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1 Abstract 
Modularization is a strategy used for handling the demand for external complexity with less internal 
complexity, which leads to higher profits and more efficient product development processes. 
However, modularity is often driven in silos, not crossing into the engineering fields of mechanics, 
electronics, and software. Therefore, we present the MESA (Mechanics, Electronics and Software 
Architecture) tool – a tool that can be used to visualize modular product architectures across 
mechanics, electronics, and software. The tool demonstrates how a change in one domain affects the 
rest and how well aligned the modularity in the different domains is. The tool has been tested in two 
case companies that were used for case application and has helped provide information for making 
key design decisions in the development of new product families. 

Keywords 
Product architecture, modularization, concurrent engineering, product platform, cross domain, 
mechatronics, architecture strategy 

2 Introduction 
To a great degree, today’s markets demand customization (Nadadur et al., 2012). This has led 

to the development of larger product portfolios. Often, the development of products is performed 

sequentially, product by product, resulting in increasing internal complexity, overlapping solutions, and 

a lack of resources to develop new solutions with a competitive edge (Meyer and Lehnerd, 1997; Wilson 

and Perumal, 2009). The modularization of products offers a strategy for coping with the increased 

internal complexity caused by an increased demand for external complexity (Meyer and Utterback, 

1993; Robertson and Ulrich, 1998; Sanchez and Collins, 2001). 

Over the past 30 years, a significant amount of research has been conducted within the area of 

modularity (Gauss et al., 2020; Jiao et al., 2007; Otto et al., 2016; Pirmoradi et al., 2014). Scholars have 

developed frameworks and tools for supporting the development of modular products. However, 

multiple studies of literature in the field show that the focus on supporting modularity decisions going 

across domains has been limited for the engineering domains of mechanics and electronics (Gauss et 

al., 2020; Jiao et al., 2007; Otto et al., 2016; Pirmoradi et al., 2014). Product development in companies 

is often divided into silos, and efforts to maintain modularity are carried out separately in each domain 
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or are dominated by the domain with the highest influence or power to take decisions (Gepp et al., 2016; 

Hehenberger, 2014). The division of development activities between domains increases the risk of 

introducing contradictory modular designs, thus compromising development and cost efficiency. 

Hehenberger (2014) put emphasis on the importance of looking across domains when designing 

mechatronic products, and this need does not decrease when designing for modularity in product 

families. 

When designing product systems and families, the field of concurrent engineering define the 

tools and processes used to coordinate the product development activities across multiple domains and 

departments (Prasad, 1996, 1997; Stjepandić et al., 2015). Modularization and modular product 

architectures act as enablers for concurrent engineering because these help clearly define design 

boundaries. The decoupling of modules and freezing of interfaces enables the concurrent development 

of different modules (Prasad, 1999; Stjepandić et al., 2015). If the definition of architecture and its 

modules extends across mechanics, electronics, and software, this will further enhance the possibility 

of product developers working concurrently. 

The MESA (mechanics, electronics, and software architecture) tool that is presented in the 

current paper has been developed for mapping modularity dependencies across the engineering 

domains. In this paper, we test the following hypothesis: The MESA tool can be used for mapping and 

communicating modularity dependencies across the engineering domains of mechanics, electronics, 

and software. If the MESA tool is able show modularity dependencies across domains, it can be used 

for input to the improvement of the modular design of product families. 

The idea for the tool was first—briefly and with a high level of abstraction—presented by 

Askhøj et al. (2020). It has been further developed and tested in two case companies that were used for 

case applications, which we present in the current paper. The structure of the paper is as follows: First, 

we present the background and research methodology (Section 3), which is followed by the related 

research in Section 4. In Section 5, we present the MESA tool, and, in Section 6, we describe two 

applications of the tool in the case companies. Finally, the study culminates in Section 0, which contains 

a conclusion and discussion, as well as a look at further research avenues. 
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3 Background and research method 
The present research is an extension of the theory of modular product architectures, which states 

that the internal efficiency related to cost, development speed, and complexity handling can be increased 

by dividing products into functional units (modules) with stable interfaces (Meyer and Lehnerd, 1997; 

Robertson and Ulrich, 1998; Ulrich and Eppinger, 2012). A modular product architecture is a strategic 

decision regarding how to design a portfolio of products (Sanchez, 2013). More precisely, we refer to 

the work of Mortensen et al. (2016), who defined a modular product architecture as having the following 

characteristics: 

 “[It has] shared core interfaces.” 
 “Core modules/systems exist in balanced performance steps.” 
 “The architecture is explicitly prepared for derivative products, and related properties 

in terms of cost and performance are known.” 

We use the definition of modularity given by Askhøj and Mortensen (2019), which is based on 

what Sanchez (2010) called strategic modularity. Modularity is “a one-to-one mapping of a function 

that is perceived by the customer to be an important source of differentiation onto a single component 

or subsystem of a component (Sanchez, 2010). Interfaces are designed so that a functional module can 

be swapped without having to compensate in other areas of the product.” 

Another important term used in relation to modular product architectures that is also used in 

the current paper is “product family.” A family of products is a set of individual products that share 

common technology- and address-related market applications/segments (Meyer and Lehnerd, 1997: xi). 

The research made in this paper has been conducted in four phases including study of the 

problem, developing the tool, testing the tool in practice, and evaluation of the usefulness of the tool. 

The four phases are now described. 

3.1 Research Phase 1 – Study of the problem 
In Phase 1, modularity practices across mechanics, electronics, and software were studied 

among four companies from different industries, all of which were producing mechatronic products. 

This work was published at the NordDesign 2020 conference (Askhøj et al., 2020). The four authors 

worked in close collaboration with the companies over a period of three years; the authors contributed 

new methods for analyzing existing product portfolios and developing new modular product 

architectures while being an integrated part of the development team. From observing the mainly 
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negative effects from design decisions in one domain onto the two other domains, it became apparent 

that the companies would benefit from mapping cross-domain modularity in a visual way to increase 

the understanding of the effects decisions in one domain have on the other. Therefore, it was decided 

to look into the development of a tool for showing cross-domain modularity dependencies. 

3.2 Research Phase 2 – Developing the tool 
The purpose of the tool is to help product managers in the design planning process and create 

awareness of modularity decisions among engineers across engineering domains. It can support 

presentations at meetings with product and portfolio managers for planning design activities at the 

portfolio level. Therefore, we find the visual attributes of the tool important. Here, the product family 

master plan (PFMP) (Harlou, 2006) is a visual way of representing all variants in a family of products. 

It has already been tested for its ability to communicate the physical composition of a family of 

products. Therefore, the PFMP practice is used for mapping the mechanical structure in the MESA tool. 

