Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 05-040

Heterogeneity-Aware Workload Distribution in Donation Based Grids

Rahul Trivedi, Abhishek Chandra, and Jon Weissman

December 28, 2005






Heterogeneity-Aware Workload Distribution in Donation Based Grids

Rahul Trivedi, Abhishek Chandra and Jon Weissman
Department of Computer Science and Engineering
University of Minnesota - Twin Cities
{trivedi, chandra, jon}@cs.umn.edu

ABSTRACT

This paper aims to explore the oppatunities in porting a high-
throughput Grid computing middleware to a high-performance
service oriented environment. It exposes the limitations of the
Grid computing middleware when operating in such a perfor-
mance sensitive environment and presents ways of overcoming
these limitations. We focus on exploitin g the heterogeneity of the
Grid resources to med the performance requirements of services
and present several approaches of work distribution to deal with
this heterogeneity. We present a heuristic for finding the optimum
decompasition of work and present algorithmsfor each of the ap-
proaches which we ewaluate on a real live testbed. The results
validate the heuristic and compare the performance of the differ-
ent workload dstribution strategies. Our results indicate that a
significant improvement in performance @n be achieved by mak-
ing the Grid computing middlewar e aware of the heterogeneity in
the underlying infrastructure. Theresults also provide some use-
ful insightsinto dedding awork distribution padlicy depending on
the status of the Grid computing environment.

1. INTRODUCTION

Grids that employ doreted resources to perform its tasks have be-
come an effedive means of performing large-scade computations.
One of primary projects that made use of a doretion based grid
was the SETI@home project [7]. Donation based grids have now
foundapplication in a diverse set of domains such as Physics [4],
Weaher Forecasting [5] and Medical Research [8]. These ae pri-
marily compute-oriented Grids where the amourt of computation
per data element is relatively high. In compute-oriented Grids the
tasks can bewidely dispersed irrespedive of thelocation of the data
source. Also the tasks in such a Grid computing environment ex-
eaute independently with communication only between the server
and the worker entities. The metric of interest in such a compute-
oriented Grid is throughpu, which is the total number of tasks com-
pleted in aunit of time.

Ancther model of Grid computation is the use of service-oriented
architectures auch as Grid and Web services. The union of service
oriented architectures with doretion based grids provides a power-

ful platform for performing large-scae computations, one such ex-
ample being the Lattice project [6]. The aitical metric for service-
oriented environments is performance, which is the anourt of time
taken to complete an individual task. A service oriented environ-
ment has the nation of a service request which defines an explicit
boundry between separate invocdions of a service. Each request
is compased of individual tasks all of which need to be completed
within a cetain time bound The performance of the service is a
measure of its resporse time for an individual service request.

The dhallenge in hosting such a service on heterogeneous <t of
resources is maximizing the performance of the service by intel-
ligent scheduling of tasks on the Grid. Our analysis is based on
BOINC [2] which is a widely used Grid computing middleware.
BOINC has a centralized server which hands out tasks to the work-
ers. The BOINC server scheduler ignores the heterogeneity of the
workerswhen distributing the tasks. This aff eds the service perfor-
mance & the resporse time of a service request is the time taken to
complete all the individual tasks in arequest. Hence the resporse
time of the service request is bottleneded by the slowest node in
the Grid.

In this paper we explore several workload distribution strategies
that make use of the heterogeneity information of the Grid resources
to make better scheduling dedsions. The @m of these workload
distribution strategies is to distribute the workload propartional to
the capabilitie s of the nodesin the Grid. We focus onthe computa-
tion and communication capabilitie s of the worker nodes. We first
propcse aworkload distribution strategy that does propartional al-
location of work by decomposing ead task into finer sub-tasks
that the faster nodes in the Grid perform more work. We then pro-
pose strategies that make use of historical information to estimate
the cgability of the worker nodes and then use this information to
crede and assgn tasks that match the cgpability of the Grid nodes.
We evaluate the workload distribution strategies on PlanetLab [1],
a planetary scde distributed testbed. We have used BLAST [3],
an exemplar service in the domain of bioinformatics, as atest case
sinceit represents emerging large-scae datarich services.

The rest of this paper is organized as follows: In sedion 2 we e-
posethe pertinenceof this problem which also formsthe motivation
of our work. In sedion 3 we propcse different strategies to exploit
the heterogeneity of the resources. Sedion 4 gves a performance
evaluation and comparison o the different strategies and provides
insights into the gplicability of ead of the strategies. Finaly in
sedion 5we summarize our results and list our future reseach di-
redions.



2. MOTIVATION

A nondedicated and dstributed Grid such as in a typical deploy-
ment of BOINC is charaderized by its use of multiple nodes with
varying computational cgpabilitie s. Different worker nodesin such
an infrastructure typically have different CPU speeds, memory and
disk cgpadties. Moreover the nodes have different conredion speeds
and their bandwidth to the server noce is also dependent on their
geographical locaion. In this sedion, we exhibit the heterogeneity
among the worker nodes using our test application as the bench-
mark.

2.1 System Model

The BOINC system consists of single centralized scheduler which
consists of two major comporents. A scheduling server which
hands out the tasks to the worker nodes and a data server which
manages the transfer of the input and ouput files from the server
to the worker nodes. The scheduling server and the data server are
co-locaed onthe same server node. The BOINC system is a pull-
model where the worker nodes pall the BOINC server periodically,
requesting work. The worker nodes after completing the computa-
tion send badk the output files to the server. Each of the tasks that
are handed ou by the server are individua and require no interac
tion between the worker nodes. Hence the only communication is
between the server and the worker nodes.

