
 1

pMatlab Parallel Matlab Library
Nadya Travinin and Jeremy Kepner

{nt, kepner}@ll.mit.edu

MIT Lincoln Laboratory
†
, 244 Wood Street, Lexington, MA 02420

Abstract

MATLAB® has emerged as one of the languages most commonly used by scientists and engineers

for technical computing, with ~1,000,000 users worldwide. The primary benefits of MATLAB are

reduced code development time via high levels of abstractions (e.g. first class multi-dimensional

arrays and thousands of built in functions), interpretive, interactive programming, and powerful

mathematical graphics. The compute intensive nature of technical computing means that many

MATLAB users have codes that can significantly benefit from the increased performance offered

by parallel computing. pMatlab (www.ll.mit.edu/pMatlab) provides this capability by

implementing Parallel Global Array Semantics (PGAS) using standard operator overloading

techniques. The core data structure in pMatlab is a distributed numerical array whose distribution

onto multiple processors is specified with a “map” construct. Communication operations

between distributed arrays are abstracted away from the user and pMatlab transparently supports

redistribution between any block-cyclic-overlapped distributions up to four dimensions. pMatlab

is built on top of the MatlabMPI communication library (www.ll.mit.edu/MatlabMPI) and runs

on any combination of heterogeneous systems that support MATLAB, which includes Windows,

Linux, MacOSX, and SunOS. This paper describes the overall design and architecture of the

pMatlab implementation. Performance is validated by implementing the HPC Challenge

benchmark suite and comparing pMatlab performance with the equivalent C+MPI codes. These

results indicate that pMatlab can often achieve comparable performance to C+MPI at usually

1/10
th

 the code size. Finally, we present implementation data collected from a sample of 10 real

pMatlab applications drawn from the ~100 users at MIT Lincoln Laboratory. These data

indicate that users are typically able to go from a serial code to a well performing pMatlab code

in about 3 hours while changing less than 1% of their code.

1. Introduction

 MATLAB has emerged as one of the predominant languages of technical computing. Its

popularity for data analysis, simulation, and modeling is largely due to the expressiveness of the

language, which approaches that of written mathematics. Additionally, MATLAB provides its

users with powerful graphics that allow visualization of complex multi-dimensional datasets. The

users of MATLAB tend to be engineers and scientists. High-level languages allow them to

concentrate on their core competency and spend less effort on computer science-related

implementation details. It is common for scientists and engineers to test the validity of data

processing algorithms or physical simulations by employing larger data sets, higher resolution

models, or a broader range of input parameters. This need for greater fidelity causes the

execution times to reach hours or even days. Thus, a parallel capability that provides good speed

†
This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions,

interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the

United States Government

MATLAB® is a registered trademark of the MathWorks. Reference to commercial products, trade names,

trademarks or manufacturer does not constitute or imply endorsement

 2

up without sacrificing the ease of programming is highly beneficial. pMatlab seeks to provide

this capability by implementing standard Parallel Global Array Semantics (PGAS) (see Figure 1)

using operator overloading techniques.

Figure 1. Parallel Global Array Semantics (PGAS). The top half of the figure illustrates pure

PGAS. Matrix A is distributed among Np processors. Element i,j is referenced on all the

processors. In pure PGAS, the index i,j is a global index which references the same element on all

processors (on Processor 1 that element is local, on all other processors it is remote). The lower

half of the figure illustrates fragmented PGAS. Here, each processor references element i,j local to

the processor, thus each processor references a different element in the global matrix. pMatlab

supports both pure and fragmented PGAS.

The core data structures in pMatlab are distributed arrays and maps, which will be

discussed in greater detail later in the paper. These data structures are illustrated in the pMatlab

code fragment (see Figure 2) of the STREAM benchmark [McCalpin2005]. STREAM is a

simple, embarrassingly parallel code that uses basic vector operations, such as scale and add, to

measure main memory bandwidth. Distributed arrays allow the serial STREAM program to be

quickly transformed into a parallel program by simply adding a “map” object to selected arrays.

The map describes how the distributed array is to be broken up amongst multiple processors.

Additionally, pMatlab also abstracts communication layer from the application developer. While

writing a parallel MATLAB program with pMatlab, the user does not have to worry about parallel

programming concepts such as deadlocks, barriers, and synchronization.

This paper describes the design, implementation and performance results of the pMatlab

library used to create the constructs shown in Figure 2: the rest of this section highlights related

work and different approaches to developing a parallel MATLAB capability. Section 2 addresses

the details of the pMatlab design. Section 3 describes the implementation of the pMatlab library.

 3

Section 4 presents the HPC Challenge implementations and benchmark results. Section 5

presents results from real applications. Section 6 presents our conclusions.

Figure 2. STREAM Benchmark Code Highlights. The first three lines set the various constants

required by the program such as the number of processors and the size of the row vector. The next

line creates a map, which will cause the 2
nd

 dimension of a distributed array to be broken up

equally among all the processors. The next three lines use this map to create three row vectors.

The last line performs the basic STREAM triad arithmetic operations in parallel. No

communication is required in this example because A, B and C are all mapped the same.

1.1 Related Work

 Parallel MATLAB has been an active area of research for a number of years and many

different approaches have been developed (see [Choy2003] for a comprehensive survey). These

different approaches can be roughly divided into three categories: message passing, client/server

and global arrays.

 The message passing approach [Kepner2004a, CMTM] requires the user to explicitly

send messages within the code. These approaches often implement a variant of the Message

Passing Interface (MPI) standard [MPI]. Message passing allows any processor to directly

communicate with any other processor and provides the minimum required functionality to

implement any parallel program. Users that are already familiar with MPI find these approaches

powerful, but the learning curve is steep for the typical user because explicit message passing

approaches significantly lower the level of abstraction and require users to deal directly with

deadlocks, barriers, and other low level parallel programming constructs. In addition, the impact

on code size is significant. Serial programs converted to parallel programs with MPI typically

increase in size by 25% to 50%; in contrast, OpenMP and PGAS approaches typically only

increase the code size by ~5% [Funk2005]. In spite of these difficulties, a message passing

capability is a requirement for both the client/server and global arrays approaches. Furthermore,

message passing is often the most efficient way to implement a program and there are certain

programs with complex communication patterns that can only be implemented with direct

message passing. Thus, any complete parallel solution must provide a mechanism for accessing

the underlying messaging layer. Among the available MATLAB message passing

implementations MatlabMPI [Kepner2004a] is currently the most popular implementation with

thousands of users worldwide (see Section 3.4 for a more detailed discussion on MatlabMPI).

More recently, the incorporation of MPI into The MathWorks’ Distributed Computing Toolbox

(DCT) [Dean2005] makes message passing available to a much broader range of users.

Client/server approaches [Choy2005, Morrow1998, RTExpress, Dean2005] use MATLAB

as the user’s front-end to a distributed library. For example, Star-P [Choy2005] keeps the

distributed arrays on a parallel server, which calls the necessary routines from parallel libraries

 4

such as ScaLAPACK and FFTW. These approaches often provide the best performance once the

data are transferred to the server. However, these approaches are limited to those functions that

have been specifically linked to a parallel library and require the users to install additional

libraries. Another potential disadvantage to these solutions is that backend libraries often require

specific data distributions for their algorithms. For example, ScaLAPACK requires that the

arrays be distributed in a 2D block-cyclic distribution (see Section 3.2, Maps). If the parallel

MATLAB library does not support this type of distribution, extra communication overhead is

incurred when redistributing the data for submission to the ScaLAPACK routine. We have

included DCT in this category, although in this instance the back-end server is MATLAB running

on each processor and the user is responsible for breaking up the calculation into embarrassingly

parallel tasks that can be independently scheduled onto the workers.

 pMatlab falls into the third category, the global arrays approach. Star-P [Choy2005] and

Falcon [Falcon] also fall into this category. These approaches provide a mechanism for creating

arrays, which are distributed across multiple processors. Global arrays have a long history in

other languages, for example Fortran [Koelbel1994, Numrich1998] and C [El-Ghazawi2005], as

well as in many C++ libraries such as POOMA [Cummings1998], GA Toolkit [Nieplocha2002],

PVL [Lebak2005] and Parallel VSIPL++ [Lebak2005]. The global array approach allows the

user to view a distributed object as a single entity, as opposed to multiple pieces as is the case

with message passing. This approach allows operation on the array as a whole or on local parts

of the array. Additionally, these libraries are compatible with MPI and are amenable to hybrid

shared/distributed memory implementations. Parallel VSIPL++ is implemented for C++. The

GA toolkit is implemented for a number of languages including Fortran, C, and C++.

 pMatlab supports both pure PGAS and fragmented PGAS programming models (see

Figure 1). The pure PGAS model presents an entirely global view of a distributed array.

