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Abstract— We propose a biologically inspired and fully-
decentralized approach to the organization of computation that
is based on the autonomous scheduling of strongly mobile agents
on a peer-to-peer network. Our approach achieves the following
design objectives: near-zero knowledge of network topology, zero
knowledge of system status, autonomous scheduling, distributed
computation, lack of specialized nodes. Every node is equally
responsible for scheduling and computation, both of which are
performed with practically no information about the system.

We believe that this model is ideally suited for large-scale
unstructured grids such as desktop grids. This model avoids
the extensive system knowledge requirements of traditional Grid
scheduling approaches. Contrary to the popular master/worker
organization of current desktop grids, our approach does not
rely on specialized super-servers or on application-specific clients.
By encapsulating computation and scheduling behavior into
mobile agents, we decouple both application code and scheduling
functionality from the underlying infrastructure. The resulting
system is one where every node can start a large grid job, and
where the computation naturally organizes itself around available
resources.

Through the careful design of agent behavior, the resulting
global organization of the computation can be customized for
different classes of applications. In a previous paper, we described
a proof-of-concept prototype for an independent task application.
In this paper, we generalize the scheduling framework and
demonstrate that our approach is applicable to a computation
with a highly synchronous communication pattern, namely Can-
non’s matrix multiplication.

I. INTRODUCTION

Many scientific fields, such as genomics, phylogenetics, as-
trophysics, geophysics, computational neuroscience, or bioin-
formatics, require massive computational power and resources,
which might exceed those available on a single supercomputer.
There are two drastically different approaches for harnessing
the combined resources of distributed collection of machines:
traditional grid computing schemes and centralized master-
worker schemes.

Research on Grid scheduling has focused on algorithms
to determine an optimal computation schedule based on the
assumption that sufficiently detailed and up to date knowl-
edge of the systems state is available to a single entity (the
metascheduler) [1], [2], [3], [4]. While this approach results
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in a very efficient utilization of the resources, it does not
scale to large numbers of machines. Maintaining a global view
of the system becomes prohibitively expensive and unreliable
networks might even make it impossible.

A number of large-scale systems are based on variants of
the master/workers model [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16]. The fact that some of these systems have
resulted in commercial enterprises shows the level of technical
maturity reached by the technology. However, the obtainable
computing power is constrained by the performance of the
single master (especially for data-intensive applications) and
by the difficulty of deploying the supporting software on a
large number of workers.

At a very large scale much of the conventional wisdom we
have relied upon in the past is no longer valid, and new design
principles must be developed. First, very few assumptions
(if any) can be made about the systems, in particular about
the amount of knowledge available about the system. Second,
since the system is constantly changing (in terms of operating
parameters, resource availability), self-adaption is the normal
mode of operation and must be built in from the start. Third,
the deployment of the components of an infrastructure is a
non-trivial issue, and should be one of the fundamental aspects
of the design. Fourth, any dependence on specialized entities
such as schedulers, masters nodes, etc., needs to be avoided
unless such entities can be easily replicated in a way that scales
with the size of the system.

Current approaches to organizing computation on large
systems can be traced to techniques that were first developed
in the context of parallel computing using traditional super-
computers. We propose a completely new approach to large
scale computations. Our approach is conceptually different in
that instead of starting with legacy models of computation
and trying to adapt them to large scale systems (bottom-up
approach), we propose a computational model designed to
work with an arbitrarily large number of entities, and we work
our way down (top-bottom approach).

Our approach is inspired by the organization of complex
systems. Nature provides numerous examples of the emer-
gence of complex patterns derived from the interactions of mil-
lions of organisms that organize themselves in an autonomous,



adaptive way by following relatively simple behavioral rules.
In order to apply this approach to the task of organizing
computation over large complex systems, a large computation
must be broken into small self-contained chunks, each capable
of expressing autonomous behavior in its interaction with other
chunks.

Our approach is to encapsulate computation and behavior
into mobile agents, which deliver the computation to available
machines. These mobile agents then communicate with one
another and organize themselves in order to use the resources
effectively. The centrality of local behavior in our systems
means that only a minimal infrastructure is needed, providing
very little functionality beyond sandboxing and detection of
idle cycles, contrarily to prevailing current approaches [5].

