

Building and using a Fault Tolerant MPI implementation

Graham E Fagg +*

 Jack J Dongarra*

+High Performance Computing Center Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany.

*Department of Computer Science, Suite 413, 1122 Volunteer Blvd.,

University of Tennessee, Knoxville, TN-37996-3450, USA.

fagg@hlrs.de
dongarra@cs.utk.edu

Abstract

In this paper we discuss the design and use of a fault tolerant MPI (FT-MPI) that handles process
failures in a way beyond that of the original MPI static process model. FT-MPI allows the semantics
and associated modes of failures to be explicitly controlled by an application via a modified
functionality within the standard MPI 1.2 API. Given is an overview of the FT-MPI semantics,
architecture design, example usage and sample applications. A short discussion is given on the
consequences of designing a fault tolerant MPI both in terms of how such an implementation handles
failures at multiple levels internally as well as how existing applications can use new features while still
remaining within the MPI standard.

1. Introduction

MPI [6] is the current the standard message passing system used to build high performance applications for
both clusters and dedicated MPP systems. Initially MPI was designed to allow for very high efficiency and
thus performance on a number of early 1990s MPPs, that at the time had limited OS runtime support. This
led to the current MPI design of a static process model. While this model was possible to implement for
MPP vendors, easy to program for, and more importantly something that could be agreed upon by a
standards committee. The second version of MPI standard known as MPI-2 [10] did include some support
for dynamic process control, although this was limited to the creation of new MPI process groups with
separate communicators. These new processes could not be merged with previously existing
communicators to form intra-communicators needed for a seamless single application model and were
limited to a special set of extended collectives (group) communications.

The MPI static process model suffices for small numbers of distributed nodes within the currently emerging
masses of clusters and several hundred nodes of dedicated MPPs. Beyond these sizes the mean time
between failure (MTBF) of CPU nodes becomes a factor. As attempts to build the next generation Peta-flop
systems advance, this situation will only become more adverse as individual node reliability becomes out
weighted by orders of magnitude increase in node numbers and hence node failures. Current GRID [16]
technologies such as GLOBUS [13] also provide for middleware services such as naming, resource
discovery that are robust and handle expected failures gracefully. Unfortunately the MPI message passing
library for Globus, MPICH-G [14] is not expected to handle loss of MPI processes or partitioning of
networks gracefully and failures still lead to pathological failure of applications unless special precautions
are taken such application check-pointed discussed further in the next section.

The aim of FT-MPI is to build a fault tolerant MPI implementation that can survive failures, while offering
the application developer a range of recovery options other than just returning to some previous check-

pointed state. FT-MPI is built on the HARNESS [1] meta-computing system, and is meant to be used as the
HARNESS default application level message passing interface. Its design allows it to easily ported to other
GRID environments by porting of its modular services that are implemented in the form of short lived
daemons.

2. Check-point and roll back versus replication techniques

The first method attempted to make MPI applications fault tolerant was through the use of check-pointing
and roll back. Co-Check MPI [2] from the Technical University of Munich being the first MPI
implementation built that used the Condor library for check-pointing an entire MPI application. In this
implementation, all processes would flush their messages queues to avoid in flight messages getting lost,
and then they would all synchronously check-point. At some later stage if either an error occurred or a task
was forced to migrate to assist load balancing, the entire MPI application would be rolled back to the last
complete check-point and be restarted. This systems main drawback being the need for the entire
application having to check-point synchronously, which depending on the application and its size could
become expensive in terms of time (with potential scaling problems). A secondary consideration was that
they had to implement a new version of MPI known as tuMPI as updating MPICH was considered too
difficult.

Another system that also uses check-pointing but at a much lower level is StarFish MPI [3]. Unlike Co-
Check MPI which relies on Condor, Starfish MPI uses its own distributed system to provide built in check-
pointing. The main difference with Co-Check MPI is how it handles communication and state changes
which are managed by StarFish using strict atomic group communication protocols built upon the
Ensemble system, and thus avoids the message flush protocol of Co-Check. Being a more recent project
StarFish supports faster networking interfaces than tuMPI.

