
CGMgraph/CGMlib: Implementing and Testing
CGM Graph Algorithms on PC Clusters

Albert Chan and Frank Dehne

School of Computer Science, Carleton University, Ottawa, Canada
http://www.scs.carleton.ca/∼achan and http://www.dehne.net

Abstract. In this paper, we present CGMgraph, the first integrated
library of parallel graph methods for PC clusters based on CGM algo-
rithms. CGMgraph implements parallel methods for various graph prob-
lems. Our implementations of deterministic list ranking, Euler tour, con-
nected components, spanning forest, and bipartite graph detection are,
to our knowledge, the first efficient implementations for PC clusters. Our
library also includes CGMlib, a library of basic CGM tools such as sort-
ing, prefix sum, one to all broadcast, all to one gather, h-Relation, all to
all broadcast, array balancing, and CGM partitioning. Both libraries are
available for download at http://cgm.dehne.net.

1 Introduction

Parallel graph algorithms have been extensively studied in the literature (see
e.g. [15] for a survey). However, most of the published parallel graph algorithms
have traditionally been designed for the theoretical PRAM model. Following
some previous experimental results for the MASPAR and Cray [14, 6, 18, 17, 11],
parallel graph algorithms for more “PC cluster like” parallel models like the
BSP [19] and CGM [7, 8] have been presented in [12, 1–4, 9, 10]. In this paper,
we present CGMgraph, the first integrated library of CGM methods for various
graph problems including list ranking, Euler tour, connected components, span-
ning forest, and bipartite graph detection. Our library also includes a library
CGMlib of basic CGM tools that are necessary for parallel graph methods as
well as many other CGM algorithms: sorting, prefix sum, one to all broadcast,
all to one gather, h-Relation, all to all broadcast, array balancing, and CGM
partitioning. In comparison with [12], CGMgraph implements both a random-
ized as well as a deterministic list ranking method. Our experimental results for
randomized list ranking are similar to the ones reported in [12]. Our implementa-
tions of deterministic list ranking, Euler tour, connected components, spanning
forest, and bipartite graph detection are, to our knowledge, the first efficient
implementations for PC clusters. Both libraries are available for download at
http://cgm.dehne.net. We demonstrate the performance of our methods on
two different cluster architectures: a gigabit connected high performance PC
cluster and a network of workstations. Our experiments show that our library
provides good parallel speedup and scalability on both platforms. The commu-
nication overhead is, in most cases, small and does not grow significantly with



an increasing number of processors. This is a very important feature of CGM
algorithms which makes them very efficient in practice.

2 Library Overview and Experimental Setup

Figure 1 illustrates the general use of CGMlib and CGMgraph as well as the
class hierarchy of the main classes. Note that all classes in CGMgraph, except
EulerNode, are independent. Both libraries require an underlying communica-
tion library such as MPI or PVM. CGMlib provides a class Comm which interfaces
with the underlying communication library. It provides an interface for all com-
munication operations used by CGMlib and CGMgraph and thereby hides the
details of the communication library from the user.

The performance of our library was evaluated on two parallel platforms:
THOG, and ULTRA. The THOG cluster consists of p = 64 nodes, each with
two Xeon processors. The nodes are of two different generations, with processors
at 1.7 or 2.0GHz, 1.0 or 1.5GB RAM, and 60GB disk storage. The nodes are
interconnected via a Cisco 6509 switch using Gigabit ethernet. The operating
system is Linux Red Hat 7.1 together with LAM-MPI version 6.5.6. The ULTRA
platform is a network of workstations consisting of p = 10 Sun Sparc Ultra 10.
The processor speed is 440MHz. Each processor has 256MB RAM. The nodes
are interconnected via 100Mb Switched Fast Ethernet. The operating system is
Sun OS 5.7 and LAM-MPI version 6.3.2.

All times reported in the remainder of this paper are wall clock times in
seconds. Each data point in the diagrams represents the average of three exper-
iments (on different random test data of the same size) for CGMgraph and ten
experiments for CGMlib. The input data sets for our tests consisted of randomly
created test data. For inputs consisting of lists or graphs, we generated random
lists or graphs as follows. For random linked lists, we first created an arbitrary
linked list and then permuted it over the processors via random permutations.
For random graphs, we created a set of nodes and then added random edges. Un-
fortunately, different test data sizes had to be chosen for the different platforms
because of the smaller memory capacity of ULTRA.