Specifically, once created with an appropriate map object, distributed arrays are treated the same

as non-distributed ones. When using this programming model, the user never accesses the local

part of the array and all operations (such as matrix multiplies, FFTs, convolutions, etc.) are

performed on the global structure. The benefits of pure PGAS are ease of programming and the

highest level of abstraction. The drawbacks include the need to implement parallel versions of

serial operations and library performance overhead.

 Fragmented PGAS maintains a high level of abstraction but allows access to local parts

of the arrays. Specifically, a distributed array is created in the same manner as in pure PGAS,

however, the operations can be performed on just the local part of the array. Later, the global

structure can be updated with locally computed results. This allows greater flexibility.

Additionally, this approach does not require function coverage or implementation of parallel

versions of all existing serial functions. Furthermore, fragmented PGAS programs often achieve

better performance by eliminating the library overhead on local computations.

pMatlab is a unique parallel MATLAB implementation for a number of reasons. pMatlab

supports both pure and fragmented PGAS programming models, and allows combining PGAS

with direct message passing for optimized performance. While pMatlab does use message

passing in the library routines, a typical user does not have to explicitly incorporate messages

into the code. pMatlab supports embarassingly parallel computation, but is not limited to it.

pMatlab does not link in any external libraries, nor does it compile the language into an

executable. Our library is implemented entirely in MATLAB. This significantly reduces the size

of the library and has allowed pMatlab to become the most complete implementation of PGAS

available in any language.

 5

2. pMatlab Interface and Architecture Design

 The primary challenge in implementing a parallel computation library is how to balance

the conflicting goals of ease of use, high performance, and ease of implementation. With respect

to pMatlab, we have specifically defined each of these goals in a measurable way (see Table 1).

The performance metrics are typical of those used throughout the high performance computing

community and primarily look at the computation and memory overhead of programs written

with pMatlab relative to serial programs written using MATLAB and parallel programs written

using C with MPI. The metrics for ease of use and ease of implementation are derived from the

software engineering community (see [Johnson2004, 2005] and [Kepner2004b] and papers

therein) and look at code size, programmer effort, and required programmer expertise. These

metrics are not perfect, but they are useful tools for measuring progress towards these goals. In

the rest of this section we will discuss the particular choices made in pMatlab to satisfy these

goals.

Table 1: pMatlab Design Goals. Metrics were defined for each of the high level pMatlab design

goals: ease of use, performance, and ease of implementation. These metrics led to specific

approaches for addressing the goals in a measurable way.

Goal Ease of use

Metrics -Time for a user to produce a well performing parallel code from a

serial code.

-Fraction of serial code that had to be modified.

-Expertise required to achieve good performance.

Approach -Separate functional coding from mapping onto a parallel

architecture.

-Abstract message passing away from the user.

-Ensure that simple (embarrassingly) parallel programs are simple to

express.

-Provide a simple mechanism for globally turning pMatlab constructs

on and off.

-Ensure backward compatibility with serial MATLAB.

-Provide a well-defined and repeatable process for migrating from

serial to parallel code.

Goal High Performance

Metrics -Execution time and memory overhead as compared to serial

MATLAB, the underlying MatlabMPI communication library and

C+MPI benchmarks.

Approach -Use underlying serial MATLAB routines wherever possible (even if

it means slightly larger user code).

-Minimize the use of overloaded functions whose performance

depends upon how distributed arrays are mapped.

-Provide a simple mechanism for using lower level communication

when necessary.

Goal Ease of implementation

Metrics -Time to implement a well performing parallel library.

-Size of library code.

-Number of objects.

-Number of overloaded functions.

-Functional and performance test coverage.

 6

Approach -Utilize a layered design that separates math and communication.

-Leverage well-understood PGAS and data redistribution constructs.

-Minimize the use of overloaded functions.

-Develop a “pure” MATLAB implementation to minimize code size

and maximize portability.

2.1 Ease of use

 The first step in writing a parallel program is to start with a functionally correct serial

program. The conversion from serial to parallel requires the user to add new constructs to their

code. pMatlab adopts a separation-of-concerns approach to this process which seeks to make

functional programming and mapping a program to a parallel architecture orthogonal. A serial

program is made parallel by adding maps to arrays. Maps only contain information about how

an array is broken up onto multiple processors and the addition of a map should not change the

functional correctness of a program. A map (see Figure 3) is composed of a grid specifying how

each dimension is partitioned, a distribution that selects either a block, cyclic or block-cyclic

partitioning, and a list of processors that defines which processors actually hold the data.

Figure 3. Anatomy of a Map. A map for a numerical array is an assignment of blocks of data to

processing elements. It consists of a grid specification (in this case a 2 x 2 arrangement), a

distribution (in this case {} implies that the default block distribution should be used), and a

processor list (in this case the array is mapped to processors 0, 1, 2, and 3).

 The next step in writing a parallel program is implementing communications. Perhaps

the largest benefit of PGAS is the ability to abstract complex message passing away from the

user. More specifically, redistribution between any two distributed arrays in pMatlab is

accomplished with the “=” operator. In the STREAM benchmark example (see Figure 2) the “=”

operator was used in the statement: A(:,:) = B + s*C, but since the arrays A, B and C all have

the same map, no communication was required. The overloaded “=” operator in pMatlab figures

this out and correctly performs a simple assignment of the local data on the right hand side to the

local data on left hand sized. A more complex example is the HPC Challenge FFT benchmark

(see Figure 4). This benchmark computes the Fast Fourier Transform of a large 1D vector. The

standard parallel algorithm for this benchmark is to transform the 1D vector into a row

distributed matrix, FFT the rows of the matrix, multiply by a set of weights, redistribute into a

column distributed matrix, and FFT the columns. A key step in the process is the redistribution

which is performed by the statement: Z(:,:) = X, which determines and executes the Np
2

 7

messages that need to be sent to complete this operation. (Note: pMatlab maps also allow this

operation to be performed using a pipeline by using different processor sets in the maps; this

capability is discussed further in section 3.2.)

Figure 4. FFT Benchmark Code Highlights. The first two lines set the various constants

required by the program such as the number of processors and the size of the matrix. The next

two lines create two map objects for breaking the matrix up into rows and into columns. The next

two lines use the maps to create two matrices. The next four lines FFT the rows, multiply by a set

of local pre-computed weights, redistribute the data (using the “=” operator) into the matrix

broken up by columns, and then perform the FFT on the columns.

 PGAS enables complex data movements to be expressed compactly without making

parallelism a burden to code. For example, removing the maps from either the STREAM or FFT

examples returns the program to a valid serial program that simply used standard built-in

operations. This is a direct a result of the orthogonality of mapping and functionality, and allows

the pMatlab library to be “turned off” by simply setting all the maps equal to the scalar value of

1. This feature exploits a side effect of MATLAB constructors (e.g. zeros and rand), which

ignore a trailing argument equal to 1. This ability to turn the library on and off is a key

debugging feature and allows users to determine whether the bugs are from problems in their

serial code or due to their use of pMatlab constructs.

 All of these steps: making the code parallel, managing the communication and

debugging, need to be directly supported in the library. Our experience with many pMatlab

users has resulted in a standardized and repeatable process (see Figure 5) for quickly going from

a serial code to a well-performing parallel code. This process is very important, as the natural

tendency of new pMatlab users is to add parallel functions and immediately attempt to run large

problems on a large number of processors.