The project closest to FT-MPI known to the author is the Implicit Fault Tolerance MPI project MPI-FT [7]
by Paraskevas Evripidou of Cyprus University. This project supports several master-slave models where all
communicators are built from grids that contain ‘spare’ processes. These spare processes are utilized when
there is a failure. To avoid loss of message data between the master and slaves, all messages are copied to
an observer process, which can reproduce lost messages in the event of any failures. This system appears
only to support SPMD style computation and has a high overhead for every message and considerable
memory needs for the observer process for long running applications. This system is not a full checkpoint
system in that it assumes any data (or state) can be rebuilt using just the knowledge of any passed
messages, which might not be the case for non deterministic unstable solvers.

MPICH-V[17] from Universit´e de Paris Sud, France is a mix of uncoordinated check-pointing and
distributed message logging. The message logging is pessimistic thus they guarantee that a consistent state
can be reached from any local set of process checkpoints at the cost of increased message logging. MPICH-
V uses multiple message storage (observers) known as Channel Memories (CM) to provide message
logging. Process level check-pointing is handled by multiple servers known as Checkpoint Servers (CS).
The distributed nature of the check pointing and message logging allows the system to scale, depending on
the number of spare nodes available to act as CM and CS servers. Ping-pong performance of MPICH-V
compared to MPICH-p4 is around 50%, although application performance is usually much better. In the
case of the NAS BP benchmark the overhead for MPICH-V compared to MPICH over P4 varies between
6% and 20%. Handling of a failure is automatic and transparent to the user, although currently only master-
slave or SPMD applications are supported.

FT-MPI has much lower overheads compared to the above check-pointing systems, and thus much higher
potential performance. These benefits do however have consequences. An application using FT-MPI has to
be designed to take advantage of its fault tolerant features as shown in the next section, although this extra
work can be trivial depending on the structure of the application. If an application needs a high level of
fault tolerance where node loss would equal data loss then the application has to be designed to perform
some level of user directed check-pointing. FT-MPI does allow for atomic communications much like
Starfish, but unlike Starfish, the level of correctness can be varied on for individual communicators. This

provides users the ability to fine tune for coherency or performance as system and application conditions
dictate. An additional advantage of FT-MPI over many systems is that check-pointing can be performed at
the user level and the entire application does not need to be stopped and rescheduled as with process level
check-pointing.

Currently GRID application efforts such as GrADS [11] primarily focus on gaining high performance from
GRIDs rather than handling failures, although current efforts at the University of Tennessee [12] involve
check-pointing distributed applications to improve fault tolerance. Unlike the above check-pointing
systems that rely on local disks for check-pointed data storage, the current GRADS effort is experimenting
with replicated distributed storage built on top of the IBP [15] system to improve both availability and
performance. This system is also a user-level check-pointing scheme rather than process level and thus
would benefit from avoiding rescheduling as provided by FT-MPI.

3. FT-MPI semantics

Current semantics of MPI indicate that a failure of a MPI process or communication causes all
communicators associated with them to become invalid. As the standard provides no method to reinstate
them (and it is unclear if we can even free them), we are left with the problem that this causes
MPI_COMM_WORLD itself to become invalid and thus the entire MPI application will grid to a halt.

FT-MPI extends the MPI communicator states from {valid, invalid} to a range {FT_OK, FT_DETECTED,
FT_RECOVER, FT_RECOVERED, FT_FAILED}. In essence this becomes {OK, PROBLEM, FAILED},
with the other states mainly of interest to the internal fault recovery algorithm of FT_MPI. Processes also
have typical states of {OK, FAILED} which FT-MPI replaces with {OK, Unavailable, Joining, Failed}.
The Unavailable state includes unknown, unreachable or “we have not voted to remove it yet” states.
A communicator changes its state when either an MPI process changes its state, or a communication within
that communicator fails for some reason. Some details of failure detection is given in 4.1.

The typical MPI semantics is from OK to Failed which then causes an application abort. By allowing the
communicator to be in an intermediate state we allow the application the ability to decide how to alter the
communicator and its state as well as how communication within the intermediate state behaves.

3.1. Failure modes

On detecting a failure within a communicator, that communicator is marked as having a probable error.
Immediately as this occurs the underlying system sends a state update to all other processes involved in that
communicator. If the error was a communication error, not all communicators are forced to be updated, if it
was a process exit then all communicators that include this process are changed. Note, this might not be all
current communicators as we support MPI-2 dynamic tasks and thus multiple MPI_COMM_WORLDS.