3 CGMlib: Basic Infrastructure and Utilities

3.1 CGM Communication Operations

The basic library, called CGMlib, provides basic functionality for CGM commu-
nication. An interface, Comm, defines the basic communication operations such
as

• oneToAllBCast(int source, CommObjectList &data): Broadcast the list
data from processor number source to all processors.

• allToOneGather(int target, CommObjectList &data): Gather the lists
data from all processors to processor number target.



• hRelation(CommObjectList &data, int *ns): Perform an h-Relation on
the lists data using the integer array ns to indicate for each processor which
list objects are to be sent to which processor.

• allToAllBCast(CommObjectList &data): Every processor broadcasts its
list data to all other processors.

• arrayBalancing(CommObjectList &data, int expectedN=-1): Shift the
list elements between the lists data such that every processor contains the
same number of elements.

• partitionCGM(int groupId): Partition the CGM into groups indicated by
groupId. All subsequent communication operations, such as the ones listed
above, operate within the respective processor’s group only.

• unPartitionCGM(): Undo the previous partition operation.

All communication operations in CGMlib send and receive lists of type Comm
ObjectList. A Comm ObjectList is a list of CommObject elements. The Comm
Object interface defines the operations which every object that is to be sent or
received has to support.

3.2 CGM Utilities

• Parallel Prefix Sum:
calculatePrefixSum (CommObjectList &result, CommObjectList &data).

• Parallel Sorting: sort(CommObjectList &data) using the deterministic par-
allel sample sort methods in [5] and [16].

• Request System for exchanging data requests between processors: The CGMlib
provides methods sendRequests(...) and sendResponses(...) for rout-
ing the requests from their senders to their destinations and returning the
responses to the senders, respectively.

• Other CGM Utilities: A class CGMTimers (with six timers measureing com-
putation time, communication time, and total time, both in wall clock time
and CPU ticks) and other utilities including a parallel random number gen-
erator.

3.3 Performance Evaluation

Figure 2 shows the performance of our prefix sum implementation, and Figure 3
shows the performance of our parallel sort implementation. For our prefix sum
implementation, we observe that all experiments show a close to zero communi-
cation time, except for some noise on THOG. The prefix sum method communi-
cates only very few data items. The total wall clock time and computation time
curves in all four diagrams are similar to 1/p. For our parallel sort implementa-
tion, we observe a small fixed communication time, essentially independent of p.
This is easily explained by the fact that the parallel sort uses of a fixed number
of h-Relation operations, independent of p. Most of the total wall clock time
is spent on local computation which consists mainly of local sorts of n/p data.
Therefore, the curves for the local computation and the total parallel wall clock
time are similar to 1/p.



4 CGMgraph: Parallel Graph Algorithms Utilizing the
CGM Model

CGMgraph provides a list ranking method rankTheList(ObjList<Node> &nodes,
...) which implements a randomized method as well as a deterministic method
[15, 9]. The input to the list ranking method is a linear linked list where Tthe
pointer is stored as the index of the next node. CGMgraph also provides a method
getEulerTour(ObjList <Vertex> &r, ...) for Euler tour traversal of a forest
[9]. The forest is represented by a list of vertices, a list of edges and a list of roots.
The input to the Euler tour method is a forest which is stored as follows: r is a
set of vertices that represents the roots of the trees, v is the input set of vertices,
e is the input set of edges, and eulerNodes is the output data of the method. We
implemented the connected component method described in [9]. The method also
provides immediately a spanning forest of the given graph. CGMgraph provides
a method findConnectedComponents(Graph &g, Comm *comm) for connected
component computation and a method findSpanningForest(Graph &g, ...)
for the calculation of the spanning forest of a graph. The input to the above two
methods is a graph represented as a list of vertices and a list of edges. We also im-
plemented the bipartite graph detection algorithm described in [3]. CGMgraph
provides a method isBipartiteGraph(Graph &g, Comm *comm) for detecting
whether a graph is a bipartite graph. As in the case of connected component
and spanning forest, the input is a graph represented as a list of vertices and a
list of edges.

4.1 Performance Evaluation

In the following, we present the results of our experiment. For each operation,
we measured the performance on THOG with n = 10, 000, 000 and on ULTRA
with n = 100, 000.