The four step process begins by adding distributed matrices to the serial program, but

then assigning all the maps to a value of 1 and verifying the program with Np=1 on the local

machine. The second step is to turn the maps on and to run the program again with Np=1, which

will verify that the pMatlab overloading constructs are working properly. It is also important to

look at the relative performance of the first and second steps, as this will indicate if any

unforeseen overheads are incurred by using the pMatlab constructs. The third step is to run with

Np>1 on the local machine, which will verify that the pMatlab communication constructs are

working properly. The fourth and final step is to run with Np>1 on multiple machines, which

validates that the remote communication is working properly. Only after these four steps have

been performed is it worthwhile to attempt to run large problems on many processors. In

addition, it is important to always debug problems at the lowest numbered step.

 8

Figure 5. The four step serial to parallel process. Step 1 adds distributed matrices to the serial

program, then assigns all the maps a value of 1 and runs with Np=1 on the local machine. Step 2

turns the maps on and runs the program again with Np=1. Step 3 runs with Np>1 on the local

machine. Step 4 runs with Np>1 on multiple machines. Debugging should always be performed

at the lowest numbered step where a problem occurs.

2.2 High Performance

 The primary goal of using a parallel computer is to improve runtime performance. The

first step in achieving high performance is to minimize the overhead of using pMatlab constructs

as compared to their serial equivalents. The previous examples (Figures 2 and 4) show the ideal

“pure” PGAS case when all the required functions have been overloaded to work well with

pMatlab distributed arrays. It is impractical (and unnecessary) to provide optimized

implementations of the approximately 8,000 built-in functions for every combination of array

distributions. Instead, we adopt a coding style that uses some fragmented PGAS constructs (see

Section 1.1). This style is less elegant but provides strict guarantees on performance. More

specifically, distributed arrays are used as little as possible and only when interprocessor

communication is required.

Figure 6 shows examples of the STREAM and FFT benchmarks written using

fragmented PGAS constructs that minimize the use of overloaded functions by employing the

local and put_local functions (see section 3.5). The local function extracts the local part of

the distributed array and returns a regular MATLAB array that will work with any serial MATLAB

function. The put_local function replaces the local part of a distributed array with a regular

serial MATLAB array. Thus, in the STREAM and FFT examples the key expression: Alocal =

Blocal + s*Clocal, and fft(local(X),[],2) are guaranteed to have the same performance

as the equivalent serial function calls and eliminate the need for pMatlab to overload +, * and fft.

In addition to providing a local performance guarantee this style of coding minimizes the

potential for “accidental” communication which is easy to do with the “=” operator. This style

of coding has proven to be very effective and most users are able to adapt their code to this style

with minimum effort. In support of this style, the pMatlab library also provides serial

equivalents of the local and put_local functions so that the code will still work if parallel

arrays are turned off.

The power of PGAS is its ability to hide underlying communication from the user and

eliminate the need for writing lengthy and complex message passing code. Unfortunately, PGAS

constructs are not appropriate for all circumstances. There are communication patterns that

simply would be more efficient if direct message passing can be employed. Thus, it is important

to have mechanisms that allow PGAS and the underlying communication constructs to interact

easily. pMatlab provides this ability by allowing the user to directly access the underlying

MatlabMPI library and its data structures. At any time in the program the user, if s/he so desires,

can choose to send messages directly with MatlabMPI. In fact, we have found that PGAS and

message passing work very well together since the PGAS constructs can still be used to quickly

figure out which data to send and where to send it.

 9

Several of the HPC Challenge benchmarks fall into the class of codes that do best by

allowing some use of direct message passing. In the case of the FFT code, we have used a

special function called transpose_grid (see Figure 6) that directly uses MatlabMPI messaging

to optimally perform the all-to-all communication for going from a row distributed matrix to a

column distributed matrix. This function is able to use memory more efficiently and to optimize

the order in which messages are sent and received. The RandomAccess benchmark (see section

4.3) requires that all processors are able to randomly communicate with all other processors and

is a more explicit example of using messaging and PGAS together. The HPL Top500

benchmark (see section 4.4) requires that one processor be able to broadcast to a subset of all the

other processors, which is also most easily dealt with using direct message passing.

Figure 6. Optimized STREAM and FFT Code Highlights. Programs have been rewritten to

minimize the number of overloaded functions required by using the local and put_local

functions. These programs are guaranteed to provide the same local performance as their serial

equivalents.

2.3 Ease of implementation

The ease of use and high performance goals are well understood by the HPC community.

Unfortunately, implementing these goals in a middleware library often proves to be quite costly.

A typical PGAS C++ library can be 50,000 lines of code and requires several programmers years

to implement. pMatlab has adopted several strategies to reduce implementation costs. The

common theme among these strategies is finding the minimum set of features that will still allow

users to write well performing programs.

One of the key choices in implementing a PGAS library is which data distributions (see

section 3.2) to support? At one extreme it can be argued that most users are satisfied by 1D

block distributions. At the other extreme, one can find applications that require truly arbitrary

distributions of array indices to processors. pMatlab has chosen to support all 4D block-cyclic

distributions with overlap because the problem of redistribution between any two such

distributions (see section 3.3) has been solved a number of times by different parallel computing

technologies.

The pMatlab “=” operator supports data redistribution between arrays. The next question

is what other functions to support and for which distributions? Table 2 shows an enumeration of

different levels of PGAS support. The ability to work with the local part of a distributed array

and its indices has also been demonstrated repeatedly. The big challenge is overloading all

mathematical functions in a library to work well with every combination of input distributions.

As discussed in section 2.2, this capability is extremely difficult to implement and is not entirely

necessary if users are willing to tolerate the slightly less elegant coding style associated with

 10

fragmented PGAS. Thus, pMatlab provides a rich set of data distributions, but a relatively

modest set of overloaded functions, which are mainly focused on array construction functions,

array index support functions, and the various element-wise operations (+,-,.*,./, …).

 The final implementation choice was to implement pMatlab purely in MATLAB without

relying on binding to other languages. This has minimized code size and maximized portability.

For example, pMatlab is the most complete implementation of PGAS, but it is only about 3,000

lines of code and has introduced only two new objects (maps and distributed arrays). pMatlab

also runs on any combination of heterogeneous systems that support MATLAB, which includes

Windows, Linux, MacOSX, and SunOS.

Table 2: Lebak Levels. Levels of parallel support for data and functions. Note: Support for data

distribution is assumed to include support for overlap in any distributed dimension.

Data4/Op1 has been successfully implemented many times. Data1/Op2 may be possible

but has not yet been demonstrated.

Data Level Description of Support

Data0 Distribution of data is not supported [not a parallel

implementation]

Data1 One dimension of data may be block distributed

Data2 Two dimensions of data may be block distributed

Data3 Any and all dimensions of data may be block distributed

Data4 Any and all dimensions of data may be block or cyclicly

distributed.

Operations Level Description of Support

Op0 No distributed operations supported [not a parallel

implementation]

Op1 Distributed assignment, get, and put operations, and support

for obtaining data and indices of local data from a distributed

object.

Op2 Distributed operation support (the implementation must state

which operations those are)

3. pMatlab Implementation

This section discusses the implementation details of the pMatlab library. The library is

designed and implemented at MIT Lincoln Laboratory and builds upon concepts from the

Parallel Vector Library (PVL) [Lebak2005], Star-P [Choy2005], and uses MatlabMPI

[Kepner2004a] as the communication layer. Figure 7 illustrates the layered architecture of the

parallel library. In the layered architecture, the pMatlab library implements distributed

constructs, such as distributed matrices and higher dimensional arrays. In addition, pMatlab

provides parallel implementations of a select number of functions such as redistribution, Fast

Fourier Transform (FFT), and matrix multiplication. However, it is usually simpler for a user to

create a parallel implementation of a function focused on his/her particular data sizes and data

distributions of interests, than to provide generic parallel implementations of functions which

give good performance for all data distributions and data sizes.

The pMatlab library uses the parallelism through polymorphism approach as discussed in

[Choy2005]. Monomorphic languages require that each variable is of only one type; on the other

hand in polymorphic languages variables can be of different types and polymorphic functions

can operate on different types of variables [Cardelli1985]. The concept of polymorphism is

 11

inherent in the MATLAB language – variable types do not have to be defined, variable types can

change during the execution of the program, and many functions operate on a variety of data

types such as double, single, complex, etc.