The gplication is a modificaion of the standalone bioinformatics
application cdled BLAST (Basic Locd Alignment Seach Todl)
which runs as BOINC service. BLAST is an agorithm for rapid
seaching of DNA and protein databases. The BLAST agorithm
compares novel DNA sequenceswith previously charaderized genes,
and is used to identify the function of the newly discovered pro-
teins. BLAST takes an input sequence and comparesit to aformat-
ted database file and generates an output file containing a similarity
score and similarity matches with the database. The BLAST appli-
cation serves as a goodrepresentative of Grid service asit is both
computationally heavy and detacrich, asit requires the transfer of a
large anourt of datato perform the computation.

The worker nodes were aset of 16 randamly selected nocdes from
the PlanetL ab infrastructure. In or BOINC setupweuse al19MB
formatted file of sequences (drosophnt) as the BLAST database of
gene sequences. The input sequence used for comparison was a
randamly-selected sequence from the database; the sequence was
of length 569 bytes. Each of the 16 worker nodes was given an
equal share of thework by splittin g the database into 16 equal-sized
chunks. On ead run the database chunkwas transferred from the
BOINC server to theworker node. Theworker nodes after complet-
ing the BLAST computation return the result bad to the BOINC
server. The communication time is largely dominated by the trans-
fer of the database chunkastheinput sequencefile andthe resultant
output file are comparatively much smaller in size.

2.2 Heterogeneity Results

Figures 1(a) and (b) plot the arerage per-node computation and
communication time over multiple runs along with the standard de-
viation. Figure 1(a) clearly shows the wide diversity in the compu-
tationa capability of different nodes with the slowest node being
amost 10 times dower than the fastest node in the grid. For in-
stance while node 12 orly takes abou 10 seconds on average for
its computation, node 1 takes about 107 seaonds to do the same
amourt of computation. However, Figure 1(b) shows that the aver-
age communication times are highly correlated aaossnodes with
the fastest node only being about twice &s fast as the slowest node.
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Figure 1. Per-node average computation and communication
time. The error barsrepresent standard deviation
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Figure 2: Inter-node variability in computation and communi-
cation time over multiple runs



Figures 2(a) and (b) depict the the average computation and com-
munication time for multiple runs. The atrors bars in the graph
represent standard deviation of the time acossnodes for ead run.

Ancther interesting observation we make from Figures 1(a) and 2a)
is the difference between the inter-node vs. the intra-node variation
in computation time. The large values of the standard deviation
from Figure 2(a) indicate a large inter-nocde variation in computa-
tion time even over the same run while the tight standard deviation
in Figure 1(a) imply small intra-node variation even aaoss mul-
tiple runs. This is a useful observation as it suggests that it might
be eaier to distinguish between different node caabilitie s, thus ex-
ploiting Grid heterogeneity without having to worry about dynamic
intra-noce variations. While from figures 1(b) and 2(b) we observe
that the inter-node and the intra-node communication differenceis
naot very large. Henceit is nat required to handle the communica
tion heterogeneity as much as the computation heterogeneity.

From the observations made in this sedion it is clear that the base-
line BOINC workload distribution, which ignores heterogeneity of
the worker nocks, is not suitable for a service-oriented setup as the
heterogeneity in the underlying infrastructure could be exploited to
improve the service performance. Hence amore intellig ent scheme
of workload distribution is necessary which takes into acourt the
heterogeneity of the nodes within the infrastructure. In the future
sedions we explore various workload distribution strategies and
evaluate their performance under different scenarios.

3. WORKLOAD DISTRIBUTION STRATE-

GIES

In the abowve sedion 2, we observed that the nodes in atypical do-
nation based Grid exhibit substantial heterogeneity. The default
BOINC scheduling pdicy ignores the heterogeneity of the nodes
when handing ou tasks to the worker nodes. In ou BOINC Grid
setup the tasks are subdvided at the server and orce dl the results
are obtained they are then merged to generate the final output. Due
to the heterogeneity amongst the worker nodes the slowest node in
the Grid beames the bottlenedk and affeds the total resporsetime
of the task. Thus more intelligent workload distribution strategies
would increase the performance of the service.

In this sedion, we describe workload distribution strategies that
could be gplied to the BOINC Grid infrastructure. The workload
distribution strategies fall into two main categories as follows:

e Equal-Size Workunit Allocaion

o Variable-Size Workunit Allocation

3.1 Equal-SizeWorkunit Allocation

The Equal-Size Workunit Allocétion strategy creaes workunits of
equal sizes and lets the worker nodes pick up any of the workunits
that need to be exeauted. Thus it does not make any distinction
between the worker nodes. The two approacdhes to this workunit
alocation strategy are asfollows:

e Coarse-Grained Workunit Allocaion

e Fine-Grained Workunit Allocation

3.1.1 Coarse-Grained Workunit Allocation
The Coarse-Grained Workunit Allocaion strategy credes as many
workunits as the number of nodes in the grid. This is the baseline
BOINC workload distribution and s the simplest scheme of worku-
nit allocaion. We have drealy seen how this workunit allocation
strategy suffers from bad resporse times due to the heterogeneity
amongst the nodes in the Grid.

3.1.2 Fine-Grained Workunit Allocation

The Fine-Grained Workunit Allocation strategy aims to tackle the
heterogeneity amongst the worker nodes by subdviding the worku-
nits into finer chunks. This strategy leads to a better workload dis-
tribution because with finer workunits the faster nodes in the Grid
pick up more workunits from the server than the slower nodes in
the Grid. This load-balances the system thereby reducing the over-
al resporsetime.

