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Abstract. We develop a model for the parallel perform- 
ance of algorithms that consist of concurrent, two- 
dimensional wavefronts implemented in a message pass- 
ing environment. The model, based on a LogGP machine 
parametrization, combines the separate contributions of 
computation and communication wavefronts. We vali- 
date the model on three important supercomputer sys- 
tems, on up to 500 processors. We use data from a deter- 
ministic particle transport application taken from the 
ASCI workload, although the model is general to any 
wavefront algorithm implemented on a 2-D processor 
domain. We also use the validated model to make esti- 
mates of performance and scalability of wavefront algo- 
rithms on 100-TFLOPS computer systems expected to be 
in existence within the next decade as part of the ASCI 
program and elsewhere. In this context, we analyze two 
problem sizes. Our model shows that on the largest such 
problem ( 1 billion cells), inter-processor communication 
performance is not the bottleneck. Single-node efficiency 
is the dominant factor. 

1. Introduction 

Wavefront techniques are used to enable parallelism in 
algorithms that have recurrences by breaking the compu- 
tation into segments and pipelining the segments through 
multiple processors [ 13. First described as “hyperplane” 
methods by Lamport [2], wavefront methods now find 
application in several important areas including particle 
physics simulations [3], parallel iterative solvers [4], and 
parallel solution of triangular systems of linear equations 

Wavefront computations present interesting imple- 
mentation and performance modeling challenges on dis- 
tributed memory machines because they exhibit a subtle 
balance between processor utilization and communication 
cost, Optimal task granularity is a function of machine 
parameters such as raw computational speed, and inter- 
processor communication latency and bandwidth. Al- 
though it is simple to model the computation-only portion 
of a single wavefront, it is considerably more complicated 
to model multiple wavefronts existing simultaneously, due 

[5-71. 

to potential overlap of computation and communication 
and/or overlap of different communication or computation 
operations individually. Moreover, specific message 
passing synchronization methods impose constraints that 
can further limit the available parallelism in the algorithm. 
A realistic scalability analysis must take into consideration 
these constraints. 

Much of the previous parallel performance modeling 
of software-pipelined applications has involved algorithms 
with one-dimensional recurrences and/or one-dimensional 
processor decompositions [5-71. A key contribution of 
this paper is the development of an analytic performance 
model of wavefront algorithms that have recurrences in 
multiple dimensions and that have been partitioned and 
pipelined on multidimensional processor grids. We use a 
“compact application” called SWEEP3D, a time- 
independent, Cartesian-grid, single-group, “discrete ordi- 
nates” deterministic particle transport code taken from the 
DOE Accelerated Strategic Computing Initiative (ASCI) 
workload. Estimates are that deterministic particle trans- 
port accounts for 50-80% of the execution time of many 
realistic simulations on current DOE systems; this per- 
centage may expand on future 100-TFLOPS systems. 
Thus, an equally-important contribution of this work is the 
use of our model to explore SWEEP3D scalability and to 
show the sensitivity of SWEEP3D to per-processor sus- 
tained speed, and MPI latency and bandwidth on future- 
generation systems. 

Efforts devoted to improving performance of discrete 
ordinates particle transport codes date back many years 
and have extended recently to massively-parallel systems 
[8-121. Research has included models of performance as 
a function of problem and machine size, as well as other 
characteristics of both the simulation and the computer 
system under study. For example, Koch, Baker, and Al- 
couffe [3] developed a parallel efficiency formula that 
considered computation only, while Baker and Alcouffe 
[9] developed a model specific to CRAY T3D put/get 
communication. However, these previous models had 
limiting assumptions about the computation and/or the 
target machines. 

In this work, we model parallel discrete ordinates 
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transport and account for both computation and communi- 
cation. We validate the model on several architectures 
within the realistic limits of all parameters appearing in 
the model. Sections 2 and 3 of the paper briefly describe 
the algorithm and its implementation. Sections 4 and 5 
derive the performance model and give validation results. 
In the final sections of the paper, the model is used to es- 
timate SWEEP3D performance on future generation par- 
allel systems, showing the sensitivity of this application to 
system computation and communication parameters. 

