

Abstract—Users perceive varying level of utility for each
different job completed by the cluster. Therefore, there is a need
for existing cluster Resource Management Systems (RMS) to
provide a means for user to express their perceived utility during
job submission. The cluster RMS can then obtain and consider
these user-centric needs such as Quality-Of-Service requirements
in order to achieve utility-driven resource management and
allocation. We advocate the use of computation economy for this
purpose. In this paper, we describe an architectural framework
for a utility-driven cluster RMS. We present a user-level job
submission specification for soliciting user-centric information
that is used by the cluster RMS for making better resource
allocation decisions. In addition, we propose a dynamic pricing
function that the cluster owner uses to determine the level of
sharing within a cluster. Finally, we define two user-centric
performance evaluation metrics: Job QoS Satisfaction and Cluster
Profitability for measuring the effectiveness of the proposed
pricing function in realizing utility-driven resource management
and allocation.

I. INTRODUCTION

Cluster computing [1][2] is increasingly used for high-
performance, high-throughput and high-availability computing
in a wide variety of application areas. Clusters are not only
used for executing computation-intensive applications, but also
as replicated storage and backup servers that provide the
essential fault tolerance and reliability for critical applications.

Mission critical cluster middlewares create the Single
System Image (SSI) [3] that presents a single unified
computing resource to the user. This provides better usability
and transparency for the users as it hides the complexities of
the underlying distributed and heterogeneous nature of clusters
from them. An example of such a middleware is the cluster
Resource Management System (RMS) that provides a single
interface for user-level sequential and parallel applications to
be executed on the cluster.

For effective and efficient management, the cluster RMS
requires knowledge of how users value the resources that are
being competed for [4] and having a feedback mechanism that
prevents users from submitting unlimited quantities of work
[5]. However, existing cluster RMSs provide no or minimal

support for users to define Quality of Service (QoS)
requirements during job submission. For instance, the user
cannot specify the deadline when the job should finish
execution and the budget that he is willing to pay for the
execution before the deadline. They continue to use system-
centric approaches that focus on increasing the throughput and
maximizing the utilization of the cluster. They neglect the need
to use utility models for allocation and management of
resources that would otherwise consider and thus able to
achieve the users’ desired utility.

We advocate the use of computational economy
[6][7][8][9][10][11] for achieving utility-driven resource
management and allocation in clusters since system-centric
management for shared resources is not effective due to lack of
economic accountability. Computational economy is able to
regulate supply and demand of cluster resources at market
equilibrium, provides feedback in terms of economic incentives
for both users and cluster owner, and promotes QoS-based
resource allocation that caters to users’ needs.

This paper focuses on a pricing mechanism to support utility-
driven management and allocation of resources in a cluster.
First, the architecture of existing cluster RMS that uses system-
centric approaches is extended to adopt economy-based
resource management and allocation. A simple and extensible
user-level job submission specification provides a means for
users to specify user-centric information such as resource and
QoS requirements. Economy-based mechanisms then make use
of this information and incorporate a pricing function to
enforce resource allocations. The effectiveness of the economy-
based mechanisms is examined using two user-centric
evaluation metrics: Job QoS Satisfaction and Cluster
Profitability.

The rest of this paper is organized as follows. Section II
discusses related work. Section III presents an architectural
framework for a utility-driven cluster RMS. Section IV
describes the user-level job submission specification for
soliciting user-centric information for each job. Section V
defines a pricing function that satisfies four essential
requirements for pricing cluster resources. Section VI outlines

Pricing for Utility-driven Resource Management
and Allocation in Clusters

Chee Shin Yeo and Rajkumar Buyya
Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne

VIC 3010, Australia
{csyeo, raj}@cs.mu.oz.au

the admission control, resource allocation, and job control
mechanisms that together enforce the utility to be achieved by
the cluster. Section VII discusses performance evaluation
results of the proposed pricing function using two user-centric
evaluation metrics and Section VIII concludes this paper.

II. RELATED WORK

There are a number of cluster RMSs such as Condor [12],
LoadLeveler [13], Load Sharing Facility (LSF) [14], Portable
Batch System (PBS) [15], and Sun Grid Engine (SGE) [16].
But, these existing Cluster RMSs adopt system-centric
approaches that optimize overall cluster performance. For
example, the cluster RMS aims to maximize processor
throughput and utilization for the cluster, and minimize average
waiting time and response time for the jobs. But, these system-
centric approaches neglect and thus ignore user-centric
required services that truly determine users’ needs and utility.
There are no or minimal means for users to define QoS
requirements and their valuation during job submission so that
the cluster RMS can improve the value of utility. We propose
an architectural framework for extending these existing cluster
RMSs to support utility-driven resource management and
allocation, and describes how economy-based mechanisms can
be incorporated to achieve that.

Maui [17] is an advanced scheduler that supports
configurable job prioritization, fairness policies and scheduling
policies to maximize resource utilization and minimize job
response time. It provides extensive options for the
administrator to configure and define various priorities of jobs
to determine how resources are allocated to jobs. Maui also
allows user to define QoS parameters for jobs that will then be
granted additional privileges and supports advance reservation
of resources where a set of resources can be reserved for
specific jobs at a particular timeframe. In addition, Maui can be
integrated as the scheduler for traditional cluster RMS such as
Loadleveler, LSF, PBS and SGE. But, Maui does not provide
economic incentives for users to submit jobs with lower
priority or QoS requirements and cluster owner to share
resources.