How the system behaves depends on the communicator failure mode chosen by the application. The mode
has two parts, one for the communication behavior and one for the how the communicator reforms if at all.

3.2. Communicator and communication handling

Once a communicator has an error state it can only recover by rebuilding it, using a modified version of
one of the MPI communicator build functions such as MPI_Comm_{create, split or dup}. Under these
functions the new communicator will follow the following semantics depending on its failure mode:

? ? SHRINK: The communicator is reduced so that the data structure is contiguous. The ranks of the
processes are changed, forcing the application to recall MPI_COMM_RANK.

? ? BLANK: This is the same as SHRINK, except that the communicator can now contain gaps to be
filled in later. Communicating with a gap will cause an invalid rank error. Note also that calling
MPI_COMM_SIZE will return the extent of the communicator, not the number of valid processes
within it.

? ? REBUILD: Most complex mode that forces the creation of new processes to fill any gaps until the
size is the same as the extent. The new processes can either be places in to the empty ranks, or the
communicator can be shrank and the remaining processes filled at the end. This is used for
applications that require a certain size to execute as in power of two FFT solvers.

? ? ABORT: Is a mode which affects the application immediately an error is detected and forces a
graceful abort. The user is unable to trap this. If the application need to avoid this they must set all
communicators to one of the above communicator modes.

Communications within the communicator are controlled by a message mode for the communicator which
can be either of:

1. NOP: No operations on error. I.e. no user level message operations are allowed and all simply
return an error code. This is used to allow an application to return from any point in the code to a
state where it can take appropriate action as soon as possible.

2. CONT: All communication that is NOT to the affected/failed node can continue as normal.
Attempts to communicate with a failed node will return errors until the communicator state is
reset.

The user discovers any errors from the return code of any MPI call, with a new fault indicated by
MPI_ERR_OTHER. Details as to the nature and specifics of an error is available though the cached
attributes interface in MPI as discussed in section 3.4 below.

3.3. Point to Point versus Collective correctness

Although collective operations pertain to point to point operations in most cases, extra care has been taken
in implementing the collective operations so that if an error occurs during an operation, the result of the
operation will still be the same as if there had been no error, or else the operation is aborted.

Broadcast, gather and all gather demonstrate this perfectly. In Broadcast even if there is a failure of a
receiving node, the receiving nodes still receive the same data, i.e. the same end result for the surviving
nodes. Gather and all-gather are different in that the result depends on if the problematic nodes sent data to
the gatherer/root or not. In the case of gather, the root might or might not have gaps in the result. For the
all2all operation, which typically uses a ring algorithm it is possible that some nodes may have complete
information and others incomplete. Thus for operations that require multiple node input as in gather/reduce
type operations any failure causes all nodes to return an error code, rather than possibly invalid data.
Currently an addition flag controls how strict the above rule is enforced by utilizing an extra barrier call at
the end of the collective call if required.

3.4. FT-MPI notification of failures

The MPI standard does not indicate how errors are reported beyond standard return codes and error classes
to provide additional information. Without altering the meaning of the standard, FT-MPI utilizes these
mechanisms so that applications that have been adapted to FT-MPI still compile and link correctly on other
MPI implementations.

To remain within the standard FT-MPI notifies the application with a single return code
MPI_ERR_OTHER that an error has occurred and then makes additional information available via the
attribute caching mechanism. A human readable form of the failure is also provided via a MPI error class
using the MPI error string function.

Two forms of essentially the same information are made available to the application. The first form returns
the error information for a complete communicator in terms of the number of failures per rank since the last
recovery, The second form returns the failed ranks in the order that they were detected locally. This
ordering is only consistently globally in terms of the total failures not the ordering reported at each node
unless the FTMPI_NOTIFIER daemon is used to force ordering of events.