Note that although we present results for three differ- 
ent parallel systems, no comparison of achieved system 
performance or scalability is intended. Rather, measure- 
ments from the three systems are presented in an effort to 
demonstrate generality of the performance model and sen- 
sitivity of application performance to machine parameters. 

2. Description of Discrete Ordinates Transport 

Although much more complete treatments of discrete 
ordinates neutron transport have appeared elsewhere [ 12- 
151, we include a brief explanation here to make clear the 
origin of the wavefront process in SWEEP3D. The basis 
for neutron transport simulation is the time-independent, 
multigroup, inhomogeneous Boltzmann transport equa- 
tion, which is formulated as 

V-SZY(r,E,SZ) + h(r,E)y(r,E,Q) = 
jJdE’di(r,E’ + E,Q-Q’)Y(r,E’,Q’) + 
(1/4~c)jjdE‘dQ’x(r,E’ + E)vo (r,E’)Y(r,E’,Q’) + 
Q(r,E,Q). 

The unknown quantity is Y, which represents the flux 
of particles at the spatial point r with energy E traveling in 
direction Q. 

Numerical solution involves complete discretization of 
the multi-dimensional phase space defined by r, SZ, and E. 
Discretization of energy uses a “multigroup” treatment, in 
which the energy domain is partitioned into subintervals in 
which the dependence on energy is known. In the discrete 
ordinates approximation, the angular-direction Q is dis- 
cretized into a set a quadrature points. This is also re- 
ferred to as the SN method, where (in 1D) N represents the 
number of angular ordinates used. The discretization is 
completed by differencing the spatial domain of the prob- 
lem on to a grid of cells. 

The numerical solution to the transport equation in- 
volves an iterative procedure called a “source iteration” 
(see Ref. 13). The most time-consuming portion is the 
“source correction scheme,” which involves a transport 
sweep through the entire grid-angle space in the direction 
of particle travel. A lower triangular matrix is obtained, 
as such one needs to go through the grid only once in in- 
verting the iteration matrix. In Cartesian geometries, each 
octant of angles has a different sweep direction through 

the mesh, and all angles in a given octant sweep the same 
way. 

For a given discrete angle, each grid cell has a spa- 
tially-exact particle “balance equation” with seven un- 
knowns. The unknowns are the particle fluxes on the six 
cell faces and the flux within the cell. Boundary condi- 
tions and the spatial differencing approximation are used 
to provide closure to the system. Boundary conditions 
(typically vacuum or reflective) allow the sweep to be 
initiated at the object’s exterior. Thereafter, for any given 
cell, the fluxes on the three incoming cell planes for parti- 
cles traveling in a given discrete angle are known and are 
used to solve for the cell center and the three cell faces 
through which particles leave the cell. Thus, each interior 
cell requires in advance the solution of its three upstream 
neighboring cells - a three-dimensional recursion. This is 
illustrated in Figure 1 for a I-D arrangement of cells and 
in Figure 2 for a 2-D grid. 

I l l  
Figure 1. Dependences for a 1-D Transport Sweep. 

Figure 2. 2-D Transport Sweep along a Diagonal 
Wavefront. 

3. Parallelism in Discrete Ordinates Transport 

The only inherent parallelism is related to the discreti- 
zation over angles. However, reflective boundary condi- 
tions limit this parallelism to, at most, angles within a sin- 
gle octant. 

The two-dimensional recurrence may be partially 
eliminated because solutions for cells within a diagonal 
are independent of each other (as shown in Figure 2). The 
success of this “diagonal sweep” scheme on SIMD com- 
puters such as single-processor vector systems (using 2-D 
plane diagonals) and the Thinking Machines, Inc. Con- 
nection Machine (using 3-D body diagonals) has been 
demonstrated [3]. 
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Diagonal concurrency can also be the basis for imple- 
mentation of a transport sweep using a decomposition of 
the mesh into subdomains using message passing to com- 
municate the boundaries between processors, as described 
in [I21 and shown in Figure 3. The transport sweep is 
performed subdomain by subdomain in a given angular 
direction. Each processor’s exterior surfaces are com- 
puted by, and received in a message from, “upstream” 
processors owning the subdomains sharing these surfaces. 