REXEC [10] is a remote execution environment for a
campus-wide network of workstations, which forms part of the
Berkeley Millennium Project. REXEC allows the user to
specify the maximum rate (credits per minute) that he is willing
to pay for processor time. The REXEC client then selects a
computation node that matches the user requirements and
executes the application directly on it. It uses a proportional
resource allocation mechanism that allocates resources to jobs
proportional to the user valuation irrespective of their job
needs. However, our economy-based resource allocation
mechanism prioritizes and allocates resources to jobs based on
the QoS needs of each job. We allocate resources
proportionally to jobs with respect to their required QoS such
as deadline rather than user valuation so that more jobs are

completed with their QoS fulfilled.
Libra [11] is an initial work done that successfully

demonstrates that an economy-based scheduler is able to
deliver more utility to users compared to traditional scheduling
policies. Libra allows users to specify QoS requirements and
allocates resources to jobs proportional to their specified QoS
requirements. Thus, Libra can complete more jobs with their
QoS requirements satisfied as compared to system-centric
scheduling policies that do not consider various QoS needs of
different jobs. Currently, Libra computes a static cost that
provides incentives for jobs with a more relaxed deadline so as
to encourage users to submit jobs with a longer deadline. But,
Libra does not consider the actual supply and demand of
resources, thus users can continue to submit unlimited amount
of jobs into the cluster if they have the budget. In this paper, we
propose an enhanced pricing function that satisfies four
essential requirements for pricing of cluster resources and
prevents the cluster from overloading.

III. ARCHITECTURAL FRAMEWORK

We describe an architectural framework for extending an
existing system-centric cluster RMS to support utility-driven
resource management and allocation. Fig. 1 shows the
architectural framework for a utility-driven cluster RMS. Four
additional mechanisms: Pricing, Economy-based Admission
Control, Economy-based Resource Allocation, and Job Control
(shaded in Fig. 1) are to be implemented as pluggable
components into the existing cluster RMS architecture to
support utility-driven resource management.

A utility-driven cluster RMS needs to determine the cost the
user has to pay for executing a job and fulfilling his QoS
requirements. This in turn generates economic benefits for the
cluster owner to share the cluster resources. We propose a
Pricing mechanism that employs some pricing function for this
purpose. Later in this paper, we discuss a pricing function that
aims to be flexible, fair, dynamic and adaptive.

There should also be an admission control mechanism to
control the number of jobs accepted into the cluster. If no
admission control is implemented, increasing job submissions
will result in fewer jobs to be completed with the required QoS
due to insufficient cluster resources for too many jobs. We
propose an Economy-based Admission Control mechanism that
uses dynamic and adaptive pricing (determined by the Pricing
mechanism) as a natural means for admission control. For
example, increasing demand of a particular resource increases
its price so that fewer jobs that have sufficiently high budget
will be accepted. In addition, our Economy-based Admission
Control mechanism also examines the required QoS of
submitted jobs to admit only jobs whose QoS can be satisfied.

After a job is accepted, the cluster RMS needs to determine
which computation node can execute the job. In addition, if
there are multiple jobs waiting to be allocated, the cluster RMS
needs to determine which job has the highest priority and

should be allocated first. We propose an Economy-based
Resource Allocation mechanism that considers user-centric
requirements of jobs such as required resources and QoS
parameters like deadline and budget, and allocate resources
accordingly to these needs.

After resource allocation, there should be a mechanism to
enforce the resource allocation so as to ensure that the required
level of utility can be achieved. We propose a Job Control
mechanism at each computation node that monitors and adjusts
the resource allocation if necessary.

As shown in Fig. 1, there are u local users who can submit
jobs to the cluster for execution. The cluster has a single
manager node and c computation nodes. The centralized
resource manager of the cluster RMS is installed on the
manager node to provide the user interface for users to submit
jobs into the cluster. The typical flow of a job in a utility-driven
cluster RMS (circled numbers in Fig. 1) is as follows:
1) A user submits a job to the cluster RMS using the user-

level job submission specification.
2) The Economy-based Admission Control mechanism

determines whether the job should be accepted or rejected
based on the job details and QoS requirements given in the
job submission specification and current workload
commitments of the cluster. The outcome is feedback to
the user.

3) If the job is accepted, the Economy-based Resource
Allocation mechanism determines which computation node
the job is to be allocated to. The job manager is then
informed to dispatch the job to the selected computation
node.

4) The Job Control mechanism administers the execution of
the job and enforces the resource allocation.

5) The job finishes execution and its execution result is
returned to the user.

IV. USER-LEVEL JOB SUBMISSION SPECIFICATION

We propose a simple generic user-level job submission
specification to capture user-centric information defined as
follows:

jobi([Segment1] [Segment2] ... [Segments]) (1)

Each job i submitted to the cluster has a corresponding

submission specification comprising of s segments. Each
segment acts as a category that contains fine-grain parameters
to describe a particular aspect of job i.

The job submission specification is designed to be extensible
such that new segments can be added into the specification and
new parameters can be added within each segment. This
flexibility can thus allow customization for gathering varying
information of jobs belonging to different application models.
For instance, a job belonging to a workflow-based application
may have a data dependency segment.

