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Abstract

We present the living application, a method to autonomously manage applications

on the grid. During its execution on the grid, the living application makes choices

on the resources to use in order to complete its tasks. These choices can be based on

the internal state, or on autonomously acquired knowledge from external sensors.

By giving limited user capabilities to a living application, the living application is

able to port itself from one resource topology to another. The application performs

these actions at run-time without depending on users or external workflow tools.

We demonstrate this new concept in a special case of a living application: the living

simulation. Today, many simulations require a wide range of numerical solvers and

run most efficiently if specialized nodes are matched to the solvers. The idea of

the living simulation is that it decides itself which grid machines to use based on

the numerical solver currently in use. In this paper we apply the living simulation

to modelling the collision between two galaxies in a test setup with two specialized

computers. This simulation switces at run-time between a GPU-enabled computer in

the Netherlands and a GRAPE-enabled machine that resides in the United States,

using an oct-tree N-body code whenever it runs in the Netherlands and a direct

N-body solver in the United States.

Key words: grid workflow, multi-scale, N-body simulation, living application,

self-organizing system



1 Introduction

A grid application consists of a range of tasks, each of which may run most ef-

ficiently using a different set of resources. Most of these applications, however,

use a fixed resource topology even though certain tasks could benefit from

using different resources. This can be due to the computational demands of

these tasks or due to a change in resource availability over time. A wide range

of work has been done on developing external management systems that allow

applications to change grid resources during execution. This includes work-

flow systems (Herrera et al., 2005; Ludscher et al., 2006; Yu and Buyya, 2005)

or grid schedulers with migration capabilities (Frey et al., 2002; Allen et al.,

2001) that support resource switches that are either part of a predefined work-

flow or requested by the user.

An application management system that autonomously switches at run-time

has been proposed by Nascimento et al. (2007), where a hierarchically dis-

tributed application management system dynamically schedules and migrates

a bag-of-tasks style MPI application, using a static hierarchy of schedulers to

accomplish this.

A self-adaptive grid application that does not require external managers has

been presented in Wrzesińska et al. (2005). Although this application does not

use grid scheduling, it is able to autonomously migrate to different locations

and change its number of processes. This has been accomplished by allowing

all processes to share knowledge and cooperate in managing the application’s

topology.

In this work, we propose the living grid application, in which the application



also decides where to run, and which is also able to migrate itself at run-

time to another computer when needed. The intelligent migration from one

computer to another can be realized over a long baseline, but does not need

to be designed this way (see Sec. 2). We then apply this method to a multi-

scale simulation and demonstrate its working on an intercontinental grid of

semi-dedicated computers by simulating the merging between two galaxies,

which provides a typical example for a multi-scale simulation (Sec. 3). In

this simulation, we used a straightforward and autonomous resource selection

scheme, where the optimal site is chosen from a predefined list of available

resources. The simulation does not contain specific mechanisms to ensure fault

tolerance or fault recovery.

2 Living Application

2.1 Rationale

A flexible approach is needed to execute a complex grid application with

multiple tasks and a diverse palette of resource requirements. The application

should then be able to switch between tasks at run-time and between the

resources required for each of these tasks, while maintaining the integrity of

its data during these switches.

A switch requires the application to terminate its current execution, output its

current state, and from that reinitialize the application using a new resource

topology suited for the task at hand. Previously this has been done on a grid

only in orchestration with a workflow manager. A job submitted by a workflow

manager lacks the ability to change its resource topology during execution, as



it does not have the privileges to make use of grid schedulers. When running

an application with multiple tasks, this results in a ’bouncing’ pattern where

the manager submits jobs which return once a switch is required, only to be

instantly submitted again to handle a different task. In the most favorable

case, the performance loss introduced by bouncing and managerial overhead

can be limited, but even then the successful completion of the simulation

depends on the availability of an external manager, which is a potential single

point of failure.

2.2 How the living application works

The living application switches between sites and tasks dynamically and with-

out external dependencies. It is based on four principles:

(1) It makes decisions on which tasks to do and which resources to use.

(2) It makes these decisions based on knowledge it has acquired at run-time.

(3) It changes resources and switches between tasks.