However, as pointed out by Baker [9] and Koch [3], 
the dimensionality of the SN parallelism is always one or- 
der lower than the spatial dimensionality because recur- 
sion in one spatial direction cannot be eliminated. 

Figure 3. Illustration of the 2-D Domain decomposi- 
tion on eight processors with 2 k-planes per block. 
The transport sweep has started at top of the proces- 
sor in the foreground. Concurrently-computed cells 
are shaded. 

Because of this, parallelization of the 3-D SN transport in 
SWEEP3D uses a 2-D processor decomposition of the 
spatial domain. 

Parallel efticiency would be limited if each processor 
computed its entire local domain before communicating 
information to its neighbors. A strategy in which blocks 
of planes in one direction (k, in the current implementa- 
tion) and angles are pipelined through this 2-D processor 
array improves the efficiency, as shown in Figure 3. 
Varying the k- and angle-block sizes changes the balance 
between parallel utilization and communication time. 

4. A Performance Model for Parallel Wavefronts 

This section describes a performance model of a mes- 
sage passing implementation of SWEEP3D. Our model 
uses a pipelined wavefront as the basic abstraction and 
predicts the execution time of the transport sweep as a 
function of primary computation and communication pa- 
rameters. We use a two-parameter (latency/bandwidth) 
linear model for communication performance, which is 

equivalent to the LogGP model [16]. We use the term 
latency to mean the sum of L and o in the LogGP frame- 
work, and bandwidth to mean the inverse of G. Since 
different implementations of MPI use different buffering 
strategies as a function of message size, a single set of 
latency/bandwidth parameters describes a limited range of 
message sizes. Consequently, multiple sets are used to 
describe the entire range. Computation time is param- 
eterized by problem size, the number of floating-point 
calculations per grid point, and a characteristic single- 
CPU floating-point speed. 

4. I Pipelined Wavefront Absti-action 

An abstraction of the SWEEP3D algorithm partitioned 
for message passing on a 2-D processor domain (ij plane) 
is described in Figure 4. The inner-loop body of this algo- 
rithm describes a wavefront calculation with recurrences 
in two dimensions. Each processor must wait for bound- 
ary information from neighboring processors to the north 
and west before computing on its subdomain. For con- 
venience, we assume that the implementation uses MPI 
with synchronous, blocking sendsheceives. There is little 
loss of generality in this assumption since the subdomain 
computation must wait for message receipt. Multiple 
waves initiated by the octant, angle-block and k- block 
loops are pipelined one after another as shown in Figure 5, 
in which two inner loop bodies (or “sweeps”) are execut- 
ing on a Px by Py  processor grid. Each diagonal line of 
processors is executing the same k-block loop iteration in 
parallel on a different subdomain; two such diagonals are 
highlighted in the figure. 

Using this pipeline abstraction as the foundation, we 
can build a model of execution time for the transport 
sweep. The number of steps required to execute a com- 
putation of PIswcep wavefronts, each with a pipeline length 
of N, stages and a repetition delay of d is given by equa- 
tion (1). 

Steps = N, + d(N,,, - l), (1) 
The first wavefront exits the pipeline after N, stages and 
subsequent waves exit at the rate of lld. 

The pipeline consists of both computation and com- 
munication stages. The number of stages of each kind and 
the repetition delay per wavefront need to be determined 
as a function of the number of processors and shape of the 
processor grid. The cost of each individual computa- 
tionlcommunication stage is dependent on problem size, 
processor speed and communication parameters. 

