the raw fitness of
robots that fail to reach the goal. Furthermore, the weights must be scaled to account
for the magnitudes of the metrics. This may be done automatically by normalizing the
weights between the maximum and minimum values in the population. Finally, the fitness
function may be extended to minimize other expenditures of an autonomous system’s limited
resources. For example, a more sophisticated robot model and fitness function may be used
to reduce physical wear on the robot, the risks incurred in route choice, and difficulties due
to terrain type. In general, the GA-ROBOT method presented here can be used with other
fitness functions to optimize other parameters of interest, depending on the application.

After the raw fitness ratings has been accumulated over several simulations, the genetic
operators are applied to the population. The reproduction operator selects the fittest individ-
uals randomly in proportion to their fitnesses and copies them, replacing the least fit robots
which are chosen randomly in proportion to their unfitness. The number of reproductions is
also random, but controlled parametrically.

The crossover operator was modified to allow information exchange between floating-
point chromosomes. The operator chooses a single gene location to exchange, unlike the
bit-string crossover, which swaps all of the genes after the chosen crossover point. The
exchange itself is made by first calculating the average and difference between the two genes
at the exchange point of each mate. The two mates are copied, but the genes at the crossover
point are given by new_gene = average + difference * randnlpi(), where randnipi()
returns a random number between negative one and positive one. The probability that the
operator is applied to each gene location during a mating is controlled by the crossover
probability parameter.

Finally, the mutation operator is applied to the population. It, too, was modified to work
with the floating-point representation. If a gene mutates, the gene is increased or decreased
by a random percentage, as given by new_gene = old_gene + old_gene * randnlpl() *
MUTATION DELTA . Note that, unlike standard bit-string mutation, the change depends on the
value of the gene. The consequences of this type of mutation are discussed in Section 4.3.1.

4.3 Factors Affecting Learning

We ran extensive computer simulations to study the behavior of our system and to validate
the floating-point extension of the genetic algorithm. Because the computer can run large
numbers of simulations without human supervision, we were able to study a variety of factors
that influence robot learning. These factors can be categorized broadly into three types,
algorithmic, robotic, and environmental, as listed in Figure 9. Algorithmic factors provide
insight into the behavior of the genetic algorithm itself, which is required to ensure that
the algorithm is operating effectively. Robotic and environmental factors focus on different



types of robots in different types of environments; these must be chosen to reflect the real
robot and its likely environments. By using multiple sets of robotic and environmental
factors, GA-ROBOT was able to optimize robot performance in response to both the kind
of robot desired (safe, direct, or fast) and the kind of environment for which it was intended
(cluttered /uncluttered and fixed/varying).

4.3.1 Genetic Algorithm Control Parameters

A primary difficulty in applying a genetic algorithm is determining good control parameters,
such as the probabilities of reproduction, crossover and selection. Since extensive parameter
studies defeat the purpose of using an optimization algorithm, a few variations suffice to
provide confidence in the performance of the algorithm. While our empirically-determined
reproduction and crossover probabilities were similar to established research (Davis, 1991),
our mutation parameter was found to be equally optimal between 0.5 and 1.0. This was
due to the relative mutation used by our algorithm. In a bit-string representation, the
mutation operator randomly inverts bits. Depending on the significance of the bit in the
decoded gene, the inversion may have a huge or a negligible effect. As a result, while too
low mutation probability allows premature convergence, too high a probability reduces the
algorithm to a random walk. Between those points, the noise is high enough to prevent
premature convergence, but low enough not to hide the global minima among large, random
steps. An optimal mutation rate can be found such that the global minima are findable, and
more likely to be created by crossover than destroyed by mutation.

However, our algorithm cannot take noisy random walks because our floating-point mu-
tation cannot have huge effects on the genes; the change is confined to a percentage of the
present gene’s value. While it may seem odd that mutation considers the magnitude of the
gene, it is motivated in GA-ROBOT by the relative nature of schema gains. In schema-based
reactive control, individual vectors contributed by each schema are multiplied by the gains,
summed, then normalized; thus, a gain is only meaningful relative to the others. Because the
mutations are within a percentage of the previous values, the mutation operator is effectively
a random local search. This search prevents premature convergence and helps the algorithm
find deeper minima.

4.3.2 Robot Type

The robot type is determined by the weightings used for the penalties in the raw fitness
function, as described in Section 4.2. For example, a robot penalized more for collisions
than time or distance will develop parameters which move it more slowly and cautiously.
These penalties affect learning by altering the search function.

