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ABSTRACT
This paper aims to explore the opportunities in porting a high-
throughput Grid computing middleware to a high-performance
service oriented environment. I t exposes the limitations of the
Grid computing middleware when operating in such a perfor-
mance sensitive environment and presents ways of overcoming
these limitations. We focus on exploiting the heterogeneity of the
Grid resources to meet the performancerequirements of services
and present several approaches of work distribution to deal with
this heterogeneity. Wepresent a heuristic for finding theoptimum
decomposition of work and present algorithmsfor each of theap-
proaches which we evaluate on a real live testbed. The results
validate theheuristic and compare theperformanceof thedif fer-
ent workload distribution strategies. Our results indicate that a
significant improvement in performance can beachieved by mak-
ing theGrid computing middlewareawareof theheterogeneity in
theunderlying infrastructure. Theresults also providesomeuse-
ful insights into deciding awork distribution policy depending on
thestatusof theGrid computing environment.

1. INTRODUCTI ON
Grids that employ donated resources to perform its tasks have be-
come an effective means of performing large-scale computations.
One of primary projects that made use of a donation based grid
was the SETI@home project [7]. Donation based grids have now
foundapplication in a diverse set of domains such as Physics [4],
Weather Forecasting [5] and Medical Research [8]. These are pri-
marily compute-oriented Grids where the amount of computation
per data element is relatively high. In compute-oriented Grids the
taskscan bewidely dispersed irrespectiveof thelocation of thedata
source. Also the tasks in such a Grid computing environment ex-
ecute independently with communication only between the server
and the worker entities. The metric of interest in such a compute-
oriented Grid is throughput, which is thetotal number of taskscom-
pleted in aunit of time.

Another model of Grid computation is the use of service-oriented
architectures such as Grid and Web services. The union of service
oriented architectures with donation based grids provides a power-

ful platform for performing large-scale computations, onesuch ex-
ample being the Lattice project [6]. The critical metric for service-
oriented environments isperformance, which is the amount of time
taken to complete an individual task. A service oriented environ-
ment has the notion of a service request which defines an explicit
boundary between separate invocations of a service. Each request
is composed of individual tasks all of which need to be completed
within a certain time bound. The performance of the service is a
measureof its response time for an individual service request.

The challenge in hosting such a service on heterogeneous set of
resources is maximizing the performance of the service by intel-
ligent scheduling of tasks on the Grid. Our analysis is based on
BOINC [2] which is a widely used Grid computing middleware.
BOINC hasa centralized server which handsout tasks to thework-
ers. The BOINC server scheduler ignores the heterogeneity of the
workerswhen distributing thetasks. This affectstheserviceperfor-
mance as the response timeof aservice request is the time taken to
completeall the individual tasks in a request. Hence the response
time of the service request is bottlenecked by the slowest node in
theGrid.

In this paper we explore several workload distribution strategies
that makeuseof theheterogeneity information of theGrid resources
to make better scheduling decisions. The aim of these workload
distribution strategies is to distribute the workload proportional to
the capabilitiesof thenodes in theGrid. Wefocuson the computa-
tion and communication capabilities of the worker nodes. We first
propose aworkload distribution strategy that does proportional al-
location of work by decomposing each task into finer sub-tasks so
that the faster nodes in the Grid perform more work. We then pro-
pose strategies that make use of historical information to estimate
the capability of the worker nodes and then use this information to
create andassign tasks that match the capability of theGrid nodes.
We evaluate the workload distribution strategies on PlanetLab [1],
a planetary scale distributed testbed. We have used BLAST [3],
an exemplar service in the domain of bioinformatics, as a test case
sinceit represents emerging large-scale data rich services.

The rest of this paper is organized as follows: In section 2 we ex-
posethepertinenceof this problem whichalso formsthemotivation
of our work. In section 3 we propose different strategies to exploit
the heterogeneity of the resources. Section 4 gives a performance
evaluation and comparison of the different strategies and provides
insights into the applicability of each of the strategies. Finally in
section 5 we summarize our results and list our future research di-
rections.



2. MOTI VATI ON
A non-dedicated and distributed Grid such as in a typical deploy-
ment of BOINC is characterized by its use of multiple nodes with
varying computational capabilities. Different worker nodes in such
an infrastructure typically havedifferent CPU speeds, memory and
disk capacities. Moreover thenodeshavedifferent connectionspeeds
and their bandwidth to the server node is also dependent on their
geographical location. In this section, we exhibit the heterogeneity
among the worker nodes using our test application as the bench-
mark.

2.1 System Model
The BOINC system consistsof single centralized scheduler which
consists of two major components. A scheduling server which
hands out the tasks to the worker nodes and a data server which
manages the transfer of the input and output files from the server
to the worker nodes. The scheduling server and the data server are
co-located onthe same server node. The BOINC system is a pull-
model where theworker nodespoll theBOINC server periodically,
requesting work. The worker nodes after completing the computa-
tion send back the output files to the server. Each of the tasks that
are handed out by the server are individual and require no interac-
tion between the worker nodes. Hencethe only communication is
between theserver and theworker nodes.