4.2 Computation Stages 

is simply the number of diagonals in the grid. 
Figure 5 shows that the number of computation stages 

A 
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FOR EACH OCTANT DO 
FOR EACH ANGLE-BLOCK IN OCTANT DO 

FOR EACH K-BLOCK DO 
IF (NEIGHBOR-ON-EAST) RECEIVE FROM EAST (BOUNDARY DATA) 
IF (NEIGHBOR-ON -NORTH) RECEIVE FROM NORTH (BOUNDARY DATA) 

COMPUTE-MESH (EVERY I,J DIAGONAL; EVERY K IN K-BLOCK; 
EVERY ANGLE IN ANGLE-BLOCK) 

IF (NEIGHBOR-ON-WEST) SEND TO WEST (BOUNDARY DATA) 
IF (NEIGHBOR-ON-SOUTH) SEND TO SOUTH(B0UNDARY DATA) 

END FOR 
END FOR 

END FOR 

Figure 4. Pseudo Code for the wavefront Algorithm 

Figure 5. Multidimensional Pipelined Wavefronts 

different number of processors is employed at each stage 
but all stages take the same amount of time since proces- 
sors on a diagonal are executing concurrently. The cost of 
one computational stage is thus the time to complete one 
COMPUTE-MESH function (see algorithm abstraction 
above) on a processor’s subdomain. The discussion can 
be summarized with two equations. Equation (2) gives 
the number of computation steps in the pipeline, 

NP”p=Px+Py- l  (2) 

and Equation 3 gives the cost of each step, 

where N,, N,., and N, are the number of ,gid points in each 
direction; Kb is the size of the k-plane block; Ab is the size 
of the angular block; Ngops is the number of floating-point 
operations per gridpoint; and Rgops is a characteristic 
floating-point rate for the processor. The next sweep can 
begin as soon as the first processor completes its compu- 
tation so the repetition delay, is 1 computational 
step (i.e., the time for completing one diagonal in the 
sweep). 

4.3 Communication Stages 

The number and cost of communication stages are de- 
pendent on specific characteristics of the communication 

system. The effect of blocking synchronous communica- 
tions is that messages initiated by the same processor oc- 
cur sequentially in time and messages must be received in 
the same order that they are sent. As implemented, the 
order of receives is first from the west, then from the 
north, and the order of sends is first to the east and then to 
the south. These rules lead to the ordering (and 
concurrency) of the communications for a 4 x 4 processor 
grid as shown in Figure 6 for a sweep that starts in the 
upper-left quadrant. 

* - L . - + L P  3 

Figure 6 Communication Pipeline. 

In Figure 6 edges labeled with the same number are 
executed simultaneously and the graph shows that it takes 
12 steps to complete one communication sweep on a 4 x 4 
processor grid. We assume that a logical processor mesh 
can be imbedded into the machine topology such that each 
mesh node maps to a unique processor and each mesh 
edge maps to a unique router link. One can generalize the 
number of stages to a grid of P, by P,. processors by ob- 
serving that communication for each row of processors is 
initiated by a message from a north neighbor in the first 
column of processors. South-going messages in the first 
column of processors occur on every other step since each 
processor in the column a) has no west neighbor, and b) 
must send east before sending south. Thus the last proc- 
essor in the first column receives a message on step 2(Py- 
1). This initiates a string of west-going messages along 
the last row that are also sent on every other step, and the 
number of stages in the communication pipeline is given 
by 
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P /vs- = 2( Pv - 1) + 2( Px - 1) (4) 

Analogous to the computational pipeline, different 
stages of the communication pipeline have different num- 
bers of point-to-point communications. However, since 
these occur simultaneously, the cost of any single commu- 
nication stage is the time of a one-way, nearest neighbor 
communication. This time is given by: 

where latency + overhead (to) and bandwidth (B) ,  are de- 
fined in LogGP as noted above. 

The repetition delay for the communication pipeline, 
Jom"~ is 4 because a message sent from the top-left proc- 
essor (processor 0) to its east neighbor (processor 1) on 
the second sweep cannot be initiated until processor 1 
completes its communication with its south neighbor from 
the first sweep (Figure 5).  