The notion that complex systems can be organized accord-
ing to local rules is not new. Montresor et al. [17] showed
how an ant algorithm could be used to solve the problem
of dispersing tasks uniformly over a network. Similarly, the
RIP routing table update protocol uses simple local rules that
result in good overall routing behavior. Other examples include
autonomous grid scheduling protocols [18] and peer-to-peer
file sharing networks [19], [20].

A. The Big Picture

We envision a system where every node is capable of
contributing resources for ongoing computations, and starting
its own arbitrarily large computation. Once an application is
started at a node, for example the user’s laptop, other nodes are
called in to contribute resources. Computation organizes itself
on the available nodes according to a pattern that emerges
from their point-to-point interactions.

In the simplest case, this pattern is an overlay tree rooted at
the starting node; in the case of a data intensive application, the
tree can be rooted at one or more separate, presumably well-
connected machines at a supercomputer center. More complex
patterns can be developed as required by the applications
requirements, either by using different topologies than the tree,
and/or by having multiple overlay networks each specialized
for a different task. The important point is that this flexibility
is achieved because these patterns are not built into the system,
but they emerge from the autonomous behavior of its parts.

Only minimal support software is required on each node,
since most of the scheduling infrastructure is encapsulated
along with the application code inside an agent. In our
experiments we only deployed a JVM and a mobile agent
environment on each node. The scheduling framework is pro-
vided as a library that a developer may adapt to an application
by specifying properties that are application-specific.

In our system, the only knowledge each agent relies upon
is what it can derive from its interaction with its neighbor and
with the environment, plus an initial “friends” list needed to
bootstrap the system. The nature of the information required
for successful operation and the way to get it is application
dependent and can be customized. For example for our first
(data-intensive) application, both neighbor computing rate
and communication bandwidth of the intervening link were

important, and this information was obtained using feedback
from the ongoing computation.

In summary, our approach relies on the flexibility of de-
signing a behavior that implicitly defines many of the global
aspects of a distributed computation, and explicitly defines
local tasks. Almost all of the relevant design issues of the
computations are solved in code that is part of the application,
requiring a very thin, uniform infrastructure. The reliance of
the computation on only local interactions defines a system
which is inherently adaptive and scalable.

The main contribution of this paper is a generalization of the
scheduling mechanisms of the Organic Grid [21]. Previously
we studied the scheduling aspects for an independent task
application, where the agents carried a BLAST executable.
In this paper, we demonstrate that our framework is flexible
enough to be applied to an application with a synchronous
communication pattern. We use Cannon’s matrix multipli-
cation — an application usually considered challenging for
running on a grid — as an example for demonstrating the
flexibility of our approach.

II. BACKGROUND AND RELATED WORK

A. Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines was
first realized by the Worm project [22] at Xerox PARC. Further
progress was made by academic projects such as Condor [11].
The growth of the Internet made large-scale efforts like
GIMPS [6], SETI@home [7] and folding@home [9] feasible.
Recently, commercial solutions such as Entropia [10] and
United Devices [23] have also been developed.

The idea of combining Internet and peer-to-peer computing
is attractive because of the potential for almost unlimited
computational power, low cost, ease and universality of access
— the dream of a true Computational Grid. Among the
technical challenges posed by such an architecture, scheduling
is one of the most formidable — how to organize computation
on a highly dynamic system at a planetary scale while relying
on a negligible amount of knowledge about its state.

B. Scheduling

Decentralized scheduling is a field that has recently attracted
considerable attention. Two-level scheduling schemes have
been considered [24], [25], but these are not scalable enough
for the Internet. In the scheduling heuristic described by
Leangsuksun et al. [26], every machine attempts to map tasks
on to itself as well as its K best neighbors. This appears to
require that each machine have an estimate of the execution
time of subtasks on each of its neighbors, as well as of the
bandwidth of the links to these other machines. It is not
clear that their scheme is practical in large-scale and dynamic
environments.

G-Commerce was a study of dynamic resource allocation
on the Grid in terms of computational market economies
in which applications must buy resources at a market price
influenced by demand [27]. While conceptually decentralized,
if implemented this scheme would require the equivalent of



centralized commodity markets (or banks, auction houses, etc.)
where offer and demand meet, and commodity prices can be
determined.

Recently, a new autonomous and decentralized approach to
scheduling has been proposed to address specifically the needs
of large grid and peer-to-peer platforms. In this bandwidth-
centric protocol, the computation is organized around a tree-
structured overlay network with the origin of the tasks at
the root [18]. Each node in the system sends tasks to and
receives results from its K best neighbors, according to band-
width constraints. One shortcoming of this scheme is that the
structure of the tree, and consequently the performance of
the system, depends completely on the initial structure of the
overlay network. This lack of dynamism is bound to affect the
performance of the scheme and might also limit the number
of machines that can participate in a computation.