Currently, we identify a basic job submission specification
that consists of four segments for a sequential compute-
intensive single-task job:

jobi([JobDetails] [ResourceRequirements]
 [QoSConstraints] [QoSOptimization]) (2)

The first segment, JobDetails describes information

pertaining to the job. This provides the cluster RMS with
necessary knowledge that may be utilized for more effective
resource allocation. One basic example of JobDetails is:
1) Estimated execution time EEi: the estimated execution time

for job i on a computation node. We define the execution
time Ei of job i as the time period for it to be processed on
a computation node provided that it is allocated the node’s
full proportion of processing power. Thus, the execution
time varies on nodes of different hardware and software
architecture and does not include any waiting time and
communication latency. The execution time can also be
expressed in terms of the job length in million instructions
(MI).

The second segment, ResourceRequirements specifies the
resources that are needed by the job in order to be executed on
a computation node. This facilitates the cluster RMS to
determine whether a computation node has the necessary
resources to execute the job. Two basic examples of
ResourceRequirements are:
1) Memory size MEMi: the amount of local physical memory

space needed to execute job i.
2) Disk storage size DISKi: the amount of local hard disk

space required to store job i.
The third segment, QoSConstraints states the QoS

characteristics that have to be fulfilled by the cluster RMS. This
captures user-centric requirements that are necessary to achieve
the user’s perceived utility. Two basic examples of

Computation
Node 1

Job Manager

Computation
Node c

:
:
:

Economy-based
Admission Control

Economy-based
Resource Allocation

Computation
Nodes

User u

:
:
:

Manager
Node

Node Status
Monitor

Job
Control

User
Population

User 1
job 1

2 3

4
5

Utility-driven Job Scheduler

execution results

feedback

job submission

execution results

Pricing

Resource Manager

Fig. 1. Architectural framework for a utility-driven cluster RMS. The
Economy-based Admission Control mechanism determines whether a job
submitted into the cluster should be accepted or rejected and feedback to the
user. If accepted, the Economy-based Resource Allocation mechanism
determines the best computation node to execute the job. The Job Control
mechanism then enforces the resource allocation to ensure that the required
utility is achieved.

QoSConstraints are:
1) Deadline Di: the time period in which job i has to be

finished.
2) Budget Bi: the budget that the user is willing to pay for job

i to be completed with the required QoS satisfied.
The fourth segment, QoSOptimization identifies which QoS

characteristics to optimize. This supports user personalization
whereby the user can determine specific QoS characteristics he
wants to optimize. Two basic examples of QoSOptimization
are:
1) Finish time FTi: the time when job i finishes execution on a

computation node. This means that the user wants the job
to be finished in the shortest time, but within the specified
budget.

2) Cost Ci: the actual cost the user pays to the cluster for job i
provided that the required QoS is satisfied. This means that
the user wants to pay the lowest cost for completing the
job.

This example for a sequential compute-intensive single-task
job demonstrates the flexibility and effectiveness of the
proposed generic user-level job submission specification in
soliciting user-centric requirements for different application
models. Users are able to express their job-specific needs and
desired services that are to be fulfilled by the cluster RMS for
each different job. The cluster RMS can utilize these
information to determine which jobs have higher priority and
allocate resources accordingly so to maximize overall users’
perceived utility, thus achieving utility-driven resource
management and allocation.

V. PRICING OF RESOURCES

A. Four Essential Requirements
We outline four essential requirements for defining a pricing

function to price cluster resources. First, the pricing function
should be flexible so that it can be easily configured by the
cluster owner to modify the pricing of resources to determine
the level of sharing. Second, the pricing function has to be fair.
Resources should be priced based on actual usage by the users.
This means that users who use more resources pay more than
users who use fewer resources. With QoS, users who specify
high QoS requirements (such as a short deadline) for using a
resource pay more than users who specify low QoS
requirements (a long deadline). Third, the pricing function
should be dynamic such that the price of each resource is not
static and changes depending on the cluster operating
condition. Fourth, the pricing function needs to be adaptive to
changing supply and demand of resources so as to compute the
relevant prices accordingly. For instance, if demand for a
resource is high, the price of the resource should be increased
so as to discourage users from overloading this resource and to
maintain equilibrium of supply and demand of resources.

B. Pricing Function
We define a pricing function that is able to satisfy the above

mentioned four essential requirements for pricing of cluster
resources. Examples of cluster resources that are utilized by a
job are processor time, memory size and disk storage size. The
pricing function computes the pricing rate Pij for per unit of
cluster resource utilized by job i on computation node j as:

)()(ijjij PUtilPBaseP ∗+∗= βα (3)

The pricing rate Pij comprises of two components: a static

component based on the base pricing rate PBasej for utilizing
the resource on computation node j and a dynamic component
based on the utilization pricing rate PUtilij of that resource that
takes into account job i. The factors � and � for the static and
dynamic components respectively provides the flexibility for
the cluster owner to easily configure and modify the weightage
of the static and dynamic components on the overall pricing
rate Pij.

The cluster owner specifies the fixed base pricing rate
PBasej for per unit of cluster resource. For instance, PBasej can
be $1 per second for processor time, $2 per MB for memory
size, and $10 per GB for disk storage size. PUtilij is computed
as a factor of PBasej based on the utilization of the resource on
computation node j from time ATi to DTi, where ATi is the time
when job i arrives at the cluster and DTi is the deadline time
which job i has to be completed:

j
ij

j
ij PBase

RESFree
RESMax

PUtil ∗= (4)

RESMaxj is the maximum units of the resource on

computation node j from time ATi to DTi. RESFreeij is the
remaining free units of the resource on computation node j
from time ATi to DTi, after deducting units of resource
committed for other current executing jobs and job i from the
maximum units of the resource:

i

accept

k
kjij RES

n
RESRESMaxRESFree

j

−
�
�
�

�

�

�
�
�

�

�

=
− �=

1
 (5)

For n jobs submitted to the cluster, naccept jobs are accepted

for execution by the admission control. If there is no admission
control, nnaccept = . We define

j
acceptn to be naccept jobs that are

executing on computation node j from time ATi to DTi. Our
Economy-based Admission Control and Resource Allocation
mechanisms first check that there is sufficient resource on node
j before computing its pricing rate Pij so that RESFreeij is
always positive.