Heuristic for Workload Deampasition

In this sedion we present a heuristic which estimates the optimum
decomposition for agiven problem. The main ideabehind the Fine-
Grained workload alocdion is to load balancethe Grid by creaing
finer units of work. The Grid gets better load balanced as the work
is decomposed into finer units, deaeasing the granularity of the
units of work at ead step. But this decomposition into finer units
of work will exhibit an improvement in performance only while
the Grid is not perfedly load balanced. Oncethe Grid is perfedly
load balanced a further decompasition of work will not lead to an
improvement in performance. Also in some cases a further de-
compasition of work may adually bring in overheads that might
negatively affed the performance

We now present an algorithm which finds the optimum deacmpo-
sition of work for a given problem-size:

Algorithm 1 Workload-Demmposition(Problems; .., INitgecomp /*
Initial Decompasition */, step /* Fador by which the granularity is
to bedeaeased */, § /* Limiting condtion for the granularity */)
1: Currenticcomp < INitgecomp
2 Oldgranularity — Eroblemaize

Initgecomp
3. while TRUE do

4. Currentgecomp «— CUrrentgecomp + Step

5: NaNgTanularity — %m

6: if Oldg'f'anularity - NeNgranularity <= ¢ then
7 Optimums;ze «— Oldgranuiarity

8: Return Optimums; -

9. ese

10: OIdgT'anulu,rity — NeNgru,nularity

1. endif

12 end while

13 End

The aowve dgorithm states that as the work is decomposed into
finer units of work an improvement in the performancewill be ob-
served orly while the difference between the granularity of work
from one step to the next is above some wnstant 6. The value of
this constant ¢ is spedfic to the problem or the gplication. The
point where the differencein the granularity drops below this con-
stant ¢ is the optimum decomposition for the current problem.

We now present an application of the ébowve dgorithm for finding
the optimum decompoasition of work for the BLAST application
given a Database size and a Grid size.



In case of the BLAST application -

Problem;;.. = Databases; ..

Initdecomp = Gridsize

The decompoasition is the number of workunits Num,,..s which is
initially set to the Grid size. The granularity of work is the size of
the fine-grained database chunk

Granuarity = Patabascsize

The granularity of the Workunits is dereased in ead iteration by
increasing the number of workunits in orders of step.

In case of the BLAST application the dominant component costsin
the total time ae the communication and computation costs which
are dependent on the size of the database chunk The heuristic
states that an improvement in the total time will be observed as
the number of workunits are increased in orders of step only until

the difference in the size of the database chunk ketween the two
configurationsiis greaer than d.¢.,, which is fixed for a cetain step
value. When the difference in the size of the database chunk re-
ducesto lessthan ¢, afurther improvement in the total time will

not be observed. The number of workunits here Num,,,.s are the
optimum number of workunits with the size of the database chunk
being the optimum size. The starting value for Numy,,,s is the Grid
size (Numy,.s = Grid sizeis the marse-grained workunit allocaion

strategy).

Step 6stap
_ _ 4 [oawmB
Therelation between step anddiep isasfollows:| o | o e
16 | 1.6 MB

Minimum step value(order of increasing workunits) is chosen as 4
due to the nature of the BLAST databases. The database file con-
sists of alist of gene sequences. When splitting the database it is
not possble to arbitrarily split the database in between a sequence
and hence the split has to be digned to the start or end o the se-
guence. This introduces some deviation from the expeded database
chunksize. A minimum granularity of 4 is chosen to acoommodate
for that error. The choice of this step value would depend onthe
Grid environment. In most cases we would like to choose the low-
est possble step value (which is 4) to get the best granularity of
work. Thoughin some scenarios, such as when the database size is
very large, alarger step value could be chosen to reducethe search
space

3.2 Variable-SizeWorkunit Allocation

The Fine-Grained Equal Size workunit alocation strategy requires
the worker nodes to return to the server every time to fetch addi-
tional workunits. The Variable Size workunit alocation strategies
attempt to eliminate this overhead by creaing and handing out vari-
able sized workunits by matching the size of a workunit assgned
to the relative cgability of the node in the Grid. The server does
selective scheduling by forcing aworker noce to pick up a spedfic
workunit. This workunit allocaion strategy requires a method o
finding the caabilitie s of the nodes in the Grid in order to creae
these different sized workunits. We have employed two dfferent
approaches to dedding the size of the workunits to be assgned to
the nodes in the Grid. The two approaches are asfollows:

e Using the benchmark information collected by BOINC

e Using the historical information of workunit distribution ob-
served in the Fine-Grained workunit allocation case

e Using the observed computation and communication dua

tions of ead nock in the Grid

3.21 Variable Sze Allocation using BOINC Bench-

mark Information
The BOINC core dient collects benchmark information when the
core dient is exeauted for the first time on the worker node. This
information is updeted at periodic intervals and is reported bad to
the BOINC server onevery work request. The BOINC server main-
tains this information in the server database for ead of the worker
nodes. In this sedion wetry to estimate the compute cgpability of a
nocke & afunction of two of the benchmark parameters, viz. Fpops
(Floating paint operations per second) and CPU-efficiency. The
Fpops value is cdculated using the Whetstone benchmarks. CPU-
efficiency estimates the amourt of CPU time aBOINC application
gets for ead wall-clock second that it is run. This indiredly is a
measure of the load ona worker node. The communication capa-
bility information of a worker node does not need to be estimated
as it is available on the BOINC server as a measure of its down-
load/upload bandwidth. In figure 3 we plot the observed compute
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Figure 3: Compute Capabilit y asafunction of Fpopsand CPU-
efficiency

cgpability of 16 Grid nodes to their Fpops and CPU-efficiency val-
ues. We observe from the figure that the data points are widely sca-
terred. Standard interpolation techniques for surfaceplotting when
applied to the observed data fail to provide an estimate, within rea
sonable error, of the compute cgpability of anew node asafunction
of these two parameters.