4.4 Combining Computation and Communication Stages 

In the previous two sections, we derived formulas for 
the modeling of SWEEP3D that are general for any pipe- 
lined wavefront computation. We can summarize the dis- 
cussion in two equations that give the separate contribu- 
tions of computation and communication: 
F"'" = [(Px -I- Py - 1) + (Nnvecp - l)] * TcPu 

[2V, + p,. - 2) + 4(N,,, - 1)I*Tmsg (7) p m m  = 

The major remaining question is whether the separate 
contributions, T O m p  and TO'"''', can be summed to derive 
the total time. They would not be additive if there were 
any additional overlap of communication with computa- 
tion not already accounted for in each term. To see that 
this is not the case, consider the task graph for an execu- 
tion consisting of two wavefronts on a 3 x 3 processor 
grid (Figure 7). This graph shows communication tasks 
(circles numbered with a sendheceive processor pair) and 
computation tasks (squares numbered by a computing 
processor). The total number of stages in the combined 
communicatiodcomputation pipeline is equal to the num- 
ber of nodes (of each type) in the longest path through the 
graph (the critical path) shown in red in the 

Figure 7. Pipelined Wavefront Task Graph. 

figure. The critical path for the first sweep can be counted 
from Figure 7: 5 computational tasks and 8 communica- 
tion tasks. This result is exactly the number given by 
eqns. (2) and (4). One can fix-ther verify that there is no 
further overlap between two pipelined sweeps other than 
the predicted sum of eqns. (6) and (7). The second sweep 
completes exactly 1 computation and 4 communication 
steps after the first. 

In summary, total time for the sweep algorithm is the 
sum of eqns. (6) and (7), where Tcpu is given by eqn. (3) 
and Tmsg is given by eqn. (5). The validation of the 
model against experiment involves the measurement 
andlor modeling of Tmsg and Tcpu. We take Tmsg to be 
the time needed for the completion of a sendheceive pair 
of an appropriate size and Tcpu to be the computational 
work associated with the subgrid computation on each 
processor. 

5. Validation of the Model 

In this section, we present results that validate the 
model with performance data from SWEEP3D on three 
different machines, with up to 500 processors, over the 
entire range of the various model parameters. Inspection 
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of eqns. (6) and (7) leads to identification of the following 
validation regimes: 
Nsl,.e.rrp = 1: This case validates the number of pipeline 
stages in T O m p  and TO''"'', as functions of (P, +PY), in the 
available range of processor configurations. 

NmeeP - (P,+P,): Validation of a case where the contribu- 
tions of the (P,+P,)and Nsveep terms are comparable. 

N,,>> (P,+P,): This case validates the repetition rate of 
the pipeline. 
For each of these three cases, we analyze problem sizes 
chosen in such a way as to make: 
T O m P  >> TO""; (validate eqn. (6) only) 
T O m p  = 0; (validate eqn. (7) only) 
T O m P  - TO""''; (validate the sum of eqns. (6)  and (7)). 

5. I Nrweep = 1 

For a single sweep, the coefficients of Tmsg and T,, in 
equations 6 and 7 represent the number of communication 
and computation stages in the pipeline, respectively. Any 
overlap in communication or computation during the sin- 
gle sweep of the mesh is encapsulated in the respective 
coefficients. In hypothetical problems with Tmsg - T,,, 
and in the limit of large processor configurations (large 
P,+P,), equations 6 and 7 show that the communication 
component of the elapsed time would be twice as large as 
the contribution of the computation time. In reality, for 
problem sizes and partitionings reasonably designed 
(small subgrid surface-to-volume ratio), Tcp, is considera- 
bly larger than Tmr Computation is the dominant com- 
ponent of the elapsed time. 