C. Self-Organization of Complex Systems

The organization of many complex biological and social
systems has been explained in terms of the aggregations of a
large number of autonomous entities that behave according to
simple rules. According to this theory, complicated patterns
can emerge from the interplay of many agents — despite
the simplicity of the rules [28], [29]. The existence of this
mechanism, often referred to as emergence, has been proposed
to explain patterns such as shell motifs, animal coats, neural
structures, and social behavior. In particular, certain complex
behaviors of social insects such as ants and bees have been
studied in detail, and their applications to the solution of spe-
cific computer science problems has been proposed [17], [30].
In a departure from the methodological approach followed in
previous projects, we did not try to accurately reproduce a
naturally occurring behavior. Rather, we started with a problem
and then designed a completely artificial behavior that would
result in a satisfactory solution to it.

Our work was inspired by a particular version of the
emergence principle called Local Activation, Long-range In-
hibition (LALI) [31]. The LALI rule is based on two types
of interactions: a positive, reinforcing one that works over
a short range, and a negative, destructive one that works
over longer distances. We retain the LALI principle but in a
different form: we use a definition of distance which is based
on a performance-based metric. Nodes are initially recruited
using a “friends list” (a list of some other peers on the
network) in a way that is completely oblivious of distance,
therefore propagating computation on distant nodes with same
probability as close ones. During the course of the computation
agents behavior encourages the propagation of computation
among well-connected nodes while discouraging the inclusion
of distant (i.e. less responsive) agents.

III. APPLICATIONS

In previous research we have demonstrated how to apply our
decentralized approach to organizing computation to a class
of applications that is commonly used in grid scheduling re-
search, namely an independent task application (or ITA) [21],

The specific application we used was BLAST, a popular
sequence alignment tool.

For an ITA, the computation spreads out from its source
in the form of a tree. The source distributes the data in the
form of computational subtasks that flow down the tree; results
flow towards the root. This same tree structure was used as
the overlay network for making scheduling decisions. The
tree is continuously restructured during the execution of the
application, such that high-throughput nodes are always near
the root.

In general, there could be separate overlay networks: for
data distribution, for scheduling, and for communication be-
tween subtasks. In the case of an ITA, there is no commu-
nication between subtasks while the overlay trees for data
distribution and scheduling overlap.

The data distribution and communication overlay networks
are entirely application specific. On the other hand, the mech-
anisms for restructuring the scheduling overlay tree can be
adapted to a wide variety of applications. There are two
key aspects that determine the scheduling behavior: The cost
metric used for measuring the performance of individual nodes
determines which nodes are moved up or down the tree,
whereas the width of the tree is constrained by resource
availability. Both of these aspects are again specific to the
application.

We have factored out the scheduling mechanism into an
object-oriented framework, which an application can extend
by providing application-specific metrics and resource con-
straints.

In order to demonstrate the generality of the autonomic
approach and the flexibility of the Organic Grid schedul-
ing framework, we selected an application at the opposite
end of the spectrum, characterized by a highly regular and
synchronous pattern of communication — Cannon’s matrix
multiplication algorithm [32]. This application employs three
different overlay networks: a star topology for data distribu-
tion, a torus for the communication between subtasks, and
the tree overlay of the scheduling framework. The metric
used for restructuring the tree was the time to multiply two
matrix tiles. While for the ITA the resource constraint was
the communication bandwidth of the root, for the Cannon
application it was the number of machines that belong to the
torus.

IV. SCHEDULING

ITAs easily lend themselves to purely decentralized schedul-
ing over the Organic Grid. However, running Cannon’s matrix
multiplication algorithm on a desktop grid reveals one point
at which centralization is needed: the matrix multiplication
stages should begin only after a grid of k (k = p×p) machines
is available for computation; a central entity is necessary to
count the number of nodes that have been recruited by the
computation and to signal the start of the matrix multiplication.

A. Overlay Networks

Our systems are designed to operate on large-scale unstruc-
tured networks, assuming no knowledge of machine configura-



tions, connection bandwidths, network topology etc. The only
assumption we rely upon is that a “friends list” is available
initially on each node to prime the system; research has been
conducted on constructing such lists for peer-to-peer file-
sharing [19], [33] and the problem will not be addressed in
this paper.

