
 

Abstract—Users perceive varying level of utility for each 
different job completed by the cluster. Therefore, there is a need 
for existing cluster Resource Management Systems (RMS) to 
provide a means for user to express their perceived utility during 
job submission. The cluster RMS can then obtain and consider 
these user-centric needs such as Quality-Of-Service requirements 
in order to achieve utility-driven resource management and 
allocation. We advocate the use of computation economy for this 
purpose. In this paper, we describe an architectural framework 
for a utility-driven cluster RMS. We present a user-level job 
submission specification for soliciting user-centric information 
that is used by the cluster RMS for making better resource 
allocation decisions. In addition, we propose a dynamic pricing 
function that the cluster owner uses to determine the level of 
sharing within a cluster. Finally, we define two user-centric 
performance evaluation metrics: Job QoS Satisfaction and Cluster 
Profitability for measuring the effectiveness of the proposed 
pricing function in realizing utility-driven resource management 
and allocation. 

I. INTRODUCTION 

Cluster computing [1][2] is increasingly used for high-
performance, high-throughput and high-availability computing 
in a wide variety of application areas. Clusters are not only 
used for executing computation-intensive applications, but also 
as replicated storage and backup servers that provide the 
essential fault tolerance and reliability for critical applications.  

Mission critical cluster middlewares create the Single 
System Image (SSI) [3] that presents a single unified 
computing resource to the user. This provides better usability 
and transparency for the users as it hides the complexities of 
the underlying distributed and heterogeneous nature of clusters 
from them. An example of such a middleware is the cluster 
Resource Management System (RMS) that provides a single 
interface for user-level sequential and parallel applications to 
be executed on the cluster. 

For effective and efficient management, the cluster RMS 
requires knowledge of how users value the resources that are 
being competed for [4] and having a feedback mechanism that 
prevents users from submitting unlimited quantities of work 
[5]. However, existing cluster RMSs provide no or minimal 

support for users to define Quality of Service (QoS) 
requirements during job submission. For instance, the user 
cannot specify the deadline when the job should finish 
execution and the budget that he is willing to pay for the 
execution before the deadline. They continue to use system-
centric approaches that focus on increasing the throughput and 
maximizing the utilization of the cluster. They neglect the need 
to use utility models for allocation and management of 
resources that would otherwise consider and thus able to 
achieve the users’ desired utility.  

We advocate the use of computational economy 
[6][7][8][9][10][11] for achieving utility-driven resource 
management and allocation in clusters since system-centric 
management for shared resources is not effective due to lack of 
economic accountability. Computational economy is able to 
regulate supply and demand of cluster resources at market 
equilibrium, provides feedback in terms of economic incentives 
for both users and cluster owner, and promotes QoS-based 
resource allocation that caters to users’ needs. 

This paper focuses on a pricing mechanism to support utility-
driven management and allocation of resources in a cluster. 
First, the architecture of existing cluster RMS that uses system-
centric approaches is extended to adopt economy-based 
resource management and allocation. A simple and extensible 
user-level job submission specification provides a means for 
users to specify user-centric information such as resource and 
QoS requirements. Economy-based mechanisms then make use 
of this information and incorporate a pricing function to 
enforce resource allocations. The effectiveness of the economy-
based mechanisms is examined using two user-centric 
evaluation metrics: Job QoS Satisfaction and Cluster 
Profitability. 

The rest of this paper is organized as follows. Section II 
discusses related work. Section III presents an architectural 
framework for a utility-driven cluster RMS.  Section IV 
describes the user-level job submission specification for 
soliciting user-centric information for each job. Section V 
defines a pricing function that satisfies four essential 
requirements for pricing cluster resources. Section VI outlines 
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the admission control, resource allocation, and job control 
mechanisms that together enforce the utility to be achieved by 
the cluster. Section VII discusses performance evaluation 
results of the proposed pricing function using two user-centric 
evaluation metrics and Section VIII concludes this paper. 

II. RELATED WORK 

There are a number of cluster RMSs such as Condor [12], 
LoadLeveler [13], Load Sharing Facility (LSF) [14], Portable 
Batch System (PBS) [15], and Sun Grid Engine (SGE) [16]. 
But, these existing Cluster RMSs adopt system-centric 
approaches that optimize overall cluster performance. For 
example, the cluster RMS aims to maximize processor 
throughput and utilization for the cluster, and minimize average 
waiting time and response time for the jobs. But, these system-
centric approaches neglect and thus ignore user-centric 
required services that truly determine users’ needs and utility. 
There are no or minimal means for users to define QoS 
requirements and their valuation during job submission so that 
the cluster RMS can improve the value of utility. We propose 
an architectural framework for extending these existing cluster 
RMSs to support utility-driven resource management and 
allocation, and describes how economy-based mechanisms can 
be incorporated to achieve that. 