/* pre-defined key value */
key = FT_MPI_LIST_NUM_FAILED; /* key for finding number of failure events */
key2 = FT_MPI_LIST_FAILED; /* key for getting pointer to failures in a list */

rc= MPI_func (comm…)
If (rc==MPI_ERR_OTHER) {
 rc = MPI_Comm_get_attr (comm, key, &num_failed, &flag);
 rc = MPI_Comm_get_attr (comm, key2, &failed_ptr, &flag);
 for (i=0;i<num_failed;i++)

printf(“failure %d was rank %d\n”, i+1, failed_ptr[i]);
}

Example 1. Checking for order of failures

key = FT_MPI_COM_NUM_FAILED; /* key for finding how many individual ranks failed */
key2 = FT_MPI_COM_FAILED; /* key for accessing complete failure map of a communicator */

rc= MPI_Send (----, com);
If (rc==MPI_ERR_OTHER) {
 rc = MPI_Comm_get_attr (comm, key, &num_failed, &flag);
 rc = MPI_Comm_get_attr (comm, key2, &failed_ptr, &flag);
 /* check list of failures */
 failed_how_many_times = failed_ptr [rank];
 }

Example 2. Accessing failures via process RANK

3.5. FT-MPI basic usage

Simple usage of FT-MPI would be in the form of an error check and then some corrective action such as a
communicator rebuild. A typical code fragment is shown below in example 3, where on an error the
communicator is simply rebuilt and reused:

rc= MPI_Send (----, com);
If (rc==MPI_ERR_OTHER) {

MPI_Comm_dup (com, newcom); /* collective recovery occurs here! */
MPI_Comm_free (com);
com = newcom;
}

/* continue.. */

Example 3. Simple FT-MPI send usage

Some types of computation such as SPMD master-worker codes only need the error checking in the master
code if the user is willing to accept the master as the only point of failure. Example 4 below shows how
complex a master code can become. In this example the communicator mode is BLANK and
communications mode is CONT. The master keeps track of work allocated, and on an error just reallocates
the work to any ‘free’ surviving processes. Note, the code has to check to see if there are any surviving
workers remaining after each death is detected.

rc = MPI_Bcast (initial_work…);

if(rc==MPI_ERR_OTHER)reclaim_lost_work(…);
while (! all_work_done) {

 if (work_allocated) {
 rc = MPI_Recv (buf, ans_size, result_dt,
 MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);
 if (rc==MPI_SUCCESS) {

handle_work (buf);
free_worker (status.MPI_SOURCE);
all_work_done--;

 }
 else {
 reclaim_lost_work(status.MPI_SOURCE);
 if (no_surviving_workers) { /* ! do something ! */ }
 }
 } /* work allocated */
/* Get a new worker as we must have received a result or a death */
 rank=get_free_worker_and_allocate_work();
 if (rank) {
 rc = MPI_Send (… rank…);
 if (rc==MPI_OTHER_ERR) reclaim_lost_work (rank);
 if (no_surviving_workers) { /* ! do something ! */ }
 } /* if free worker */
} /* while work to do */

Example 4. FT-MPI Master-Worker code

3.6. FT-MPI usage within existing message passing libraries

Many real world parallel applications use numeric libraries such as SCALAPACK[8] and PETSc[18]
which themselves use MPI internally through multiple layers. Altering such libraries by changing each
occurrence of each MPI call is impractical and error prone.

A more elegant solution is to use the MPI error handling functions to automatically handle the errors for the
application. When combined with the long jump mechanism in the C language this can provide a very
simple solution to many classes of error handling. A typical program flow for an application is given in
Figure 1. If the application already contains user level check-pointing then only the initial startup section
of the code needs to be altered. The flow within a normal process would proceed as follows:

1. MPI_Init would indicate if the process was started normally via MPIRUN or was a restarted node
within an application.

2. If the process was normal, then the application would install the MPI error handler that they wrote
as shown below in code example 5.

3. The process would set a long jump so that it could return to the top level functions where it can
correctly manage program flow during a recovery. This is required as a failure could be many
levels of function calls later.

4. The code would call the numeric library containing MPI calls (i.e. a parallel solver)
5. If completed successfully the code would enter MPI_finalize and terminate normally.

During the execution if an error occurred, the FT-MPI runtime library would catch it and as soon as the
program enters a MPI routine, flow control would be passed to the MPI error handler the user provided in 2
above. At this point the users application could block on a communicator create/duplicate function after
which they would probably load the user level checkpoint data. After recovery they would then jump back
to the top level of the application, reset the jump and then continue as per 3 above.