Robots optimized to avoid collisions do so at the expense of other abilities. For example,
they may be unable to navigate between close objects. On the other hand, robots with
reduced collision avoidance can navigate through most environments more quickly, but often
collide with obstacles. The amount of punishment assigned to a collision should depend
on the fragility of the robot being simulated. By optimizing for several combinations of
penalties, a high-level planner could choose parameters based on the robot’s condition and
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goals. For example, a robot may switch parameters to maximize directness when fuel is
limited, speed when time is limited, or safety when durability is limited.

4.3.3 Environment Type

The environment type has a significant influence on the robot’s learning. The density of the
obstacles in the environment affects how much the best route deviates from a straight line
from the start to the goal, and how frequently the robot has to make course changes. As
the density of the environment increases, it becomes more efficient to go around a cluster of
obstacles rather than to navigate through them and risk collisions. The obstacles may also
vary in their organization; they may be totally random, be clustered into groups, or form
highly-organized patterns such as fences or box canyons. Further, the obstacles or the goal
may move as the robot travels.

Because robots learn to navigate in particular environments, a robot may be said to
occupy a niche in the same way that animals evolve to fill a particular niche in nature. An
effective strategy for dealing with unknown or changing environments would be to pretrain
for several niches, then design a high-level controller to choose the niche parameters appro-
priate to the present world. The reactive control system would thus adapt to its current
environment, making it more successful, efficient and robust. An alternative might be to
train a robot in a wide range of environments so as to evolve a general-purpose robot.

In GA-RoBoOT, we have two high-level controllers which monitor the robot and the
environment and choose control parameters accordingly. One selects the robot type (safe,
fast, or direct) based on the robot’s condition and goals, while the other estimates the
surrounding clutter and variability and chooses the nearest training percentage (1%, 10%,
or 25%) and world type (fixed, varying, or general). The table in Figure 5.1, which lists the
results of the genetic algorithm simulations, provides the optimal robot control parameters
that GA-ROBOT learned; these are used by the high-level controllers to modify the behavior
of the robot during navigation after the learning phase is over.

4.4 Evaluation Metrics and Simulation Results

The utility of applying genetic algorithms to robotic navigation learning can be evaluated in
several ways. This section describes three methods used to determine algorithm effectiveness
and solution quality in the GA-ROBOT system, and presents the results of our simulations.

4.4.1 Convergence Evaluations

One way to evaluate a GA-based system is to examine the convergence of the genes. The
initial robot parameters are randomly generated and evenly distributed. If there is an op-
timal solution to the problem for a given simulation environment and fitness function, the
population should converge toward this solution’s set of values. The number of genera-
tions required for convergence depends on the GA’s control parameters (i.e., population
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size, crossover probability, etc.) and the difficulty of the problem. Note that these methods
evaluate the algorithm’s operation, not its final effectiveness.

In each of the experiments, a trace of the five reactive control parameters was saved for
later analysis. Given enough time to converge, each of the reactive control parameters of the
populations converged to within about 2 percent of the starting value for that parameter.

To evaluate the performance of the genetic algorithm, we plotted the convergence of the
population as the algorithm progresses. In general, better performance is defined by lower
minima in fewer iterations. The convergence results for the safe robots in 1%, 10%, and 25%
cluttered, fixed worlds are shown in Figure 10. These graphs plot the average, best, and
worst raw fitnesses in the population for each generation. These curves show the weighted
sum of collisions, steps, and distance decreases as the population evolves. Note that each
generation combines three simulations of the same parameters to reduce random effects.
Also, these simulations did not penalize robots that failed to reach the goal.

The graphs illustrate several typical features of the optimization process. First, note the
discontinuous nature of the penalties in the fitness function, as shown by the spikes after
convergence in the top graph. Because these simulations were set up to create a safe robot,
collisions received a disproportional penalty. Although the population converged quickly to
cautious robots, collisions could still occur and, when they did, caused large jumps in the
worst fitness values.

The sequence shown in Figure 10 suggests faster convergence for the most cluttered
environment. This is an effect of the safe robots, which are penalized for collisions. The
dense environment provides more opportunities for collisions; the robots make more mistakes
and quickly learn to avoid them. In general, however, the denser and changing environments
required more iterations for convergence.