This is apparent in Figure 8, which presents the model- 
experiment comparison for a weak scalability analysis of a 
16 x 16 x 1000 subgrid size sweeping only one octant. 
This size was chosen to reflect an estimate of the subgrid 
size for a 1-billion cell-problem running on a machine 
with about 4,000 processors; the former is a canonical 
goal of ASCI and the latter is simply an estimate of the 
machine size that might satisfy a 3-TFLOPS peak per- 
formance requirement. In a "weak scalability" analysis, 
the problem size scales with the processor configuration 
so that the computational load per processor stays con- 
stant. This experiment shows that the contribution of 
communication is small (in fact, the model shows that it is 
about 150 times smaller than computation), and the model 
is in very good agreement with the experiment. 

In the absence of communication our model reduces to 
the linear "parallel computational efficiency" models used 
by Baker [9] and Koch [3] for SN performance, in which 
parallel computational efficiency is defined as the fraction 
of time a processor is doing useful work. 

80 

60 - 
'0 

0 - p 40 

F 
E 

20 

- Measured - Model - Tcomp from Model 

Figure 8. Tmp dominant. Nm, = 1. IBM RSl6000. 

To validate the case with Nsvee,, = 1 and "comparable" 
contributions of communication and computation we had 
to use a subgrid size that is probably unrealistic for actual 
production simulation purposes (5 x 5 x 1). Even with 
this size computation outweighs communication by about 
a factor of 6. Figure 9 depicts a weak scalability analysis 
on the SGI Origin 2000 for this size. The model- 
experiment agreement is again very good. 

513-3 

40-3 

3e-3 
0 
m 

E 2e-3 
F 

- 
10-3 

O M  

- Measured 
Model - Tcomp from Model 

4 6 8 10 12 14 16 

B+Pv 

Figure 9. T""' - T"". N,,, = 1. SGI Origin. 

Validation of cases where Tamp = 0 involved the de- 
velopment of a new code to simulate the communication 
pattern in SWEP3D in the absence of computation. The 
code developed for this purpose simply implements a re- 
ceive-west, receive-north, send-south, send-east commu- 
nication pattern enclosed in loops that initiate multiple 
waves. Figure 10 shows a very good agreement of the 
model with the measured data from this code. 

5.2 Nsweep - (Px+P,) 

As described in Section 4, sweeps of the domain gen- 
erated by successive octants, angle blocks, and k- 
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Figure 10. T""'=O. N,,, = 1. SGI Origin. 

plane blocks are pipelined, with the depth of the pipeline, 
Nn,.erp, given by the product of the number of octants, an- 
gle blocks, and k-plane blocks. We can select k-plane and 
angle block sizes so that Nnveep = 10, which, in turn, bal- 
ances the contribution of Nnveep and (P,+P,) for processor 
configurations used in this work. In Figure 11 the com- 
parison using a data size for which T O m p  is dominant is 
presented, showing an excellent agreement with the meas- 
ured elapsed time. - Measured 

Model - 
5 

4 

B 
8 3  
2 v 

E 
F 

2 

1 
10 20 3 

PX + Py 

Figure 11. T""Pdominant. N,,, = 10. SGI Origin 

The case with no computation is in fact a succession of 
10 sweeps of the domain, with the communication overlap 
described by equation 6. Figure 12 shows a very good 
agreement with experimental data for this case. 

An excellent model-experiment agreement is similarly 
shown in Figure 13, for a subgrid size 5 x 5 x 1, which 
leads to balanced contributions of the communication and 
computation terms to the total elapsed time of SWEEP3D. 

5.3 Nsweep >> Px+Py 

We present model-data comparisons using weak scal- 
ability experiments for cases in which NsVeep is large 

2.0e-2 + 0 Measured 

1.50-2 
0 

0 
oa 

o.oe+o 
0 10 20 30 40 

k + P y  

Figure 12. T""'=O. N,,, = 10. CRAY T3E. 
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0 Measured 
Model - 
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. -~ .- . 
4 -6 8 10 12 14 16 

h+p/ 
Figure 13 T"""dominant.N,,=lO. SGI Origin 
compared with (Px+Py) in Figure 14 (6 x 6 x 360 subgrid; 
T O m p  - Torn) and in Figure 15 (16 x 16 x 1000 subgrid; 
T O m p  dominant). The model is in good agreement with the 
measured execution times of SWEEP3D in both cases. 