The BOINC collected benchmark information is thusinsufficient to
estimate the caability of a Grid node. In the next two sedions we
explore two approaches to variable size dlocaion that make use of
information from the past to estimate the node cgabilitie swhich is
then used to dedde the size of the database chunks to be assgned
to ead of the Grid nodes.

3.2.2 Variable Sze Allocation using Observed Node
Capaliliti es
This Variable Size workunit alocation strategy makes use of the
observed noce caabilities viz. computation and communication
durationsto deddethe size of the workunits to be dlocaed to nodes
in the Grid. This strategy collects the computation and communi-
cdion duation information for ead noce from the marse-grained
equal size workunit alocation strategy to get an estimate of the
noce cgability. The caabilities of al the nodes within the Grid



are used to dedde the propartional share of the database to be &
signed to eah noce which form the variable size workunits. The
algorithm for finding the variable size workunit allocaion is as fol-
lows:

Algorithm 2 Var-size-Observed (DBs; .., Grids;.., Nodes[] List
of Nodesin the Grid, CN(] Compute + Communication Times Of
Grid Nodes)

. FixedChunk,; .. «— %ZZ;
. for all nodein Nodes[] do
Capability [nodg] «— 7“?1%%752:6]2
end for
Total capabitity — Yooy = Capability[n]
: Propationyqctor «— %

. for all nodein Nodeg[] do

[N

. end for
10: Return

3.2.3 VariableSzeAllocation usingHistorical Worku-

nit Distribution Information

The Fine-Grained workunit alocation strategy does load balanc-
ing by subdviding the workunits into finer chunks. The heuris-
tic for fine-grained workunit allocation gives a method o finding
the optimum number of workunits for a particular database size
and gid size. This variable size dlocation strategy makes use of
historical information of the workunit distribution observed in the
Fine-Grained workunit allocation case to deading the size of the
variable size workunits. The dgorithm for finding the variable size
workunit allocation is as follows:

Algorithm 3 Var-size-Historical (DBs;.e, Grids;.., Nodes[] List
of Nodes in the Grid)

1 OptimuMyorkunits —Fine-Grained-Heuristic(DBg; -,
Grids;ze) I* Apply the heuristic function for Fine-Grained Al-
location Strategy to obtain the optimum number of workunits
for this configuration */

2: Obtain Resporse;im.s[] with Fine Grained Workunit Distribu-
tion for Optimumy,orkunits

3: WU4istr[Grids;ze]<—Workunit-Distribution(MIN

(Resporseimes[])) /* Get the workunit distribution for

the best resporse time*/

/*Use the workunit distribution to obtain the variable size

chunkfor ead node*/

. for all nodein Nodes[] do

VariableChunk;; ..[node]«—Group-Database-
Chunks(WU 4;st-[NOCE])

6: end for

7: Return

[S20F

4. EVALUATION

In this sedion, we validate the heuristic presented in sedion 3.1.2
and evaluate the performance of the workload distribution strate-
giesdiscussed in the previous sdion. Wefirst describe our BOINC
Grid setup and experimental details followed by the performance
results.

4.1 Experimental Methodology

VariableChunk;;..[node] < Capability [node]-Propartionsqctor

BOINC Grid Setup

We run ou Grid on Planetlab - a shared distributed infrastructure
consisting of doreted machines. Our experimental setup consistsof
16 Planetlab nodes. The Planetlab nodes srve as the Grid worker
nodes. The BOINC Grid server runs onadedicated machine that is
outside the Planetlab infrastructure. Each Planetlab noce runs the
Fedora Core 2 Linux kernel 2.6.8 and has 5GB of disk space The
nodkes have varying hardware caabilities and are geographically
distributed. Most of the worker node CPU’s are Pentium Il or
Pentium 4 with CPU speedsin the range from 1.2 GHz to 3.0 Ghz.
The anourt of memory on ead of the nodes is between 1GB and
2GB. We used the BOINC development version 4.72 to setup our
Grid prototype on the Planetlab testbed.

We used the BLAST (Basic Locd Alignment Search Todl) bioin-
formatics application as described in sedion 2 to run as a service
ontop of our Grid prototype. In our setup, BLAST is modified to
run as a BOINC project: it is hosted onthe BOINC server which
hands out the gpplication workunits to the worker nodes for com-
putation. In this setup, the BLAST exeautable is kept unmodified
and a BOINC-spedfic wrapper is written aroundit. A workunit
consistsof an input sequence and a portion of the BLAST database
provided as input files. The result of ead workunit exeaution is an
output file containing a similarity score generated by the BLAST
code. The BLAST computation at ead worker nock is performed
in two steps. Thefirst step consistsof formatting the database using
a BLAST command 'formatdb’, after which the adual sequence
comparisonis performed to yield aresult file. In our BOINC setup,
the results are sent badk to the server which merges them together
into a single output file. We use two formatted databases, one of
size 119MB (drosophnt) and ather of size 284MB (sts). Theinput
sequence used for comparison was a randamly-selected sequence
from the database; the input sequence length was 569 bytes. The
BOINC workunits for the BLAST service ae generated by splitting
the database into chunks.