We selected a tree-structured overlay network as the de-
sirable pattern of execution in our previous work [21], [34].
Mobile agents spread out over a desktop grid and formed a tree
overlay. The tree restructured itself continuously while com-
putation was in progress, so as to adjust to the performance of
the individual nodes and bring high-performance nodes close
to the root.

Nodes involved in a Cannon matrix multiplication are orga-
nized as a torus. The behavior of the Organic Grid’s agents was
augmented with matrix multiplication logic, including that for
torus formation and maintenance. Of the n nodes recruited by
the overlay tree, k were involved in the matrix multiplication.
The system thus contained two overlay networks: a tree of all
n nodes, and a torus composed of k of these nodes.

B. Basic Implementation

A user decides to use a desktop grid to multiply two
matrices, A and B, to produce a result matrix, C. These
matrices may be located at a central location (forming a star),
or distributed or replicated across several remote data servers.
He/she also decides on the size of tiles the matrices will be
divided into. Based on the size of the matrices and tiles, the
user can determine the number of machines, k, required to
multiply the matrices.

The user starts up an agent environment on his/her machine,
and creates two agents: a distribution agent, which is also the
central entity that will signal the beginning of the multiplica-
tion, and a computation agent. The computation agent registers
with the distribution agent and obtains a position on the agent
grid, before reading one tile each of the A and B matrices
from a data server.

Whenever other machines on the desktop grid become idle,
they send requests to a list of URLs (friends), where a URL
consists of an IP address and port number. If such a request
arrives at a machine that is running the computation agent,
the agent creates a clone of itself and dispatches the clone to
the idle machine. On arrival, the clone also registers with the
distribution agent, obtains a position on the agent grid, and
reads its own A and B tiles. The topology of the resulting
overlay network is a tree with the user’s machine at the root
node.

When the distribution agent has been contacted by k com-
putation agents, it forms a torus with p machines along each
dimension, where p =

√
k. Each computation agent is sent

a start message to inform it of its left and upper neighbors.
These connections to left and upper neighbors form the torus
overlay network. Also included in the start messages are the
addresses of the nodes to which tiles should be sent during
the initialization phase of the algorithm.

Phase one of the algorithm is the initialization phase, where
nodes send and receive A and B tiles to and from each other.
Different threads within each agent are started up to carry out
these operations. As soon as a node has obtained the A and
B tiles, it begins phase two to actually multiply the matrices.

As described in Figure 1, a node needs five buffers to carry
out its operations. currentATile and currentBTile, hold the
tiles that are to be multiplied during the current computation
stage, while nextATile and nextBTile hold the tiles that
were prefetched and will be used during the next stage. The
result is stored in resultCT ile.

for all i = 1 : p − 1

currentATile = nextATile
currentBTile = nextBTile

/* five concurrent operations */
(send currentATile to leftNeighbour) ‖
(send currentBTile to upperNeighbour) ‖
(receive nextATile from rightNeighbour) ‖
(receive nextBTile from lowerNeighbour) ‖
(multiply currentATile and currentBTile,

store result in resultCT ile)

multiply currentATile and currentBTile, store result in resultCT ile

Fig. 1. Matrix Multiplication Phase

C. Adaptive Tree

Unlike most dedicated clusters, desktop grids could contain
a set of heterogeneous machines of varying configurations and
performance. The distribution agent will create a torus overlay
network of the first k machines it finds. The tree overlay
network may spread out to cover a much larger number of
nodes, n, but only k of them will be part of the torus. The
(n− k) extra nodes might include faster machines than those
in the torus. The application will benefit from a selection of
the k best machines.

Each node has some active children, and some potential
children. The active children are ranked on the basis of
an application-specific performance metric. The ranking is a
reflection of the performance of the entire subtree with the
child node at its root. Potential children are those that have
not sent any results. If one of them does and performs better
than an active child, it replaces that child in the list of active
children.

A node periodically informs its parent about its best-
performing child. The parent checks whether the grandchild
was its child in the recent past. If not, it is willing to consider
the grandchild and makes it a potential child instead. The node
then instructs its child to contact its grandparent directly.

In this manner, the tree overlay network dynamically ad-
justs to changing conditions so as to maximize application
performance. Each node continuously receives feedback from
its children and attempts to propagate its fastest child up the
tree. Slow children, on the other hand, are demoted towards
the leaves.