The interface diagram method by Bruun et al. (2014) is used for visually showing how components 

inside and across modules are connected, including flows of, for example, energy or information. This 

tool is also tested for its ability to communicate dependencies in modular product architectures. Our 

idea is to combine these two practices in one tool, where we add electronic signal handling components, 

and the software modules that control the product. Signal handling components were in the four 

companies studied in Phase 1 all composed of PCBs (printed circuit board). The three domains are then 

connected with lines, as is done in the interface diagram, which represents electrical signals and 

information flow. A representation of this tool can be seen in Figure 1. 

3.3 Research Phase 3 – Testing the tool 
Phase 3 included the application of the MESA tool in the two company cases. Two researchers 

(one for each case) from the Technical University of Denmark (DTU) applied the tool in close 

collaboration with one technical expert from each domain in the company: a mechanical engineer 

working with product design, an electrical engineer designing the electrical system of the products, and 

a software engineer writing the control code. The domain experts all had over five years of experience 

and provided all the relevant information and documentation required for setting up the tool, and 

meetings were held to verify that the model was correct. Relevant information included BOMs (bill of 
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materials) for the variants within a product architecture, 3D models to show how parts are connected 

and the modular structure of the design, electrical wiring diagrams for showing information flow and 

electrical input/output handling, and the software control code from which inputs and outputs from 

software modules were used. It took approximately three weeks of full-time work for one engineer to 

set up the tool, involving one expert with over five years of experience from each domain in meetings 

that took place two times a week. In both companies, PFMPs and interface diagrams already existed of 

the product family under scope, together with an overview of the inputs and outputs in all the software 

modules. If these overviews were not already made, the task of setting up the MESA tool would be 

more daunting. Based on the time it took to set up the three other overviews used, it is estimated that it 

would take approximately two to three months without the overview, full time work of one product 

developer with the assistance of domain experts. If a company never experienced problems with cross-

domain dependencies in the design phase, or if no plans for revising the product design is planned it 

will probably not be useful to use the MESA tool. In addition, the MESA tool is aimed for the analysis 

of product families rather than single products development. When the MESA tool was set up, it was 

presented to product management. 

The two companies used for the case application were selected because both carried out 

modularity projects in collaboration with the section of engineering design and product development at 

DTU to test new methods and tools for design modular product families. The companies are from 

different industries. Company 1 is a medium-sized (Muller et al., 2018: 13) enterprise operating in a 

configure-to-order (CTO) business, while Company 2 is a large engineer-to-order (ETO) enterprise 

delivering systems for larger systems. Both companies design mechatronic products and conduct in-

house development for all three domains (mechanics, electronics, and software). 

3.4 Research Phase 4 – Evaluation of the tool 
In the final research phase, the tool was evaluated by employees from one of the case 

companies. The employees were presented the tool, which they helped to set up themselves by giving 

input for all the domains. Afterwards, they were asked to answer questions related to the value of this 

new tool. This is described in more detail later.  
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In the other company, a process of restructuring the organization (management layers and 

department compositions and responsibilities) that happened after the tool had been implemented made 

it impossible to conduct a similar evaluation because the people who had helped to set it up were now 

unavailable. 

4 Related research 
We have divided the related work into three sections: modularization, mechatronics, and 

concurrent engineering (CE). First, we discuss modularization, which is the research field that is the 

most closely related because this research expands on the methods from modularization. Both 

mechatronics and CE offer frameworks for optimizing the flow in the process of developing 

mechatronics products together with tools to assist the actual engineering design process. 

4.1 Modularization 
The tool presented in the current paper is inspired by the PFMP (Harlou, 2006) and the interface 

diagram (Bruun et al., 2014). In their original forms, one can use these two tools to map the 

dependencies between the mechanics and electronics domains. However, the PFMP and interface 

diagram do not include the software domain, and there is no explicit indication of what belongs to the 

mechanics or electronics domain. These aspects have been addressed in our consolidated extension. 

The mapping of product architectures with the interface diagram, and thereby also the MESA 

tool, find inspiration from the theory of technical systems (Hubka and Eder, 1988), and the generalized 

model for presenting systems introduced by Hubka and Eder (1988).  

Interfaces are of high importance when designing modular product architecture and technical 

systems and should be subject to explicit attention (Parslov and Mortensen, 2015). Attention is put to 

the cross-domain interfaces by the MESA tool. Pimmler and Eppinger (1994) defined a functional 

interface as: “functional transfers of material, energy, information, and spatial relations”(Parslov and 

Mortensen, 2015: 191). We use this definition when looking at the interfaces across the three domains. 

The design structure matrix (DSM), which was first introduced by Steward (1981), is a 

frequently used tool for assisting modular product design. DSMs have previously been used when 

designing modular mechatronic products (Alvarez Cabrera et al., 2014; Browning, 2016). However, the 

software domain is not included in a traditional DSM. For that purpose, one could use the multidomain 
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matrix (MDM) (Eppinger and Browning, 2012: 8). Uddin et al. (2016) indirectly includes all three 

domains in what they called a function-state MDM (FS-MDM), even though they did not directly 

include the associated software. MDMs could be used for mapping dependencies across mechanics, 

electronics, and software, including the code. Another DSM-based approach used for predicting design 

change impact across the product is the change propagation method (Clarkson et al., 2004). The work 

of Clarkson et al. did explicitly include the software domain. This could be included, though, by using 

some techniques used in an MDM. However, using matrices for designing modularity is not very 

intuitive or visual when it comes to communicating one’s findings to product management. Several 

authors have reported success in using more visual tools in supporting decision makers (Bruun et al., 

2014; Krause et al., 2014; Kvist, 2010; Mortensen et al., 2011; Pedersen, 2010). Furthermore, when 

products increase in complexity, the clustering of MDMs is most efficiently carried out using clustering 

algorithms (Otto et al., 2016). The algorithms may give solutions that are not realizable and that become 

complex to set up when multiple domains are included.  

Other researchers focus on the use of indices for improving modular designs of product families 

(Hölttä-Otto et al., 2012; Simpson et al., 2012). Martin and Ishii (2002) introduced the generational 

variety index (GVI), a measure for the amount of redesign effort required for future design, and the 

coupling index (CI), a measure of the coupling among components. Such indices could be used for 

improving modular design across domains by including cross-domain relations. However, using indices 

for improving modular designs lack the visual attributes sought by the MESA tool. 