(4) It operates autonomously.

As a living application operates autonomously on the grid, it obtains its priv-

ileges on its own without interacting with an external workflow manager or

user.

Upon initialization, the application is locally equipped with the tools and

data to perform the required tasks and the criteria for switching between

tasks or resource topologies. It is then submitted as a job to the grid with the

initial resource requirements defined by the launcher. The living application

begins execution on the grid and continues to do so until either a switch or a



termination is required.

The conditions for switching or termination are determined prior to the start

of the calculation or during run-time, but they are not necessarily static. They

can rely on the internal state of the application, or on information from exter-

nal sensors. When the conditions for a switch have been met, the application

will migrate to different grid resources, switch to a different task, or both.

The switching between tasks requires two steps, which are finalizing the old

task (and any program it still uses) and starting up the new task. During

this switch, the application-specific data should be left intact. The switching

between sites requires a larger number of actions, which are:

(1) Creating a set of files consisting of the current application, files with

its parameters and data and a script that specifies the methods and

conditions for switching and termination.

(2) Creating a job definition for the application on the new resources.

(3) Authenticating (independently) on the grid.

(4) Transferring the files to the remote site (if this is not done automatically

by a resource broker).

(5) Submitting the job, either through a resource broker or by directly ac-

cessing the head nodes of grid sites.

(6) Reinitializing the living application on the new site.

Additional file transfer may be required, if the application has locally written

data that is required elsewhere. The application could initiate the transfer of

output files either during run-time (e.g. if separate files are written) or just

before a job terminates on one machine (if data is appended to a single large

file or data transfer would cause overhead at run-time).



The living application requires some user privileges to initiate data transfers

and to autonomously migrate from one site to another. We obtain these privi-

leges by using a grid client interface to access a credential management service.

The details of this method are discussed in Sec. 2.2.1. The application requires

access to the grid client interfaces on all participating nodes to request these

privileges during execution. Once these privileges are granted, the application

can perform authentication, data transfers and job submissions to the grid.

2.2.1 Security Considerations

User privileges on the grid are provided by an X.509 grid proxy (Welch et al.,

2004) which requires the presence of a certificate, a private key and a correct

pass phrase typed in by the user. This proxy is represented by a temporary

file with limited lifetime. The easiest way to provide user privileges to a living

application would be to equip it with this file, transporting it as it migrates,

allowing it to reuse the proxy on remote locations. However, this approach has

three drawbacks:

First, the presence of a proxy file on a remote site poses a security risk. If

the file is not read-protected or stored in a shared account, it may be possible

for other grid users to copy the proxy. The possession of this proxy enables

them to impersonate the living application user for the duration of the proxy’s

lifetime, providing them with rights and resources that they could otherwise

not use. Even if the proxy is on a dedicated account and read-protected, local

users with admin rights are able to copy it and use it for impersonation.

Second, it is not possible to cancel the application after the first stage, as the

proxy is initialized only at startup, after which it travels around on remote



sites. This may cause a malfunctioning application to continue running and

migrating until the proxy lifetime is exceeded. An application that is equipped

for self-reproduction may iteratively spawns multiple successors which could

lead to a grid meltdown.

Third, for the same reasons as before it is also not possible to prolong the life-

time of the proxy. This could cause the application to terminate prematurely

once the proxy lifetime is exceeded. Specifying an excessively long lifetime

relieves this problem, at the expense of increasing exposure to the other two

drawbacks.

To reduce these drawbacks we have chosen to use an intermediary MyProxy

server (Basney et al., 2005) in our implementation. The user initializes his or

her proxy on the MyProxy server, which is encrypted using a unique password.

This password is stored in the living application, which uses it to obtain short-

lived user privileges from the MyProxy server. If the password is stolen, others

may be able to get these short-lived privileges, but the user can remove access

to these privileges at any time by destroying the credential.

During application execution, the user can also extend the lifetime of his

MyProxy credential by renewing it. It is also possible to replicate the creden-

tials to other MyProxy servers, which allows the application to use remote

MyProxy servers if the local server has died, rather than terminating itself

upon switching.