0 Measured - Model 
1.5 

0 o o o '  

0.3 2 
0 10 20 30 40 

Figure 14. Tamp - Tom". 6 x 6 x 360. Nmcep large. CRAY 
T3E. K, = 10. 
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Figure 15. T“ dominant. 16 x 16 x 1000. N,,, large. 
IBM RS/6000 SP. 

5.4 Strong Scalability 

In a “strong scalability” analysis, the overall problem 
size remains constant as the processor configuration in- 
creases. Therefore, Tmsg and Tcpu vary from run to run as 
the subgrid size decreases. In Figure 16 the comparison 
between measured and modeled time for the strong scal- 
ability analysis out to nearly 500 processors on the prob- 
lem size 50 x 50 x 50 is shown. The agreement is excel- 
lent. 
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Figure 16. Strong Scalability. CRAY T3E. 

5.5 Blocking tradeoffs 

It is of interest to investigate whether the model cap- 
tures the variation of the elapsed time with the size of the 
angle- and k-blocks. In particular, it is important that the 
model correctly predicts the optimal angle- and k- block- 
ing values for different problem sizes. 

Intuitively, larger block sizes lead to increased com- 
putatiodcommunication ratio due to fewer communica- 
tion steps and larger message sizes. For wavefront algo- 

rithms a tradeoff occurs because smaller blocks, while 
increasing communication time, could lead to better par- 
allel efficiency as the wavefronts have a more rapid suc- 
cession over the processor array. For specific subgrid size 
and machine characteristics, unique optimal values for the 
blocking parameters result from this tradeoff. 

Figure 17 shows modeled and experimental data for a 
16 x 16 x 1000 subgrid with 10 k-planes per block. Com- 
pare this with Figure 18 which shows the same data on 
this subgrid size but with one k-plane per block. A similar 
comparison using a 6 x 6 x 360 subgrid is presented in 
Figures 19 and Figure 14 (above). For a 6 x 6 x 360 sub- 
grid size, 10 planes per block leads to lower elapsed time, 
whereas for the 16 x 16 x 1000 subgrid, 1 plane per block 
is optimal. 

The explanation is that (on the T3E), for the smaller 
subgrid (6 x 6 x 360), larger k-blocks are required in order 
to increase the computation time and decrease communi- 
cation. In contrast, the larger grid (16 x 16 x 1000) al- 
ready affords a better computatiodcommunication ratio, 
so that the lower value for the k-block leads to higher par- 
allel efficiency. In this case, the more wavefronts gener- 
ated, the better the runtime. 

The model resolves the tradeoff, predicting accurate 
values for the blocking parameters for any grid size and 
machine characteristics. 
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Figure 17. 16 x 16 x 1000. CFUY T3E. K, = 10. 
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6. Applications of the Model. Scalability Predictions. 

Performance models of applications are important to 
computer designers trying to achieve proper balance be- 
tween performance of different system components. ASCI 
is targeting a 100-TFLOPS system in the year 2004, with 
a workload defined by specific engineering needs. In this 
section we apply our model to predict the machine pa- 
rameters under which the runtime goal might be met. We 
assume a 100-TFLOPS-peak system composed of about 
20,000 processors (5 GFLOPS peak per processor, an 
extrapolation of Moore's law). 