Other researchers have developed and tested extensive frameworks/methodologies for 

developing modular product families. An early contribution was the modular function deployment 

(MFD), which introduced 12 module drivers (Erixon et al., 1996). When introducing the methodology, 

a mechatronic product served as the example, and the MFD helped define a strategy for how to divide 

a product family into modules. Since then, several other researchers have developed frameworks for 

designing modular product families. Krause et al. (2014) introduced what they called the PKT approach, 

a methods toolkit for designing modular product families where they present the MIG (modular 

interface graph). A visual tool for mapping the modular structure of a product architecture and the 

interfaces. The tool does not include the software domain though. The MIG is also used in Otto et al. 
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(2016) 13-step methodology for designing a platform concept. Løkkegaard et al. (2018) defined what 

they called business critical design rules (BCDRs), which comprised a framework for defining a set of 

“game rules” when introducing new products to assess their impact on product and manufacturing 

architectures. The visualization of dependencies across the product and manufacturing domain is a key 

feature of the framework, but they do mainly focus on physical attributes of the products. On a more 

strategical level, Mortensen et al. (2016) presented the architecture mapping and evaluation (AME) 

method for calculating the impact of modularity decisions. Decisions that can be supported by the 

visualization of cross-domain dependencies be the MESA tool. 

We have investigated the literature reviews on modularization (Bonvoisin et al., 2016; Fixson, 

2007; Gauss et al., 2020; Gershenson et al., 2004; Greve and Krause, 2018; Jiao et al., 2007; Otto et al., 

2016; Piran et al., 2016; Pirmoradi et al., 2014; Simpson, 2004). By doing so, we have not been able to 

find any methods or tools that, in a visual way, are well suited for product management involvement 

and present cross-module dependencies across the engineering domains of mechanics, electronics, and 

software. 

4.2 Mechatronics 
Researchers have provided numerous tools and methods for assisting in the development of 

mechatronic products (Buur, 1990; De Silva, 2005). With a focus on the design process, Hehenberger 

(2014) presented an overview of a hierarchical modeling technique to assist in the design of mechatronic 

products. Hehenberger highlighted that the level of granularity when describing product properties and 

characteristics is important when using design models. If the product information is too accurate and 

detailed on a systems level, the drawback of, for instance, the modeling effort may be higher than the 

benefits of having all this information available. This puts an emphasis on the need to consider the level 

of detail/granularity when using the MESA tool. More considerations are described in Section 4. 

Alvarez Cabrera et al. (2011) presented an architecture model to support the cooperative design 

of mechatronic products but focused mostly on the process of sharing knowledge between the different 

engineering domains. Certain researchers, such as Welp and Jansen (2004), have worked with methods 

used for domain allocation for the different functions in mechatronic products. The focus of most 

mechatronic methods and frameworks, though, has been on single product design. 
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Schuh et al. (2016) and Schuh et al. (2019) united the fields of mechatronics and 

modularization; they developed methods for designing mechatronic modules based on axiomatic 

design. Weyrich et al. (2011) presented an approach using DSMs for developing what they referred to 

as solution-neutral modules that can be used for multiple solutions. The focus of these methods is on 

single modules, and they do not directly support the development of the portfolios of products. 

Helbig et al. (2016) presented a model-based method for improving domain collaboration 

across mechanics, electronics, and software in the design phase of special purpose machinery. The focus 

is on sharing design information during the design of new products. It does not include the analysis of 

existing products and focus on the development on single products. 

4.3 Concurrent engineering 
The field of CE deals with the processes used for developing different parts of products 

simultaneously. The knowledge regarding how different modules in modular products influence each 

other is one of the success factors for concurrent development in such products. Prasad (2016) presented 

an icon-based flowcharting methodology for mapping the concurrency of tasks and activities during 

product development. Zouari et al. (2015) presented a method for managing domain knowledge 

versioning in the product development phase so that the evolution of knowledge in a development 

project can be captured and shared across domains. Mougin et al. (2015) proposed a framework for 

modeling knowledge transfer in projects with distributed design teams. These are all methods that could 

be used with the MESA tool for assisting in the concurrent development of modular products, but they 

do not explicitly support the cross-domain design of modular product families. 

4.4 Conclusion on related research 
Exiting literature offers several methods and tools for improving modular design, but lack the 

attributes of visually presenting product architectures when including all three domain of mechanics, 

electronics, and software. Tools have been developed outside the field of modularization for mapping 

or communicating dependencies across the three domains, but focus on the analysis of single products 

and not families of products, or do not include the visual attributes sought with the MESA tool. This is 

what we attempt to cover with the introduction of the MESA tool. The visualization of cross-domain 

modularity dependencies for families of products. 
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5 MESA tool for mapping cross-domain architectures 
In Figure 1, a representation of the MESA tool with an example of a clock is shown. The general 

idea is that each domain is mapped in the same figure, with the electronic in the center, the mechanics 

to the left, and the software to the right. The domains are connected using lines that represent electrical 

signals. The arrows on the signals represent the direction in which the signal goes. A signal going out 

of the software domain is usually used to control the electrical part (often motors) in the mechanical 

domain, and signals going into the software domain are constituted of information from sensors and the 

like.  

The mechanics domain consists of physical parts, excluding input/output components like 

PCBs. All variants of a product family are mapped. Different variants of the parts or modules are shown 

within the kind-of structure, see Figure 1. All product variants within the family of products investigated 

are represented in the tool. As in the PFMP (the “part view”, showing all physical parts), the product is 

decomposed into module areas, which are further decomposed into submodules or components.  

In the electronics domain, all signal-handling (input/output) devices are mapped. All 

input/output components (often PCB boards) are represented by rectangles. Different boards are shown 

in different columns, and all signals that go across the board are also physically handled by this board. 

If some signals from the mechanics domain are not passed through a board, this space is left blank in 

the corresponding column. 

The software domain consists of the associated code used to operate the device. The code is 

decomposed into chunks of code (modules) that handle certain functionalities. A detailed investigation 

of the input/output parameters used in the code is necessary to know which signals are processed where. 

The code processing the signals can both be located on the central computer or directly on the 

input/output component; in the latter case, the code can be more rigid to change, which was the case in 

the two case applications. 

The MESA tool does not support a functional analysis and functional decomposition of the 

products. The product family under investigation needs to be decomposed from the top down to a level 

where all signals to and from the electrical components within a module are separated so that it is 

possible to find a specific parameter that has a cross-domain impact if changed. There is also the 
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possibility of only decomposing/separating the signals to a module (the connecting lines in the tool) 

and only decomposing the product to a level where all functional modules are shown. This, however, 

requires an overview of all the electrical components that send and receive signals somewhere else. In 

the current paper, the authors have used the PFMP for decomposing the product families. Another 

proven methodology is dissecting the products in a family and capturing it decomposition level by level 

in a table, as in Thevenot and Simpson (2006). The MESA tool is scoped for creating awareness of 

cross-domain dependencies in the process of redesigning existing modular product architectures. 

Integrated product architectures are not within the scope of this work.  