2.3 Living Simulation

A special case of the living application is the living simulation. Today, sim-

ulations of complex systems, in which the dynamic range exceeds the stan-

dard precision of the computer, call for a wide range of numerical solvers

(Hoekstra et al., 2008). Each of these solvers may run most efficiently on a

different computer architecture. Most such simulations, however, are run on a

single computer even though they would benefit from running on a variety of

architectures.

This can be solved by migrating the application at run-time from one computer

to another, in other words, by creating a living simulation. Such a simulation

loads the solvers as a library module and is able to probe the internal variables

of these solvers, making migration decisions based on this information. We

demonstrate the concept of the living application by applying it to the (living)

simulation of two galaxies merging.

The term living simulation has been previously defined as simulations that

fine-tune their behavior at run-time based on input from external sensors,

e.g. to provide input for performing adaptive load balancing (Korkhov et al.,

2008). In our definition we provide the simulation with user privileges and

expect it to function autonomously.



3 Simulating galaxy mergers as a living simulation

3.1 Motivation

A living simulation is based on the principle that it autonomously switches

between sites and solvers whenever required. This switching is done dynam-

ically and without external dependencies. The simulation is locally equipped

with the required solvers, the switching criteria and the initial conditions. It

is then submitted as a job to the grid with the initial resource requirements

defined by the launcher. The living simulation begins calculating on the grid

and continues to do so until either a switching condition or a termination

condition has been met.

By using the idea of the living applications, we have implemented and tested

a living simulation, in which the merger of two galaxies, each with a central

supermassive black hole (SMBH), is simulated. This is a computationally ex-

pensive problem which requires integration with high accuracy during close

encounters and in the final stages of merging, i.e. whenever the two SMBHs

come close to each other. At an early phase and at large separation of the

two galaxies, however, less accurate and therefore faster integration methods

are sufficient. We improve the performance and the dynamic range of the tree

code simulations (which are typically the method of choice for galaxy merger

simulations) by hybridizing the tree code with a direct N -body solver.

In the scenario we are modelling, the two galaxies are initially well separated

by hundreds of kiloparsec, but they approach each other on a bound orbit.

Dynamical processes lead to a redistribution of energy and momentum which



Fig. 1. Simulation snapshot of a 260k particle simulation, where the two galaxies

approach for an initial interaction.

causes, among other things, the formation of tidal tails (see Fig 1). Eventually,

these dynamical processes lead to the merger of the two galaxies.

In this merger, the two SMBHs, which reside in the galaxy cores, will be

brought close together until they form a binary SMBH. Modelling the details

of the formation of a binary SMBH and its subsequent evolution requires a

very accurate integration. Therefore, we choose to switch from the tree code to

a direct N -body solver at a prespecified separation ra between the two SMBHs

(see also Portegies Zwart et al. (2008)). The switching allows us to follow the

full galaxy merger. This would not be possible using a single solver due to the

limited accuracy of the tree code and the computational costs of the direct

method.

In our living simulation, we make use of a dedicated GRAPE (GRAvity PipE,

Sugimoto et al. (1990)) special purpose computer to perform direct-method

integration, and a graphics processing unit (GPU) to perform tree simulations.



The living simulation initially integrates using a tree code on a GPU node,

but switches to a direct integrator on a GRAPE node when the separation

between the two SMBHs rSMBH < ra. The simulation switches back to the

GPU once rSMBH ≥ ra.

3.2 Implementation

We have used the Multiscale Software Environment (MUSE) 1 (Portegies Zwart et al.,

2008) package to conduct our simulations. MUSE is a multi-scale/multi-physics

astrophysical framework that connects a variety of astrophysical codes, en-

abling users to create combined simulations using Python scripts. The inter-

facing between existing solvers is realized using SWIG (Beazley, 1996) with

a uniformly defined interface for each domain. By writing scheduling scripts,

users are able to access the different interfaces and create simulations that use

multiple solvers for a wide range of astrophysical problems.