In the case of the Cannon application, tree nodes rank
their children on the basis of the time required for the last



t tile multiplications. This is a a reasonable metric because
we assume that computation dominates communication. The
(n−k) tree nodes that are not in the torus carry out dummy tile
multiplications so that they can be evaluated by their parents.

D. Role Reversal

The overlay tree contains k regular nodes that are in the
torus, and (n − k) extra nodes. As the tree structure changes
dynamically, fast, extra nodes get pushed up the tree. When
one of these becomes the parent of a slow, regular node, it
recognizes that it should be in the torus instead of its slow
child. The parent, f , initiates a role reversal with the child, c.

At the end of its current tile multiplication stage, c informs
the nodes to its right and bottom on the torus that they should
contact f in future. c transfers its own tiles to f , so that f

seamlessly replaces it in the torus. c is now an extra node.
Thus, application performance is maximized by including the
fastest tree nodes in the torus.

E. Fault Tolerance

A desktop grid is more prone to failure than a reliable
dedicated cluster. We focus on the problem of crash faults
in this paper. As mentioned previously, a tree overlay network
of n nodes is constructed. k of these are part of a torus, and
the remaining (n − k) nodes function as spares.

1) Fault Tolerance on Tree: If the parent of a node were
to become inaccessible due to machine or link failures, the
node and its own descendants would be disconnected from
the tree. A node must be able to contact its parent’s ancestors
if necessary. Every node keeps a list of a of its ancestors. This
list is updated every time its parent sends it a message.

A child sends a message to its parent — the a-th node in
its ancestor-list. If it unable to contact the parent, it sends a
message to the (a−1)-th node in that list. This goes on until an
ancestor responds to this node’s request. The ancestor becomes
the parent of the current node and normal operation resumes.
If a node’s ancestor-list goes down to size 0, the computation
agent on that node self-destructs and a stationary agent begins
to send out requests for work to a list of friends.

2) Fault Tolerance on Torus: Fault tolerance is a much
more difficult problem for the torus because a failure will
cause the entire distributed computation to stall. We define the
requirements of a failure detection and recovery mechanism as:
i) detect failure, ii) find replacement node, iii) insert replace-
ment at correct position in torus, iv) provide replacement with
the state necessary to continue predecessor’s computation, v)
provide replacement with the information needed to recompute
tiles lost to the crash.

A fundamental aspect of our fault tolerance algorithm for
the torus is that every torus node knows who its left neighbor
is at all times. Nodes take responsibility for detecting crashes
to their immediate left and for replacing the crashed nodes.
A crash is detected when one node, r, attempts to contact the
node to its left and finds that it is unable to do so.

The rest of the system system does not stall while failed
nodes are being replaced. Instead, a node will timeout if it has

not received A or B tiles from its right or bottom neighbors,
and the node will read the necessary tiles directly from a data
server.

Spare nodes periodically publish their availability to infor-
mation servers. r queries one of these servers which responds
with the URL of machine l. r contacts l and gives it three
necessary pieces of information: l’s position on the torus, the
matrix multiplication stage that r — and hence l — is on, and
the URL of l’s neighbors. l then reads its A and B tiles from
the data servers.

The matrix multiplication stages then proceed as described
before. When the stages have been completed, the nodes write
their C tiles to the appropriate data server. Nodes that were
inserted as replacements now need to compute the state that
was lost due to their predecessor’s crash. They do this by
reading the necessary A and B tiles from the data servers,
multiplying the tiles, and writing the complete C tiles back to
the repositories.

The failure detection and recovery algorithm makes two
assumptions:

• Enough extra nodes are present to act as spares through-
out the duration of the computation. The number of
failures that the application can tolerate is the same as
the number of extra machines: (n − k). Since it is the
distribution agent that signals the start of the computation,
it is easy for it to postpone this signaling until a large
number of extra machines have been recruited by the
application. The overlay tree can also keep growing, even
after the matrix multiplication has begun. This increases
the number of failures that can be tolerated, as well as the
probability of the application finding high-performance
machines.

• Five of the replacement’s new neighbors — to its right,
top-right, top, top-left and left — are running when the
replacement node is inserted, so that the new node can
discover its top and left neighbors before computation
proceeds. This restriction may be removed by requiring
that each node periodically publish its torus position and
URL. This information could be published to multiple
servers and even the distribution agent itself. New addi-
tions to the torus can query these servers and discover
their left and top neighbors. The interval at which this
publishing occurs needs to be set carefully so that the
time for which the computation stalls is minimized.