When the interdependencies of a product are high, this means that a design change has an 

impact on several other components than on the one that was actually intended to be changed. 

Modularity seeks to minimize these interdependencies across modules (Gershenson et al., 2003). The 

main purpose of the MESA tool is to illustrate these interdependencies across domains because doing 

so will indicate the cascading effects caused by a design change in one domain for the other domains. 

Later, we present real case examples of such effects through the application of the tool. 

The level of granularity or decomposition level is, as mentioned in the “Related Work” section, 

important to consider when using the tool. Going into too much detail (a high decomposition level) may 

compromise the provided overview, and one could end up drowning in the details. On the other hand, 

too low of a decomposition level may result in the occurrence of certain phenomena, such as software 

redundancy or interdependencies not being displayed, which happened in the application of the tool in 

Case 2 (see the subsection titled “Observations using the MESA tool”). 
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Figure 1: Generic representation of the MESA tool 

6 Case applications of the MESA tool 
Now, the two applications of the tool are presented. 

6.1 Case 1 
The company selected for the first application is a Danish small-to-medium-sized enterprise 

(SME). The company sells approximately 3,000 units per year that are configured when ordered, and 

its annual revenue is in the order of 20 million EUR. It is a 50-year-old company that has built up an 

extensive portfolio of hundreds of commercial product variants. The products are mechatronic products 

sold in a business-to-business context. 

Figure 2 shows the MESA tool that was applied for Company 1. The figure only shows a section 

of the map, including six top-level modules and two submodules. The circles with letters inside them 

all indicate observations that will be described after the two cases have been presented. In its full form, 

the map includes 25 physical modules and 56 state machines (state machine is a method for writing the 

control code, and is described later) compared with the six modules and 25 state machines included in 

the current paper. 
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Six modules are identified in the mechanics domain. The kind-of structure (see Figure 2) used 

shows the variations in the components of different product variants. The electronics domain is 

represented via input/output (I/O) boards. These I/O boards are PCBs that handle signals to and from 

sensors and electrical components and that communicate the signals to and from a computer. Three I/O 

boards are shown in Figure 2: a gas I/O and a main I/O. The optional signals that are added based on 

the configuration of the product are shown with dotted lines. The software domain uses a state machine 

practice to write the control code. Using state machines is a common methodology for executing control 

software for mechatronic products (Wagner et al., 2006). State machines can be activated, and based on 

the inputs they get from, for example, signals from sensors and calculations, they can obtain a state that 

can be used by other state machines or that can send a signal to an electrical component. A state machine 

is comparable to what we call modules in the mechanics domain. Further, as seen in the map, some state 

machines handle the same functionality, and together, they constitute a higher-level module. The figure 

also includes how state machines communicate with each other, illustrating how different 

functionalities in the code are coupled. This allows the user to track how changes cascade through the 

code. 
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Figure 2: The MESA tool applied for Company 1. 
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6.2 Case 2 
The second case is of a business unit within a large industrial company. The business unit has 

a turnover of 80 million EUR on average and sells, apart from spares and smaller projects, around four 

big projects annually as an ETO company. Because of this strategy, their products evolve based on a 

combination of customer orders and traditional product development. The products are mainly 

mechatronic and sold to other companies or governments. During the project, the engineers were 

organized into departments corresponding to the domains, that is, mechanics, electronics, and software. 

Therefore, the connection between the domains and interaction was of interest. As a part of a bigger 

analysis of the business unit’s products and projects, the MESA tool was used to highlight how customer 

variation affected the products.  

Figure 3 displays a simplified form of the MESA tool’s application; it was not possible to show 

the actual version because of confidentiality restrictions. The level of abstraction compared with Case 

1 is equal in the mechanical domain but higher in the electronic and software domain because the 

controller consists of several I/O boards and PCBs. Each software module consists of numerous state 

machines. 

In Case 2, six mechanical modules are shown, and these are divided into two part-of 

components (subcomponents). The first part of the component represents the sensor and mechanical 

interface for the sensor. The other part-of component is the structural assembly of the module. The kind-

of structure represents the mechanical variants from one customer project to the next. A single controller 

represents the electronics domain. This was designed to handle high degrees of variation in terms of 

interfaces and, therefore, does not change. The software domain is divided into modules, and the 

interfaces between them are illustrated using the lines on the far right in Figure 3. 
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Figure 3: The MESA tool applied for Company 2. 

6.3 Observations using the MESA tool 
By using the tool in the two cases, we observed the cascading effects. These effects could be 

seen when observing the impact of a planned design change in the tool. The cascading effects in the 

two cases were driven by changes in either the software or mechanics; therefore, we divide this 

phenomenon into two (C1 and C2) when presenting examples from the case application.  

6.3.1 Cascading effects 
(C1) Cascading effects driven by the mechanics domain 

A cascading effect caused by the mechanics domain is the scenario in which a change in one 

component/module cascades through the system and ends up affecting several other modules in the 

other domains. 

Figure 2 (C1) shows such effects for Case 1. The company considered changing the fan motor 

control to a different type that uses different signals (in the figure, the cascading effects of this change 

are marked using thick lines). This would directly affect the eight state machines that are used to control 

or monitor the motor control. Two of the affected state machines control three other modules, so the 



17 

effect of the change cascades from the mechanics into the software and back to three other modules in 

the mechanics. The changes will also affect almost all modules in the electronics because the 

components that are changed have signals connecting to the main I/O. 

Regarding Case 2, Figure 3 (C1) shows one example of the cascading effects: the changing of 

a sensor or its position affects the mechanical module and Sensor Handler 1 (software), both of which 

are supposed to control the sensor’s function directly. These cascading effects were seen in cases where 

the changes cascaded from the sensor handler into four other modules, which were larger and more 

complex in terms of the number of lines of code; this led to extremely high costs for the company. 

Additionally, in certain cases, if the electrical connection is different from the one supported by the 

controller, the cost of developing a new controller or variant exceeded the cost of changing the electrical 

connection to one that was supported. Therefore, it is crucial to note that the cascading effects of a 

seemingly small change—thereby, a small expenditure—can carry greater costs than expected in the 

two other domains. 

(C2) Cascading effects driven by the software domain 

Using the modular architecture from the mechanics domain, which is connected to the software 

by signals, the MESA tool helps illustrate how a change in one module in the software domain affects 

the control of the other modules. 

Figure 2 (C2) shows how the humidity module in the software domain controls two modules 

and receives information from three other modules. Further, this module/state machine communicates 

with two state machines in another module. Therefore, changing the functionality of the humidity 

module in the software domain would affect the control of the two other modules directly and three 

other modules indirectly. One could then determine how the impacted modules are connected to other 

modules to identify third-order effects. 