Figure 4 shows the performance of the deterministic list ranking algorithm.
Again, we observe that for both machines, the communication time is a small,
essentially fixed, portion of the total time. The deterministic list ranking requires
between c log p and 2c log p h-Relation operations. With log p in the range [1, 5],
we expect between c and 10c h-Relation operations. Since the deterministic
algorithm is more involved and incurs larger constants, c may be around 10
which would imply a range of [10, 100] for the number of h-Relation operations.
We measured usually around 20 h-Relation operations. The number is fairly
stable, independent of p, which shows again that log p has little influence on
the measured communication time. The small increases for p = 4, 8, 16 are due
to the fact that that the number of h-Relation operations grows with �log p�,
which gets incremented by 1 when p reaches a power of 2. In summary, since
the communication time is only a small fixed value and the computation time
is dominating and similar to 1/p, the entire measured wall clock time is similar
to 1/p. Figure 5 shows the performance of the Euler tour algorithm on THOG
and ULTRA. Our implementation uses the deterministic list ranking method
for the Euler tour computation. Not surprisingly, the performance is essentially



the same as for deterministic list ranking. Due to the fact that all tree edges
need to be duplicated, the data size increases by a factor of three (original plus
two copies). This is the reason why we could execute the Euler tour method on
THOG for n = 10, 000, 000 only with p ≥ 10.

Figure 6 shows the performance of the connected components algorithm on
THOG and ULTRA. Figure 7 shows the performance of the spanning forest
algorithm on THOG, and ULTRA. The only difference between the two methods
is that the spanning forest algorithm has to create the spanning forests after
the connected components have been identified. Therefore, the times shown in
Figures 6 and 7 are very similar. Again, we observe that for both machines, the
communication time is a small, essentially fixed, portion of the total time. The
connected component method uses deterministic list ranking. It requires c log p
h-Relation operations with log p in the range [1, 5]. The communication time
observed is fairly stable, independent of p, which shows that the log p factor has
little influence on the measured communication time. The entire measured wall
clock time is dominated by the computation time and similar to 1/p.

Figure 8 shows the performance of the bipartite graph detection algorithm
on THOG, and ULTRA. The results mirror the fact that the algorithm is essen-
tially a combination of Euler tour traversal and spanning forest computation.
The curves are similar to the former but the amount of communication time is
now larger, representing the sum of the two. This effect is particularly strong on
ULTRA which has the weakest network. Here, the log p in the number of com-
munication rounds actually leads to a steadily increasing communication time
which, for p = 9 starts to dominate the computation time. However, for THOG
and CGM1, the effect is much smaller. For these machines, the communication
time is still essentially fixed over the entire range of values of p. The computation
time is similar to 1/p and determines the shape of the curves for the entire wall
clock time. The computation and communication times become equal for larger
p but only because of the decrease in computation time.

5 Future Work

Both, CGMlib and CGMgraph are currently in beta state. Despite extensive
work on performance tuning, there are still many possibilities for fine-tuning
the code in order to obtain further improved performance. Of course, adding
more parallel graph algorithm implementations to CGMgraph is an important
task for the near future. Other possible extensions include porting CGMlib and
CGMgraph to other communication libraries, e.g. PVM and OpenMP. We also
plan to integrate CGMlib and CGMgraph with other libraries, in particular the
LEDA library [13].

References

1. P. Bose, A. Chan, F. Dehne, and M. Latzel. Coarse Grained Parallel Maximum
Matching in Convex Bipartite Graphs. In 13th International Parallel Processing
Symposium (IPPS’99), pages 125–129, 1999.



2. E. Cacere, A. Chan, F. Dehne, and G. Prencipe. Coarse Grained Parallel Al-
gorithms for Detecting Convex Bipartite Graphs. In 26th Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2000), volume 1928 of Lecture Notes
in Computer Science, pages 83–94. Springer, 2000.

3. E. Caceres, A. Chan, F. Dehne, and G. Prencipe. Coarse Grained Parallel Al-
gorithms for Detecting Convex Bipartite Graphs. In 26th Workshop on Graph-
Theoretic Concepts in Computer Science (WG 2000), volume 1928 of Springer
Lecture Notes in Computer Science, pages 83–94, 2000.

4. E. Caceres, A. Chan, F. Dehne, and S. W. Song. Coarse Grained Parallel Graph
Planarity Testing. In International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA 2000). CSREA Press, 2000.

5. A. Chan and F. Dehne. A Note on Coarse Grained Parallel Integer Sorting. Parallel
Processing Letters, 9(4):533–538., 1999.

6. S. Dascal and U. Vishkin. Experiments with List Ranking on Explicit Multi-
Threaded (XMT) Instruction Parallelism. In 3rd Workshop on Algorithms Engi-
neering (WAE-99), volume 1668 of Lecture Notes in Computer Science, page 43 ff,
1999.