 In pMatlab, as in Star-P, this concept is taken one step further. The polymorphism is

exploited by introducing the map object. Map objects belong to a pMatlab class map and are

created by specifying the grid description, distribution description, and the processor list as

discussed in section 2.1 (see Figure 3). The map object can then be passed to a MATLAB

constructor, such as rand, zeros, or ones. The constructors are overloaded and when a map

object is passed into a constructor, the library creates a variable of type dmat, or a distributed

array. A PITFALLS structure (see section 3.3) is created when each dmat object is constructed.

A PITFALLS is a mathematical representation of the data distribution information. pMatlab

supports numerical arrays of up to four dimensions of different numerical data types and allows

creation of distributed sparse matrices.

 As discussed previously, a subset of functions, such as plus, minus, fft, mtimes,

and all element-wise operations are overloaded to operate on dmat objects. When using a pure

PGAS programming model and an overloaded function, the dmat object can be treated as a

regular array. Functions that operate only on the local part of the dmat structure (element-wise

operations) simply perform the operations requested on the dmat.local array, which is a

standard MATLAB numerical type specified at array creation. Functions that require

communication, such as redistribution (or subsasgn in MATLAB syntax) use MatlabMPI as the

communication layer.

 Let us return to the pMatlab FFT code in Figure 4. Lines 3 and 4 define two pMatlab

map objects: Xmap and Zmap. The user defines maps to specify how and where the numerical

arrays in the program are mapped. In this example all available processors are used (numbered

sequentially from 0 to Np-1). Distributed arrays are created using the standard MATLAB array

constructors: zeros(), rand(), and ones(). The outputs of the overloaded constructors are

dmats, or distributed arrays. Lines 5 and 6 in Figure 4 create two distributed complex matrices

split up among Np processors. Xmap indicates that the matrix should be distributed row-wise

with P/Np rows per processor, where as Zmap defines a column-wise distribution with Q/Np

columns per processor. If a dimension is not evenly divisible by Np, pMatlab figures this out

and shorts the last processor. Line 7 calls the overloaded FFT function on the distributed array X

and returns the result into an array with same map as the input. Line 9 uses the overloaded “=”

operator which performs an all-to-all communication which results in Z having the same data as

X, while distributing this data according to the distribution defined in Zmap.

Since all functions supported in pMatlab are implemented in pure MATLAB, the pMatlab

library maintains the portability of MatlabMPI. pMatlab can run anywhere MATLAB runs, given

that there exists a common file system, a constraint imposed on pMatlab by MatlabMPI. A

further benefit of the layered architecture of pMatlab is that any other communication library

could be substituted for MatlabMPI, given that it implements the six basic MPI functions

required by pMatlab (see section 3.4).

 12

Figure 7. Layered architecture. The pMatlab library implements distributed constructs, such as

vectors, matrices, and multi-dimensional arrays and parallel algorithms that operate on those

constructs, such as redistribution, Fast Fourier Transform (FFT), and matrix multiplication.

3.1 pMatlab Execution

All pMatlab code resides within a generic code framework (see Figure 8) for initializing

pMatlab (pMatlab_Init), determining the number of processors the program is being run on

(pMATLAB.comm_size), determining the rank of the local processor (pMATLAB.my_rank),

and finalizing the pMatlab library when the computation is complete (pMatlab_Finalize).

pMatlab uses the Single Program Multiple Data (SPMD) execution model. The user runs a

pMatlab program by calling the MatlabMPI MPI_Run command to launch and initialize the

multiple instances of MATLAB required to run in parallel. Figure 8 shows an example RUN.m

script using MPI_Run to launch four copies of the pFFT.m script.

 13

Figure 8. pMatlab Execution Framework. A pMatlab program (pFFT.m) is launched using the

MPI_Run command shown in the RUN.m file, which sets the number of processors and the

precise machines to run on. MPI_Run starts Np instances of Matlab each with a different rank.

Within the pMatlab program the pMatlab environment is initialized and the number of processors

and local rank can be obtained. The program is completed with the pMatlab_Finalize command.

3.2 Maps and Distributions

 The concept of using maps to describe array distributions has a long history. The ideas

for pMatlab maps are principally drawn from the High Performance Fortran (HPF) community

[Loveman1993, Zosel1993], MIT Lincoln Laboratory Space-Time Adaptive Processing Library

(STAPL) [DeLuca1997], and Parallel Vector Library (PVL) [Lebak2005]. A map for a

numerical array defines how and where the array is distributed (Figure 3). PVL also supports

task parallelism with explicit maps for modules of computation. pMatlab explicitly only

supports data parallelism, however implicit task parallelism can be implemented through careful

mapping of data arrays.

 The pMatlab map construct is defined by three components: (1) grid description, (2)

distribution description, and (3) processor list. The grid description together with the processor

list describes where the data object is distributed, while the distribution describes how the object

is distributed (see Figure 3). pMatlab supports any combination of block-cyclic distributions up

to four dimensions. The API for defining these distributions is shown in Figure 9.

 14

Figure 9. Supported Distributions.. Block distribution divides the object evenly among available

processors. Cyclic distribution places a single element on each available processor and then

repeats. Block-cyclic distributions places the specified number of elements on each available

processor and then repeats.

Block distribution is the default distribution, which can be specified explicitly or by simply

passing an empty distribution specification to the map constructor. Cyclic and block-cyclic

distributions require the user to provide more information. Distributions can be defined for each

dimension and each dimension could potentially have a different distribution scheme.

Additionally, if only a single distribution is specified and the grid indicates that more than one

dimension is distributed, that distribution is applied to each dimension.

 Some applications, particularly image processing, require data overlap, or replicating

rows or columns of data on neighboring processors. This capability is also supported through the

map interface. If overlap is necessary, it is specified as an additional fourth argument. In Figure

9, the fourth argument indicates that there is 0 overlap between rows and 1 column overlap

between columns. Overlap can be defined for any dimension and does not have to be the same

across dimensions.

 While maps introduce a new construct and potentially reduce the ease of programming,

they have significant advantages over both message passing approaches and predefined limited

distribution approaches. Specifically, pMatlab maps are scalable, allow optimal distributions for

different algorithms, and support pipelining.

Maps are scalable in both the size of the data and the number of processors. Maps allow

the user to separate the task of mapping the application from the task of writing the application.

Different sets of maps do not require changes to be made to the application code. Specifically,

the distribution of the data and the number of processors can be changed without making any

 15

changes to the algorithm. Separating mapping of the program from the functional programming

is an important design approach in pMatlab (see Section 2.1).

 Maps make it easy to specify different distributions to support different algorithms.

Optimal or suggested distributions exist for many specific computations. For example, matrix

multiply operations are most efficient on processor grids that are transposes of each other.

Column and row wise FFT operations produce linear speed up if the dimension along which the

array is broken up matches the dimension on which the FFT is performed (see Figure 4).

 Maps also allow the user to set up pipelines in the computation, thus supporting implicit

task parallelism. For example, pipelining is a common approach to hiding the latency of the all-

to-all communication required in parallel FFT. The following slight change in the maps can be

used to set up a pipeline where the first half of the processors perform the first part of the FFT

and the second half perform the second part

Xmap = map([Np/2 1],{},[0 :Np/2-1]); % Row map on 1st set of cpus.
Zmap = map([1 Np/2],{},[Np/2:Np-1]); % Column map on 2nd set of cpus.

When a processor encounters such a map, it first checks if it has any data to operate on. If the

processor doesn’t have any data it proceeds to the next line. In the case of the FFT with the

above mappings, the first half of the processors (rank 0 to Np/2-1) will simply perform the row

FFT, send data to the second set of processors, and skip the column FFT, and proceed to process

the next set of data. Likewise, the second set of processors (ranks Np/2 to Np-1) will skip the

row FFT, receive data from the first set of processors, and perform the column FFT.

3.3 Processor Indexed Tagged FAmiLy of Line Segments (PITFALLS)

 Here we discuss an efficient and general technique for data redistribution. Such

techniques are necessary in order to support PGAS. We chose to use PITFALLS

[Ramaswamy1995], which is a mathematical representation of the data distribution.

Additionally, [Ramaswamy1995] provides an algorithm for determining which pairs of

processors need to communicate when redistribution is required and exactly what data needs to

be sent.