The pricing function computes the pricing rate Pij for each
different resource to be used by job i on computation node j.
Thus, the overall pricing rate of executing job i on computation

node j can be computed as the sum of each Pij. This fine-grain
pricing is fair since jobs are priced based on the amount of
different resources utilized. For instance, a compute-intensive
job does not require a large disk storage size as compared to a
data-intensive job and therefore is priced significantly lower for
using the disk storage resource.

The pricing function provides incentives that takes into
account both user-centric and system-centric factors. The user-
centric factor considered is the amount of a resource RESi
required by job i. For example, a low amount of the required
resource (a low RESi) results in a low pricing rate Pij. The
system-centric factor taken into account is the availability of
the required resource RESFreeij on the computation node j. For
instance, the required resource that is low in demand on node j
(a high RESFreeij) will have a low pricing rate Pij.

Libra [11] gives incentives to jobs with long deadlines as
compared to jobs with short deadlines irrespective of the
cluster workload condition. Instead, our proposed pricing
function considers the cluster workload because the utilization
pricing rate PUtilij considers the utilization of a resource based
on the required deadline of job i (from time ATi to DTi).
Consider this example where the user specifies a short deadline
and long deadline of 2 and 5 hours respectively to execute a job
i that requires 10 units of memory size. For the computation
node j, we assume that the base pricing rate PBasej is $1 per
unit, there are 100 free units of memory size for each hour of
deadline, and there are

j
acceptn jobs using 90 units of memory

size during both deadlines. So, for a short deadline of 2 hours,
PUtilij = 1))1090200/(200(∗−− = $2 per unit. Whereas, for a
long deadline of 5 hours, PUtilij = 1))1090500/(500(∗−− =
$1.25 per unit which is lower.

Our proposed pricing function is dynamic since the overall
pricing rate of a job varies depending on the availability of
each resource on different computation nodes for the required
deadline. It is also adaptive as the overall pricing rate is
adjusted automatically depending on the current supply and
demand of resources to either encourage or discourage job
submission.

VI. MECHANISMS FOR ENFORCING REQUIRED UTILITY

We enhance the admission control and resource allocation
mechanisms from Libra [11] to incorporate the proposed user-
level job submission specification that solicits fine-grain user-
centric information for jobs and the proposed pricing function
that computes dynamic and adaptive pricing for resources.

A. Economy-based Admission Control and Resource
Allocation
We consider utility-driven resource management and

allocation in a simplified cluster operating environment with
the following assumptions:
1) The users submit only sequential compute-intensive single-

task jobs into the cluster for execution.

2) The estimated execution time of each job is known and
given during job submission and is correct. We envision
that the nature of the jobs submitted enables their
execution time to be predicted in advance based on means
such as past execution history.

3) The QoS requirements specified by the user during job
submission do not change after the job is accepted.

4) The cluster RMS is the only gateway for users to submit
jobs to the cluster. In other words, all computation nodes
in the cluster are dedicated for executing jobs that can only
be assigned by the cluster RMS. This also implies that the
cluster RMS has the full knowledge of allocated workload
currently in execution and the resources available on each
computation node.

5) The computation nodes can be homogeneous (have the
same hardware architectures) or heterogeneous (have
different hardware architectures). For heterogeneous
computation nodes, the estimated execution time is
translated to its equivalent on the allocated computation
node.

6) The underlying operating system at the computation nodes
supports time-shared execution mechanism. A time-shared
execution mechanism allows multiple jobs to be executed
on a computation node at the same time. Each job shares
processor time by executing within assigned processor
time partitions.

Currently, our enhanced Economy-based Admission Control
and Resource Allocation mechanisms use a simplified version
of the job submission specification in (2) that excludes the
QoSOptimization segment for the sequential compute-intensive
single-task jobs:
1) JobDetails:

a. Estimated execution time EEi
2) ResourceRequirements:

a. Memory size MEMi
b. Disk storage size DISKi

3) QoSConstraints:
a. Deadline Di
b. Budget Bi

In addition, it only considers a single cluster resource which
is the processor time utilized by the job. In this case, the
proposed pricing function only computes the pricing rate for
the processor time resource. So, RESFreeij which is the free
processor time resource on computation node j from time ATi to
DTi, excluding the estimated execution time EEk used by other
current executing jobs and EEi by job i is defined as:

i

accept

k
kjij EE

n
EERESMaxRESFree

j

−
�
�
�

�

�

�
�
�

�

�

=
− �=

1
 (6)

Our enhanced Economy-based Admission Control and

Resource Allocation mechanisms determine whether a job can
be accepted or rejected based on three criteria:

1) Resources required by the job to be executed
2) Deadline that the job has to be finished
3) Budget to be paid by the user for the job to be finished

within the deadline
Algorithm 1 shows the pesudo-code for the enhanced

Economy-based Admission Control and Resource Allocation
mechanisms using the proposed pricing function. First, the
Admission Control mechanism determines whether there are
any computation nodes that can fulfill the specified resource
requirements for job i (line 1–7). This rejects jobs that require
more resources than that can be supported by the cluster. Then,
the Admission Control mechanism determines whether there
are any of these computation nodes that can fulfill the required
deadline time DTi and has the required resources for job i with
estimated execution time EEi (line 9–16). Each computation
node j that has the required resources and can fulfill the
required deadline time DTi also computes the pricing rate Pij
for utilizing the processor time resource (line 11). These
computation nodes are then sorted in ascending order using
RESFreeij in (6) (line 18). The first computation node j in the
sorted list that is within the specified budget Bi is allocated the

job i (line 19–25). This ensures that each computation node is
allocated jobs to their maximum capacity so that more jobs can
be accepted and completed within their required deadline.