In Figure 3 (C2), for Case 2, the MESA tool displays the effect of adding functionality to the 

software module “Moderator.” This change has a direct impact and needs the connected software 

modules to be altered (Training, Debriefing, Planning, and Effector Handler 1). In some cases, it was 

seen that to support the required changes for functionality, the physical effector needed to be changed 

too, for example, its angle, placement, and capacity of sensors and effectors in the mechanics domain. 
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Moreover, in a few cases, this required that changes be made to the controller in the electronics as well, 

which are all connected in the tool. 

6.4 Evaluation of the application of the tool 
In both companies, the tool was presented at meetings with product management and the 

involved domain experts. Both companies reported value in the overview of the cross-domain 

modularity dependencies. In Case 1, a more detailed evaluation was made. The evaluation included 

several domain experts: one electrical engineer, one mechanical engineer, and two software engineers, 

all with over five years of experience. A product manager, with over 10 years of experience, with the 

task of managing the portfolio of product, was also included. After being presented with the tool, they 

were given 10 statements and asked to rate their level of agreement (S1–10) on a scale from 1–4, where 

4 means strongly agree, 3 means agree, 2 means partly disagree, and 1 means strongly disagree. The 

statements were constructed based on the researchers’ application of the tool and the effects that they 

thought they could see in using the tool. With questions 1–3 (Q1-3), the participators could supply other 

written feedback regarding the use of the tool. The statements and questions are as follows: 

S1. The MESA tool provides an overview of cascading effects on other modules across the 
domains of mechanics, electronics, and software when a module is changed in the 
mechanical domain. 

S2. The MESA tool provides an overview of cascading effects on other modules across the 
domains of mechanics, electronics, and software when a module is changed in the software 
domain. 

S3. An overview of the cascading effects across modules and domains will increase the 
efficiency of planned design activities. 

S4. The MESA tool provides an overview of the redundancy of software code, where there 
exist multiple pieces of software code to handle the same functionality. 

S5. Multiple pieces of software to handle the same product functionality are unnecessary and 
only add to complexity and development costs. 

S6. The MESA tool provides an overview of the degree of centralization or modularization of 
the signal-handling components (PCBs). 

S7. Centralization of signal-handling components reduces direct costs, but modularization 
increases maintenance efficiency. 

S8. The MESA tool provides an overview of the simulation task in relation to separate tests of 
the modules. 

S9. The MESA tool provides an overview of the differences in modular divisions between 
mechanics and software. 

S10. Following the same modular division in mechanics and software increases development 
efficiency across the two domains. 

Q1. What are the challenges with using the MESA tool? 
Q2. What are the challenges with setting up the MESA tool? 
Q3. Do you see any other benefits with using the MESA tool? 
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Table 1 shows the answers to statements 1–10 given by the five engineers. Statement 1 (S1) 

supports the ability to show cascading effects driven by the mechanics domain (C1), S2 supports the 

ability to show this from the software domain (C2), and S3 is related to the value of showing these 

effects.  

The evaluation showed that there was an overall agreement of the value of this tool and its 

ability to show cascading effects across domains and modules. Furthermore, there was agreement that 

some modularity principles (S4–10) can be investigated using the tool. With statement four regarding 

the ability to show software redundancy, there is a tendency toward partly not agreeing with this. When 

engineers two and five were asked why they scored low on this, they replied that just because there 

were multiple pieces of software to handle the same functionality did not mean that they were redundant. 

They did, however, agree that such areas should be subjected to further investigation.  

Table 1: Evaluation of the MESA tool. Scoring by five engineers from case Company 2. Under S1–3 is noted which 
cascading effects it supports. 

S1 
(C1) 

S2 
(C2) 

S3 
(C1, C2) S4 S5 S6 S7 S8 S9 S10 

Engineer 1 software 4 3 3 4 4 3 2 3 4 2 
Engineer 2 software 3 2 4 2 4 3 3 3 3 2 
Engineer 3 electronics 3 3 2 3 2 4 4 3 3 4 
Engineer 4 mechanics 4 3 4 3 4 4 4 2 4 4 
Engineer 5 product 
manager 4 4 3 2 2 3 4 4 4 3 

Average score 4 3.5 3.5 2.5 3 3.5 4 3 4 3.5 

Table 2 shows an overview of the extra inputs given by the practitioners from answering 

questions one to three. Multiple practitioners supported some feedback, while other forms of feedback 

were unique. The main concern with using the tool is the amount of resources it takes to set it up and 

maintain it. However, we would claim that making an overview of cross-domain dependencies will 

always be relatively resourceful, but the impact of forgetting dependencies under a design change can 

also have a large impact with new design iterations or even quality problems after the products have 

been sold.  

The fact that the tool is a simplified representation of reality is also one of the drivers for 

achieving an overview. If used together with domain experts, the authors expect that they will know if 

any important details are not shown. The knowledge from domain experts will also support changes so 
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that designers are not wrongly stopped from making changes because the impact seems too big. The 

tool should not be used alone by a single designer but should be seen as more than a tool to communicate 

impacts across domains under a design change among a cross-domain team. 

One of the practitioners stated the need for commitment. We would even claim that 

commitment is not only needed across departments to fully succeed with a modularization strategy but 

also that top management commitment and involvement is needed (Sanchez, 2013). 

The authors did not consider using the tool for common naming modules and signals, which 

was suggested by one of the practitioners as an additional benefit. In addition, the possibility of using 

it for investigating potential service error scenarios was new. The product manager suggested using the 

tool as “rethinking” the product. When asked about the details on this, he elaborated that knowing all 

the signals and physical modules in the product could foster new ideas to added functionality, which 

could be implemented by only adding new software, “a new way of using the product.” 

Table 2: Evaluation of the MESA tool. Answers from Engineers 1–5 (described in Table 1) to Q1–3. Numbers in right 
column refer to engineers 1–5. 

Challenges with using and setting up the tool Stated by which engineers 
Difficult to maintain the overview (keep it up to date) 1, 2, 4 
A simplified representation of reality (risk for not including 
everything) 

2, 5 

Resourceful to set up the tool 1, 2, 3, 4, 5 
There needs to be commitment across departments to modularization 
and the general awareness of cross-domain dependencies 

3 

Changes may not be conducted because one can be “scared” of the 
impact the tool shows the change has, even though the change might 
not be that big 

4, 5 

Other benefits related to using the tool Stated by which engineers 
Easier knowledge share and understanding across domains 1, 5 
Could be used for making common names of modules/signals, etc. 1 
Maybe technical service can use it to make an overview of potential 
error scenarios 

1 

Useful to all who have a mindset for developing modular products 3 
Gives a good overview of what affects what on a higher 
organizational level 

4 

Gives a more holistic view of the product that is normally not 
perceived 

5 

One could use the tool for rethinking the product by using all the 
building blocks already there and “only” changing the software 

5 
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7 Discussion and conclusion 
When developing mechatronic modular products, the visualization of the modular product 

architecture for a family of products across the engineering domains of mechanics, electronics, and 

software can help to illustrate the impact of changes on modules not only in one domain but also across 

all three. This would be helpful when planning the concurrent development of modules in the families 

of products. 