Maui [17] is an advanced scheduler that supports 
configurable job prioritization, fairness policies and scheduling 
policies to maximize resource utilization and minimize job 
response time. It provides extensive options for the 
administrator to configure and define various priorities of jobs 
to determine how resources are allocated to jobs. Maui also 
allows user to define QoS parameters for jobs that will then be 
granted additional privileges and supports advance reservation 
of resources where a set of resources can be reserved for 
specific jobs at a particular timeframe. In addition, Maui can be 
integrated as the scheduler for traditional cluster RMS such as 
Loadleveler, LSF, PBS and SGE. But, Maui does not provide 
economic incentives for users to submit jobs with lower 
priority or QoS requirements and cluster owner to share 
resources. 

REXEC [10] is a remote execution environment for a 
campus-wide network of workstations, which forms part of the 
Berkeley Millennium Project. REXEC allows the user to 
specify the maximum rate (credits per minute) that he is willing 
to pay for processor time. The REXEC client then selects a 
computation node that matches the user requirements and 
executes the application directly on it. It uses a proportional 
resource allocation mechanism that allocates resources to jobs 
proportional to the user valuation irrespective of their job 
needs. However, our economy-based resource allocation 
mechanism prioritizes and allocates resources to jobs based on 
the QoS needs of each job. We allocate resources 
proportionally to jobs with respect to their required QoS such 
as deadline rather than user valuation so that more jobs are 

completed with their QoS fulfilled. 
Libra [11] is an initial work done that successfully 

demonstrates that an economy-based scheduler is able to 
deliver more utility to users compared to traditional scheduling 
policies. Libra allows users to specify QoS requirements and 
allocates resources to jobs proportional to their specified QoS 
requirements. Thus, Libra can complete more jobs with their 
QoS requirements satisfied as compared to system-centric 
scheduling policies that do not consider various QoS needs of 
different jobs. Currently, Libra computes a static cost that 
provides incentives for jobs with a more relaxed deadline so as 
to encourage users to submit jobs with a longer deadline. But, 
Libra does not consider the actual supply and demand of 
resources, thus users can continue to submit unlimited amount 
of jobs into the cluster if they have the budget. In this paper, we 
propose an enhanced pricing function that satisfies four 
essential requirements for pricing of cluster resources and 
prevents the cluster from overloading.  

III. ARCHITECTURAL FRAMEWORK 

We describe an architectural framework for extending an 
existing system-centric cluster RMS to support utility-driven 
resource management and allocation. Fig. 1 shows the 
architectural framework for a utility-driven cluster RMS. Four 
additional mechanisms: Pricing, Economy-based Admission 
Control, Economy-based Resource Allocation, and Job Control 
(shaded in Fig. 1) are to be implemented as pluggable 
components into the existing cluster RMS architecture to 
support utility-driven resource management. 

A utility-driven cluster RMS needs to determine the cost the 
user has to pay for executing a job and fulfilling his QoS 
requirements. This in turn generates economic benefits for the 
cluster owner to share the cluster resources. We propose a 
Pricing mechanism that employs some pricing function for this 
purpose. Later in this paper, we discuss a pricing function that 
aims to be flexible, fair, dynamic and adaptive. 

There should also be an admission control mechanism to 
control the number of jobs accepted into the cluster. If no 
admission control is implemented, increasing job submissions 
will result in fewer jobs to be completed with the required QoS 
due to insufficient cluster resources for too many jobs. We 
propose an Economy-based Admission Control mechanism that 
uses dynamic and adaptive pricing (determined by the Pricing 
mechanism) as a natural means for admission control. For 
example, increasing demand of a particular resource increases 
its price so that fewer jobs that have sufficiently high budget 
will be accepted. In addition, our Economy-based Admission 
Control mechanism also examines the required QoS of 
submitted jobs to admit only jobs whose QoS can be satisfied. 

After a job is accepted, the cluster RMS needs to determine 
which computation node can execute the job. In addition, if 
there are multiple jobs waiting to be allocated, the cluster RMS 
needs to determine which job has the highest priority and 



 

should be allocated first. We propose an Economy-based 
Resource Allocation mechanism that considers user-centric 
requirements of jobs such as required resources and QoS 
parameters like deadline and budget, and allocate resources 
accordingly to these needs.  

After resource allocation, there should be a mechanism to 
enforce the resource allocation so as to ensure that the required 
level of utility can be achieved. We propose a Job Control 
mechanism at each computation node that monitors and adjusts 
the resource allocation if necessary. 

As shown in Fig. 1, there are u local users who can submit 
jobs to the cluster for execution. The cluster has a single 
manager node and c computation nodes. The centralized 
resource manager of the cluster RMS is installed on the 
manager node to provide the user interface for users to submit 
jobs into the cluster. The typical flow of a job in a utility-driven 
cluster RMS (circled numbers in Fig. 1) is as follows: 
1) A user submits a job to the cluster RMS using the user-

level job submission specification. 
2) The Economy-based Admission Control mechanism 

determines whether the job should be accepted or rejected 
based on the job details and QoS requirements given in the 
job submission specification and current workload 
commitments of the cluster. The outcome is feedback to 
the user. 