The application is a modification of the standalone bioinformatics
application called BLAST (Basic Local Alignment Search Tool)
which runs as BOINC service. BLAST is an algorithm for rapid
searching of DNA and protein databases. The BLAST algorithm
comparesnovel DNA sequenceswith previously characterized genes,
and is used to identify the function of the newly discovered pro-
teins. BLAST takesan input sequence andcompares it to a format-
ted databasefile and generatesan output file containing asimilarity
score andsimilarity matcheswith thedatabase. TheBLAST appli-
cation serves as a goodrepresentative of Grid service as it is both
computationally heavy and data-rich, as it requires the transfer of a
large amount of data to perform the computation.

The worker nodes were aset of 16 randomly selected nodes from
thePlanetLab infrastructure. In our BOINC setup weuse a119MB
formatted file of sequences (drosoph.nt) as theBLAST databaseof
gene sequences. The input sequence used for comparison was a
randomly-selected sequence from the database; the sequence was
of length 569 bytes. Each of the 16 worker nodes was given an
equal shareof thework by splitting thedatabaseinto 16equal-sized
chunks. On each run the database chunkwas transferred from the
BOINCserver to theworker node. Theworker nodesafter complet-
ing the BLAST computation return the result back to the BOINC
server. The communication time is largely dominated by the trans-
fer of thedatabase chunkastheinput sequencefile andtheresultant
output file are comparatively much smaller in size.

2.2 Heterogeneity Results
Figures 1(a) and (b) plot the average per-node computation and
communication timeover multiple runsalongwith thestandard de-
viation. Figure1(a) clearly shows thewidediversity in the compu-
tational capability of different nodes with the slowest node being
almost 10 times slower than the fastest node in the grid. For in-
stance while node 12 only takes about 10 seconds on average for
its computation, node 1 takes about 107 seconds to do the same
amount of computation. However, Figure1(b) shows that the aver-
age communication times are highly correlated acrossnodes with
the fastest nodeonly being about twice as fast as theslowest node.
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Figure 1: Per-node average computation and communication
time. The error bars represent standard deviation
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Figure 2: Inter-node var iabilit y in computation and communi-
cation timeover mult iple runs



Figures 2(a) and (b) depict the the average computation and com-
munication time for multiple runs. The errors bars in the graph
represent standard deviation of the time acrossnodes for each run.

Another interesting observationwemakefromFigures 1(a) and 2(a)
is thedifferencebetween the inter-nodevs. the intra-nodevariation
in computation time. The large values of the standard deviation
from Figure 2(a) indicate a large inter-node variation in computa-
tion time even over the same runwhile the tight standard deviation
in Figure 1(a) imply small intra-node variation even across mul-
tiple runs. This is a useful observation as it suggests that it might
be easier to distinguish between different node capabilities, thusex-
ploiting Grid heterogeneity without having to worry about dynamic
intra-nodevariations. While from figures 1(b) and 2(b) weobserve
that the inter-node and the intra-node communication differenceis
not very large. Hence it is not required to handle the communica-
tion heterogeneity as much as the computation heterogeneity.

From the observations made in this section it is clear that the base-
line BOINC workload distribution, which ignores heterogeneity of
the worker nodes, is not suitable for a service-oriented setup as the
heterogeneity in theunderlying infrastructure could be exploited to
improvetheserviceperformance. Hence amore intelligent scheme
of workload distribution is necessary which takes into account the
heterogeneity of the nodes within the infrastructure. In the future
sections we explore various workload distribution strategies and
evaluate their performanceunder different scenarios.

3. WORKLOAD DISTRIBUTI ON STRATE-
GIES

In the above section 2, we observed that the nodes in a typical do-
nation based Grid exhibit substantial heterogeneity. The default
BOINC scheduling policy ignores the heterogeneity of the nodes
when handing out tasks to the worker nodes. In our BOINC Grid
setup the tasks are subdivided at the server and once all the results
areobtained they are then merged to generate thefinal output. Due
to the heterogeneity amongst the worker nodes the slowest node in
theGrid becomes thebottleneck andaffects the total response time
of the task. Thus more intelligent workload distribution strategies
would increase theperformanceof theservice.

In this section, we describe workload distribution strategies that
could be applied to the BOINC Grid infrastructure. The workload
distribution strategies fall into two main categories as follows:

• Equal-SizeWorkunit Allocation

• Variable-Size Workunit Allocation

3.1 Equal-SizeWorkunit Allocation
The Equal-Size Workunit Allocation strategy creates workunits of
equal sizes and lets the worker nodes pick up any of the workunits
that need to be executed. Thus it does not make any distinction
between the worker nodes. The two approaches to this workunit
allocation strategy are as follows:

• Coarse-Grained Workunit Allocation

• Fine-Grained Workunit Allocation

3.1.1 Coarse-Grained Workunit Allocation
The Coarse-Grained Workunit Allocation strategy creates as many
workunits as the number of nodes in the grid. This is the baseline
BOINC workload distribution andis thesimplest schemeof worku-
nit allocation. We have already seen how this workunit allocation
strategy suffers from bad response times due to the heterogeneity
amongst thenodes in theGrid.

3.1.2 Fine-Grained Workunit Allocation
The Fine-Grained Workunit Allocation strategy aims to tackle the
heterogeneity amongst theworker nodesby subdividing theworku-
nits into finer chunks. This strategy leads to a better workload dis-
tribution because with finer workunits the faster nodes in the Grid
pick up more workunits from the server than the slower nodes in
theGrid. This load-balances thesystem thereby reducing theover-
all response time.