Three sources of difficulty with such a prognosis are 
(1) making reasonable estimates of machine performance 
parameters for future systems; (2) managing the 
SWEEP3D parameter space (i.e., block sizes); and (3) 
estimating what problem sizes will be important. We 
handle the first by studying a range of values covering 
both conservative and optimistic changes in technology. 
We handle the second by reporting results that correspond 
to the shortest execution time (Le., we use block sizes that 

minimize runtime). We handle the third as follows. 
For particle transport, one ASCI target problem in- 

volves O( lo9) mesh points, 30 energy groups, O( lo4) time 
steps, and a runtime goal of about 30 hours. With 5,000 
unknowns per grid point, this requires about 40 TBytes 
total memory. On 20,000 processors the resulting subgrid 
size is approximately 6 x 6 x 1000. In a different ASCI 
scenario, particle transport problem size is determined by 
external factors. Based on [17], such computations will 
involve smaller grid sizes (20 million cells) but the full 
resources of the machine are still used. The 20 million-cell 
problem would utilize a 2 x 2 x 250 subgrid. 

6.1. The 1 billion-cell problem 

Plots showing dependence of runtime with sustained 
processor speed and latency for MPI communications are 
shown in Figures 20 and 21 for several k-plane block sizes 
and using optimal values for the angle-block size. Table 1 
collects some of the modeled runtime data for a few im- 
portant points: Sustained processor speeds of 10% and 
50% of peak, and MPI latencies of 0.1, 1, and 10 micro- 
seconds. Our model shows that the dependence on band- 
width (1/G in LogGP) is small, and as such no sensitivity 
plot based on ranges for bandwidth is presented. All re- 
sults assume 400 Mbyteds MPI bandwidth [ 181. 

One immediate observation is that runtime under the 
most optimistic technological estimates in Table 1 is still 
larger than the 30-hour goal by a factor of two. The exe- 
cution time goal could be met if, in addition to these val- 
ues of processor speed and MPI latency (L+o in LogGP), 
we used what we believe to be an unrealistically high 
bandwidth value of 4 GBytes/s. 

Assuming a more realistic sustained processor speed 
of 10% of peak (based on data from today's systems), 
Table 1 shows that we miss the goal by about a factor of 
six even when using 0.1 p MPI latency. With the same 
assumption for processor speed, but with a more conser- 
vative value for latency (1 p), the model predicts that we 
are a factor of 6.6 off. In'fact, our results show that the 
best way to decrease runtime is to achieve better sustained 
per-processor performance. Changing the sustained proc- 
essor rate by a factor of five decreases the runtime by a 
factor of three, while decreasing the MPI latency by a 
factor of 100 reduces runtime by less than a factor of two. 
This is a result of the relatively low communica- 
tiodcomputation ratio that our model predicts. For exam- 
ple, using values of 1 pi and 400 MB/sec for the commu- 
nication latency and bandwidth, and a sustained processor 
speed of 0.5 GFLOPS, the communication time will only 
be 20% of the total runtime. 
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Figure 20. Model-projected sensitivity of the billion-cell 
transport sweep time to sustained per-processor CPU 
speed on a hypothetical 100-TFLOPS system for several 
k-plane block sizes. MPI latency = 15 ms, bandwidth = 
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Figure 21. Model-projected sensitivity of the billion-cell 
transport sweep time to MPI latency on a hypothetical 
100-TFLOPS system for several k-plane block sizes. 
Sustained per-processor CPU speed = 500 MFLOPS, 

400 Mbytesls. bandwidth = 400 Mbytesls. 

6.2. The 20 million-cell problem 

Communication is important for this problem size - 
the model predicts that communication time ranges from 
one-half the total time to two-thirds of the total time 
depending on specific values for the latency and processor 
speed. The contribution of the bandwidth to the communi- 
cation cost is, again, negligible. Figures 22 and 23 show 
the runtime variation with interprocessor latencies and 
sustained processor speed, respectively. For this problem 
size latency and processor speed are equally important in 
decreasing the runtime, as expected given the fact that the 
communication time is now a significant component of the 
total runtime. 

~ ~~ 
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Figure 22. Model-projected sensitivity of the 20 
million-cell transport sweep time to sustained per- 
processor CPU speed on a hypothetical 100- 
TFLOPS system for several k-plane block sizes. 
MPI latency = 15 ms, bandwidth = 400 MB/s. 
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