3) If the job is accepted, the Economy-based Resource 
Allocation mechanism determines which computation node 
the job is to be allocated to. The job manager is then 
informed to dispatch the job to the selected computation 
node. 

4) The Job Control mechanism administers the execution of 
the job and enforces the resource allocation. 

5) The job finishes execution and its execution result is 
returned to the user.  

IV. USER-LEVEL JOB SUBMISSION SPECIFICATION 

We propose a simple generic user-level job submission 
specification to capture user-centric information defined as 
follows: 

 
jobi( [Segment1] [Segment2] ... [Segments] ) (1) 

 
Each job i submitted to the cluster has a corresponding 

submission specification comprising of s segments. Each 
segment acts as a category that contains fine-grain parameters 
to describe a particular aspect of job i.  

The job submission specification is designed to be extensible 
such that new segments can be added into the specification and 
new parameters can be added within each segment. This 
flexibility can thus allow customization for gathering varying 
information of jobs belonging to different application models. 
For instance, a job belonging to a workflow-based application 
may have a data dependency segment.  

Currently, we identify a basic job submission specification 
that consists of four segments for a sequential compute-
intensive single-task job: 

 
jobi( [JobDetails] [ResourceRequirements]  
        [QoSConstraints] [QoSOptimization]) (2) 

 
The first segment, JobDetails describes information 

pertaining to the job. This provides the cluster RMS with 
necessary knowledge that may be utilized for more effective 
resource allocation. One basic example of JobDetails is: 
1) Estimated execution time EEi: the estimated execution time 

for job i on a computation node. We define the execution 
time Ei of job i as the time period for it to be processed on 
a computation node provided that it is allocated the node’s 
full proportion of processing power. Thus, the execution 
time varies on nodes of different hardware and software 
architecture and does not include any waiting time and 
communication latency. The execution time can also be 
expressed in terms of the job length in million instructions 
(MI). 

The second segment, ResourceRequirements specifies the 
resources that are needed by the job in order to be executed on 
a computation node. This facilitates the cluster RMS to 
determine whether a computation node has the necessary 
resources to execute the job. Two basic examples of 
ResourceRequirements are:  
1) Memory size MEMi: the amount of local physical memory 

space needed to execute job i.  
2) Disk storage size DISKi: the amount of local hard disk 

space required to store job i.  
The third segment, QoSConstraints states the QoS 

characteristics that have to be fulfilled by the cluster RMS. This 
captures user-centric requirements that are necessary to achieve 
the user’s perceived utility. Two basic examples of 
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Fig. 1.  Architectural framework for a utility-driven cluster RMS. The 
Economy-based Admission Control mechanism determines whether a job 
submitted into the cluster should be accepted or rejected and feedback to the 
user. If accepted, the Economy-based Resource Allocation mechanism 
determines the best computation node to execute the job. The Job Control 
mechanism then enforces the resource allocation to ensure that the required 
utility is achieved. 



 

QoSConstraints are: 
1) Deadline Di: the time period in which job i has to be 

finished.  
2) Budget Bi: the budget that the user is willing to pay for job 

i to be completed with the required QoS satisfied.  
The fourth segment, QoSOptimization identifies which QoS 

characteristics to optimize. This supports user personalization 
whereby the user can determine specific QoS characteristics he 
wants to optimize. Two basic examples of QoSOptimization 
are: 
1) Finish time FTi: the time when job i finishes execution on a 

computation node. This means that the user wants the job 
to be finished in the shortest time, but within the specified 
budget. 

2) Cost Ci: the actual cost the user pays to the cluster for job i 
provided that the required QoS is satisfied. This means that 
the user wants to pay the lowest cost for completing the 
job.  

This example for a sequential compute-intensive single-task 
job demonstrates the flexibility and effectiveness of the 
proposed generic user-level job submission specification in 
soliciting user-centric requirements for different application 
models. Users are able to express their job-specific needs and 
desired services that are to be fulfilled by the cluster RMS for 
each different job. The cluster RMS can utilize these 
information to determine which jobs have higher priority and 
allocate resources accordingly so to maximize overall users’ 
perceived utility, thus achieving utility-driven resource 
management and allocation.  