B. Job Control
The Job Control mechanism at each computation node needs

to enforce the QoS of a job so as to ensure that the job can
finish with the required utility. Currently, we only consider
enforcing a single QoS which is the deadline. We adopt the
time-shared job control mechanism from Libra [11] that
implements proportional-share resource allocation based on the
required deadline of the job. The Job Control mechanism
computes the initial processor time partition for a newly started
job and then periodically updates processor time partitions for
all current executing jobs to enforce that their deadline can be
satisfied.

Algorithm 2 shows the pesudo-code for the Job Control
mechanism that computes the processor time partition for each
job i that is executing on a computation node j. The job control
updates new processor time partition for every executing jobs
based on the processor clock time completed so far and the
actual wall clock time taken with respect to their estimated
execution time EEi and deadline Di (line 1–4).

VII. PERFORMANCE EVALUATION

We simulate a cluster and carry out detailed evaluation using
both user-centric and system-centric evaluation metrics. We
evaluate performance of our proposed Economy-based
Admission Control and Resource Allocation with respect to
varying cluster workload, varying pricing factor and tolerance
against estimation error for estimated execution time.

A. Evaluation Metrics
We define two user-centric performance evaluation metrics

to measure the level of utility achieved by the cluster: Job QoS
Satisfaction and Cluster Profitability.

Job QoS Satisfaction measures the level of utility for
satisfying job requests. A higher Job QoS Satisfaction
represents better performance. It is computed as the proportion
of nQoS jobs whose required QoS (deadline and budget) are
fulfilled out of n jobs submitted:

Job QoS Satisfaction = nnQoS / (7)

nQoS is naccept jobs (accepted by the admission control) with

their required QoS satisfied. Currently, we only consider two
basic QoS parameters: deadline Di and budget Bi. To satisfy Di,
the finish time must be less than the deadline time, that is

ii DTFT ≤ . To satisfy Bi, the actual cost paid by the user must
be less than the budget, that is ii BC ≤ .

Cluster Profitability measures the level of utility for
generating economic benefits for the cluster owner. A higher
Cluster Profitability denotes better performance. It is computed

Algorithm 1. Pseudo-code for Economy-based Admission Control and
Resource Allocation mechanisms.
1 for j � 0 to c do
2 if node j has required resources then
3 place node j in ListResReqi ;
4 endif
5 endfor
6 if ListResReqi is empty then
7 reject job i with cannot_meet_resources message;
8 else
9 for j � 0 to ListResReqi_size – 1 do
10

 if node j can finish job i with EEi before DTi and
 node j has required resources for EEi then

11 compute Pij ;
12 place node j in ListDeadlinei ;
13 endif
14 endfor
15 if ListDeadlinei is empty then
16 reject job i with cannot_meet_deadline message;
17 else
18 sort ListDeadlinei by RESFreeij in ascending order;
19 for j � 0 to ListDeadlinei_size – 1 do

20 if iiji BPEE ≤∗ then
21 accept and allocate job i to node j;
22 break;
23 endif
24 endfor
25 reject job i with cannot_meet_budget message;
26 endif
27 endif

Algorithm 2. Pseudo-code for Job Control mechanism.
1 for all job i executing on computation node j do
2

 get processor clock time clockCPUij completed so far by node j
 for job i;

3 get wall clock time clockWalli currently taken by job i;

4 set processor time partition Partitionij =
ii

iji

clockWallD
clockCPUEE

−
−

;

5 endfor

as the proportion of profit earned by the cluster out of the total
budget of jobs that are accepted for execution:

Cluster Profitability = ��
==

accept

i
i

accept

i
i

n
B

n
C

11
/ (8)

We also use two traditional system-centric performance

evaluation metrics: Average Waiting Time and Average
Response Time.

Average Waiting Time is the average time a job waits in the
cluster before it starts execution. A lower Average Waiting
Time indicates better performance.

Average Waiting Time = �
=

−
accept

i
ii

accept

n
ATST

n 1

1
 (9)

STi is the time when job i starts execution on a computation

node.
Average Response Time is the average time a job is

completed and results returned to the user. A lower Average
Response Time signifies better performance.

Average Response Time = �
=

−
accept

i
ii

accept

n
ATFT

n 1

1
 (10)

B. Experimental Methodology
We use GridSim [18] to evaluate the performance of the

proposed pricing function. GridSim provides an underlying
infrastructure that allows construction of simulation models for
heterogeneous resources, users, applications and schedulers.
GridSim has been used for the design and evaluation of
economy-based scheduling algorithms in both cluster [11] and
Grid computing [19][20].

We model our proposed utility-driven cluster RMS
framework with the enhanced Economy-based Admission
Control, Economy-based Resource Allocation and Job Control
mechanisms that utilize the proposed user-level job submission
specification and pricing function. This is referred to as
Libra+$ in this section.