A restarted process would discover from the MPI_Init function that it was restarted and would then load
any recovery data rather than initial data, install the error handler and continue as a normal process.

Figure 1. Flow control in a typical FT-MPI application using MPI Error Handlers.

 ehf = (MPI_Handler_function *) (&errhandleruserfunc); /* get handle to my error handler */

 MPI_Errhandler_create (ehf, &errh); /* create MPI handle to my function */
 MPI_Errhandler_get (MCW, &errh_org); /* get original MPI handler */
 MPI_Errhandler_free (&errh_org);
 MPI_Errhandler_set (MCW, errh); /* replace default with my function */

Example 5. Installing an error handler under MPI

4. FT_MPI Implementation details

FT-MPI is a partial MPI-2 implementation. It currently contains support for both C and Fortran interfaces,
all the MPI-1.2 function calls required to run both the PSTSWM [5] and BLAS [9] applications. BLAS is
supported so that SCALAPACK [8] applications can be tested. Currently only some the dynamic process
control functions from MPI-2 are supported.

The current implementation is built as a number of layers as shown in figure 2. Operating system support is
provided by either PVM or the C HARNESS G_HCORE. Although point to point communication is
provided by a modified SNIPE_Lite communication library taken from the SNIPE project [4].

Figure 2. Overall structure of the FT-MPI implementation.

A number of components have been extensively optimized, these include, derived data types [19] and
message buffers and collective communications[20].

4.1. Failure detection

It is important to note that the failure handler shown in figure 2, gets notification of failures from both the
point to point communications libraries as well as the OS support layer. In the case of communication
errors, the notify is usually started by the communication library detecting a point to point message not
being delivered to a failed party rather than the failed parties OS layer detecting the failure. The handler is
responsible for notifying all tasks of errors as they occur by injecting notify messages into the send
message queues ahead of user level messages. An additional daemon know as the FTMPI_NOTIFER can
be used to guarantee ordered delivery of failure notification messages and thus aid in complex debugging.

The failure handler within the FTMPI runtime library relies on the conservation of event messages from the
underlying system to build a coherent system state during recovery. A consequence of this is that
temporary bi-sectioning of the network between G_HCORE startup daemons can lead to some processes
being marked as failed and thus the sum of living tasks and failure events will remain constant.

4.2. Low-level message handling

Many MPI message passing libraries employ multiple message delivery schemes which vary with message
size to provide a balance between performance, unexpected message buffering memory requirements and
blocking semantics. GM for example switches between eager (always send) and rendezvous modes as the
message size increases.

FT-MPI uses eager for performance on all blocking sends and switches to a token based system for large
non-blocking messages. As with the failure detection, the handling of communication during failures relies
on a guaranteed delivery of flow control messages and failure events.

During a failure all processes flush communications with all existing communication contexts. They
complete all pending operations involving a remote process, until either they have received a flow control

message indicating that the process is entering a global state rebuild or a failure event for that process is
received. Thus the number of flow control stop messages and death events of open connections must match
the number of pre-failure open connections. This allows all/any processes in an eager send to always
complete as their target guarantees emptying the pipe before entering the global recovery state, thus
avoiding any deadlocks.

5. FT-MPI Performance

Figure 3. Point-to-point message performance of FT-MPI compared to various MPICH versions

Figure 3 shows the performance of FT-MPI for point-to-point messages compared to MPICH-p4 and
MPICH-G2 under Globus 2.0. Further performance information can be obtained from [19-20]. As was
stated in section 2, the performance of FT-MPI is not hindered by fault handling. Any additional costs of
being fault tolerance is only occur at applications startup, during a failure recovery and during shutdown.

6. Conclusions

FT-MPI is an attempt to provide application programmers with different methods of dealing with failures
within MPI application than just check-point and restart. It is hoped that by experimenting with FT-MPI,
new applications methodologies and algorithms will be developed to allow for both high performance and
the survivability required by both unreliable GRIDs and the next generation of terra-flop and beyond
machines. FT-MPI in itself is already proving to be a useful vehicle for experimenting with self-tuning
collective communications, distributed control algorithms, various dynamic library download methods and
improved sparse data handling subsystems, as well as being the default MPI implementation for the
HARNESS project.