4.4.2 Objective Behavior Measures

As discussed above, a simple and common method of evaluation is to track robot fitnesses
over several generations. Raw fitness values decrease as the simulation progresses, converging
toward an optimal value. However, because the fitness function combines several measures of
robot performance, it is not possible to determine which measure is most optimized for each
iteration of the algorithm. For example, reducing the likelihood of collisions may decrease
the raw fitness without increasing the directness of the path. While the minimization of the
raw fitnesses is a good measure of algorithm performance, fitnesses alone are not a sufficient
measure of robot optimization. However, the same metrics used by the robot, the number
of collisions, the time required, and the distance travelled, provide independent measures of
solution quality and are available for evaluation. For example, in our simulations of the safe
robots, which weighted the collisions heavily, the number of the collisions quickly dropped
to zero, causing an increase in the total number of steps as the robots slowed near obstacles.

The GA found improved parameter sets for almost all of the robot and environment
types considered in our experiment design. The effectiveness of the optimization is shown in
Figure 11. The values shown for collisions, steps, and distance are taken from the last of the
three runs given each robot. In all but three instances, the robots show a clear improvement
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in the desired performance metric. In the cases in which the optimized robot shows increased
numbers of collisions, the results may reflect a bad run in the series. However, in these cases,
the robots were being optimized for speed or directness, not collisions.

4.4.3 Visualization of the Navigation

Although visualization methods are subjective, they can provide insights into robot learning.
A visualization of the simulation gives a qualitative feel for the success of the learning
algorithm and the emergent properties of the interacting schemas.

The GA simulations produce a trace of the robot moves for each run which is used by a
separate program to display the paths of the robots as sequences of points in configuration
space. An example is shown in Figure 2. Robots start at the square on the left and travel to
the goal circle on the right. The black circles represent the obstacles scattered throughout
the environment. Figure 12 shows three simulations from the optimization of direct robots
in a 25% cluttered, general world. Recall that in the non-fixed environments, a new set of
obstacles is generated for each iteration of the genetic algorithm. Further, in the general
world, the area covered by the obstacles is a random value less than the nominal percentage.
Thus, in Figure 12, the bottom two simulations are less cluttered than the top one.

Figure 12 shows the evolution of the direct robot population. The top simulation traces
the paths of the initial population robots. The middle and lower simulations are intermediate
and final populations. The initial population shows the effect of random parameter choices.
Note that their paths are not totally random; given a random attraction to the goal, a
random desire to avoid obstacles and a random noise parameter, they are still drawn toward
the goal. While some of the robots do reach the goal, many do not. Of those that do, many
of the paths are too direct, causing collisions. Thus, following the initial generations is a
fanout in which robots become more cautious, but reach the goal. After several hundred
further simulations, the robots tend to anticipate the obstacles, taking shortcuts rather than
approaching, then having to maneuver around them. The final population shows the smooth
paths taken by the direct robots.

The characteristic paths of the direct population can be better seen in relation to the
other robot types, as shown in Figure 13. As expected, the safe robots (top) take the
least direct routes, in some cases going outside the obstacle field entirely. The fast robots
(middle) also take less direct routes than the direct robots, instead seeking the paths that
enable them to travel at the highest speeds. They tend to follow wide trails, even if these
trails occasionally lead away from the goal. Finally, the direct robots (bottom) show more
fan-out than the fast robots as they seek the best short cuts. Because they can vary their
speed to find direct lines to the goal, they are less constrained in their choice of path. The
fast robots appear to choose the same paths because only a few paths allow maximum speed.
The direct robots have some weighting for speed, so do not find the absolute shortest path.

The effect of increasing environmental clutter is shown in Figure 14. Although optimized
to avoid obstacles, the safe robots find direct paths when the clutter is low (top). As
the clutter increases, however, the paths begin to diverge (middle). Finally, in a cluttered
environment, the robots find many indirect and slow routes through the obstacle field. Just
as safe robots appear fast and direct in sparse environments, we observed that direct and
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fast robots become cautious as increasing clutter forces reductions in speed and reduces
opportunities for short cuts.

Finally, consider the effect of the world type on the optimization. Figure 15 traces
populations of fast robots optimized for fixed (top), varying (middle), and general (bottom)
worlds. It appears that the varying-world robots are least able to find speedy paths, while
the general-world robots do best. The fixed-world robots are expected to do well since they
can find the existing fast paths through the unchanging world. The varying world removes
this circumstance; the world is always cluttered, but never the same. These robots must try
to balance speed and safety in situations that provide few and inconsistent opportunities for
speed. The middle figure illustrates their inability to find consistent solutions. The general
world, however, is often less dense because it is recreated each trial with a random clutter
less than the nominal value (25% in this case). Thus the robots have many chances in sparse
worlds to find parameters that give fast, safe behavior. Further, as shown in the bottom
figure, their success in sparse worlds scales, enabling them to work effectively in denser ones.
This suggests that training in sparse worlds allows the discovery of parameter sets that are
useful, but harder to find, in cluttered worlds.