Because of the lack of research to support modularity across domains and the need from 

industry to access cross-domain dependencies, we have developed the MESA tool. We then tested the 

hypothesis that the MESA tool can be used for mapping and communicating modularity dependencies 

across the engineering domains of mechanics, electronics, and software. This was done by applying the 

tool in two companies and evaluating its application with the help of senior engineers and product 

management. The evaluation showed that the MESA tool was able to show cascading effects across 

domains and modules caused by a design change from both mechanics and software. Knowledge about 

the dependencies across modules is one of the key factors for improving a modular design (Gershenson 

et al., 2003). Using the MESA tool, this knowledge is extended beyond a single-domain focus.  

The existing research within modularization in engineering design focuses mainly on the 

mechanics and electronics domains, and no methods or tools directly include the associated software of 

mechatronic products (Bonvoisin et al., 2016; Gauss et al., 2020; Otto et al., 2016; Pirmoradi et al., 

2014). Research has been conducted on modularization and software (Morales, 2014a, 2014b) but 

mainly focuses on the functional modularity of the software, not so much on the relation the 

dependencies with mechanics and electronics. Other tools and methods would be better for identifying 

the dependencies across modules in each of the domains; however, the MESA tool is intended for 

visualizing modular dependencies across mechanics, electronics, and software, explicitly including the 

associated software. The tool can be seen as an extension of the existing research on modularity, 

focusing directly on the dependencies across domains. More precisely, the MESA tool can be seen as 

an extension of the PFMP (Harlou, 2006) and interface diagram (Bruun et al., 2014). 

We have tested the tool within two different companies. The application revealed two types of 

the cascading effects (C1, 2) that can be observed when using the model. These observations are aimed 
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at helping in planning improved modular designs or future design updates. The companies reported that 

the process of using the MESA tool helped in conducting a more precise planning process for the next 

generation of products in Case 1 and enabled the continuous development of future solutions in Case 2. 

The observed effects were achieved by applying the tool to two different sized companies that 

operate in different businesses. This is not enough to claim generalizability, but it indicated that the 

observations were not unique to one company. The observations were evaluated in a survey made in 

Case 1. Five engineers were asked to rate their level of agreement with the tool’s ability to show the 

observed cascading effects, some modularity principles, and the importance of these effects and 

principles. There was an overall agreement of the importance and ability of the tool to show modularity 

dependencies across domains and that the tool could be used for investigating modularity principle like 

the degree of centralization versus modularization of a signal-handling component like I/O boards. 

However, the ability to show the redundancy of software was rated lower. The practitioners agreed that 

the tool could be used for searching for areas with software redundancy, but a more detailed analysis of 

the software was needed to show this. 

Regarding the chosen level of the granularity of product decomposition, one should consider 

choosing a level that allows for the discovery of all cross-module dependencies across domains. It has 

been described how this must be done to an extent where all components receiving and sending signals 

in the mechanics domain are divided in each module. In Case 2, the level of decomposition of the 

software was not high enough to reveal software redundancy. This leads to the conclusion that the 

software needs to be decomposed to a level where a single functionality is handled in the piece of code 

that is represented in the tool. This was done in Case 1, and the company was able to locate areas to 

investigate for software redundancy. Depending on the complexity of the product, different levels of 

decomposition will lead to different levels of detail (Walden et al., 2015). Therefore, one cannot give a 

certain level of decomposition that should be used. In future research, a process for determining a 

suitable level of granularity when decomposing the product family under analysis could be included. 

These processes have already been described by Hölttä-Otto et al. (2014), for instance.  

We have observed two types of cascading effects and four modularity principles related to 

cross-domain modularity by using the MESA tool. These effects and principles are probably not a 
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comprehensive definition of such effects when making observations across mechanics, electronics, and 

software, but these are the ones that had the biggest impact on costs and lead time in the two cases. 

By using the MESA tool, one can locate the dependencies between design decisions across 

domains. This becomes a way of creating awareness of the effects of design decisions from the 

mechanics domain into the software domain and vice versa. However, it does not support a true 

integration of the software development processes with product design methods. Object-oriented 

architecture for graphical user interfaces, such as the model view controller (MVC) and presentation 

abstraction control (PAC) (Hussey and Carrington, 1997), could perhaps be used or inspire the 

integration of product development that is not only related to user interface. This could be the subject 

of further research. We see the MESA tool as one of many enablers for integrating software and product 

development processes.  

Furthermore, to avoid having this as a separate model, the inclusion of a functional layer in the 

model could be included in future studies. 

Funding 
The authors received no financial support for the research, authorship, or publication of this article. 
Declaration of conflicting interests 
The authors declare that there is no conflict of interests. 

8 References 
Alvarez Cabrera AA, Woestenenk K and Tomiyama T (2011) An architecture model to support 

cooperative design for mechatronic products: A control design case. Mechatronics 21(3): 534–
547. DOI: 10.1016/j.mechatronics.2011.01.009.

Alvarez Cabrera AA, Komoto H, Van Beek TJ, et al. (2014) Architecture-centric design approach for 
multidisciplinary product development. In: Advances in Product Family and Product Platform 
Design: Methods and Applications. Springer New York, pp. 419–447. DOI: 10.1007/978-1-
4614-7937-6_17. 

Askhøj C and Mortensen NH (2019) Deciding on the total number of product architectures. 
Concurrent Engineering: 1063293X1988896. DOI: 10.1177/1063293X19888968. 

Askhøj C, Løkkegaard M, Bertram CA, et al. (2020) Identifying modularity practices across 
mechanics, electronics and software. In: Proceedings of NordDesign 2020, 2020. The Design 
Society. DOI: 10.35199/NORDDESIGN2020.9. 

Bonvoisin J, Halstenberg F, Buchert T, et al. (2016) A systematic literature review on modular 
product design. Journal of Engineering Design 27(7): 488–514. DOI: 
10.1080/09544828.2016.1166482. 

Browning TR (2016) Design Structure Matrix Extensions and Innovations: A Survey and New 
Opportunities. IEEE Transactions on Engineering Management 63(1): 27–52. DOI: 
10.1109/TEM.2015.2491283. 

Bruun HPL, Mortensen NH and Harlou U (2014) Interface diagram: Design tool for supporting the 
development of modularity in complex product systems. Concurrent Engineering Research and 
Applications 22(1): 62–76. DOI: 10.1177/1063293X13516329. 