V. MEASUREMENTS

Three aspects of the Organic Grid implementation of Can-
non’s matrix multiplication were sought to be evaluated: i)
performance and scalability, ii) fault-tolerance and iii) decen-
tralized selection of compute nodes.

A good evaluation of this application required tight control
over the experimental parameters. The experiments were there-
fore performed on a Beowulf cluster of homogeneous Linux
machines, each with dual AMD Athlon MP processors (1.533
GHz) and 2 GB of memory. When necessary, artificial delays
were introduced to simulate a heterogeneous environment. The



Parameter Name Parameter Value

Maximum children 2
Maximum potential children 2
Feedback from children Off
Child-propagation Off

TABLE I

AGENT BEHAVIOR, WITHOUT ADAPTATION

Parameter Name Parameter Value

Maximum children 2
Maximum potential children 2
Result-burst Average of last 2

tile multiplications
Number of subtasks 0
requested
Child-propagation On

TABLE II

AGENT BEHAVIOR, WITH ADAPTATION

Matrix Single Agent 2 × 2 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)

1 1 75 0.25 22 3.4
4 4 846 1 225 3.8

16 16 14029 4 2535 5.5

TABLE III

RUNNING TIME ON 1 AND 4 MACHINES, 16 ROUNDS

accuracy of the experiments was improved by multiplying the
matrices 16 times instead of just once.

A. Scalability

We performed a scalability evaluation by running the appli-
cation on various sizes of tori and matrices. The tree adaptation
mechanism was disabled in order to eliminate its effect on the
experiments. The agent behavior has been described in Table I.

Tables III and IV, and Figure 3 present a comparison of
the running times of 16 rounds of matrix multiplications on
tori with 1, 2 and 4 agents along each dimension.

Superlinear speedups are observed with larger numbers
of nodes because of the reduction in cache effects with a
decrease in the size of the tiles stored at each machine. A
better scalability evaluation was carried out by using tiling on
single agents as well. These results have been summarized in
Tables V and VI, and Figures 4 and 5.

B. Adaptive Tree Mechanism

We then made use of the adaptive tree mechanism to select
the best available machines for the torus in a decentralized
manner. The behavior of each agent was as in Table II. The
feedback sent by each child to its parent was the time taken
by the child to complete its two previous tile multiplications.

We experimented with a desktop grid of 20 agents in
Figure 2. These 20 agents then formed a tree overlay network,
of which the first 16 to contact the distribution agent were

Matrix Single Agent 4 × 4 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)

1 1 75 0.0625 34 2.2
4 4 846 0.25 43 19.7

16 16 14029 1 454 30.9

TABLE IV

RUNNING TIME ON 1 AND 16 MACHINES, 16 ROUNDS

SLOW

FAST

KNOWS ABOUT

ORIGIN

Fig. 2. Original Configuration of Machines
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Fig. 3. Running Time on 1, 4 and 16 Machines, 16 Rounds

included in a torus with 4 agents along each dimension; the
remaining agents acted as extras in case any faults occurred.
The initial tree and torus can be seen in Figures 6 and 7 with
4 slow nodes in the torus and 4 extra, fast nodes.

The structure of the tree continually changed and the high-
performance nodes were pushed up towards the root. When
a fast, extra node found that one of its children was slower
than itself and part of the torus, it initiated a swap of roles.
Figure 8 shows the tree before the first swap, with the nodes
to be swapped having been circled. The effect of this swap on
the torus is shown in Figure 9.



Matrix Single Agent 2 × 2 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)

1 0.25 52 0.25 22 2.4
4 1 708 1 225 3.2

16 4 8039 4 2535 3.2

TABLE V

COMPARISON OF RUNNING TIME ON 1 AND 4 MACHINES, 16 ROUNDS,

TILING FOR 1 MACHINE

Matrix Single Agent 4 × 4 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)

1 0.0625 45 0.0625 34 1.3
4 0.25 425 0.25 43 9.8

16 1 7409 1 454 16.3

TABLE VI

COMPARISON OF RUNNING TIME ON 1 AND 16 MACHINES, 16 ROUNDS,

TILING FOR 1 MACHINE

Similarly, the topology of the tree and the torus before and
after the remaining swaps are in Figures 10, 11, 12 and 13.