We mondicted our experiments by exeauting multiple BLAST re-
quests on ou testbed and measuring the total request exeaution
times along with the comporent costs such as computation and
communication times at ead worker node. Each requests consists
of the BLAST exeaution for asingle input sequence and the whole
BLAST database. The Planetlab infrastructure being a very dy-
namic environment we condicted our tests in a ¢y/clic manner in
order to smocthen ou the dfeds of temporary variations in com-
putation and communication load. The different configurations in
the Fine-Grained equal size workload allocation were tested in an
interleaved manner. A similar test setup was used for the compar-
ison o the Equal sized and Variable size dlocation schemes. Also
the tests were repeded at different times during the day. We now
present the experimental results and their implicationsin choasing
aworkload distribution strategy.

4.2 Comparison of Equal-SizeWorkunit Allo-

cation Strategies
In this sedion, we compare the two equal-sized workunit alloca
tion strategies viz. Coarse-Grained vs. Fine-Grained. The Coarse-
Grained workunit allocation strategy is the default exeaution model
of BOINC.

From Figure 4 it is clear that a significant improvement in the to-
tal resporse time is possble just by the simple scheme of cred-
ing finer-grained workunits to do better workload distribution. One
other point to note from Figure 4 is that the performanceimprove-



ment from the marse-grained to the fine-grained workunit alloca
tion strategy is greaer when the total size of the database is larger.
The reason kehind this behavior is that for a larger database size,
for the coarse-grained workunit allocaion there is greaer dispar-
ity amongthe worker nodes. Hencewith the fine-grained workunit
allocdion a greaer improvement in the total time is observed as
there is much more scope of load-balancing the system for alarger
database.
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Figure 4: Comparison of Equal-Size Workunit Allocation
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4.3 Fine-Grained Workunit Allocation Str at-

The Fine-Grained workunit allocaion strategy achieves better work-
load distribution by creding finer-grained workunits because of
which the faster nodes in the Grid end upexeauting more number
of workunits. The Figure 5 illu strates how acarrately the capabili-

ties of a node match against the number of workunits exeauted by
it. The caability of anodeis expressed in units of KB/s. This node
capability is the compute + communication capability of the node.

0T T T T T T T T T T

60 [

gl

o 1 7 8 9 10 11 12 13 14 15 16 17
Node #

Capability (KB/s) / # of Workunits Computed

Figure 5: Ratio of node capabilit y to workunit distribution for
DB of size119MB

From Figure 5 we observe that the ratio of node cgability to the
number of workunits exeauted by that node is amost the same.
This shows that the fine-grained workunit alocaion better load-
balances the Grid nodes. Note here that the size of ead workunit
differs for the two different databases. These results are further
impetus to the variable size workload distribution described in sec
tion 3.2.2 which uses the same cgability valuesto dedde the size
of the workunits to be esdgned to ead noce.

4.3.1 Heurigtic Validation
In sedion 3.1.2 we presented a heuristic which for agiven database
size predicts the optimum number of workunits that would give

the lowest possble resporse time. In this sedion, we validate this
heuristic under different configurations. We dso present here a
breakdown of the total time to show the comporent costs such as
the computation, communication and owerhead times. The total
time s represented as follows-

Total, = MAX (VGn(P; + Ohi + Y

Workunits

(Cmy + Cpr)))

where,

Tota; - Total Time

G, - Grid Nodes

Cm; - Communication Time,

Cp: - Computation Time,

P. - The preanble time is the time taken to cre&e the workunits at
the server

Oh, - Overheal Time - the amourt of time that the worker node sits
idle while the result of one workunit is uploaded to the server and
the download of the next workunit begins.

The total time for one nock is thus the sum of the communication
and computation times for all the workunits exeauted by that node
plus the overhead and the preamble time. The total time taken for
that request is thus the time taken by the slowest node, which is the
maximum of all the per node times. The overheal time is boundto
rise & the number of workunits are increased. In the figures below
the miscdlaneoustimeis the preanble time for creaing the worku-
nits at the server and the amourt of time the first set of workunits
wait at the server before being picked up byaworker node.

Time (seconds)
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Figure 6. Effed of varying number of workunits for database
of size119MB

Time (seconds)
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Figure 7. Effed of varying number of workunits for database
of size284MB

Figures 6 and 7 show the performance of the service for varying
number of workunits for databases of size 119 MB and 284MB.
We dso show the aomporent costs in ead of the corfigurations.
These breskdown times are of the slowest node in the Grid i.e. the



battlenedk node in the Grid. Overall from the comporent costs we
seethat the dominant cost is the computation time. As the number
of workunits are increased we get a better load distribution among
the grid nodes and hencethe computation time reduces.

For the database of size 119 MB the optimum number of worku-
nits is 40 as obtained from the heuristic. The best resporse time &
depicted in Figure 6 is seen for 40 workunits. We seethat the be-
yondthese number of workunits the total resporse time flattens out
and then rises gently. Hencethe heuristic states the point where the
curve starts flattening out thus indicating that beyondthat point no
further improvement in the total time is possble even if the num-
ber of workunits are increased. This is the optimal configuration
because for these number of workunits the Grid is load-balanced
and increasing the workunits further will not offer any further im-
provement. The gentle rise in the total time for very large number
of workunits such as 80 and 96 is because for these number of
workunits the overhead time begins to affed the total time.