 A PITFALLS P is defined by the following tuple:

P = (l, r, s, n, d, p)

where

 l – starting index

 r – ending index

 s – stride between successive l’s

 n – number of equally spaced, equally sized blocks of elements per processor

 d – spacing between l’s of successive processor FALLS

 p – number of processors

The PITFALLS intersection algorithm is used to determine the necessary messages for

redistribution. The algorithm can be applied to each dimension of the array, thus allowing

efficient redistribution of arbitrary dimensional arrays. For a detailed discussion of the algorithm

and its efficiency see [Ramaswamy1995]. (Note that the PITFALLS tuple can be derived in a

trivial manner from the map definition.)

 16

3.4 MatlabMPI

MatlabMPI [Kepner2004a] is a pure MATLAB implementation of the most basic MPI

[MPI] functions. The functions required by pMatlab are listed in Table 3. The communication is

done through file I/O (see Figure 10) through a common file system. The advantage of this

approach is that the library is very small (~300 lines) and is highly portable. The price for this

portability is that the while MatlabMPI performance is comparable to C+MPI for large messages,

its latency for small messages is much higher (see Figure 11).

When designing pMatlab, it was important to ensure that the overhead incurred by the

library did not significantly impact performance. From a library perspective, this means that the

performance of the communication operations using the overloaded “=” operator should be as

close as possible to the equivalent MatlabMPI code. Figure 12 shows the performance of an all-

to-all operation using MatlabMPI, pMatlab “=” and the pMatlab transpose_grid function.

From an application perspective minimizing overhead means using algorithms that use

fewer larger messages instead of many smaller messages. In Section 4 we will see that the

relative performance of the HPC Challenge benchmarks can essentially be derived from the

performance of the underlying MatlabMPI library. STREAM (no communication), FFT (all-to-

all), and Top500 (broadcast) all fall into the large message regime and deliver reasonable

performance. RandomAccess is designed to stress small messages and the relative performance

of pMatlab is much worse. Fortunately, most real pMatlab programs tend to involve large

messages.

Table 3: Selected MPI functions provided by MatlabMPI. pMatlab can be built on top of any

communication library that implements these six functions.

Function Name Function Description

MPI_Init Initializes MPI.
MPI_Comm_size Gets the number of processors in a communication.
MPI_Comm_rank Gets the rank of current processor within a communicator.
MPI_Send Sends a message to a processor.
MPI_Recv Receives a message from a processor.
MPI_Finalize Finalizes MPI.

 17

Figure 10. MatlabMPI file I/O based communication. MatlabMPI uses file I/O to implement

point-to-point communication. The sender writes variables to a buffer file and then writes a lock

file. The receiver waits until it sees the lock file, it then reads in the buffer file.

Figure 11. MatlabMPI vs C+MPI. Bandwidth and latency vs message size. Bandwidth is given

as fraction of the peak underlying link bandwidth. Latency is given in terms of processor cycles.

For large messages the performance is comparable. For small messages the latency of MatlabMPI

is much higher.

Figure 12. MatlabMPI vs pMatlab. Relative all-to-all performance for a pure MatlabMPI

implementation, an A(:,:) = B implementation and a transpose grid implementation. The X-axis

represents size of each matrix relative to node memory. The Y-axis represents throughput relative

to peak bandwidth.

3.5 pMatlab Parallel Support Functions

 Every PGAS implementation must provide a set of functions for managing and working

with global arrays, which have no serial equivalents. The set of pMatlab parallel support

functions is shown in Table 4. These functions allow the user to aggregate data onto one or

 18

many processors, determine which global indices are local to which processors, and get/put data

from/to the local part of a distributed array. This set of functions is relatively small. To support

the development process discussed in section 2.1, all of these functions have been overloaded to

also work on serial MATLAB arrays so that the code will still work if the pMatlab maps have been

turned off.

Table 4: pMatlab Parallel Support Functions.

Function Name Function Description

synch synchronize the data in the distributed matrix.
agg aggregates the parts of a distributed matrix on the leader

processor.
agg_all aggregates the parts of a distributed matrix on all

processors in the communication scope
global_block_range returns the ranges of global indices local to the current

processor
global_block_ranges returns the ranges of global indices for all processors in

the map of distributed array D on all processors in

communication scope
global_ind returns the global indices local to the current processor
global_inds returns the global indices for all processors in the map of

distributed array D
global_range returns the ranges of global indices local to the current

processor
global_ranges returns the ranges of global indices for all processors in

the map of distributed array D
local returns the local part of the distributed array
put_local assigns new data to the local part of the distributed array
grid returns the processor grid onto which the distributed array

is mapped
inmap checks if a processor is in the map

4. HPC Challenge Benchmarks

 In this section we focus on benchmark results to determine the limits of pMatlab

performance. We are interested in looking at performance from a number of viewpoints. First,

we are interested in the performance of pMatlab relative to serial MATLAB since this is what

most users care about. Second, we are interested in the performance of pMatlab relative C+MPI

as way of gauging the quality of the implementation and as a guide to future performance

enhancements. We have chosen to use the HPC Challenge Benchmark suite [Luszczek2005] for

this comparison (see Figure 13). HPC Challenge is designed to look at a range of computations

that focus on different parts of the memory hierarchy. In addition, HPC Challenge computations

are sufficiently well defined so that they can be implemented using a variety of programming

models. We will first present the performance results and then discuss each of the benchmarks

in more detail.

 The four primary HPC Challenge benchmarks (STREAM, FFT, Top500 and

RandomAccess) were implemented using pMatlab and run on a commodity cluster system (see

Appendix A for a precise description of the hardware). Both the pMatlab and C+MPI reference

implementation of the benchmarks were run on 1, 2, 4, 8, 16, 32, 64 and 128 processors. At each

processor count the largest problem size was run that would fit in the main memory. The

 19

collected data measures the relative compute performance and memory overhead of pMatlab

with respect to C+MPI (see Figure 14). In addition, we will also look at the relative code sizes

of the benchmarks as an approximate measure of the complexity of the implementations. The

relative memory, performance and code sizes are summarized in Table 5.

In general we see that the pMatlab implementations can run problems that are typically

the size of C+MPI implementation problem size. This is mostly due to the need to need to create

temporary arrays when using high-level expressions. The pMatlab performance ranges from

being comparable to the C+MPI code (FFT and STREAM), to somewhat slower (Top500), to a

lot slower (RandomAccess). In contrast the pMatlab code is typically 3x to 40x smaller than the

equivalent C+MPI code.

Figure 13. HPC Challenge and the Memory Hierachy. HPC Challenge benchmarks have been

chosen to cover a range of memory access patterns and stress different parts of the memory

hierarchy. Top500 performance is mostly dominated by local matrix multiply operations.

RandomAccess is dominated by all-to-all communications of very small messages. FFT is also

dominated by all-to-all communications, but for very large messages. STREAM requires no

communication, is dominated by local vector operations, and stresses local processor to memory

bandwidth.

 20

Figure 14. pMatlab and C+MPI HPC Challenge Performance. pMatlab can run problems that

are typically the size of C+MPI problem size. pMatlab performance varies from being

comparable to the C+MPI code (FFT and STREAM), to somewhat slower (Top500), to a lot

slower (RandomAccess). The figure presents performance relative to the 1 processor C+MPI

case. The actual performance for the 1 processor C+MPI case can be found in Appendix A.

Table 5a: Maximum problem size relative to the C+MPI single processor case on 128 processors.

Implementation STREAM FFT RandomAccess HPL(32)

C+MPI/C serial 63.9 72.7 48 32.6

pMatlab/C serial 42.8 21.3 32 9.3

C+MPI/pMatlab 1.5 3.4 1.5 3.5

Table 5b: Benchmark performance relative to the C+MPI single processor case on 128 processors.

Implementation STREAM

FFT core*

RandomAccess

HPL(32)

C+MPI/C serial 62.4 4.6 7.4x10
-2

 28.2

pMatlab/C serial 63.4 4.3 1.6x10
-3

 6.8

C+MPI/pMatlab 1 1 46 4

Table 5c: Code Size Comparisons. Code size is measured in terms of Source Lines Of Code

(SLOC). The parallel code sizes of the HPC Challenge C+MPI reference code are taken from the

HPC Challenge FAQ.

Implementation STREAM FFT RandomAccess HPL

C+MPI 347 787 938 8800

pMatlab 119 78* 157 190

C+MPI/pMatlab 3 10 6 40

 21

*Includes code used to create random waves, does not include code for initial and final

all-to-all operations. Combined these should roughly offset each other.