V. PRICING OF RESOURCES 

A. Four Essential Requirements 
We outline four essential requirements for defining a pricing 

function to price cluster resources. First, the pricing function 
should be flexible so that it can be easily configured by the 
cluster owner to modify the pricing of resources to determine 
the level of sharing. Second, the pricing function has to be fair. 
Resources should be priced based on actual usage by the users. 
This means that users who use more resources pay more than 
users who use fewer resources. With QoS, users who specify 
high QoS requirements (such as a short deadline) for using a 
resource pay more than users who specify low QoS 
requirements (a long deadline). Third, the pricing function 
should be dynamic such that the price of each resource is not 
static and changes depending on the cluster operating 
condition. Fourth, the pricing function needs to be adaptive to 
changing supply and demand of resources so as to compute the 
relevant prices accordingly. For instance, if demand for a 
resource is high, the price of the resource should be increased 
so as to discourage users from overloading this resource and to 
maintain equilibrium of supply and demand of resources.  

B. Pricing Function 
We define a pricing function that is able to satisfy the above 

mentioned four essential requirements for pricing of cluster 
resources. Examples of cluster resources that are utilized by a 
job are processor time, memory size and disk storage size. The 
pricing function computes the pricing rate Pij for per unit of 
cluster resource utilized by job i on computation node j as: 

 
)()( ijjij PUtilPBaseP ∗+∗= βα  (3) 

 
The pricing rate Pij comprises of two components: a static 

component based on the base pricing rate PBasej for utilizing 
the resource on computation node j and a dynamic component 
based on the utilization pricing rate PUtilij of that resource that 
takes into account job i. The factors � and � for the static and 
dynamic components respectively provides the flexibility for  
the cluster owner to easily configure and modify the weightage 
of the static and dynamic components on the overall pricing 
rate Pij.  

The cluster owner specifies the fixed base pricing rate 
PBasej for per unit of cluster resource. For instance, PBasej can 
be $1 per second for processor time, $2 per MB for memory 
size, and $10 per GB for disk storage size. PUtilij is computed 
as a factor of PBasej based on the utilization of the resource on 
computation node j from time ATi to DTi, where ATi is the time 
when job i arrives at the cluster and DTi is the deadline time 
which job i has to be completed: 
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RESMaxj is the maximum units of the resource on 

computation node j from time ATi to DTi. RESFreeij is the 
remaining free units of the resource on computation node j 
from time ATi to DTi, after deducting units of resource 
committed for other current executing jobs and job i from the 
maximum units of the resource: 
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For n jobs submitted to the cluster, naccept jobs are accepted 

for execution by the admission control. If there is no admission 
control, nnaccept = . We define 

j
acceptn  to be naccept jobs that are 

executing on computation node j from time ATi to DTi. Our 
Economy-based Admission Control and Resource Allocation 
mechanisms first check that there is sufficient resource on node 
j before computing its pricing rate Pij so that RESFreeij is 
always positive. 

The pricing function computes the pricing rate Pij for each 
different resource to be used by job i on computation node j. 
Thus, the overall pricing rate of executing job i on computation 



 

node j can be computed as the sum of each Pij. This fine-grain 
pricing is fair since jobs are priced based on the amount of 
different resources utilized. For instance, a compute-intensive 
job does not require a large disk storage size as compared to a 
data-intensive job and therefore is priced significantly lower for 
using the disk storage resource. 

The pricing function provides incentives that takes into 
account both user-centric and system-centric factors. The user-
centric factor considered is the amount of a resource RESi 
required by job i. For example, a low amount of the required 
resource (a low RESi) results in a low pricing rate Pij. The 
system-centric factor taken into account is the availability of 
the required resource RESFreeij on the computation node j. For 
instance, the required resource that is low in demand on node j 
(a high RESFreeij) will have a low pricing rate Pij.  

Libra [11] gives incentives to jobs with long deadlines as 
compared to jobs with short deadlines irrespective of the 
cluster workload condition. Instead, our proposed pricing 
function considers the cluster workload because the utilization 
pricing rate PUtilij considers the utilization of a resource based 
on the required deadline of job i (from time ATi to DTi). 
Consider this example where the user specifies a short deadline 
and long deadline of 2 and 5 hours respectively to execute a job 
i that requires 10 units of memory size. For the computation 
node j, we assume that the base pricing rate PBasej is $1 per 
unit, there are 100 free units of memory size for each hour of 
deadline, and there are 

j
acceptn  jobs using 90 units of memory 

size during both deadlines. So, for a short deadline of 2 hours, 
PUtilij = 1))1090200/(200( ∗−−  = $2 per unit. Whereas, for a 
long deadline of 5 hours, PUtilij = 1))1090500/(500( ∗−−  = 
$1.25 per unit which is lower. 

Our proposed pricing function is dynamic since the overall 
pricing rate of a job varies depending on the availability of 
each resource on different computation nodes for the required 
deadline. It is also adaptive as the overall pricing rate is 
adjusted automatically depending on the current supply and 
demand of resources to either encourage or discourage job 
submission. 

VI. MECHANISMS FOR ENFORCING REQUIRED UTILITY 

We enhance the admission control and resource allocation 
mechanisms from Libra [11] to incorporate the proposed user-
level job submission specification that solicits fine-grain user-
centric information for jobs and the proposed pricing function 
that computes dynamic and adaptive pricing for resources.  