Figure 7 showsthe dfed of varying number of workunit for database
of size 284 MB. For this database size the optimum number of
workunits is 56. A similar graph is observed for this database size
with the lowest resporse time seen for 56 workunits. The computa-
tion time is seen to be lowest for these number of workunits. Also
the overheal costs are still small and hence do nd affed the total
time.

4.3.2 Effed of Increasingthe Grid Sze

In this sedion, we study the dfed of increasing the Grid size from
16 worker nodes to 32 onthe heuristic. Figures 8 and 9 show the
effed of varying the number of workunits for database of size 119
MB and 284MB for a Grid of size 32.
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Figure 8: Effed of varying number of workunits for database
of size 119MB and Grid size 32
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Figure 9: Effed of varying number of workunits for database
of size284MB and Grid size 32

For the database of size 119MB the optimum number of workunits
is 40 and for the database of size 284 MB the optimum number of

workunits is 56. The first point to observe when the Grid sizeis in-
crease from 16 nodesto 32 nodssis that the performancegain from
the ocoarse-grained to the fine-grained workunit allocation is lesser.
Thereasonas explained in sedion 4.2 is that with alarger Grid size
the size of ead database chunkfor the aarse-grained workunit al-
location is small. Hence the heterogeneity of the nodes does nat
get expaosed as much which leaves lesser room for load-balancing.
Comparing the Figures 7 and 9we seethat for the database of size
284 MB the performance gain with 16 Grid nodes was about 230
seands while that with 32 Grid nodes is about 77 seaonds.

Also with a 32 nock Grid it is observed that beyond the optimum
number of workunits the total time remains nealy the same for
many more 4 workunit step increments. This is becaise when the
Grid size is 32, workunit increments of 4 does nat grealy change
the load-balancing within the Grid nodes and hence the total time
observed remains the same & the number of workunits are in-
creased. The miscdlaneous time is seen to increase for a larger
Grid size. This comporent cost is the preanble time for creaing
the workunits at the server and the amourt of time aworkunit waits
at the server before being picked up byaworker node. With alarger
Grid size there ae more number of worker node requests coming
into the server which increases this comporent cost. Variation in
this comporent cost is observed because this cost depends onwhich
workunit is picked up bythe bottlened noce in the Grid. Asthe
workunits are aeaed sequentially if the bottlened< node picks up
one of the ealier creaed workunits then the miscdlaneous compo-
nent cost is small and for the later workunits is large. As the ded-
sion of which workunit is picked up bya worker nocke is dedded
by the BOINC scheduler and is out of our control this comporent
cost canna be perfedly charaderized.

4.3.3 Effed of Increasing the Inpu Sequence Sze
In this sedion, we study the dfed of increasing the input sequence
size on the performance of the service. We dso validate the fine-
grained workunit allocation heuristic for this larger input sequence.
Uptilt now for al our experiments we used an input sequence of
size 569 bytes. Theinput sequenceis arandamly -selected sequence
from the database. We now present the dfeds of increasing thein-
put sequencesizeto 27 KB. Theinput sequenceis till arandamly-
generated sequence from the database.

Figures 10 and 11show the dfed of increasing the input sequence
size on databases of size 119MB and 284MB. From the heuristic
described in sedion 3.1.2 the optimum number of workunits for the
119 MB database is 40 and the optimum number of workunits for
the 248 MB database is 56. For both the database sizes we observe
that the heuristic does apply.
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Figure 10: Effed of varying number of workunits for database
of size 119MB and Input Sequenceof Size27KB



720 T T T T T T T T T T

T T T
Misc — -
-~ Overhead Time
Communication Time

Computation Time  me—

Time (seconds)
w
D
o
TrrrrrrrrrrrrrrrrT

16 24 32 36 40 44 48 52 56 60 68 80 96
# of Workunits

Figure 11: Effed of varying number of workunitsfor database
of size284MB and Input Sequenceof Size 27KB

In case of the 119 MB database from Figure 10 we observe that
the nature of the graphis similar to that with input sequencesize of
569 bytes. The graph slopes gently from 16 to 40 workunits beyond
which it remains flat upto 80 workunits. At this point the overhead
time beginsto affed the total time which then starts rising.

In case of 284 MB database we observe that with 16 workunits
(Coarse-Grained workunit alocation) the total time taken is larger
with the 27 KB input sequencethan the 569 byte input sequenceby
abou 250 seaonds with the dominant cost being the computation
time. As the number of workunits are increased we ohserve that
with better load balancing the computation cost reduces and the
optimum total time is observed at 56 workunits. Thusin this case
thoughthe total time is observed to be very high with 16 workunits
it falls sharply and the minimum total time observed at 56 worku-
nits which matches the heuristic value.

4.4 Comparison of Equal-Size and Variable-

SizeAllocation Strategies

In this sedion, we compare the Equal-Size and Variable-Size dlo-
cation strategies we described in sedion 3. In the previous ®c¢
tion we evaluated the Fine-Grained Equal Size workunit aloca
tion strategy and validate that heuristic. As we have seen from
the comporent costs there is an overhead asociated with a worker
node going bad to the server every timeto fetch additional worku-
nits. Hence the intuition behind the variable-size workunit allo-
caion strategies is to get rid of the overheal costs by grouping
the workunits initially at the server and handing them out to eat
worker node. This would load-balance the system and would also
take awvay the overheal of returning to the server every time for
fetching additional work.

In Table 1 we compare the workload distribution strategies for dif-
ferent database sizes and Grid sizes. The Historical and the Ob-
served workload distribution strategies are the variable-size worku-
nit allocation strategies described in sedions 3.2.3 and 32.2.