7. F. Dehne. Guest Editor’s Introduction, Special Issue on Coarse Grained Parallel
Algorithms. Algorithmica, 24(3/4):173–176, 1999.

8. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable Parallel Geometric Algorithms
for Coarse Grained Multicomputers. In ACM Symposium on Computational Ge-
ometry, pages 298–307, 1993.

9. F. Dehne, A. Ferreira, E. Caceres, S. W. Song, and A. Roncato. Efficient Parallel
Graph Algorithms for Coarse Grained Multicomputers and BSP. Algorithmica,
33(2):183–200, 2002.

10. F. Dehne and S. W. Song. Randomized Parallel List Ranking for Distributed
Memory Multiprocessors. In Asian Computer Science Conference (ASIAN ’96),
volume 1179 of Lecture Notes in Computer Science, pages 1–10. Springer, 1996.

11. T. Hsu, V. Ramachandran, and N. Dean. Parallel Implementation of Algorithms
for Finding Connected Components in Graphs. In AMS/DIMACS Parallel Imple-
mentation Challenge Workshop III, 1997.

12. Isabelle Gurin Lassous, Jens Gustedt, and Michel Morvan. Feasability, Portability,
Predictability and Efficiency : Four Ambitious Goals for the Design and Implemen-
tation of Parallel Coarse Grained Graph Algorithms. Technical Report RR-3885,
INRIA, http://www.inria.fr/rrrt/rr-3885.html.

13. LEDA library. http://www.algorithmic-solutions.com/.
14. Margaret Reid-Miller. List Ranking and List Scan on the Cray C-90. In ACM

Symposium on Parallel Algorithms and Architectures, pages 104–113, 1994.
15. J. Reif, editor. Synthesis of Parallel Algorithms. Morgan and Kaufmatin Publish-

ers, 1993.
16. H. Shi and J. Schaeffer. Parallel Sorting by Regular Sampling. Journal of Parallel

and Distributed Computing, 14:361–372, 1992.
17. Jop F. Sibeyn. List Ranking on Meshes. Acta Informatica, 35(7):543–566, 1998.
18. Jop F. Sibeyn, Frank Guillaume, and Tillmann Seidel. Practical Parallel List

Ranking. Journal of Parallel and Distributed Computing, 56(2):156–180, 1999.
19. L. Valiant. A Bridging Model for Parallel Computation. Communications of the

ACM, 33(8), 1990.



cgmgraph

cgmlib

mpi pvm

Physical Network

...

CGM Graph Algorithms Other CGM Algorithms

Comm

MPIComm

Sortor

IntegerSortor

HeapSortor

CommObject

Response

Request

SimpleCommObject

BasicCommObject

ObjList

CommObjectList

CGMlib CGMgraph

Node

EulerNode

Vertex

Edge

ListRanker

EulerTourer

ConnectedComponents

BPGD

Fig. 1. Overview of CGMlib and CGMgraph

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Parallel Prefix Sum on thog (n = 5000000)

TOTAL
COMP
COMM

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Parallel Prefix Sum on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 2. Performance of our prefix sum implementation on THOG and ULTRA

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Parallel Heap Sort on thog (n = 5000000)

TOTAL
COMP
COMM

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Parallel Heap Sort on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 3. Performance of our parallel sort implementation on THOG and ULTRA

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Deterministic List Ranking on thog (n = 10000000)

TOTAL
COMP
COMM

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Deterministic List Ranking on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 4. Performance of the deterministic list ranking algorithm on THOG and ULTRA



0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Euler Tour on thog (n = 5000000)

TOTAL
COMP
COMM

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Euler Tour on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 5. Performance of the Euler tour algorithm on THOG and ULTRA

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Connected Components on thog (n = 10000000)

TOTAL
COMP
COMM

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Connected Components on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 6. Performance of the connected components algorithm on THOG and ULTRA

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Spanning Forest on thog (n = 10000000)

TOTAL
COMP
COMM

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Spanning Forest on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 7. Performance of the spanning forest algorithm on THOG and ULTRA

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Bipartite Graph Detection on thog (n = 10000000)

TOTAL
COMP
COMM

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

W
al

l C
lo

ck
 T

im
e 

(s
)

Number of Processors (p)

Bipartite Graph Detection on ultra (n = 100000)

TOTAL
COMP
COMM

Fig. 8. Performance of the bipartite graph detection algorithm on THOG and ULTRA