A. Economy-based Admission Control and Resource 
Allocation 
We consider utility-driven resource management and 

allocation in a simplified cluster operating environment with 
the following assumptions: 
1) The users submit only sequential compute-intensive single-

task jobs into the cluster for execution. 

2) The estimated execution time of each job is known and 
given during job submission and is correct. We envision 
that the nature of the jobs submitted enables their 
execution time to be predicted in advance based on means 
such as past execution history.  

3) The QoS requirements specified by the user during job 
submission do not change after the job is accepted.  

4) The cluster RMS is the only gateway for users to submit 
jobs to the cluster. In other words, all computation nodes 
in the cluster are dedicated for executing jobs that can only 
be assigned by the cluster RMS. This also implies that the 
cluster RMS has the full knowledge of allocated workload 
currently in execution and the resources available on each 
computation node. 

5) The computation nodes can be homogeneous (have the 
same hardware architectures) or heterogeneous (have 
different hardware architectures). For heterogeneous 
computation nodes, the estimated execution time is 
translated to its equivalent on the allocated computation 
node.  

6) The underlying operating system at the computation nodes 
supports time-shared execution mechanism. A time-shared 
execution mechanism allows multiple jobs to be executed 
on a computation node at the same time. Each job shares 
processor time by executing within assigned processor 
time partitions.  

Currently, our enhanced Economy-based Admission Control 
and Resource Allocation mechanisms use a simplified version 
of the job submission specification in (2) that excludes the 
QoSOptimization segment for the sequential compute-intensive 
single-task jobs:  
1) JobDetails:  

a. Estimated execution time EEi 
2) ResourceRequirements:  

a. Memory size MEMi 
b. Disk storage size DISKi 

3) QoSConstraints:  
a. Deadline Di 
b. Budget Bi 

In addition, it only considers a single cluster resource which 
is the processor time utilized by the job. In this case, the 
proposed pricing function only computes the pricing rate for 
the processor time resource. So, RESFreeij which is the free 
processor time resource on computation node j from time ATi to 
DTi, excluding the estimated execution time EEk used by other 
current executing jobs and EEi by job i is defined as: 
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Our enhanced Economy-based Admission Control and 

Resource Allocation mechanisms determine whether a job can 
be accepted or rejected based on three criteria:  



 

1) Resources required by the job to be executed 
2) Deadline that the job has to be finished 
3) Budget to be paid by the user for the job to be finished 

within the deadline 
Algorithm 1 shows the pesudo-code for the enhanced 

Economy-based Admission Control and Resource Allocation 
mechanisms using the proposed pricing function. First, the 
Admission Control mechanism determines whether there are 
any computation nodes that can fulfill the specified resource 
requirements for job i (line 1–7). This rejects jobs that require 
more resources than that can be supported by the cluster. Then, 
the Admission Control mechanism determines whether there 
are any of these computation nodes that can fulfill the required 
deadline time DTi and has the required resources for job i with 
estimated execution time EEi (line 9–16). Each computation 
node j that has the required resources and can fulfill the 
required deadline time DTi also computes the pricing rate Pij 
for utilizing the processor time resource (line 11). These 
computation nodes are then sorted in ascending order using 
RESFreeij in (6) (line 18). The first computation node j in the 
sorted list that is within the specified budget Bi is allocated the 

job i (line 19–25). This ensures that each computation node is 
allocated jobs to their maximum capacity so that more jobs can 
be accepted and completed within their required deadline.  

B. Job Control 
The Job Control mechanism at each computation node needs 

to enforce the QoS of a job so as to ensure that the job can 
finish with the required utility. Currently, we only consider 
enforcing a single QoS which is the deadline. We adopt the 
time-shared job control mechanism from Libra [11] that 
implements proportional-share resource allocation based on the 
required deadline of the job. The Job Control mechanism 
computes the initial processor time partition for a newly started 
job and then periodically updates processor time partitions for 
all current executing jobs to enforce that their deadline can be 
satisfied.  

Algorithm 2 shows the pesudo-code for the Job Control 
mechanism that computes the processor time partition for each 
job i that is executing on a computation node j. The job control 
updates new processor time partition for every executing jobs 
based on the processor clock time completed so far and the 
actual wall clock time taken with respect to their estimated 
execution time EEi and deadline Di (line 1–4). 

VII. PERFORMANCE EVALUATION 

We simulate a cluster and carry out detailed evaluation using 
both user-centric and system-centric evaluation metrics. We 
evaluate performance of our proposed Economy-based 
Admission Control and Resource Allocation with respect to 
varying cluster workload, varying pricing factor and tolerance 
against estimation error for estimated execution time. 

A. Evaluation Metrics 
We define two user-centric performance evaluation metrics 

to measure the level of utility achieved by the cluster: Job QoS 
Satisfaction and Cluster Profitability.  