Future work in the FT-MPI library system will concentrate on developing a number of drop-in library
templates or skeletons to simplify the construction of fault tolerant applications.

7. References

1. Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, P. Papadopoulous, S. Scott, V.
Sunderam, "HARNESS: a next generation distributed virtual machine", Journal of Future Generation
Computer Systems, (15), Elsevier Science B.V., 1999.

2. G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI”, In Proceedings of the International
Parallel Processing Symposium, pp 526-531, Honolulu, April 1996.

3. Adnan Agbaria and Roy Friedman, “Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of
Workstations”, In the 8th IEEE International Symposium on High Performance Distributed Computing,
1999.

4. Graham E. Fagg, Keith Moore, Jack J. Dongarra, "Scalable networked information processing environment
(SNIPE)", Journal of Future Generation Computer Systems, (15), pp. 571-582, Elsevier Science B.V., 1999.

5. P. H. Worley, I. T. Foster, and B. Toonen, “Algorithm comparison and benchmarking using a parallel
spectral transform shallow water model”, Proccedings of the Sixth Workshop on Parallel Processing in
Meteorology, eds. G.-R. Hoffmann and N. Kreitz, World Scientific, Singapore, pp. 277-289, 1995.

6. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra. MPI- The Complete
Reference. Volume 1, The MPI Core, second edition (1998).

7. Soulla Louca, Neophytos Neophytou, Adrianos Lachanas, Paraskevas Evripidou, “MPI-FT: A portable fault
tolerance scheme for MPI”, Proc. of PDPTA ’98 International Conference, Las Vegas, Nevada 1998.

8. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G.
Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. Scalapack: A linear algebra library for message-
passing computers. In Proceedings of 1997 SIAM Conference on Parallel Processing, May 1997.

9. J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. Whaley, A Proposal for a Set of Parallel
Basic Linear Algebra Subprograms, , LAPACK Working Note #100, CS-95-292, May 1995

10. William Gropp, Ewing Lusk, and Rajeev Thakur , “Using MPI-2: Advanced Features of the Message Passing
Interface”, MIT Press, 1st Edition, Feburary 2000.

11. F. Berman, A. Chen, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,
J. Mellow-Crummey, D. Reed, L. Torczon, and R.Wolski, “The GrADS Project”, International Journal of
High Performance Computing Applications, Vol 15(4), pp. 327-344, Sage Science Press, Winter 2001.

12. A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhiyar, “Numerical Libraries and
the Grid”, International Journal of High Performance Computing Applications, Vol 15(4), pp. 359-374, Sage
Science Press, Winter 2001.

13. I. Foster and C. Kesselmann, “The Globus Toolkit”, in The GRID: Blueprint for a new computing
infrastructure, edited by I. Foster and C. Kesselmann, pp. 259-278. Morgan Kaufmann, San Francisco, 1999.

14. I. Foster, and N. Karonis, “A Grid enabled MPI: Message passing in heterogeneous distributed computing
systems”, Proc. of SuperComputing 98 (SC98), Orlando, FL.

15. James S. Plank, Micah Beck, Wael R. Elwasif, Terry Moore, Martin Swany, Rich Wolski, “The Internet
Backplane Protocol: Storage in the Network”, NetStore99: The Network Storage Symposium, (Seattle, WA,
1999)

16. I. Foster and C. Kesselmann, The GRID: Blueprint for a new computing infrastructure, Morgan Kaufmann,
San Francisco, 1999.

17. George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cecile Germain, Thomas
Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette, Vincent Neri, Anton Selikhov, “MPICH-
V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes”, In Proceedings of SuperComputing 2002.
IEEE, Nov.,2002.

18. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith, PETSc 2.0 Users Manual
Argonne National Laboratory, ANL-95/11 - Revision 2.0.29, 2000.

19. Graham Fagg, Antonin Bukovsky, and Jack Dongarra, HARNESS and Fault Tolerant MPI, Parallel
Computing, Volume 27, Number 11, pp 1479-1496, October 2001, ISSN 0167-8191

20. Sathish S. Vadhiyar, Graham E. Fagg, and Jack J. Dongarra, Performance Modeling for Self Adapting
Collective Communications for MPI, LACSI Symposium 2001, October 15-18, Eldorado Hotel, Santa
Fe,NM.