Heuristic for WorkloadDecomposition
In this section we present a heuristic which estimates the optimum
decomposition for agiven problem. Themain ideabehind theFine-
Grained workload allocation is to load balancetheGrid by creating
finer units of work. The Grid gets better load balanced as the work
is decomposed into finer units, decreasing the granularity of the
units of work at each step. But this decomposition into finer units
of work will exhibit an improvement in performance only while
the Grid is not perfectly load balanced. Oncethe Grid is perfectly
load balanced a further decomposition of work will not lead to an
improvement in performance. Also in some cases a further de-
composition of work may actually bring in overheads that might
negatively affect theperformance.

We now present an algorithm which finds the optimum decompo-
sition of work for agiven problem-size:

Algor ithm 1 Workload-Decomposition(Problemsize, Initdecomp /*
Initial Decomposition */, step /* Factor by which thegranularity is
to bedecreased */, δ /* Limiting condition for thegranularity * /)
1: Currentdecomp← Initdecomp

2: Oldgranularity ←
Problemsize

Initdecomp

3: while TRUE do
4: Currentdecomp← Currentdecomp + step
5: Newgranularity ←

Problemsize

Currentdecomp

6: if Oldgranularity - Newgranularity <= δ then
7: Optimumsize← Oldgranularity

8: Return Optimumsize

9: else
10: Oldgranularity ← Newgranularity

11: end if
12: end while
13: End

The above algorithm states that as the work is decomposed into
finer units of work an improvement in the performancewill be ob-
served only while the difference between the granularity of work
from one step to the next is above some constant δ. The value of
this constant δ is specific to the problem or the application. The
point where the differencein the granularity drops below this con-
stant δ is theoptimum decomposition for the current problem.

We now present an application of the above algorithm for finding
the optimum decomposition of work for the BLAST application
given aDatabasesize andaGrid size.



In caseof theBLAST application -
Problemsize = Databasesize

Initdecomp = Gridsize

The decomposition is the number of workunits Numwus which is
initially set to the Grid size. The granularity of work is the size of
thefine-grained database chunk.
Granularity = Databasesize

Numwus

The granularity of the workunits is decreased in each iteration by
increasing thenumber of workunits in ordersof step.

In caseof theBLAST application thedominant component costs in
the total time are the communication and computation costs which
are dependent on the size of the database chunk. The heuristic
states that an improvement in the total time will be observed as
the number of workunits are increased in orders of step only until
the difference in the size of the database chunk between the two
configurations is greater than δstep, which is fixed for a certain step
value. When the difference in the size of the database chunk re-
duces to lessthan δstep afurther improvement in the total timewill
not be observed. The number of workunits here Numwus are the
optimum number of workunits with the size of the database chunk
being theoptimum size. Thestarting value for Numwus is theGrid
size(Numwus = Grid sizeis the coarse-grained workunit allocation
strategy).

Therelation betweenstepandδstep isasfollows:

step δstep

4 0.4 MB
8 0.8 MB
16 1.6 MB

Minimum step value(order of increasing workunits) is chosen as 4
due to the nature of the BLAST databases. The database file con-
sists of a list of gene sequences. When splitting the database it is
not possible to arbitrarily split the database in between a sequence
and hence the split has to be aligned to the start or end of the se-
quence. This introduces somedeviation from the expected database
chunksize. A minimum granularity of 4 is chosen to accommodate
for that error. The choice of this step value would depend onthe
Grid environment. In most cases we would like to choose the low-
est possible step value (which is 4) to get the best granularity of
work. Thoughin somescenarios, such aswhen thedatabasesize is
very large, a larger step value could be chosen to reducethesearch
space.

3.2 Var iable-SizeWorkunit Allocation
The Fine-Grained Equal Size workunit allocation strategy requires
the worker nodes to return to the server every time to fetch addi-
tional workunits. The Variable Size workunit allocation strategies
attempt to eliminatethis overhead bycreating and handing out vari-
able sized workunits by matching the size of a workunit assigned
to the relative capability of the node in the Grid. The server does
selective scheduling by forcing a worker node to pick up a specific
workunit. This workunit allocation strategy requires a method of
finding the capabilities of the nodes in the Grid in order to create
these different sized workunits. We have employed two different
approaches to deciding the size of the workunits to be assigned to
thenodes in theGrid. The two approaches are as follows:

• Using thebenchmark information collected byBOINC

• Using thehistorical information of workunit distribution ob-
served in theFine-Grained workunit allocation case

• Using the observed computation and communication dura-

tions of each node in theGrid

3.2.1 Variable Size Allocation using BOINC Bench-
mark Information

The BOINC core client collects benchmark information when the
core client is executed for the first time on the worker node. This
information is updated at periodic intervals and is reported back to
theBOINC server onevery work request. TheBOINC server main-
tains this information in the server database for each of the worker
nodes. In this section wetry to estimatethe computecapability of a
node asa function of two of thebenchmark parameters, viz. Fpops
(Floating point operations per second) and CPU-efficiency. The
Fpops value is calculated using the Whetstone benchmarks. CPU-
efficiency estimates the amount of CPU time aBOINC application
gets for each wall-clock second that it is run. This indirectly is a
measure of the load ona worker node. The communication capa-
bility information of a worker node does not need to be estimated
as it is available on the BOINC server as a measure of its down-
load/upload bandwidth. In figure 3 we plot the observed compute
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Figure 3: ComputeCapabilit y asa function of Fpopsand CPU-
efficiency

capability of 16 Grid nodes to their Fpops and CPU-efficiency val-
ues. Weobservefrom thefigurethat thedatapointsarewidely scat-
terred. Standard interpolation techniques for surfaceplotting when
applied to theobserved data fail to provide an estimate, within rea-
sonable error, of the computecapability of anew node asafunction
of these two parameters.