Job QoS Satisfaction measures the level of utility for 
satisfying job requests. A higher Job QoS Satisfaction 
represents better performance. It is computed as the proportion 
of nQoS jobs whose required QoS (deadline and budget) are 
fulfilled out of n jobs submitted:  

 
Job QoS Satisfaction = nnQoS /  (7) 

 
nQoS is naccept jobs (accepted by the admission control) with 

their required QoS satisfied. Currently, we only consider two 
basic QoS parameters: deadline Di and budget Bi. To satisfy Di, 
the finish time must be less than the deadline time, that is 

ii DTFT ≤ . To satisfy Bi, the actual cost paid by the user must 
be less than the budget, that is ii BC ≤ . 

Cluster Profitability measures the level of utility for 
generating economic benefits for the cluster owner. A higher 
Cluster Profitability denotes better performance. It is computed 

Algorithm 1.  Pseudo-code for Economy-based Admission Control and 
Resource Allocation mechanisms. 
1 for j � 0 to c do 
2  if node j has required resources then 
3   place node j in ListResReqi ; 
4  endif 
5 endfor 
6 if ListResReqi is empty then 
7  reject job i with cannot_meet_resources message; 
8 else 
9  for j � 0 to ListResReqi_size – 1 do 
10 
 

  if node j can finish job i with EEi before DTi and  
  node j has required resources for EEi  then 

11    compute Pij ; 
12    place node j in ListDeadlinei ; 
13   endif 
14  endfor 
15  if ListDeadlinei is empty then 
16   reject job i with cannot_meet_deadline message; 
17  else 
18   sort ListDeadlinei by RESFreeij in ascending order; 
19   for j � 0 to ListDeadlinei_size – 1 do 

20    if iiji BPEE ≤∗  then 
21     accept and allocate job i to node j; 
22     break; 
23    endif 
24   endfor 
25   reject job i with cannot_meet_budget message; 
26  endif 
27 endif 

 

Algorithm 2.  Pseudo-code for Job Control mechanism. 
1 for all job i executing on computation node j do 
2 
 

 get processor clock time clockCPUij completed so far by node j  
 for job i; 

3  get wall clock time clockWalli currently taken by job i; 

4  set processor time partition Partitionij = 
ii

iji

clockWallD
clockCPUEE

−
−

; 

5 endfor 
 



 

as the proportion of profit earned by the cluster out of the total 
budget of jobs that are accepted for execution:  
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We also use two traditional system-centric performance 

evaluation metrics: Average Waiting Time and Average 
Response Time. 

Average Waiting Time is the average time a job waits in the 
cluster before it starts execution. A lower Average Waiting 
Time indicates better performance.  
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STi is the time when job i starts execution on a computation 

node.  
Average Response Time is the average time a job is 

completed and results returned to the user. A lower Average 
Response Time signifies better performance. 

 

Average Response Time = �
=

−
accept

i
ii

accept

n
ATFT

n 1

1
 (10) 

 

B. Experimental Methodology 
We use GridSim [18] to evaluate the performance of the 

proposed pricing function. GridSim provides an underlying 
infrastructure that allows construction of simulation models for 
heterogeneous resources, users, applications and schedulers. 
GridSim has been used for the design and evaluation of 
economy-based scheduling algorithms in both cluster [11] and 
Grid computing [19][20].  

We model our proposed utility-driven cluster RMS 
framework with the enhanced Economy-based Admission 
Control, Economy-based Resource Allocation and Job Control 
mechanisms that utilize the proposed user-level job submission 
specification and pricing function. This is referred to as 
Libra+$ in this section.  

We also model two other resource allocation mechanisms: 
First-Come-First-Serve (FCFS) and Libra [11]. For FCFS, we 
model an existing cluster RMS that does not have admission 
control to decline jobs if their QoS requirements cannot be 
satisfied. The time-shared execution mechanism on its 
computation nodes assign equal shares of processing time 
among the executing jobs and thus do not enforce the required 
QoS of each job. We model FCFS to allocate a newly arrived 
job to the first computation node that finishes all its current 
executing jobs, based on the assumption that the estimated 
execution time is provided and is correct.  

In order to measure the Cluster Profitability metric, we also 
model FCFS to incorporate a simple pricing mechanism. The 
profit of processing a job is only considered when the deadline 
of the job is met. The user is then charged based on the static 
base pricing rate PBasej of using processing time on node j, so 
job i has its cost jii PBaseEEC ∗= . FCFS is used for 
comparison so as to examine the benefits of considering and 
enforcing the required QoS of jobs using our proportional-
share resource allocation based on required QoS (deadline) 
over traditional resource allocation mechanisms.  