We also model two other resource allocation mechanisms:
First-Come-First-Serve (FCFS) and Libra [11]. For FCFS, we
model an existing cluster RMS that does not have admission
control to decline jobs if their QoS requirements cannot be
satisfied. The time-shared execution mechanism on its
computation nodes assign equal shares of processing time
among the executing jobs and thus do not enforce the required
QoS of each job. We model FCFS to allocate a newly arrived
job to the first computation node that finishes all its current
executing jobs, based on the assumption that the estimated
execution time is provided and is correct.

In order to measure the Cluster Profitability metric, we also
model FCFS to incorporate a simple pricing mechanism. The
profit of processing a job is only considered when the deadline
of the job is met. The user is then charged based on the static
base pricing rate PBasej of using processing time on node j, so
job i has its cost jii PBaseEEC ∗= . FCFS is used for
comparison so as to examine the benefits of considering and
enforcing the required QoS of jobs using our proportional-
share resource allocation based on required QoS (deadline)
over traditional resource allocation mechanisms.

Libra [11] uses a pricing function that provides incentives
for jobs with a more relaxed deadline to compute a static cost,
so job i has its cost iiii DEEEEC /*δγ +∗= . � is a factor for
the first component that computes the cost based on the
execution time of the job, so that longer jobs are charged more
than shorter jobs. � is a factor for the second component that
provides incentives for jobs with a more relaxed deadline, so as
to encourage users to submit jobs with longer deadlines. Libra
is used to evaluate the effectiveness of the proposed pricing
function in Libra+$ for improving utility for the cluster owner.

For the cluster operating environment, we simulate a 13-
node cluster called Manjra located at the University of
Melbourne. The Manjra cluster has the following
characteristics:
� SPEC rating: 684
� Number of computation nodes: 13
� Processor type on each computation node: INTEL

Pentium4 2-GHz
� Operating System: Linux

For the experiments, we follow a similar experimental
methodology in [21] to simulate the following cluster workload
that models a high demand for cluster resources where the
majority of jobs have short deadlines:
� 200 jobs with exponentially distributed job inter-arrival

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Job QoS
Satisfaction

Cluster
Profitability

Average Waiting
Time

Average
Response Time

FCFS
Libra
Libra+$, � = 0.01

Fig. 2. Normalized comparison of FCFS, Libra, and Libra+$. Both Libra and
Libra+$ achieve a substantially higher Job QoS Satisfaction and Cluster
Profitability than FCFS. Similarly, both Libra and Libra+$ have a significantly
lower Average Waiting and Response Time than FCFS. This shows the
importance of considering and enforcing required QoS of each job.

time of mean 0.5 hours and exponentially distributed job
execution time Ei of mean 10 hours

� 80% of the 200 jobs belongs to a high urgency job class
with a low 5.1/ =ii ED and a high 6)(/ =ii EfB , where

)(iEf is a function to compute the minimum budget
required for job execution time Ei

� 20% of the 200 jobs belongs to a low urgency job class
with a high 6/ =ii ED and a low 5.1)(/ =ii EfB

� Di and Bi are normally distributed within each high/low
Di/Ei and)(/ ii EfB

� The high urgency and low urgency job classes are
randomly distributed in arrival sequence

� For Libra+$, static pricing factor � = 1 and dynamic
pricing factor � = 0.01

C. Evaluation of FCFS, Libra, and Libra+$
We evaluate the three resource allocation mechanisms:

FCFS, Libra, and Libra+$ using the four performance
evaluation metrics. Fig. 2 shows their normalized comparison.

For user-centric metrics, both Libra and Libra+$ are able to
achieve substantially higher Job QoS Satisfaction and Cluster
Profitability than FCFS since they consider the required QoS
(deadline and budget) of each different job and allocate
resources proportionally to each job based on the required
deadline so that more jobs can be satisfied. However, Libra+$
has a lower Job QoS satisfaction as compared to Libra. This is
because the proposed pricing function computes higher pricing
as the cluster workload increases, thus denying jobs with
insufficient budget.

On the contrary, the proposed pricing function still generates
significantly higher profit than Libra even though fewer jobs
are accepted, thus proving its effectiveness in improving the
cluster owner’s economic benefits. FCFS has the lowest Cluster
Profitability as it does not consider and thus fail to fulfill the

required QoS of most jobs.
For system-centric metrics, both Libra and Libra+$ incurs

significantly lower Average Waiting and Response Time than
FCFS because their Economy-based Admission Control
mechanisms consider the QoS constraints of jobs and filter jobs
whose QoS constraints cannot be satisfied. Libra+$ has lower
Average Waiting and Response Time than Libra since fewer
jobs are accepted and executed.

D. Varying Cluster Workload
We examine the performance of Libra+$ with changing

cluster workload. We increase the job execution time to
represent increasing workload that would result in jobs failing
to meet their required QoS (deadline).

Fig. 3(a) shows that FCFS has a significantly lower Job QoS
Satisfaction than both Libra and Libra+$ with increasing mean
job execution time. This demonstrates the importance of
considering and enforcing required QoS of jobs and the
effectiveness of implementing proportional-share resource
allocation based on the required QoS (deadline) to satisfy more
jobs. But, Libra+$ has a lower Job QoS Satisfaction than FCFS
when the cluster workload is not high. For example, in Fig.
3(a), Libra+$ has a lower Job QoS Satisfaction than FCFS
when mean job execution time is 6 hours. This is because
Libra+$ declines some jobs due to insufficient budget.