Each matrix multiplication on the 4x4 agent grid had 4 tile
multiplication stages; our experiment consisted of 16 rounds
— 64 stages. A tile multiplication took 7 sec. on a fast node
and 14 sec. on a slow one. Table IX presents the average
execution time of these stages. This began at 10 sec., then
increased to 13 sec. before the first swap took place. The fast
nodes were inserted into the torus on stages 4, 6 and 43. Once
the slow nodes had been swapped out, the system required 4
rounds until all the 16 agents sped up and reached high steady-
state performance. The effect of this on overall running time
can be seen in Table VII.

Similar results were obtained for an experiment that used a
torus with 2 nodes along each dimension. The results are in
Table X.

While the adaptive tree mechanism undoubtedly results
in a performance improvement in the presence of high-
performance extra nodes, it also introduces some overhead
when no such extra nodes are present. Nodes still provide
feedback to their parents who, in turn, rank their children and
propagate the best ones. We first ran the Cannon application
without any extra nodes present, and then disabled the adaptive
tree mechanism for a second set of experiments. The overhead
of this mechanism was negligible, as can be seen in Tables XI
and XII.

C. Fault-Tolerance

We introduce crash failures by bringing down some ma-
chines during application execution. We were interested in
observing the amount of time that the system would stall in
the presence of failures. Different numbers of failures were
introduced at different positions on the torus. When multiple
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Fig. 4. Running Time on 1 and 4 Machines, 16 Rounds, Tiling for 1
Machine
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Slow Nodes Extra Nodes Time (sec)

4 0 898
0 0 462
4 4 759

TABLE VII

RUNNING TIME OF 16 ROUNDS ON 4X4 GRID, 16MB MATRIX,

1MB TILES, ADAPTIVE TREE

Slow Nodes Extra Nodes Time (sec)

2 0 417
0 0 226
2 2 343

TABLE VIII

RUNNING TIME OF 16 ROUNDS ON 2X2 GRID, 4MB MATRIX, 1MB

TILES, ADAPTIVE TREE

nodes on the same column crash, they are replaced in parallel.
The replacements for crashes on a diagonal occur sequentially.

The system recovers rapidly from failures on the same
column and diagonal, as can be seen in Table XIII. For a
small number of crashes (1 or 2), there is little difference in
the penalty of crashes on columns or diagonals. This difference
increases for 3 crashes, and we expect it to increase further
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for larger numbers of crashes on larger tori.

VI. CONCLUSIONS AND FUTURE WORK

We have designed a desktop grid in which mobile agents
are used to deliver applications to idle machines. The agents
also contain a scheduling algorithm that decides which task
to run on which machine. Using simple scheduling rules in
each agent, a tree-structured overlay network is formed and
restructured dynamically, such that well performing nodes
are brought closer to important resources, thus improving the
performance of the overall system.

Previously, we had experimented with scheduling an inde-
pendent task application (a BLAST executable) on the Organic
Grid [21]. We have demonstrated that our scheduling scheme
is also applicable to applications in which individual nodes
need to communicate by scheduling a Cannon-style matrix
multiplication application.
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Because of the unpredictability of a desktop grid, the sched-
uler does not have any a priori knowledge of the capabilities
of the machines or the network connections. For restructuring
the overlay network, the scheduler relies on measurements of
the performance of the individual nodes and makes scheduling
decisions using application-specific cost functions. In the case
of BLAST, where the data was propagated along the same
overlay tree, nodes with higher throughput were moved closer
to the root to minimize congestion. In the case of the Cannon
algorithm, where the data came from a separate data center,
the fastest nodes were moved closer to the root, to prevent in-
dividual slow nodes from slowing down the entire application.

In the near future we plan to harness the computing power
of idle machines by running the agent platform inside a screen
saver. Since computing resources can become unavailable
(e.g., if a user wiggles the mouse to terminate the screen
saver), we are planning to extend our scheduling cost functions
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appropriately to allow agents to migrate a running computa-
tion, while continuing the communication with other agents.

We are also planning to investigate combinations of dis-
tributed, zero-knowledge scheduling with more centralized
scheduling schemes to improve the performance for parts of
the grid with known machine characteristics. Similar as in
networking, where decentralized routing table update protocols
such as RIP coexist with more centralized protocols such as
OSPF, we envision a grid in which a decentralized scheduler
would be used for unpredictable desktop machines, while
centralized schedulers would be used for, say, a Globus host.
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