TheBOINC collected benchmark information is thusinsufficient to
estimate the capability of a Grid node. In the next two sections we
explore two approaches to variable size allocation that makeuseof
information from thepast to estimatethenode capabilitieswhich is
then used to decide the size of the database chunks to be assigned
to each of theGrid nodes.

3.2.2 Variable Size Allocation using Observed Node
Capabiliti es

This Variable Size workunit allocation strategy makes use of the
observed node capabilities viz. computation and communication
durationstodecidethesizeof theworkunits tobe allocated tonodes
in the Grid. This strategy collects the computation and communi-
cation duration information for each node from the coarse-grained
equal size workunit allocation strategy to get an estimate of the
node capability . The capabilities of all the nodes within the Grid



are used to decide the proportional share of the database to be as-
signed to each node which form the variable size workunits. The
algorithm for finding thevariable sizeworkunit allocation is as fol-
lows:

Algor ithm 2 Var-size-Observed (DBsize, Gridsize, Nodes[] List
of Nodesin theGrid, CNC[] Compute+ Communication TimesOf
Grid Nodes)

1: FixedChunksize←
DBsize

Gridsize

2: for all node in Nodes[] do
3: Capability [node]← FixedChunksize

CNC[node]

4: end for
5: TotalCapability ←

PGridsize

n=1 Capability[n]

6: Proportionfactor ←
DBsize

TotalCapability

7: for all node in Nodes[] do
8: VariableChunksize[node]←Capability [node]·Proportionfactor

9: end for
10: Return

3.2.3 VariableSizeAllocation usingHistorical Worku-
nit Distribution Information

The Fine-Grained workunit allocation strategy does load balanc-
ing by subdividing the workunits into finer chunks. The heuris-
tic for fine-grained workunit allocation gives a method of finding
the optimum number of workunits for a particular database size
and grid size. This variable size allocation strategy makes use of
historical information of the workunit distribution observed in the
Fine-Grained workunit allocation case to deciding the size of the
variable sizeworkunits. The algorithm for finding thevariable size
workunit allocation is as follows:

Algor ithm 3 Var-size-Historical (DBsize, Gridsize, Nodes[] List
of Nodes in theGrid)
1: Optimumworkunits←Fine-Grained-Heuristic(DBsize,

Gridsize) /* Apply the heuristic function for Fine-Grained Al-
location Strategy to obtain the optimum number of workunits
for this configuration */

2: Obtain Responsetimes[] with FineGrained Workunit Distribu-
tion for Optimumworkunits

3: WUdistr[Gridsize]←Workunit-Distribution(MIN
(Responsetimes[])) /* Get the workunit distribution for
thebest response time*/
/*Use the workunit distribution to obtain the variable size
chunkfor each node*/

4: for all node in Nodes[] do
5: VariableChunksize[node]←Group-Database-

Chunks(WUdistr[node])
6: end for
7: Return

4. EVALUATI ON
In this section, we validate the heuristic presented in section 3.1.2
and evaluate the performance of the workload distribution strate-
giesdiscussed in theprevious section. Wefirst describeour BOINC
Grid setup and experimental details followed by the performance
results.

4.1 Experimental Methodology

BOINC Grid Setup
We run our Grid on Planetlab - a shared distributed infrastructure
consisting of donated machines. Our experimental setup consistsof
16 Planetlab nodes. The Planetlab nodes serve as the Grid worker
nodes. TheBOINC Grid server runsonadedicated machinethat is
outside the Planetlab infrastructure. Each Planetlab node runs the
Fedora Core 2 Linux kernel 2.6.8 and has 5GB of disk space. The
nodes have varying hardware capabilities and are geographically
distributed. Most of the worker node CPU’s are Pentium III or
Pentium 4 with CPU speeds in the range from 1.2 GHz to 3.0 Ghz.
The amount of memory on each of the nodes is between 1GB and
2GB. We used the BOINC development version 4.72 to setup our
Grid prototypeon thePlanetlab testbed.

We used the BLAST (Basic Local Alignment Search Tool) bioin-
formatics application as described in section 2 to run as a service
on top of our Grid prototype. In our setup, BLAST is modified to
run as a BOINC project: it is hosted on the BOINC server which
hands out the application workunits to the worker nodes for com-
putation. In this setup, the BLAST executable is kept unmodified
and a BOINC-specific wrapper is written around it. A workunit
consistsof an input sequence andaportion of theBLAST database
provided as input files. The result of each workunit execution is an
output file containing a similarity score generated by the BLAST
code. The BLAST computation at each worker node is performed
in two steps. Thefirst step consistsof formatting thedatabaseusing
a BLAST command ’f ormatdb’ , after which the actual sequence
comparison is performed to yield aresult file. In our BOINC setup,
the results are sent back to the server which merges them together
into a single output file. We use two formatted databases, one of
size 119MB (drosoph.nt) and other of size 284MB (sts). The input
sequence used for comparison was a randomly-selected sequence
from the database; the input sequence length was 569 bytes. The
BOINC workunits for theBLAST service aregenerated bysplitting
thedatabase into chunks.