We observe that the results obtained are different from our intuition
as for 3 ou of the 4 cases the fine-grained equal size dlocation
strategy does better than the variable-size dlocation strategies. The
only cese in which the variable-size dlocation strategy performs
equal or dlightly better than the fine-grained equal size dlocation
strategy is for the database of size 119MB and Grid size of 16.

The explanation for the observed results is as follows:
In ou BOINC Grid setup we have asingle server which is handing
out workunits to the worker nodes. The entire database is main-

Equal-Size (secs) | Variable-Size (secs)
DB-size [ Grid-size | Coarse | Fine | Historical | Observed
119MB 16 153 102 102 96
284MB 16 428 198 227 244
119viB 32 100 78 84 90
284ViIB 32 223 133 168 146

Table 1: Comparison of Equal Sizeand Variable Size Workload
Allocation Strategies

tained at this server with the scheduling server and the data server
baoth running onthe same sever node. The worker nodes cortinu-
ously query the BOINC server requesting work. The input files for
a computation are the input sequence and the database chunk The
database chunksizeis of the order of MB’s and henceit dominates
the communication cost.

The worker nodes are mnstantly paling the BOINC server for
work as on as workunits are aeded at the server the BOINC
scheduler hands out these workunits to the worker nodes. Thus
al the worker nodes gart downloading the input files at the same
instant of time. This clogs the download bandwidth at the server
and hence dl the worker nodes take longer to download the input
files than the standard download time that would be observed if
there was just one worker node downloading the input files at one
time. This contention at the BOINC server affects the total time.
The variable-size workunit alocation strategies take into acourt
the heterogeneity of the worker nodes and creae different sized
workunits so as to take avay the overheals of the fine-grained allo-
cdion strategy. But due to the contention at the server the commu-
nication time increases which increases the total time. The Fine-
Grained workunit alocdion strategy gives better results becaise
with this strategy the worker nodes download the input files from
the server at the same time only for the first workunit. For all the
future workunits the worker nodes return to the server at different
times due to which there is lesser contention for the future worku-
nits. Thus the worker requests to the server get temporally spaced
which reduces the contention and thus reduces the total communi-
cdion time. Thusin the Fine-Grained alocaion strategy the het-
erogeneity of the nodes helps reducethe total resporse time.

This also provides an explanation for the heuristic presented in sec
tion 31.2. At the optimum number of workunits the system is
perfedly load-balanced. Beyond this point with more number of
workunits the heterogeneity of the nodes does not exposed as much
and hencethe total resporse time does not drop. The contention af-
feds the communication time and the overhead costs also begin to
dominate.

From Table 1 we seethat the only case in which the variable-size
does equal or better than the equal-size workunit alocation is for
the database of size 119 MB and Grid size 16. This is becaise
for this database size and Grid size the dfed of the contention at
the server is least amongthe four cases and hencethe variable-size
dlocaion strategies do better. For al other cases, increasing the
DB size to 284 MB or increasing the Grid size to 32 adds to the
contention at the server due to which the total time increases and
hencethe fine-grained allocation strategy does better.

44.1 Effea of Data Contention & the Server
In the previous s2dion, we observed that the variable-size workunit
dlocaion strategies do nd perform awhole lot better than the fine-



grained equal-size dlocaion strategies due to the data contention
at the server.

Figure 12 shows the complete distribution of 40 workunits among
the 16 worker nodes for DB of total size 119 MB. From the figure
we seethat the first workunit takes more amourt of time to down-
load and the future workunits take lesser time. This isbecaise mn
tention at the server is more for the first workunit as all the worker
nodes are download the input files at the same time.
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Figure 12 Effed of contention at the server for DB size 119
MB and Grid size 16

Figure 13 shows the comparison o the total communication time
for the equal-size fine-grained dlocation case to the communica-
tion time in the variable-size dlocaion case. From the figure we
seethat for most of the nodes the two values are the same. We ob-
served in the results for database of size 119 MB and Grid of size
16 in Table 1 that the variable-size historical and the fine-grained
alocation case have nealy equal total times which is refledive of
the results seen here.
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Figure 13: Comparison of Communication Time of Equal Size
Fine-Grained vs. Variable Size using Historical Workunit Dis-
tribution - DB size 119MB Grid Size 16

Figure 14 shows the complete distribution of 52 workunits among
the 16 worker nodes for DB of total size 284 MB. Here too we
observe that the first workunit takes more amourt of time than the
future workunits.

Figure 15 shows the comparison o the total communication time
for the egual-size fine-grained allocation case to the communica-
tiontimein the variable-size dlocation casefor DB of size284MB
and Grid size 16. Here we observe that the communication time for
some of the nodes in the variable-size dlocdion is more than that
in fine-grained alocation cese. This added communication time
adds to the total time which is refleded in the results observed in
Table 1.
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Figure 14: Effed of contention at the server for DB size 284
MB and Grid size 16
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Figure 15: Comparison of Communication Time of Equal Size
Fine-Grained vs. Variable Size using Historical Workunit Dis-
tribution - DB size 284MB Grid Size 16

45 Effed of Placing the Server on the Dona-
tion Grid

In the evaluation results presented till now The BOINC server was
placed on a dedicated machine that was outside the Planetlab in-
frastructure. Here we evaluate the dfed of placing the BOINC
server itself on ore of the doretion Grid nodes. We evaluate this
setup for a database of size 119MB and Grid of 16 nods.