4.1 STREAM

The STREAM benchmark consists of local operations on distributed vectors. The

operations are copy, scale, add, and scale with addition defined as

a b + c

where a, b and c are double precision vectors of length m, with the constraint

size(a) + size(b) + size(c) = 24m bytes > system memory

The goal of the benchmark is to measure local main memory bandwidth, so performance is

reported in terms of bytes/sec

Gigabytes/sec = 10
-9

 24 m / time

The operations are embarrassingly parallel and are implemented entirely with the pMatlab

fragmented PGAS approach (see Figure 6).

The max problem size of the pMatlab code is 1.5x smaller than the C+MPI code, which

is due to the need to create intermediate temporary arrays. The need for temporaries are a side

effect of most high level programming environments. The performance of the pMatlab code is

the same as the C+MPI code. This is because the MATLAB interpreter recognizes the scale and

add statement and replaces it with a call to the appropriate optimized Basic Linear Algebra

Subroutine (BLAS). The pMatlab code is ~3x smaller than the C+MPI code due to the

elimination of various for loops and the use of built in MATLAB functions.

4.2 FFT

 The FFT benchmark performs a complex-to-complex 1D Fast Fourier Transform (FFT)

Z FFT(z)

Where Z and z are m element double precision complex vectors, with the constraint

size(z+Z) = 32m bytes > system memory

z input should be in linear “time” order. Z output should be in standard frequency order. Any

necessary reordering time should be included. Regardless of how many actual operations are

performed the performance in Gigaflops is reported using the standard radix 2 FFT algorithm

operations count

Gigaflops = 10
-9

 5 m log2(m) / time

The standard parallel implementation of a 1D FFT performs two 2-D FFTs with a corner turn, or

an all-to-all redistribution, between the two FFTs (see Figure 4). In our pMatlab implementation

 22

we deviated from the FFT specification in two ways. First, the input data is initialized using a

random selection of cosine and sine waves, which does not affect performance, but is a

significant aid to debugging the code. Second, our implementation uses an ordering scheme that

eliminates initial and final all-to-all communication steps, which is more consistent with the use

of this function for most real applications and provides a better predictor of 2D and 3D FFT

performance. We have properly removed the time due to initial and final all-to-all steps in the

C+MPI code so that a legitimate comparison can be made. The optimized pMatlab code (Figure

6) uses local arrays and the transpose_grid function with optimized message ordering previously

discussed in section 2.2.

The max problem size of the pMatlab code is 3.5x smaller than the C+MPI code, which

is due to the need to create intermediate temporary arrays. In addition, MATLAB internally uses a

“split” representation for complex data types, while the serial FFTW library being called uses an

“interleaved” representation. The result is that the data needs to be transformed between these

representations which takes additional memory. On one processor the MATLAB FFT

performance is ~5x slower than the C code, which is due to the time overhead required to

perform the conversion between complex data storage formats. As the problem grows, the FFT

time becomes dominated by the time to perform the all-to-all communication necessary between

computation stages. Since these are primarily large messages, the performance of pMatlab

becomes the same as the C+MPI code at large numbers of processors. The pMatlab code is ~10x

smaller than the C+MPI code due to the use of a built in local FFT calls and the elimination of

MPI messaging code.

4.3 RandomAccess

The RandomAccess benchmark generates a sequence of random array indices and uses

these to update a large table. Let T be a table of size 2
m

 and let {ai} be a pseudo random stream

of 64-bit integers of length 2
m

+2. Then for each ai, we update the table as follows

T(AND(ai,m-1)) = XOR(T(AND(ai,m-1), ai)

with the additional constraints that each processor can buffer no more that 1024 updates and

size(Table) = 8m bytes > system memory

The goal of the benchmark is to measure the rate at which atomic udates can be performed to

global memory

Giga Updates Per Second (GUPS) = 10
-9

 NUPDATE/ time

RandomAccess requires communication patterns that are significantly more complicated than

STREAM or FFT. In addition, communication is sufficiently fine grained that there is

significant overhead associated with computing global to local array indexing mappings every

time a global array is accessed. Thus RandomAccess uses the pMatlab constructs to determine

the global-to-local index mappings once, but then subsequently uses fragmented PGAS with

direct message passing to perform the appropriate redistributions (see Figure 15). This

methodology allows us to implicitly exploit the fact that the array redistributions are static. For

example, each processor is able to compute in advance the optimal send order and optimal

 23

receive order of its messages so as to minimize contention. RandomAccess is a good illustration

of how PGAS and messaging can work together to reduce the bookkeeping necessary for a

parallel program, while still allowing a complex messaging scheme that is outside of the

traditional PGAS formalism.

 The max problem size of the pMatlab code is 1.5x smaller than the C+MPI code, which

is due to the need to create intermediate temporary arrays. On one processor the pMatlab

RandomAccess performance is comparable to the C+MPI code. However, on larger number of

processors the pMatlab code is 45x slower than the C+MPI code. This performance difference is

due to the large latency of using file I/O for communicating small messages (see section 3.4),

which should be eliminated if pMatlab was built on a more traditional MPI implementation such

as that used in DCT. The pMatlab code is 6x smaller than the C+MPI code.

Figure 15. RandomAccess Benchmark Code Highlights. The first two lines set the various

constants required by the program such as the number of processors and the size of the table. The

next two lines create a map and a distributed table to be broken up equally among all the

processors. The next two lines get the indices of the boundaries of the table which are used in the

main loop to compute which indices to send to which processors using direct MatlabMPI

messages.

4.4 High Performance Linpack (Top500)

 The High-Performance Linpack (HPL) benchmark solves a dense linear system Ax = b.

using LU factorization with partial pivoting, where b is an n element vector, and A is an nxn

double precision matrix with the constraint

size(A) = 8n
2
 bytes > 1/2 system memory

The LU factorization is the dominant computation step in this algorithm and is principally made

up of repeated matrix multiplies. The traditional parallel algorithm uses a sophisticated 2D

block-cyclic distribution for the matrix A. This algorithm has demonstrated very good

 24

performance even on computers with relatively slow networks. The pMatlab version uses a

simpler, but poorer performing algorithm, using a 1D block distribution for A (see Figure 16).

This algorithm and its theoretical performance limits are presented in detail in Appendix B. The

pMatlab code uses distributed arrays to break up the array and keep track of the various global

indices. A key step in the algorithm requires broadcasting the results to a subset of the other

processors which is best done with a simple MPI multicast command.

The max problem size of the pMatlab code is 3.5x smaller than the C+MPI code, which

is due to the need to create intermediate temporary arrays. In particular, the lower and upper

triangular matrices are returned as full matrices, where in the C+MPI code these can be merged

into a single array. The pMatlab code provides a 10x speedup on 32 processors, which is about

4x slower than the C+MPI code. The analysis in Appendix B shows that pMatlab is achieving

the performance limits of the 1D block algorithm on the system. Improving the network of this

hardware should significantly improve the pMatlab code performance, relative to the C+MPI

code (see Figure B.1). The pMatlab code is 40x smaller than the C+MPI code. About 10x of

this improvement is due to the higher-level abstractions from pMatlab and about 4x is due to

using the simpler algorithm.

Figure 16. HPL/Top500 Benchmark Code Highlights. This algorithm uses the simpler 1D

block distribution. The first four lines derive information about the parallel environment from the

pMATLAB global variable and the input distributed matrix A. The core loop of the program

performs a local solve of a rectangular LU, broadcasts the results to the remaining processors to

then apply via a matrix multiply.

 25

4.5 HPC Challenge Performance Summary

 Returning to our initial metrics we see that relative to serial MATLAB all the pMatlab

codes allow problems sizes to scale linearly with the number of processors. Likewise, they all

experience significant performance improvements (with the exception of RandomAccess).

Relative to C+MPI the pMatlab problem sizes are smaller by a factor of 2x and the performance

of pMatlab on both the STREAM and FFT is comparable.