We conducted our experiments by executing multiple BLAST re-
quests on our testbed and measuring the total request execution
times along with the component costs such as computation and
communication times at each worker node. Each requests consists
of theBLAST execution for asingle input sequence and the whole
BLAST database. The Planetlab infrastructure being a very dy-
namic environment we conducted our tests in a cyclic manner in
order to smoothen out the effects of temporary variations in com-
putation and communication load. The different configurations in
the Fine-Grained equal size workload allocation were tested in an
interleaved manner. A similar test setup was used for the compar-
ison of the Equal sized and Variable size allocation schemes. Also
the tests were repeated at different times during the day. We now
present the experimental results and their implications in choosing
aworkload distribution strategy.

4.2 Compar ison of Equal-SizeWorkunit Allo-
cation Strategies

In this section, we compare the two equal-sized workunit alloca-
tion strategies viz. Coarse-Grained vs. Fine-Grained. The Coarse-
Grained workunit allocation strategy is thedefault execution model
of BOINC.

From Figure 4 it is clear that a significant improvement in the to-
tal response time is possible just by the simple scheme of creat-
ing finer-grained workunits to do better workload distribution. One
other point to note from Figure 4 is that the performanceimprove-



ment from the coarse-grained to the fine-grained workunit alloca-
tion strategy is greater when the total size of the database is larger.
The reason behind this behavior is that for a larger database size,
for the coarse-grained workunit allocation there is greater dispar-
ity amongtheworker nodes. Hencewith thefine-grained workunit
allocation a greater improvement in the total time is observed as
there is much morescopeof load-balancing thesystem for a larger
database.
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4.3 Fine-Grained Workunit Allocation Strat-
egy

TheFine-Grainedworkunit allocationstrategyachievesbetter work-
load distribution by creating finer-grained workunits because of
which the faster nodes in the Grid end upexecuting more number
of workunits. The Figure 5 illustrates how accurately the capabili-
ties of a node match against the number of workunits executed by
it. The capability of anodeis expressed in units of KB/s. This node
capability is the compute+ communication capability of thenode.
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From Figure 5 we observe that the ratio of node capability to the
number of workunits executed by that node is almost the same.
This shows that the fine-grained workunit allocation better load-
balances the Grid nodes. Note here that the size of each workunit
differs for the two different databases. These results are further
impetus to thevariable sizeworkload distribution described in sec-
tion 3.2.2 which uses the same capability values to decide the size
of theworkunits to be assigned to each node.

4.3.1 Heuristic Validation
In section 3.1.2 wepresented aheuristic which for agiven database
size predicts the optimum number of workunits that would give

the lowest possible response time. In this section, we validate this
heuristic under different configurations. We also present here a
breakdown of the total time to show the component costs such as
the computation, communication and overhead times. The total
time is represented as follows-

Totalt = MAX(∀Gn(Pt + Oht +
X

Workunits

(Cmt + Cpt)))

where,
Totalt - Total Time
Gn - Grid Nodes
Cmt - Communication Time,
Cpt - Computation Time,
Pt - The preamble time is the time taken to create the workunits at
theserver
Oht - Overhead Time- the amount of timethat theworker nodesits
idle while the result of one workunit is uploaded to the server and
thedownload of thenext workunit begins.

The total time for one node is thus the sum of the communication
and computation times for all the workunits executed by that node
plus the overhead and the preamble time. The total time taken for
that request is thus the timetaken by theslowest node, which is the
maximum of all theper node times. Theoverhead time is boundto
rise as the number of workunits are increased. In the figures below
themiscellaneoustimeis thepreamble timefor creating theworku-
nits at the server and the amount of time the first set of workunits
wait at theserver beforebeing picked up byaworker node.
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Figures 6 and 7 show the performance of the service for varying
number of workunits for databases of size 119 MB and 284MB.
We also show the component costs in each of the configurations.
These breakdown times are of the slowest node in the Grid i.e. the



bottleneck node in the Grid. Overall from the component costs we
seethat the dominant cost is the computation time. As the number
of workunits are increased we get a better load distribution among
thegrid nodes and hencethe computation time reduces.

For the database of size 119 MB the optimum number of worku-
nits is 40 as obtained from the heuristic. The best response time as
depicted in Figure 6 is seen for 40 workunits. We seethat the be-
yondthesenumber of workunits thetotal responsetimeflattensout
andthen risesgently. Hencetheheuristic states thepoint where the
curve starts flattening out thus indicating that beyondthat point no
further improvement in the total time is possible even if the num-
ber of workunits are increased. This is the optimal configuration
because for these number of workunits the Grid is load-balanced
and increasing the workunits further will not offer any further im-
provement. The gentle rise in the total time for very large number
of workunits such as 80 and 96 is because for these number of
workunits theoverhead timebegins to affect the total time.

Figure7showsthe effect of varying number of workunit for database
of size 284 MB. For this database size the optimum number of
workunits is 56. A similar graph is observed for this database size
with thelowest responsetimeseen for 56workunits. The computa-
tion time is seen to be lowest for these number of workunits. Also
the overhead costs are still small and hencedo not affect the total
time.