5 Conclusions

Genetic algorithms provide a powerful method for searching for near-optimal solutions in
complex search spaces. Drawing from analogies in biology and evolution, they can be ap-
plied to the learning of robotic coordination in reactive control systems. In contrast to pro-
gramming by humans, genetic algorithms allow not only rapid discovery of good behavioral
parameters, but also tuning of parameters to varying robot and environmental conditions.
An attractive feature of this approach is that the designer need only specify the robot and
the environment; a deep understanding of the robot’s behavior and environmental interac-
tions is not required. The algorithm will abstract the salient features of the environment as
it searches for parameters that effect good performance in it. For example, the fast robots
in our simulations learned to find wide paths which enabled greater speeds.

In this paper, we presented a novel GA-based method to optimize robotic control pa-
rameters in a schema-based navigation system. The system, called GA-RoBoT, is fully
implemented and has been evaluated extensively. In addition to demonstrating the power
of the method, the experimental results discussed above provide insight into the working of
the system, and provide a basis for appropriate design of the genetic algorithm (for example,
selection of crossover probability). The results also provide a basis for the application of
our method to other kinds of problems (for example, constraints on types of robots, desired
ranges of environments, or alternative performance metrics).

Our research treats GA learning as a way to integrate global path planning and local
navigation. This work provides the foundation for the integration of the learned parameters
into a hierarchical navigation system. Future work will extend GA training to mediate
the subsystems. The global path planner will pass the positions of subgoal landmarks, the
condition of the robot, and the crowdedness of the local environment to the schemas, thus
affecting where the robot goes and how carefully it navigates through the obstacles, without
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explicitly stating what path to take. This separation of local and global navigation tasks is
one of the strengths of the schema-based approach to reactive control.
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Figure 1: Genetic operators
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Figure 2: Example of a robot path in a 25% cluttered world
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World Obstacle | Percentage
Type Positions Clutter
Fixed fixed fixed
Varying | random fixed
General | random random

Figure 3: Types of worlds, specifying change in obstacles after each trial
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raw_fitness = collision_weight * number_of_collisions
+ time_weight * number_of_steps
+ distance_weight * distance_travelled

Figure 4: Raw fitness, defined as a function of weighted penalties
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Robot Weight

Type | Collision | Time | Distance
Safe 100 1 1
Fast 10 10 1
Direct 10 1 10

Figure 5: Example weightings for three types of robots
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Expt. # | Robot Clutter World
1-9 Safe | 1%, 10%, 25% | Fixed, Varying, General
10-18 Fast | 1%, 10%, 25% | Fixed, Varying, General
19-27 Direct | 1%, 10%, 25% | Fixed, Varying, General

Figure 6: Experiment Design
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begin
/* Make a new environment */
Obstacles.Create;
/* Make a new population */
Population.Build;

for 1 to NUMBER_GENERATIONS do
begin

for 1 to RUNS_PER_GENERATION do
begin
/* Let Robots try to reach goal */
for 1 to MAX_NUMBER_STEPS do
begin
Robots.Move;
end

/* Update environment */
Obstacles.Recreate;
end

/* Prepare next generation */
Robots.Reproduce;
Robots.Crossover;
Robots.Mutate;
end
end

Figure 7: Top-level code for the genetic algorithm simulation.
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begin
highestRawFitness = calc_highest_raw_fitness();
lowestRawFitness = calc_lowest_raw_fitness();
totalRawFitness = calc_total_raw_fitness();
/* Scale/invert the raw values so that
maximization by the GA will minimize
the steps/collisions/dist. Note that the
fitnesses are not allowed to equal zero */
for 1 to POPULATION_SIZE do
citizens[indiv]->setFitness(
highestRawFitness + 1 -
citizens[indiv]->getRawFitness());
end

Figure 8: Algorithm for evaluation of the population.