Buur J (1990) A theoretical approach to mechatronics design. Technical University of Denmark. 



24 

Clarkson PJ, Simons C and Eckert C (2004) Predicting change propagation in complex design. 
Journal of Mechanical Design, Transactions of the ASME 126(5). American Society of 
Mechanical Engineers Digital Collection: 788–797. DOI: 10.1115/1.1765117. 

De Silva CW (2005) Mechatronics : An Integrated Approach. CRC Press. 
Eppinger SD and Browning TR (2012) Design Structure Matrix Methods and Applications. MIT 

Press. 
Erixon G, von Yxkull A and Arnström A (1996) Modularity – the Basis for Product and Factory 

Reengineering. CIRP Annals 45(1): 1–6. DOI: 10.1016/S0007-8506(07)63005-4. 
Fixson SK (2007) Modularity and Commonality Research: Past Developments and Future 

Opportunities. Concurrent Engineering 15(2): 85–111. DOI: 10.1177/1063293X07078935. 
Gauss L, Lacerda DP and Cauchick Miguel PA (2020) Module-based product family design: 

systematic literature review and meta-synthesis. Journal of Intelligent Manufacturing. Springer. 
DOI: 10.1007/s10845-020-01572-3. 

Gepp M, Foehr M and Vollmar J (2016) Standardization, modularization and platform approaches in 
the engineer-to-order business Review and outlook. In: 2016 Annual Ieee Systems Conference 
(syscon) (ed. IEEE), 2016, pp. 237–242. 

Gershenson JK, Prasad GJ and Zhang Y (2003) Product modularity: Definitions and benefits. Journal 
of Engineering Design 14(3): 295–313. DOI: 10.1080/0954482031000091068. 

Gershenson JK, Prasad GJ and Zhang Y (2004) Product modularity: measures and design methods. 
Journal of Engineering Design 15(1): 33–51. DOI: 10.1080/0954482032000101731. 

Greve E and Krause D (2018) An Assessment of Methods to Support the Design of Future Robust 
Modular Architectures. International Design Conference - Design 2018: 335–346. DOI: 
10.21278/idc.2018.0249. 

Harlou U (2006) Developing product families based on architectures : contribution to a theory of 
product families. Department of Mechanical Engineering, Technical University of Denmark. 

Hehenberger P (2014) Perspectives on hierarchical modeling in mechatronic design. Advanced 
Engineering Informatics 28(3). Elsevier Ltd: 188–197. DOI: 10.1016/j.aei.2014.06.005. 

Helbig T, Erler S, Westkämper E, et al. (2016) Modelling Dependencies to Improve the Cross-domain 
Collaboration in the Engineering Process of Special Purpose Machinery. In: Procedia CIRP, 1 
January 2016, pp. 393–398. Elsevier B.V. DOI: 10.1016/j.procir.2015.12.123. 

Hölttä-Otto K, Chiriac NA, Lysy D, et al. (2012) Comparative analysis of coupling modularity 
metrics. Journal of Engineering Design 23(10–11): 790–806. DOI: 
10.1080/09544828.2012.701728. 

Hubka V and Eder WE (1988) Theory of Technical Systems. Theory of Technical Systems. Springer 
Berlin Heidelberg. DOI: 10.1007/978-3-642-52121-8. 

Hussey A and Carrington D (1997) Using Object-Z to compare the MVC and PAC architectures. In: 
Bcs-facs Workshop on Formal Aspects of the Human Computer Interface. Proceedings, 1997. 

Jiao J, Simpson TW and Siddique Z (2007) Product family design and platform-based product 
development: A state-of-the-art review. Journal of Intelligent Manufacturing 18(1): 5–29. DOI: 
10.1007/s10845-007-0003-2. 

Krause D, Beckmann G, Eilmus S, et al. (2014) Integrated Development of Modular Product 
Families: A Methods Toolkit. In: Advances in Product Family and Product Platform Design. 
New York, NY: Springer New York, pp. 245–269. DOI: 10.1007/978-1-4614-7937-6_10. 

Kvist M (2010) Product Family Assessment. Technical University of Denmark. Available at: 
https://findit.dtu.dk/en/catalog/2389469614 (accessed 17 November 2020). 

Løkkegaard M, Mortensen NH and Hvam L (2018) Using business critical design rules to frame new 
architecture introduction in multi-architecture portfolios. International Journal of Production 
Research 56(24): 7313–7329. DOI: 10.1080/00207543.2018.1450531. 

Martin M V. and Ishii K (2002) Design for variety: Developing standardized and modularized product 
platform architectures. Research in Engineering Design 13(4). Springer Verlag: 213–235. DOI: 
10.1007/s00163-002-0020-2. 

Meyer MH and Lehnerd AP (1997) The Power of Product Platforms : Building Value and Cost 
Leadership. Free Press. 

Meyer MH and Utterback J (1993) The product family and the dynamics of core capability. Sloan 
Management Review 34(3): 29–47. 



25 

Morales CO (2014a) A heuristic approach to architectural design of software-intensive product 
platforms. In: Advances in Product Family and Product Platform Design: Methods and 
Applications. Springer New York, pp. 647–681. DOI: 10.1007/978-1-4614-7937-6_26. 

Morales CO (2014b) Design principles for reusable software product platforms. In: Advances in 
Product Family and Product Platform Design: Methods and Applications. Springer New York, 
pp. 533–558. DOI: 10.1007/978-1-4614-7937-6_21. 

Mortensen NH, Hansen CL, Hvam L, et al. (2011) Proactive Modeling of Market, Product and 
Production Architectures. In: Proceedings of the 18th International Conference on Engineering 
Design (ICED), 2011, pp. 133–144. 

Mortensen NH, Hansen CL, Løkkegaard M, et al. (2016) Assessing the cost saving potential of shared 
product architectures. Concurrent Engineering Research and Applications 24(2): 153–163. DOI: 
10.1177/1063293X15624133. 

Mougin J, Boujut J-F, Pourroy F, et al. (2015) Modelling knowledge transfer: A knowledge dynamics 
perspective. Concurrent Engineering Research and Applications 23(4): 308–319. DOI: 
10.1177/1063293X15592185. 

Muller P, Mattes A, Klitou D, et al. (2018) Annual Report of European SMEs 2017-2018. 
Luxembourg. DOI: 10.2873/248745. 

Nadadur G, Kim W, Thomson AR, et al. (2012) Strategic Product Design for Multiple Global 
Markets. In: Volume 7: 9th International Conference on Design Education; 24th International 
Conference on Design Theory and Methodology, 12 August 2012, pp. 837–848. American 
Society of Mechanical Engineers. DOI: 10.1115/DETC2012-70723. 