4.3.2 Effect of Increasing theGrid Size
In this section, westudy the effect of increasing theGrid size from
16 worker nodes to 32 onthe heuristic. Figures 8 and 9show the
effect of varying the number of workunits for database of size 119
MB and 284MB for aGrid of size32.
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Figure 8: Effect of varying number of workunits for database
of size119MB and Gr id size32
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Figure 9: Effect of varying number of workunits for database
of size284MB and Gr id size32

For thedatabaseof size119MB theoptimum number of workunits
is 40 and for the database of size 284MB the optimum number of

workunits is 56. Thefirst point to observewhen theGrid size is in-
creasefrom 16 nodesto 32 nodesis that theperformancegain from
the coarse-grained to the fine-grained workunit allocation is lesser.
Thereasonasexplained in section 4.2 is that with alarger Grid size
thesizeof each database chunkfor the coarse-grained workunit al-
location is small. Hence the heterogeneity of the nodes does not
get exposed as much which leaves lesser room for load-balancing.
Comparing the Figures 7 and 9we seethat for the database of size
284 MB the performance gain with 16 Grid nodes was about 230
seconds while that with 32Grid nodes is about 77seconds.

Also with a 32 node Grid it is observed that beyond the optimum
number of workunits the total time remains nearly the same for
many more 4 workunit step increments. This is because when the
Grid size is 32, workunit increments of 4 does not greatly change
the load-balancing within the Grid nodes and hence the total time
observed remains the same as the number of workunits are in-
creased. The miscellaneous time is seen to increase for a larger
Grid size. This component cost is the preamble time for creating
theworkunits at theserver andthe amount of time aworkunit waits
at theserver beforebeing picked up byaworker node. With alarger
Grid size there are more number of worker node requests coming
into the server which increases this component cost. Variation in
this component cost is observed becausethis cost dependsonwhich
workunit is picked up bythe bottleneck node in the Grid. As the
workunits are created sequentially if the bottleneck node picks up
oneof the earlier created workunits then themiscellaneouscompo-
nent cost is small and for the later workunits is large. As the deci-
sion of which workunit is picked up bya worker node is decided
by the BOINC scheduler and is out of our control this component
cost cannot beperfectly characterized.

4.3.3 Effect of Increasing the Input SequenceSize
In this section, westudy the effect of increasing the input sequence
size on the performance of the service. We also validate the fine-
grained workunit allocation heuristic for this larger input sequence.
Uptilt now for all our experiments we used an input sequence of
size569 bytes. Theinput sequenceisarandomly-selectedsequence
from thedatabase. Wenow present the effectsof increasing the in-
put sequencesizeto 27KB. Theinput sequenceis still a randomly-
generated sequencefrom thedatabase.

Figures 10 and 11show the effect of increasing the input sequence
size on databases of size 119MB and 284MB. From the heuristic
described in section 3.1.2 theoptimum number of workunits for the
119MB database is 40 and the optimum number of workunits for
the248MB database is 56. For both thedatabasesizesweobserve
that theheuristic does apply.
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Figure 10: Effect of varying number of workunits for database
of size119MB and Input Sequenceof Size27KB
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Figure 11: Effect of varying number of workunits for database
of size284MB and Input Sequenceof Size27KB

In case of the 119 MB database from Figure 10 we observe that
thenatureof thegraph is similar to that with input sequencesizeof
569 bytes. Thegraphslopesgently from 16to 40workunits beyond
which it remains flat upto 80 workunits. At this point the overhead
timebegins to affect the total timewhich then starts rising.

In case of 284 MB database we observe that with 16 workunits
(Coarse-Grained workunit allocation) the total time taken is larger
with the27KB input sequencethan the569 byte input sequenceby
about 250 seconds with the dominant cost being the computation
time. As the number of workunits are increased we observe that
with better load balancing the computation cost reduces and the
optimum total time is observed at 56 workunits. Thus in this case
thoughthe total time is observed to bevery high with 16workunits
it falls sharply and the minimum total time observed at 56 worku-
nits which matches theheuristic value.

4.4 Compar ison of Equal-Size and Var iable-
SizeAllocation Strategies

In this section, we compare the Equal-Size and Variable-Size allo-
cation strategies we described in section 3. In the previous sec-
tion we evaluated the Fine-Grained Equal Size workunit alloca-
tion strategy and validate that heuristic. As we have seen from
the component costs there is an overhead associated with a worker
nodegoing back to theserver every timeto fetch additional worku-
nits. Hence the intuition behind the variable-size workunit allo-
cation strategies is to get rid of the overhead costs by grouping
the workunits initially at the server and handing them out to each
worker node. This would load-balance the system and would also
take away the overhead of returning to the server every time for
fetching additional work.

In Table 1 we compare the workload distribution strategies for dif -
ferent database sizes and Grid sizes. The Historical and the Ob-
served workload distribution strategiesarethevariable-sizeworku-
nit allocation strategies described in sections 3.2.3 and 3.2.2.

Weobservethat theresults obtained aredifferent from our intuition
as for 3 out of the 4 cases the fine-grained equal size allocation
strategy doesbetter than thevariable-size allocation strategies. The
only case in which the variable-size allocation strategy performs
equal or slightly better than the fine-grained equal size allocation
strategy is for thedatabaseof size119MB andGrid sizeof 16.