One approach to summarizing the performance of the HPC Challenge benchmarks is

shown in Figure 17. The speedup and relative SLOC for each implementation were calculated

with respect to a serial C/Fortran implementation. In this plot we see that with the exception of

Random Access, the C+MPI implementations all fall into the upper-right quadrant of the graph,

indicating that they deliver some level of parallel speedup, while requiring more SLOC than the

serial code. As expected the serial MATLAB implementations do not deliver any speedup, but do

all require fewer SLOC than the serial C/Fortran code. The pMatlab implementations (except

Random Access) fall into the upper-left quadrant of the graph, delivering parallel speedup while

requiring fewer lines-of-code.

Figure 17. Speedup vs Code Size. Speedup (relative to serial C) vs code size (relative to serial

C). The upper right quadrant is the traditional HPC regime: more coding is required to give more

performance and most of the C+MPI codes fall here. The lower left quadrant is the traditional

regime of serial high level languages that produce much smaller codes, but are slower.

RandomAccess lies in the lower right and represents algorithms that are simply a poor match to

the underlying hardware. The upper left quadrant is where most of the pMatlab implementations

are found and represent smaller codes that are delivering some speedup.

5. User Results

The true measure of a success for any technology is its effectiveness for real users. Table

6 highlights several projects that are using pMatlab on the MIT Lincoln Laboratory interactive

 26

LLGrid system [Reuther2004]. The projects are drawn from the approximately 100 current users

and are representative of the user base. Of particular interest are the columns showing the time

to parallelize and what parallelization enables. The time to parallelize shows both how quickly

MATLAB code can be converted from serial code to parallel code as well as how quickly the user

is able to get the parallel code running on the LLGrid compute facility. The applications that

parallelization enables include scenarios in which larger data sets, more thorough parameter set

exploration, and more complex simulations can be considered.

Nearly all of these applications involve embarrassingly parallel problems most similar to

the STREAM type of problem. Interestingly, because MATLAB is such an array oriented

language users find PGAS a very natural way to express embarrassingly parallel problems. For

these types of applications the coding overhead is much smaller than message passing. In

addition, PGAS naturally decomposes problems into their largest natural units, which maximizes

the local performance. In contrast a client/server approach tends to decompose problems into

their smallest functional units and incur a higher overhead.

Table 6. Selected pMatlab Applications. The first and last columns provide a brief description of

the code and what the parallel version of the code has enabled. The middle column shows

estimated time to write the original serial code and the additional time to parallelize the code with

pMatlab and get it running well on the LLGrid system.

Code Description Serial / Parallel

Dev Time (hours)

Parallelization Enables

More or Faster

Missile & Sensor Simulations 2000 / 8 Higher fidelity radar

First-principles LADAR 1300 / 1 Speckle image simulations

Analytic TOM Leakage 40 / 0.4 Parameter space studies

Hercules Metric TOM 900 / 0.75 Monte Carlos

Coherent laser propagation 40 / 1 Run time

Polynomial coefficient approx. 700 / 8 Faster training algorithm

Ground motion tracker 600 / 3 Faster & larger data sets

Automatic target recognition 650 / 40 Target classes & scenarios

Hyper-spectral Image Analysis 960 / 6 Larger datasets of images

6. Conclusions

 pMatlab is a unique high performance, high productivity parallel MATLAB library. It

combines the productivity inherent in the MATLAB programming language with global array

semantics, allowing MATLAB users to exploit distributed systems with only minor changes to the

code. The underlying communication layer, MatlabMPI, is comparable in performance to

C+MPI for large message sizes. Introduction of maps for numerical arrays allows for separation

of functional programming from mapping the program to a parallel architecture. The

implementation is small (~3,000 lines of code). The implementation of the HPC Challenge

benchmark suite using the pMatlab library allows for comparison with equivalent C+MPI codes.

These results indicate that pMatlab can achieve comparable performance to C+MPI at usually

1/10
th

 the code size. Finally, implementation data collected from a sample of 10 real pMatlab

applications indicate that users are typically able to go from a serial code to a well-performing

pMatlab code in about 3 hours while changing less than 1% of their code.

Acknowledgements

 27

The authors would like to thank a number of individuals who have contributed to this

work: Bob Bond for his vision and insight throughout this project; Hahn Kim for his work on

the pMatlab library and benchmarking; Andy Funk for his benchmarking analysis; Albert

Reuther for leading the LLgrid project and providing us the pMatlab user analysis; Cleve Moler

and Ryan Haney for their assistance with the parallel LU algorithm; and Charlie Rader for his

assistance with the parallel FFT algorithm. Finally, we would like to thank Ken Senne, Dave

Martinez, John Grosh, and Robert Graybill for supporting this project.

References

[Cardelli1985] Cardelli, L., Wegner, P. On Understanding Types, Data Abstraction, and

Polymorphism. ACM Computing Surveys 17(4), 1985.

[Choy2003] Choy, R. 2003. Parallel Matlab survey. http://supertech.lcs.mit.edu/~cly/survey.html

[Choy2005] Choy, R., Edelman A. 2005. Parallel MATLAB: doing it right. Proceedings of the

IEEE 93(2).

[CMTM] Cornell Multitask Toolbox for MATLAB (CMTM),

http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html

[Cummings1998] J. C. Cummings, J. A. Crotinger, S. W. Haney, W. F. Humphrey, S. R.

Karmesin, J. V. Reynders, S. A. Smith, and T. J. Williams. Rapid application development

and enhanced code interoperability using the POOMA framework. In Proceedings of the

SIAM workshop on Object-oriented methods and code interoperability in scientific and

engineering computing (OO98), Oct. 1998

[Dean2005] Dean, L., Grad-Freilich, S., Kepner, J., Reuther, A. Distributed and Parallel

Computing with MATLAB. Tutorial presented at Supercomputing 2005, Nov 12, Seattle, WA

[DeLuca1997] DeLuca, C. M., Heisey, C. W., Bond, R. A., Daly, J. M. A portable object-based

parallel library and layered framework for real-time radar signal processing. In Proc. 1
st

Conf. International Scientific Computing in Object-Oriented Parallel Environments

(ISCOPE ’97), Pages: 241-248.

[Dongarra1994] Dongarra, J., van de Geijn, R., Walker, D. Scalability Issues Affecting the

Design of a Dense Linear Algebra Library. Journal of Parallel and Distributed Computing,

Volume 22, Pages 523-537, 1994

[El-Ghazawi2005] El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K. UPC: Distributed

Shared Memory Programming, Published by John Wiley and Sons- May, 2005

[Falcon] Falcon Project: Fast Array Language Computation,

http://www.csrd.uiuc.edu/falcon/falcon.html

[Funk2005] Funk, A., Kepner, J., Basili, V., Hochstein, L. A Relative Development Time

Productivity Metric for HPC Systems. Proceedings of the High Performance Embedded

Computing Workshop (HPEC2005), Lexington, MA, September 20-22, 2005.

[Johnson2004] Johnson, P. (editor), Proceedings of 26
th

 International Conference on Software

Engineering (ICSE 2004), Edinburgh, Scontland, UK, May 23-28.

[Johnson2005] Johnson, P. (editor), Proceedings of 27
th

 International Conference on Software

Engineering (ICSE 2005), St. Louis, Missouri, May 15-21.

 [Kepner2004a] Kepner, J., Ahalt, S. 2004. MatlabMPI. Journal of Parallel and Distributed

Computing, 2004, Volume 64, Issue 8, Pages: 997 - 1005

[Kepner2004b] Kepner, J (editor). 2004. Special issue on HPC Productivity, International

Journal of High Performance Computing Applications 18(4).

[Koelbel1994] Koelbel, C., The High performance Fortran handbook, MIT Press, 1994

 28

[Lebak2005] Lebak, J., Kepner, J., Hoffmann, H., Rutledge, E. 2005. Parallel VSIPL++: An

open standard software library for high-performance parallel signal processing. Proceedings

of the IEEE 93(2).

[Loveman1993] Loveman, D.B. High performance Fortran. Parallel and Distributed

Technology: Systems and Applications, IEEE 1(1), 1993.