Otto KN, Hölttä-Otto K, Simpson TW, et al. (2016) Global Views on Modular Design Research: 
Linking Alternative Methods to Support Modular Product Family Concept Development. 
Journal of Mechanical Design 138(7): 071101 1–16. DOI: 10.1115/1.4033654. 

Parslov JF and Mortensen NH (2015) Interface definitions in literature: A reality check. Concurrent 
Engineering Research and Applications 23(3): 183–198. DOI: 10.1177/1063293X15580136. 

Pedersen R (2010) Product Platform Modeling: Contributions to the discipline of visual product 
platform modelling. Technical University of Denmark. Available at: 
https://findit.dtu.dk/en/catalog/2389470855 (accessed 17 November 2020). 

Pimmler TU and Eppinger SD (1994) Integration Analysis of Product Decompositions. In: ASME 
Design Theory and Methodology Conference, 1994, pp. 343–351. 

Piran FAS, Lacerda DP, Antunes JAV, et al. (2016) Modularization strategy: analysis of published 
articles on production and operations management (1999 to 2013). International Journal of 
Advanced Manufacturing Technology 86(1–4): 507–519. DOI: 10.1007/s00170-015-8221-9. 

Pirmoradi Z, Wang GG and Simpson TW (2014) A Review of Recent Literature in Product Family 
Design and Platform-Based Product Development. In: Advances in Product Family and Product 
Platform Design. New York, NY: Springer New York, pp. 1–46. DOI: 10.1007/978-1-4614-
7937-6_1. 

Prasad B (1996) Concurrent Engineering Fundamentals, Volume I: Integrated Product and Process 
Organization. Upper Saddle River: Prentice Hall PTR. 

Prasad B (1997) Concurrent Engineering Fundamentals, Volume II: Integrated Product Development. 
Goodwin B (ed.). Upper Saddle River: Prentice Hall PTR. DOI: 10.13140/RG.2.1.4710.1527. 

Prasad B (1999) Enabling principles of concurrency and simultaneity in concurrent engineering. AI 
EDAM 13(03): 185–204. DOI: 10.1017/S0890060499133055. 

Prasad B (Brian) (2016) On mapping tasks during product development. Concurrent Engineering 
24(2): 105–112. DOI: 10.1177/1063293X15625098. 

Robertson D and Ulrich KT (1998) Planning for product platforms. Sloan Management Review 39(4): 
19–31. 

Sanchez R (2010) Creating Modular Platforms for Strategic Flexibility. Design Management Review 
15(1): 58–67. DOI: 10.1111/j.1948-7169.2004.tb00151.x. 

Sanchez R (2013) Building real modularity competence in automotive design, development, 
production, and after-service. International Journal of Automotive Technology and Management 
13(3): 204–236. DOI: 10.1504/IJATM.2013.054918. 

Sanchez R and Collins RP (2001) Competing - and learning - in modular markets. Long Range 
Planning 34(6): 645–667. DOI: 10.1016/S0024-6301(01)00099-1. 



26 

Schuh G, Rudolf S and Breunig S (2016) Modular Platform Design for Mechatronic Systems using 
Axiomatic Design and Mechatronic Function Modules. In: Procedia CIRP, 2016, pp. 701–706. 
Elsevier B.V. DOI: 10.1016/j.procir.2016.05.035. 

Schuh G, Dölle C, Barg S, et al. (2019) Efficient Modular Product Platform Design of Mechatronic 
Systems. In: IEEE International Conference on Industrial Engineering and Engineering 
Management, 9 January 2019, pp. 1391–1395. IEEE Computer Society. DOI: 
10.1109/IEEM.2018.8607714. 

Simpson TW (2004) Product platform design and customization: Status and promise. Artificial 
Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM 18(1): 3–20. DOI: 
10.1017/S0890060404040028. 

Simpson TW, Bobuk A, Slingerland LA, et al. (2012) From user requirements to commonality 
specifications: an integrated approach to product family design. Research in Engineering Design 
23(2): 141–153. DOI: 10.1007/s00163-011-0119-4. 

Steward D V. (1981) DESIGN STRUCTURE SYSTEM: A METHOD FOR MANAGING THE 
DESIGN OF COMPLEX SYSTEMS. IEEE Transactions on Engineering Management EM-
28(3): 71–74. DOI: 10.1109/TEM.1981.6448589. 

Stjepandić J, Ostrosi E, Fougères AJ, et al. (2015) Modularity and supporting tools and methods. In: 
Concurrent Engineering in the 21st Century: Foundations, Developments and Challenges. 
Springer International Publishing, pp. 389–420. DOI: 10.1007/978-3-319-13776-6_14. 

Thevenot HJ and Simpson TW (2006) Commonality indices for assessing product families. In: 
Product Platform and Product Family Design: Methods and Applications. Springer US, pp. 
107–129. DOI: 10.1007/0-387-29197-0_7. 

Uddin A, Khan MK, Campean F, et al. (2016) A framework for complex product architecture analysis 
using an integrated approach. Concurrent Engineering Research and Applications 24(3). SAGE 
Publications Ltd: 195–210. DOI: 10.1177/1063293X16647434. 

Ulrich KT and Eppinger SD (2012) Product Design and Development. McGraw-Hill/Irwin. 
Wagner F, Schmuki R, Wagner T, et al. (2006) Modeling Software with Finite State Machines: A 

Practical Approach. Modeling Software with Finite State Machines: A Practical Approach. 
CRC Press. DOI: 10.1201/9781420013641. 

Walden DD, Roedler GJ and Forsberg K (2015) INCOSE Systems Engineering Handbook Version 4: 
Updating the Reference for Practitioners. INCOSE International Symposium 25(1). Wiley: 678–
686. DOI: 10.1002/j.2334-5837.2015.00089.x.

Welp EG and Jansen S (2004) Domain allocation in mechatronic products. In: Design 2004: 
Proceedings of the 8th International Design Conference, 2004, pp. 1349–1354. 

Weyrich M, Klein P, Laurowski M, et al. (2011) A function-oriented approach for a mechtronic 
Modularization of a sensor-guided Manufacturing System. In: 56TH INTERNATIONAL 
SCIENTIFIC COLLOQUIUM, 2011. 

Wilson S and Perumal A (2009) Waging War on Complexity Costs. McGraw-Hill Education. DOI: 
10.1038/nsmb.3375. 

Zouari A, Tollenaere M, Bacha H Ben, et al. (2015) Domain knowledge versioning and aggregation 
mechanisms in product design processes. Concurrent Engineering Research and Applications 
23(4): 296–307. DOI: 10.1177/1063293X15591037. 