Libra [11] uses a pricing function that provides incentives 
for jobs with a more relaxed deadline to compute a static cost, 
so job i has its cost iiii DEEEEC /*δγ +∗= . � is a factor for 
the first component that computes the cost based on the 
execution time of the job, so that longer jobs are charged more 
than shorter jobs. � is a factor for the second component that 
provides incentives for jobs with a more relaxed deadline, so as 
to encourage users to submit jobs with longer deadlines. Libra 
is used to evaluate the effectiveness of the proposed pricing 
function in Libra+$ for improving utility for the cluster owner.  

For the cluster operating environment, we simulate a 13-
node cluster called Manjra located at the University of 
Melbourne. The Manjra cluster has the following 
characteristics: 
� SPEC rating: 684 
� Number of computation nodes: 13 
� Processor type on each computation node: INTEL 

Pentium4 2-GHz 
� Operating System: Linux 

For the experiments, we follow a similar experimental 
methodology in [21] to simulate the following cluster workload 
that models a high demand for cluster resources where the 
majority of jobs have short deadlines: 
� 200 jobs with exponentially distributed job inter-arrival 
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Fig. 2.  Normalized comparison of FCFS, Libra, and Libra+$. Both Libra and 
Libra+$ achieve a substantially higher Job QoS Satisfaction and Cluster 
Profitability than FCFS. Similarly, both Libra and Libra+$ have a significantly 
lower Average Waiting and Response Time than FCFS. This shows the 
importance of considering and enforcing required QoS of each job. 



 

time of mean 0.5 hours and exponentially distributed job 
execution time Ei of mean 10 hours 

� 80% of the 200 jobs belongs to a high urgency job class 
with a low 5.1/ =ii ED  and a high 6)(/ =ii EfB , where 

)( iEf  is a function to compute the minimum budget 
required for job execution time Ei 

� 20% of the 200 jobs belongs to a low urgency job class 
with a high 6/ =ii ED  and a low 5.1)(/ =ii EfB  

� Di and Bi are normally distributed within each high/low 
Di/Ei and )(/ ii EfB  

� The high urgency and low urgency job classes are 
randomly distributed in arrival sequence 

� For Libra+$, static pricing factor � = 1 and dynamic 
pricing factor � = 0.01 

C. Evaluation of FCFS, Libra, and Libra+$ 
We evaluate the three resource allocation mechanisms: 

FCFS, Libra, and Libra+$ using the four performance 
evaluation metrics. Fig. 2 shows their normalized comparison.  

For user-centric metrics, both Libra and Libra+$ are able to 
achieve substantially higher Job QoS Satisfaction and Cluster 
Profitability than FCFS since they consider the required QoS 
(deadline and budget) of each different job and allocate 
resources proportionally to each job based on the required 
deadline so that more jobs can be satisfied. However, Libra+$ 
has a lower Job QoS satisfaction as compared to Libra. This is 
because the proposed pricing function computes higher pricing 
as the cluster workload increases, thus denying jobs with 
insufficient budget.  

On the contrary, the proposed pricing function still generates 
significantly higher profit than Libra even though fewer jobs 
are accepted, thus proving its effectiveness in improving the 
cluster owner’s economic benefits. FCFS has the lowest Cluster 
Profitability as it does not consider and thus fail to fulfill the 

required QoS of most jobs.  
For system-centric metrics, both Libra and Libra+$ incurs 

significantly lower Average Waiting and Response Time than 
FCFS because their Economy-based Admission Control 
mechanisms consider the QoS constraints of jobs and filter jobs 
whose QoS constraints cannot be satisfied. Libra+$ has lower 
Average Waiting and Response Time than Libra since fewer 
jobs are accepted and executed. 

D. Varying Cluster Workload 
We examine the performance of Libra+$ with changing 

cluster workload. We increase the job execution time to 
represent increasing workload that would result in jobs failing 
to meet their required QoS (deadline).  

Fig. 3(a) shows that FCFS has a significantly lower Job QoS 
Satisfaction than both Libra and Libra+$ with increasing mean 
job execution time. This demonstrates the importance of 
considering and enforcing required QoS of jobs and the 
effectiveness of implementing proportional-share resource 
allocation based on the required QoS (deadline) to satisfy more 
jobs. But, Libra+$ has a lower Job QoS Satisfaction than FCFS 
when the cluster workload is not high. For example, in Fig. 
3(a), Libra+$ has a lower Job QoS Satisfaction than FCFS 
when mean job execution time is 6 hours. This is because 
Libra+$ declines some jobs due to insufficient budget.  

Fig. 3(b) shows that Libra+$ returns a considerably higher 
Cluster Profitability than Libra with increasing mean job 
execution time. This shows the effectiveness of the proposed 
pricing function in improving the economic benefit of the 
cluster owner even though Libra+$ accepts fewer jobs than 
Libra. As the cluster workload increases, only jobs that can 
afford the increased pricing are accepted by the Economy-
based Admission Control mechanism. These fewer higher-
priced jobs are able to maintain a higher Cluster Profitability to 
compensate for a lower Job QoS Satisfaction. 
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(a) Job QoS Satisfaction                    (b) Cluster Profitability 
 

Fig. 3.  Impact of increasing job execution time. An increasing mean job execution time results in both Libra and Libra+$ to have significantly higher Job QoS 
Satisfaction and Cluster Profitability over FCFS. Libra+$ generates increasing Cluster Profitability for decreasing Job QoS Satisfaction, demonstrating the 
effectiveness of its pricing function in improving the economic benefit of the cluster owner.  