[Luszczek2005] Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J.,

McCalpin, J., Bailey, D., Takahashi, D. "Introduction to the HPC Challenge Benchmark

Suite," April, 2005. http://repositories.cdlib.org/lbnl/LBNL-57493/

[Mathworks2005] MathWorks Inc. 2005. Distributed Computing Toolbox user’s guide.

http://www.mathworks.com/access/helpdesk/help/toolbox/distcomp/

[McCalpin2005] McCalpin, J., 2005, STREAM: Sustainable Memory Bandwidth in High

Performance Computers, http://www.cs.virginia.edu/stream/

[Morrow1998] Morrow, G., van de Geijn, R. A Parallel Linear Algebra Server for Matlab-like

Environments. In Proceedings of Supercomputing 1998. Orlando, FL, November 1998.

[MPI] Message Passing Interface (MPI), http://www.mpi-forum.org/

[Numrich1998] Numrich, R., Reid, J. Co-array Fortran for parallel programming. ACM

SIGPLAN Fortran Forum, Volume 17 , Issue 2 (August 1998), Pages: 1 – 31

[Nieplocha2002] J. Nieplocha, R. Harrison, M. Krishnan, B. Palmer, and V. Tipparaju.

Combining shared and distributed memory models: Evolution and recent advancements of

the Global Array Toolkit. Proceedings POOHL’2002 workshop of ICS-2002, New York

City, 2002

[Ramaswamy1995] Ramaswamy, S., Banerjee, P. Automatic generation of efficient array

redistribution routines for distributed memory multicomputers. Proceedings of the Fifth

Symposium on the Frontiers of Massively Parallel Computation (Frontiers ’95), McClean,

VA, February 6-9.

[Reuther2004] Reuther, A., Currie, T., Kepner, J., Kim, H., McCabe, A., Moore, M., Travinin,

N. LLgrid: Enabling On-Demand Grid Computing with gridMatlab and pMatlab. In

Proceedings of High Performance Embedded Computing Workshop (HPEC2004),

Lexington, MA 28-30 September 2004.

[RTExpress] Parallel MATLAB Development for High Performance Computing with

RTExpress, http://www.rtexpress.com/

[Zosel1993] Zosel, M.E. High performance Fortran: an overview. Compcon Spring ’93, Digest

of Papers, San Francisco, CA, February 22-26, 1993.

Appendix A: Benchmark System

All the performance data collected in this paper were obtained using the LLGrid system

at MIT Lincoln Laboratory [Reuther2004]. The system consists of ~150 nodes connected by

Gigabit Ethernet. Each node has 2 Gigabit Ethernet interfaces: one gigabit interface to the

Lincoln Laboratory LAN (LLAN), and one gigabit inter-cluster interface. The network switches

are connected directly to the LLAN backbone via fiber. Furthermore to enhance the

communication of the file I/O based communication system each node mounts the local disk

drive of all the other nodes. Each node is configured as follows:

Processors: Dual 3.2 GHz EM-64T Xeon (P4)

Bus: 800 MHz front-side bus

Memory: 6 Gigabyte RAM

Disk: Two 144 GB SCSI hard drives

 29

Main Network: Two Gig-E Intel interfaces

Management Network: 10/100 Ethernet interface

Operating System: Red Hat Linux ES 3

Table A.1 provides the actual benchmark values of the HPC Challenge benchmark suite on the

LLGrid system for the C+MPI single processor case.

Table A.1: C+MPI single processor HPC Challenge. Maximum problem size and performance

of the HPC Challenge benchmarks for C+MPI implementation on a single processor.

Benchmark Maximum Problem Size (GB) Performance

STREAM 4.6 2.79 GB/s

FFT 3 .43 GFlops

RandomAccess 4 2.3x10
-3

GUPS

HPL/Top500 4.3 4.04 GFlops

Appendix B: 1D LU Algorithm Performance Analysis

 This appendix presents an analysis of the theoretical performance achievable for a LU

factorization using only a 1D block distribution. Extensive analysis of LU performance has been

performed for optimal 2D block cyclic distributions [Dongarra2004], which shows the excellent

scalability of this distribution. However, more recently it is become apparent that there is a

complexity performance trade off associated with using 2D block cyclic distributions (i.e. they

are a lot harder to program) and so it is worth examining the performance of a 1D block

distribution (like the one used in for the pMatlab implementation of Top500) so we have a clear

understanding of the performance.

 First we define the time for an ideal NxN LU factorization on P processors

TN
ideal(P) = 2

3 N
3t calc /P

where tcalc is the time for one floating point operation on one processor. Furthermore let r = N/P,

so that in terms of P and r the ideal performance is

Tr
ideal(P) = 2

3 P
2r3tcalc

We will further restrict ourselves to scaled problems such that the problem size grows linearly

with the number or processors. In this case, we have the additional constraint

r N = cmem or r = c mem

P

where cmem is the number of 8 byte double precision numbers that will fit on one processor.

 Now let’s consider the time to perform a parallel LU factorization using a 1D block

distribution. The algorithm consists of k=1,…,P steps and at each step three operations must be

completed before the next step can begin.

First, a local LU factorization of a (N - (k-1)r) x r matrix is performed on the k
th

processor

 30

2
3 (N - (k -1)r) r2 t calc

Second, the result of this local LU factorization is broadcast from the k
th

 processors to P-k

processors

B(P - k) (N - (k -1)r) r tcomm

where tcomm is the average time to send 8 bytes between two processors (assuming large

messages), and B(P) is the “broadcast” parameter which is the penalty associated with sending

the same message to many processors. In an ideal broadcast B(P) = 1 and a processor can send

to many processors in the same time it takes to send to one. In the worst case B(P) = P. Most

networks are somewhere in between and B(P) = log2(P) is typical. The third and final step is to

apply the local LU factorization to the local part of the matrix stored on the processor using a

matrix matrix multiply operation

(N - (k -1)r) r2 t calc

From this point forward we will combine the formulas for the first and third steps since they only

differ by a constant.

Next we sum the above steps over k=1,…,P and reformulate in terms of P and r, which

yields the total time required to compute the LU and the matrix multiply

5
3 (N - (k -1)r)r

2t calck=1

P
= 5

6 P
2r3t calc 1+P

-1[]

where we have used the summation identity

 k
k=1

P
= 1

2 P(P +1)

Similarly, we sum up the broadcast term for two cases, B(P) = 1

 (N - (k -1)r) r t commk=1

P
= 1

2 P2r2t comm 1+P-1[]

and B(P) = P

(P - k) (N - (k -1)r) r t commk=1

P
= 1

3 P2r2 t comm P P-1[]

where we have used the summation identity

 k2

k=1

P
= 1

3 P3
+ 1

2 P2
+ 1

6 P

 31

Finally, for each case, we sum the computation and network terms and normalize to the

ideal time. In the case of an ideal network, B(P) = 1, the ratio of the 1D panel algorithm to the

ideal time is

5
4 1+P-1[] + 3

4
P

cmem
(t comm /t calc) 1+P-1[]

Interestingly, the first computation term goes to a constant value of 5/4 for large P, which

indicates the 1D block algorithm is always at least 25% less efficient due to load imbalance. In

addition, the second communication term will grow with the square root of P for large P.

However, for typical values of cmem (~2
29

) on an high performance system with a fast network

(tcomm/tcalc ~ 8) the constant in front the communication term is quite small and the overhead due

to the broadcast doesn’t become significant until P > 100,000. Thus, for such a system the 1D

block distribution will scale well.

 In the worst case network, B(P) = P, the ratio to the ideal algorithm is

5
4 1+P-1[] + 1

2
P

cmem
(t comm /t calc) P P-1[]

which is nearly the same as the best case formula except that the broadcast term has an additional

factor P which causes it to become significant for much lower values of P. The system used to

obtain the results in the paper (see Appendix A) is best approximated by this model with values

cmem ~ ~2
27

 and tcomm/tcalc ~ 400. The measured and predicted values are shown in Figure B.1,

along with the predicted values for a network that is 10x faster as well as network with B(P) = 1.

As we can see, the pMatlab code is achieving the performance limit presented by the algorithm

and will move closer to the more efficient (and more complex) 2D block cyclic algorithm as the

network hardware is improved.

 32

Figure B.1. Measured and predicted LU performance. The LU performance model is shown

for several different configurations of Gigabit Ethernet (GigE) and InfiniBand (IB) networks. The

lowest performing network agrees well with the pMatlab data. As the network is improved the

performance should approach that of the C+MPI code, which uses the more efficient (and more

complex) 2D block cyclic distribution.