Type ‘ Parameter ‘ Range ‘ Values Used

Genetic population size 2 - 30

Algorithm selection probability | 0 - 1 0.6
crossover probability | 0 - 1 0.6
mutation probability | 0 - 1 0.5
mutation change 0-1 0.5

Robot collision penalty 0 - varied
time penalty 0 - varied
distance penalty 0 - varied

Environment | clutter 0-1 1%, 10%, 25%
world type fized, varying, general

Figure 9: Factors that affect the genetic algorithm and robot learning
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Avg., Best, and Worst Fithesses vs Generation
(Safe, 1%, Fixed)

3200.0 T

3000.0 H =

2800.0 H B

2600.0 Q Bl

2200.0 - - - -

0.0 20.0 40.0 60.0 80.0 100.0
(Avg., Best, and Worst Fithesses vs Generation)

(Safe, 10%, Fixed)

5000.0 T T

4000.0 H B

3000.0 f Bl

2000.0 . L L .

0.0 20.0 40.0 60.0 80.0 100.0
Avg., Best and Worst Fitnesses vs Generation

(Safe, 25%, Fixed)

6000.0 T T

5000.0 H =

4000.0 H =

3000.0 H I =

2000.0

I I I I
20.0 40.0 60.0 80.0 100.0

Figure 10: Convergences for a Safe Robot in 1%, 10%, and 25% cluttered, fixed worlds. Note
that these are the raw fitnesses, which decrease as collisions, steps, and distance decrease.
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Collistons Steps Distance

Robot | Clutt. World | Init. ‘ Best ‘ Change | Inat. ‘ Best ‘ Change | Init. ‘ Best ‘ Change
Safe 1% Fixed 0 0 -1 399 | 199 | 50.1% | 400 | 398 0.5%
General 0 0 -1 409 | 198 | 51.6% | 399 | 395 1.0%

Varying 0 0 -1 403 | 198 | 50.9% | 411 | 395 3.9%

10% Fixed 0 0 - 11043 | 250 | 76.0% | 435 | 412 5.3%

General 0 0 -1 3951 198 | 49.9% | 415 | 396 4.6%

Varying 0 0 - | 382 | 210 | 45.0% | 412 | 405 L.7%

25% Fixed 0 0 - 11098 | 275 | 75.0% | 520 | 461 | 11.3%

General 0 0 - | 477 | 248 | 48.0% | 434 | 401 7.6%

Varying 0 0 -] 665 | 366 | 45.0% | 470 | 467 0.6%

Fast 1% Fixed 0 0 - | 404 | 198 | 51.1% | 413 | 395 4.4%
General 0 0 - | 427 1 198 | 53.6% | 408 | 395 3.2%

Varying 0 0 - | 403 | 198 | 50.9% | 411 | 395 3.9%

10% Fixed 6 51 16.7% | 459 | 206 | 55.1% | 432 | 411 4.9%

General 0 0 -1 3951 198 | 49.9% | 415 | 395 4.8%

Varying 0 1 - | 3821 200 | 47.6% | 412 | 399 3.2%

25% Fixed 0 12 - 11098 | 234 | 78.7% | 520 | 468 10%

General 0 0 - | 4771 199 | 58.3% | 434 | 398 8.3%

Varying | 165 10| 94.0% | 775 | 223 | 71.2% | 929 | 442 | 52.4%

Direct 1% Fixed 0 0 -1 399 | 297 | 25.6% | 400 | 396 1.0%
General 0 0 -1 409 | 198 | 51.6% | 399 | 395 1.0%

Varying 0 0 - | 420 | 198 | 52.9% | 400 | 395 1.3%

10% Fixed 2 0 - | 7h0 | 422 | 43.7% | 411 | 401 2.4%

General 0 0 -1 6731 199 | 704% | 398 | 398 -

Varying 0 0 - | 818 ] 262 | 68.0% | 412 | 400 2.9%

25% Fixed 0 0 - 11098 | 680 | 38.1% | 520 | 468 10%

General 0 1 - | 477 354 | 25.8% | 434 | 407 6.2%

Varying 0 0 -] 665 | 337 | 49.3% | 470 | 414 | 11.9%

Figure 11: Optimization effectiveness. The values are derived from the best individual of
the initial population and the best individual in the subsequent generations.
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Figure 12: Paths (left to right) of direct robots through 25% cluttered general world (initial,
intermediate, and final populations). Note that not all of the robots in the initial population
reached the goal. Those that did incurred many collisions.
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Figure 13: Final paths through 25% cluttered general worlds of safe (top), fast (middle),
and direct (bottom) robots.
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Figure 14: Final paths of safe robots through 1% (top), 10% (middle), and 25% (bottom)

cluttered general worlds.



Figure 15: Final paths of fast robots through 25% fixed (top), varying (middle), and general
(bottom) worlds.
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