The explanation for theobserved results is as follows:
In our BOINC Grid setup wehave asingle server which is handing
out workunits to the worker nodes. The entire database is main-

Equal-Size (secs) Variable-Size (secs)
DB-size Grid-size Coarse Fine Historical Observed

119MB 16 153 102 102 96
284MB 16 428 198 227 244
119MB 32 100 78 84 90
284MB 32 223 133 168 146

Table 1: Compar ison of Equal Sizeand Var iable SizeWorkload
Allocation Strategies

tained at this server with the scheduling server and the data server
both running on the same sever node. The worker nodes continu-
ously query theBOINC server requesting work. The input files for
a computation are the input sequence and the database chunk. The
database chunksize is of theorder of MB’sand henceit dominates
the communication cost.

The worker nodes are constantly polling the BOINC server for
work as soon as workunits are created at the server the BOINC
scheduler hands out these workunits to the worker nodes. Thus
all the worker nodes start downloading the input files at the same
instant of time. This clogs the download bandwidth at the server
and hence all the worker nodes take longer to download the input
files than the standard download time that would be observed if
there was just one worker node downloading the input files at one
time. This contention at the BOINC server affects the total time.
The variable-size workunit allocation strategies take into account
the heterogeneity of the worker nodes and create different sized
workunits so asto take away theoverheadsof thefine-grained allo-
cation strategy. But due to the contention at the server the commu-
nication time increases which increases the total time. The Fine-
Grained workunit allocation strategy gives better results because
with this strategy the worker nodes download the input files from
the server at the same time only for the first workunit. For all the
future workunits the worker nodes return to the server at different
times due to which there is lesser contention for the future worku-
nits. Thus the worker requests to the server get temporally spaced
which reduces the contention and thus reduces the total communi-
cation time. Thus in the Fine-Grained allocation strategy the het-
erogeneity of thenodes helps reducethe total response time.

This also providesan explanation for theheuristic presented in sec-
tion 3.1.2. At the optimum number of workunits the system is
perfectly load-balanced. Beyond this point with more number of
workunits theheterogeneity of thenodesdoesnot exposed asmuch
and hencethetotal responsetimedoesnot drop. The contention af-
fects the communication time and the overhead costs also begin to
dominate.

From Table 1 we seethat the only case in which the variable-size
does equal or better than the equal-size workunit allocation is for
the database of size 119 MB and Grid size 16. This is because
for this database size and Grid size the effect of the contention at
theserver is least amongthe four casesand hencethevariable-size
allocation strategies do better. For all other cases, increasing the
DB size to 284 MB or increasing the Grid size to 32 adds to the
contention at the server due to which the total time increases and
hencethefine-grained allocation strategy does better.

4.4.1 Effect of Data Contention at theServer
In theprevious section, weobserved that thevariable-sizeworkunit
allocation strategiesdo not perform awhole lot better than thefine-



grained equal-size allocation strategies due to the data contention
at theserver.

Figure 12 shows the completedistribution of 40 workunits among
the 16 worker nodes for DB of total size 119MB. From the figure
we seethat the first workunit takes more amount of time to down-
load andthefutureworkunits take lesser time. This isbecause con-
tention at the server is more for the first workunit as all the worker
nodes aredownload the input filesat thesame time.
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Figure 12: Effect of contention at the server for DB size 119
MB and Gr id size16

Figure 13 shows the comparison of the total communication time
for the equal-size fine-grained allocation case to the communica-
tion time in the variable-size allocation case. From the figure we
seethat for most of the nodes the two values are the same. We ob-
served in the results for database of size 119MB and Grid of size
16 in Table 1 that the variable-size historical and the fine-grained
allocation case have nearly equal total times which is reflective of
the results seen here.
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Figure 13: Compar ison of Communication Time of Equal Size
Fine-Grained vs. Var iable Size using Histor ical Workunit Dis-
tr ibution - DB size119MB Grid Size16

Figure 14 shows the completedistribution of 52 workunits among
the 16 worker nodes for DB of total size 284 MB. Here too we
observe that the first workunit takes more amount of time than the
futureworkunits.

Figure 15 shows the comparison of the total communication time
for the equal-size fine-grained allocation case to the communica-
tion timein thevariable-size allocation casefor DB of size284MB
andGrid size16. Hereweobservethat the communication timefor
some of the nodes in the variable-size allocation is more than that
in fine-grained allocation case. This added communication time
adds to the total time which is reflected in the results observed in
Table 1.
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Figure 14: Effect of contention at the server for DB size 284
MB and Gr id size16
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Figure 15: Compar ison of Communication Time of Equal Size
Fine-Grained vs. Var iable Size using Histor ical Workunit Dis-
tr ibution - DB size284MB Grid Size16

4.5 Effect of Placing the Server on the Dona-
tion Gr id

In the evaluation results presented till now The BOINC server was
placed on a dedicated machine that was outside the Planetlab in-
frastructure. Here we evaluate the effect of placing the BOINC
server itself on one of the donation Grid nodes. We evaluate this
setup for adatabaseof size119MB andGrid of 16 nodes.