 

E. Varying Pricing Factor for Different Level of Sharing 
We study the level of sharing supported by Libra+$. We 

increase the dynamic pricing factor � to observe its impact on 
Libra+$ in supporting the level of sharing.  

Fig. 4(a) shows that an increasing � for Libra+$ results in 
decreasing Job QoS Satisfaction, while Fig. 4(b) shows that it 
results in increasing Cluster Profitability. This demonstrates 
that the proposed pricing function is able to generate increasing 
profit even though a decreasing number of jobs are accepted. 
This is possible since jobs with sufficient budget are executed 
at a higher cost (due to higher �) to compensate for accepting 
fewer jobs due to insufficient budget. Another interesting point 
to note from Fig. 4(a) is that if � is set too high, the Job QoS 
Satisfaction can be lower than FCFS due to too many jobs 
having insufficient budget.  

These results show that the dynamic pricing factor � has a 
significant impact on both Job QoS Satisfaction and Cluster 
Profitability. A higher � lowers the level of sharing (a lower 
Job QoS Satisfaction), but increases the economic benefit of 
the cluster owner (a higher Cluster Profitability). Thus, the 
cluster owner can determine the level of sharing by adjusting 
the value of �. This demonstrates the flexibility of the pricing 
function in enabling the cluster owner to easily configure and 
determine the level of sharing based on his objective.  

F. Tolerance against Estimation Error 
We investigate the tolerance of Libra+$ against estimation 

error for estimated execution time EEi. The estimation error is 
modeled as an under-estimated value of EEi so as to examine 
the impact of delays caused by earlier jobs on later jobs. Delays 
in earlier jobs may result in later jobs to finish beyond their 
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(a) Job QoS Satisfaction                   (b) Cluster Profitability 
 

Fig. 5.  Impact of increasing estimation error for estimated execution time EEi. A higher dynamic pricing factor � for Libra+$ provides a higher level of tolerance 
against estimation errors for both Job QoS Satisfaction and Cluster Profitability.  
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(a) Job QoS Satisfaction                    (b) Cluster Profitability 
 

Fig. 4.  Impact of increasing dynamic pricing factor �. An increasing � for Libra+$ results in decreasing Job QoS Satisfaction, but increasing Cluster 
Profitability. The cluster owner can adjust the value of � to determine the level of sharing for the cluster. 



 

deadlines, thus failing to meet their required QoS. For example, 
if we model an estimation error of 50%, then a job i whose 
execution time is 60 hours will therefore has an estimated 
execution time EEi of 30 hours. We do not consider over-
estimated value of EEi since jobs accepted by the admission 
control will still be completed within their required deadline. 

Fig. 5(a) shows that when there is no (0%) estimation error, a 
higher dynamic pricing factor � for Libra+$ results in a lower 
Job QoS Satisfaction. But, with increasing estimation error, a 
higher � results in a higher Job QoS satisfaction. This shows 
that a higher � provides a higher degree of tolerance against 
estimation errors since fewer jobs are accepted and thus the 
possibility of delays occurring on later jobs is lower. For 
example, in Fig. 5(a), � = 1.0 has the highest Job QoS 
Satisfaction for estimation error of more than 30%.  

Fig. 5(b) shows that increasing estimation error results in 
lower Cluster Profitability as fewer jobs have their required 
QoS satisfied due to delays caused by earlier jobs. However, a 
higher � for Libra+$ can still achieve higher Cluster 
Profitability with increasing estimation error. This reiterates the 
effectiveness of the proposed pricing function in improving the 
economic benefit of the cluster owner. 

VIII. CONCLUSION 

We have demonstrated the importance of an effective pricing 
mechanism for achieving utility-driven resource management 
and allocation in clusters, especially when demand exceeds 
supply of cluster resources. We show that our enhanced pricing 
function meets the four essential requirements for pricing of 
resources. In particular, our pricing function provides 
flexibility for the cluster owner to easily configure the pricing 
of his cluster resources to modify the level of sharing. Our 
pricing function also adapts to the changing supply and demand 
of resources by computing higher pricing when cluster 
workload increases. This serves as an effective means for 
admission control to prevent the cluster from overloading and 
tolerate against under-estimated job execution times. Finally, 
the pricing function generates a higher economic benefit for the 
cluster owner. 

Future work will investigate utility-driven resource 
allocation for more complex cluster application models, such as 
task-farming and parallel applications. Different pricing 
strategies based on economic models will also be examined. 
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