Figure 16 gvesthe dfed of varying the number of workunits onthe
total resporse time dong with the breakdown costs. The optimum
number of workunits for this configuration is 40. We seefrom the
results in this figure that the heuristic is obeyed when the server is
running onPlanetlab.
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Figure 16: Server on PlanetLab - Effed of varying number of
workunits- DB size 119MB, Grid size 16

Figure 17 gves a comparison o the Equal-Size and the Variable
Size workload distribution strategies. Here too we observe that the
Fine-Grained workload distribution strategy does better than the



Variable-Size workload distribution strategies. One of the points
to be observed here is that the variable-size workload distribution
strategies do much worse here than for the same database and Grid
size with the server on a dedicated machine. The reason for this
can be explained from the Figures 18 and 19
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Figure 18 Effed of contention at the server with server on
Planetlab
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Figure 19: Comparison of Communication Time of Equal Size
Fine-Grained vs. Variable Size using Historical Workunit Dis-
tribution with server on Planetlab

Figure 18 shows the distribution of all 32 workunits with the server
on Planetlab. We seefrom this figure that the first workunit takes
considerably longer amourt of time to download than the future
workunits. In Figure 19 we observe from the comparison o the
sum of the communication timein the fine-grained workunit alloca
tion caseto the variable size dlocation case that the communication
timefor all the nodesis greaer for the variable size dlocation case.
This is becaise with the server runring on a Planetlab noce there
is much greaer data contention as the Planetlab nock is a shared
resource with the bandwidth being shared amongthe different ser-
vicesrunning onthat noce.

Overal looking at the comparison of Equal Size and Variable Size
workload alocation strategies in sedions 4.4 and 45 we observe
that the Fine-Grained Equal Size workload allocaion does better
than the Variable-Size dlocaion when the contention at the data
server is large. When the data server is placed ona dedicated noce
or where the data contention is not a bottlened the Variable-Size
dlocaion does amost equally as good @ in some cases better than
the Fine-Grained Equal Size dlocation scheme. As the intra-node
variation in cgpability is observed to be much lesser than the inter-
node variation the Variable Size dlocation is a useful workload al-
location strategy. The dedsion of choasing aworkload distribution
strategy could be dynamically dore on the basis of the aurrent sta-
tus of the Grid. If the contention at the data server is not a battle-
ned the Grid middleware would choose the Variable Size work-
load alocation scheme. When the data contention is significant
the Fine-Grained Equal Size workload allocaion would be chosen
due to its better performancein such a Grid environment. Ancther
scenario where the Fine-Grained Equal Size workload allocaion
would be preferred is when the node churn in the Grid is high.

5. SUMMA RY AND FUTURE WORK

In the previous ®dions we have evaluated the different workload
distribution strategies for deding with the heterogeneity on nodes
in adoretion-based Grid. In this sedion, we summarize the results
presented in sedion 4. On the basis of the evaluation results pre-
sented in the previous dion we make the following conclusions:

e The baseline BOINC workload distribution is not a good
approach when we want to run BOINC in an environment
where performanceis critical asits workload distribution strat-
egy ignores worker heterogeneity.

e The heterogeneity amongthe worker nodes can be exploited
in a number of ways auch as by dividing a task into smaller
tasks or aso by assgning tasks to the worker nodes on the
basis of their cgpabilitie s.

e We seethat the Fine-Grained Equal- Size workunit alocation
strategy performs the best in most of the scenarios. This re-
sult is useful because this workunit allocaion strategy better
suits a Grid platform which is doretion-based. This is be-
causein adoretion based grid there could be node churn with
nodes leaving and joining the Grid arbitrarily. The Variable-
Size workunit alocation strategy would reguire the system
to monitor the Grid nodes and recdculate the variable-size
workunits when the nodes in the Grid change. This adds ex-
traoverhead. We have observed such noce churn onthe Plan-
etlab infrastructure where nodes become inaccessble or go
down for certain periods of time. In such an environment the
Fine-Grained workunit alocation strategy would work best
with minimum overhead and would adapt to the changing
environment better. Also the variable size dlocaion strategy
requires intrusive changes to the BOINC scheduler.

e In case of the Fine-Grained Equal-Size workunit alocaion
strategy we have observed that dividing a task into subtasks
works only upto a cetain point where the system becomes
load-balanced. A further decompasition of tasksdoesnat im-
prove the performanceinstead the overheads begin the dom-
inate which leads to adrop in the performance

e A single dataserver hasasignificantimpad in such aservice-
oriented BOINC environment when the worker nodes are
padling the server constantly. When work is generated at the



server a cascading effed is observed where dl worker nodes
attempt to communicate and dovnload from the server at the
same time which aff eds the performance of all the work re-
quests present on the server.

The summary points described above form the basis of our future
work. We ae aurrently working onavariable size workload distri-
bution strategy that along with sizing the workunits also staggers
them such that not all workunit input files are downloaded at the
same time. |In this alocaion strategy the faster nodes in the Grid
would be given larger chunks of the work initially andwould be the
first ones to recave the workunits.

Another way of deding with the data contention at the server is to
have multiple data servers. BOINC allows a project to have mul-
tiple data servers and the latest BOINC provides mechanisms by
which worker nodes download input files from the data server node
that falls in the same timezone. There ae obvious limitations of
this approach when we consider a scenario where amajority of the
worker nodes lie in the same timezone. This would excessvely
load the data server in that timezone while the other data servers
remain lightly loaded.

One of the other reseach diredions that we ae arrently working
on is smart partitioning of the Grid resources among requests so
as to attain best performance for al pending requests as giving all
resources to a catain request may adually reducethe performance
asaresult of the contention.
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