Figure16 givesthe effect of varying thenumber of workunits onthe
total response time along with the breakdown costs. The optimum
number of workunits for this configuration is 40. We seefrom the
results in this figure that the heuristic is obeyed when the server is
running onPlanetlab.
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Figure 16: Server on PlanetLab - Effect of varying number of
workunits - DB size119MB, Gr id size16

Figure 17 gives a comparison of the Equal-Size and the Variable
Size workload distribution strategies. Here too we observe that the
Fine-Grained workload distribution strategy does better than the



Variable-Size workload distribution strategies. One of the points
to be observed here is that the variable-size workload distribution
strategiesdomuch worsehere than for thesamedatabase andGrid
size with the server on a dedicated machine. The reason for this
can be explained from theFigures 18and 19.
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Figure 18: Effect of contention at the server with server on
Planetlab
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Figure 19: Compar ison of Communication Time of Equal Size
Fine-Grained vs. Var iable Size using Histor ical Workunit Dis-
tr ibution with server on Planetlab

Figure18showsthedistribution of all 32workunits with theserver
on Planetlab. We seefrom this figure that the first workunit takes
considerably longer amount of time to download than the future
workunits. In Figure 19 we observe from the comparison of the
sum of the communication timein thefine-grained workunit alloca-
tion caseto thevariable size allocation casethat the communication
timefor all thenodesis greater for thevariable size allocation case.
This is because with the server running on a Planetlab node there
is much greater data contention as the Planetlab node is a shared
resourcewith the bandwidth being shared amongthe different ser-
vices running onthat node.

Overall looking at the comparison of Equal Size and Variable Size
workload allocation strategies in sections 4.4 and 4.5 we observe
that the Fine-Grained Equal Size workload allocation does better
than the Variable-Size allocation when the contention at the data
server is large. When the data server is placed ona dedicated node
or where the data contention is not a bottleneck the Variable-Size
allocation doesalmost equally asgood or in some casesbetter than
the Fine-Grained Equal Size allocation scheme. As the intra-node
variation in capability is observed to be much lesser than the inter-
node variation the Variable Size allocation is a useful workload al-
location strategy. Thedecision of choosing aworkload distribution
strategy could be dynamically done on the basis of the current sta-
tus of the Grid. If the contention at the data server is not a bottle-
neck the Grid middleware would choose the Variable Size work-
load allocation scheme. When the data contention is significant
the Fine-Grained Equal Size workload allocation would be chosen
due to its better performancein such a Grid environment. Another
scenario where the Fine-Grained Equal Size workload allocation
would bepreferred is when thenode churn in theGrid is high.

5. SUMMA RY AND FUTURE WORK
In the previous sections we have evaluated the different workload
distribution strategies for dealing with the heterogeneity on nodes
in adonation-based Grid. In this section, wesummarize the results
presented in section 4. On the basis of the evaluation results pre-
sented in theprevious section wemake the following conclusions:

• The baseline BOINC workload distribution is not a good
approach when we want to run BOINC in an environment
whereperformanceiscritical asitsworkload distributionstrat-
egy ignores worker heterogeneity.

• The heterogeneity amongthe worker nodes can be exploited
in a number of ways such as by dividing a task into smaller
tasks or also by assigning tasks to the worker nodes on the
basis of their capabilities.

• Weseethat theFine-Grained Equal-Sizeworkunit allocation
strategy performs the best in most of the scenarios. This re-
sult is useful because this workunit allocation strategy better
suits a Grid platform which is donation-based. This is be-
causein adonation based grid there could benode churn with
nodes leaving and joining the Grid arbitrarily. The Variable-
Size workunit allocation strategy would require the system
to monitor the Grid nodes and recalculate the variable-size
workunits when the nodes in the Grid change. This adds ex-
traoverhead. Wehaveobserved such node churn onthePlan-
etlab infrastructure where nodes become inaccessible or go
down for certain periodsof time. In such an environment the
Fine-Grained workunit allocation strategy would work best
with minimum overhead and would adapt to the changing
environment better. Also thevariable size allocation strategy
requires intrusive changes to theBOINC scheduler.

• In case of the Fine-Grained Equal-Size workunit allocation
strategy we have observed that dividing a task into subtasks
works only upto a certain point where the system becomes
load-balanced. A further decomposition of tasksdoesnot im-
prove the performanceinstead the overheads begin the dom-
inatewhich leads to adrop in theperformance.

• A singledataserver hasasignificant impact in suchaservice-
oriented BOINC environment when the worker nodes are
polling the server constantly. When work is generated at the



server a cascading effect is observed where all worker nodes
attempt to communicateand download from theserver at the
same time which affects the performanceof all the work re-
quests present on theserver.

The summary points described above form the basis of our future
work. We are currently working onavariable sizeworkload distri-
bution strategy that along with sizing the workunits also staggers
them such that not all workunit input files are downloaded at the
same time. In this allocation strategy the faster nodes in the Grid
would begiven larger chunksof thework initially andwould bethe
first ones to receive theworkunits.

Another way of dealing with the data contention at the server is to
have multiple data servers. BOINC allows a project to have mul-
tiple data servers and the latest BOINC provides mechanisms by
which worker nodesdownload input filesfrom thedataserver node
that falls in the same timezone. There are obvious limitations of
this approach when we consider ascenario where amajority of the
worker nodes lie in the same timezone. This would excessively
load the data server in that timezone while the other data servers
remain lightly loaded.

One of the other research directions that we are currently working
on is smart partitioning of the Grid resources among requests so
as to attain best performancefor all pending requests as giving all
resources to a certain request may actually reducetheperformance
as a result of the contention.
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