Fig. 3(b) shows that Libra+$ returns a considerably higher
Cluster Profitability than Libra with increasing mean job
execution time. This shows the effectiveness of the proposed
pricing function in improving the economic benefit of the
cluster owner even though Libra+$ accepts fewer jobs than
Libra. As the cluster workload increases, only jobs that can
afford the increased pricing are accepted by the Economy-
based Admission Control mechanism. These fewer higher-
priced jobs are able to maintain a higher Cluster Profitability to
compensate for a lower Job QoS Satisfaction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

6 7 8 10 15 30

Mean Job Execution Time (hours)

Jo
b

Q
oS

 S
at

is
fa

ct
io

n
(%

)

FCFS
Libra
Libra+$, � = 0.01

0%

5%

10%

15%

20%

25%

30%

6 7 8 10 15 30

Mean Job Execution Time (hours)

C
lu

st
er

 P
ro

fit
ab

ili
ty

 (%
)

FCFS
Libra
Libra+$, � = 0.01

(a) Job QoS Satisfaction (b) Cluster Profitability

Fig. 3. Impact of increasing job execution time. An increasing mean job execution time results in both Libra and Libra+$ to have significantly higher Job QoS
Satisfaction and Cluster Profitability over FCFS. Libra+$ generates increasing Cluster Profitability for decreasing Job QoS Satisfaction, demonstrating the
effectiveness of its pricing function in improving the economic benefit of the cluster owner.

E. Varying Pricing Factor for Different Level of Sharing
We study the level of sharing supported by Libra+$. We

increase the dynamic pricing factor � to observe its impact on
Libra+$ in supporting the level of sharing.

Fig. 4(a) shows that an increasing � for Libra+$ results in
decreasing Job QoS Satisfaction, while Fig. 4(b) shows that it
results in increasing Cluster Profitability. This demonstrates
that the proposed pricing function is able to generate increasing
profit even though a decreasing number of jobs are accepted.
This is possible since jobs with sufficient budget are executed
at a higher cost (due to higher �) to compensate for accepting
fewer jobs due to insufficient budget. Another interesting point
to note from Fig. 4(a) is that if � is set too high, the Job QoS
Satisfaction can be lower than FCFS due to too many jobs
having insufficient budget.

These results show that the dynamic pricing factor � has a
significant impact on both Job QoS Satisfaction and Cluster
Profitability. A higher � lowers the level of sharing (a lower
Job QoS Satisfaction), but increases the economic benefit of
the cluster owner (a higher Cluster Profitability). Thus, the
cluster owner can determine the level of sharing by adjusting
the value of �. This demonstrates the flexibility of the pricing
function in enabling the cluster owner to easily configure and
determine the level of sharing based on his objective.

F. Tolerance against Estimation Error
We investigate the tolerance of Libra+$ against estimation

error for estimated execution time EEi. The estimation error is
modeled as an under-estimated value of EEi so as to examine
the impact of delays caused by earlier jobs on later jobs. Delays
in earlier jobs may result in later jobs to finish beyond their

0%

10%

20%

30%

40%

50%

60%

70%

80%

0% 10% 30% 50%

Estimation Error for Estimated Execution Time EE i (%)

Jo
b

Q
oS

 S
at

is
fa

ct
io

n
(%

)

Libra
Libra+$, � = 0.01
Libra+$, � = 0.1
Libra+$, � = 0.3
Libra+$, � = 1.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0% 10% 30% 50%

Estimation Error for Estimated Execution Time EE i (%)

C
lu

st
er

 P
ro

fi
ta

bi
lit

y
(%

)

Libra
Libra+$, � = 0.01
Libra+$, � = 0.1
Libra+$, � = 0.3
Libra+$, � = 1.0

(a) Job QoS Satisfaction (b) Cluster Profitability

Fig. 5. Impact of increasing estimation error for estimated execution time EEi. A higher dynamic pricing factor � for Libra+$ provides a higher level of tolerance
against estimation errors for both Job QoS Satisfaction and Cluster Profitability.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.01 0.1 0.3 1

Dynamic Pricing Factor �

Jo
b

Q
oS

 S
at

is
fa

ct
io

n
(%

)

FCFS
Libra
Libra+$

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.01 0.1 0.3 1

Dynamic Pricing Factor �

C
lu

st
er

 P
ro

fit
ab

ili
ty

 (%
)

FCFS
Libra
Libra+$

(a) Job QoS Satisfaction (b) Cluster Profitability

Fig. 4. Impact of increasing dynamic pricing factor �. An increasing � for Libra+$ results in decreasing Job QoS Satisfaction, but increasing Cluster
Profitability. The cluster owner can adjust the value of � to determine the level of sharing for the cluster.

deadlines, thus failing to meet their required QoS. For example,
if we model an estimation error of 50%, then a job i whose
execution time is 60 hours will therefore has an estimated
execution time EEi of 30 hours. We do not consider over-
estimated value of EEi since jobs accepted by the admission
control will still be completed within their required deadline.

Fig. 5(a) shows that when there is no (0%) estimation error, a
higher dynamic pricing factor � for Libra+$ results in a lower
Job QoS Satisfaction. But, with increasing estimation error, a
higher � results in a higher Job QoS satisfaction. This shows
that a higher � provides a higher degree of tolerance against
estimation errors since fewer jobs are accepted and thus the
possibility of delays occurring on later jobs is lower. For
example, in Fig. 5(a), � = 1.0 has the highest Job QoS
Satisfaction for estimation error of more than 30%.

Fig. 5(b) shows that increasing estimation error results in
lower Cluster Profitability as fewer jobs have their required
QoS satisfied due to delays caused by earlier jobs. However, a
higher � for Libra+$ can still achieve higher Cluster
Profitability with increasing estimation error. This reiterates the
effectiveness of the proposed pricing function in improving the
economic benefit of the cluster owner.

VIII. CONCLUSION

We have demonstrated the importance of an effective pricing
mechanism for achieving utility-driven resource management
and allocation in clusters, especially when demand exceeds
supply of cluster resources. We show that our enhanced pricing
function meets the four essential requirements for pricing of
resources. In particular, our pricing function provides
flexibility for the cluster owner to easily configure the pricing
of his cluster resources to modify the level of sharing. Our
pricing function also adapts to the changing supply and demand
of resources by computing higher pricing when cluster
workload increases. This serves as an effective means for
admission control to prevent the cluster from overloading and
tolerate against under-estimated job execution times. Finally,
the pricing function generates a higher economic benefit for the
cluster owner.

Future work will investigate utility-driven resource
allocation for more complex cluster application models, such as
task-farming and parallel applications. Different pricing
strategies based on economic models will also be examined.

ACKNOWLEDGMENT

We thank Srikumar Venugopal for his comments.

REFERENCES
[1] G. F. Pfister, In Search of Clusters, 2nd ed. Prentice Hall PTR, 1998.
[2] R. Buyya, Ed., High Performance Cluster Computing: Architectures and

Systems. Prentice Hall PTR, 1999.
[3] R. Buyya, T. Cortes, and H. Jin, “Single System Image,” The

International Journal of High Performance Computing Applications,
vol. 15, no. 2, pp. 124–135, Summer 2001.

[4] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid
Architecture for Service-Oriented Grid Computing,” in Proc. of 10th
IEEE International Heterogeneous Computing Workshop (HCW2001),
San Francisco, CA, Apr. 2001.

[5] B. N. Chun and D. E. Culler, “User-centric Performance Analysis of
Market-based Cluster Batch Schedulers,” in Proc. of 2nd IEEE
International Symposium on Cluster Computing and the Grid
(CCGrid2002), Berlin, Germany, May 2002.

[6] R. Buyya, D. Abramson, and J. Giddy, “An Economy Driven Resource
Management Architecture for Global Computational Power Grids,” in
Proc. of International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA2000), Las Vegas, NV,
June 2000.

[7] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A Distributed Computational Economy,” IEEE
Trans. Software Eng., vol. 18, no. 2, pp. 103–117, Feb. 1992.

[8] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah,
and C. Staelin, “An economic paradigm for query processing and data
migration in Mariposa,” in Proc. of 3rd International Conference on
Parallel and Distributed Information Systems (PDIS'94), Austin, TX,
Sept. 1994.

[9] B. N. Chun and D. E. Culler, “Market-based Proportional Resource
Sharing for Clusters,” University of California at Berkeley, Computer
Science Division, Technical Report CSD-1092, Jan. 2000.

[10] B. N. Chun and D. E. Culler, “REXEC: A Decentralized, Secure Remote
Execution Environment for Clusters,” in Proc. of 4th Workshop on
Communication, Architecture, and Applications for Network-based
Parallel Computing (CANPC'00), Toulouse, France, Jan. 2000.

[11] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya, “Libra: a
computational economy-based job scheduling system for clusters,”
Software: Practice and Experience, vol. 34, no. 6, pp. 573–590, May
2004.

[12] Condor Version 6.7.1 Manual, University of Wisconsin-Madison, 2004.
[Online]. Available: http://www.cs.wisc.edu/condor/manual/v6.7

[13] LoadLeveler for AIX 5L Version 3.2 Using and Administering, SA22-
7881-01, IBM, Oct. 2003.

[14] LSF Version 4.1 Administrator’s Guide, Platform Computing, 2001.
[15] OpenPBS Release 2.3 Administrator Guide, Altair Grid Technologies,

Aug. 2000.
[16] Sun ONE Grid Engine, Administration and User’s Guide, Sun

Microsystems, Oct. 2002.
[17] Maui Scheduler Version 3.2 Administrator’s Guide, Supercluster

Research and Development Group, 2004. [Online]. Available:
http://www.supercluster.org/mauidocs/mauiadmin.shtml

[18] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for Grid
computing,” Concurrency and Computation: Practice and Experience,
vol. 14, no. 13-15, pp. 1175–1220, Nov.–Dec. 2002.

[19] R. Buyya, J. Giddy, and D. Abramson, “An Evaluation of Economy-
based Resource Trading and Scheduling on Computational Power Grids
for Parameter Sweep Applications,” in Proc. of 2nd Annual Workshop
on Active Middleware Services (AMS2000), Pittsburgh, PA, Aug. 2000.

[20] R. Buyya, M. Murshed, and D. Abramson, “A Deadline and Budget
Constrained Cost-Time Optimization Algorithm for Scheduling Task
Farming Applications on Global Grids,” in Proc. of International
Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA2002), Las Vegas, NV, June 2002.

[21] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing Risk and Reward in a
Market-based Task Service,” in Proc. of 13th International Symposium
of High Performance Distributed Computing (HPDC13), Honolulu, HI,
June 2004.