The modular approach of MUSE lends itself very well to the grid architec-

ture. Modules run independently of each other and communicate through the

scheduling script. A grid-enabled scheduler would then send each module to

a different, suitable machine on the grid. Furthermore, many astrophysical

solvers run most efficiently on dedicated and specialized computers. GRAPE

boards, for example, have been used extensively and very successfully in the

field of stellar dynamics (e.g. Gualandris and Merritt, 2008; Berczik et al.,

2006; Baumgardt et al., 2003; Portegies Zwart and McMillan, 2002). In many

cases, a MUSE application requires one or more specialized platforms to run

on and is therefore best run on a grid of such specialized computers.

1 see http://muse.li

http://muse.li


In previous work (Portegies Zwart et al., 2008) we have extended MUSE with

a grid interface, allowing users to transfer files and perform simulations on

remote grid sites using a static and centralized scheduler which runs on the

local user machine. The grid interface has currently been implemented using

the PyGlobus API (Jackson, 2002), and an alternative DRMAA-compliant

interface is under development.

Our test implementation consists of two components, a launcher to initial-

ize the living simulation and a job script that travels over the grid during

simulation. The launcher:

• Loads MUSE and the required modules,

• reads the simulation input,

• stores the parameters for each solver and the initial data for the first simu-

lation stage,

• transfers these files to the remote site, and

• submits the job script as a grid job to the remote site.

The living simulation grid job executes the Python job script, which:

• Initializes the simulation that will be used,

• reads and writes solver parameters and snapshots,

• uses MUSE and SWIG to execute a simulation,

• transfers files, and

• submits a job script that computes the next simulation stage.

The job script is able to periodically check internal variables of the local solver

at run-time using MUSE and SWIG. Consequently, the script is sensitive to

changes in these variables, and autonomously performs actions (e.g. migration



to a different site or file transfers) if certain conditions are met.

3.3 Experiment setup

For our experiments we make use of two grid nodes, one node equipped with

a GRAPE-6Af (Fukushige et al., 2005) at Drexel University in Philadelphia,

United States and one node with an Nvidia 8800 Ultra GPU at the University

of Amsterdam in the Netherlands. The GRAPE-6Af has a peak performance

of approximately 123 Gflops and an effective performance of up to ∼85 Gflops

when performing a direct-method simulation (Fukushige et al., 2005). The

Nvidia 8800 Ultra has a theoretical peak performance of about 384 Gflops

and a sustained performance of up to ∼100 Gflops when performing a N-body

tree simulation using octgrav (E. Gaburov, personal communication). The

specification of the nodes can be found in Table 1. On both nodes we have

installed Globus 4.0.6 grid middleware (Foster, 2006) with GRAM, GridFTP

and a MyProxy client, as well as the MUSE framework. The nodes are linked

using a regular internet connection for which we have measured a latency of

100ms and a bandwidth of approximately 550 kB/s.

On these nodes we run galaxy collision simulations (using simplified galaxy

models, see below) that each last for 20 N-body time units (Heggie and Mathieu,

1986). In all our runs, this duration was sufficient to perform a full collision

between the two galaxies.

The initial conditions for the galaxy collision consist of two equally-sized Plum-

mer sphere particle distributions (Plummer, 1911), each of which has a central



SMBH. We perform simulations with N = 2k to 64k particles 2 . The total

mass of particles in each galaxy is M = 1 and the mass of individual particles

is m = M/N . The SMBHs have each a mass of mBH = 0.01 or 1% of the

stellar mass of the galaxy.

When the two galaxies are far apart we use the tree-code (Barnes and Hut,

1986) in which further away particles are grouped together to enable a hierar-

chical reduction in the force computation. The equations of motion are solved

using the 2nd order leap-frog particle integration scheme (Hockney and Eastwood,

1988) with a fixed time step. The octgrav tree code we use is written to run

on a graphical processing unit (Gaburov et. al., 2009, in preparation). The

opening angle for the tree code is θ = 0.7 and we use a time step of 1/64 N-

body time unit (1/128 for the largest data set). The direct-method integration

is performed using phiGRAPE (Harfst et al., 2007). In phiGRAPE, particles

have individual (block) time steps and the time step parameter η was set

to 0.02 (Makino and Aarseth, 1992). We also defined a maximum time step

of 2−5 and a minimum time step of 2−23 N-body time units. A softening of

ǫ = 0.01 is used in both integration methods.

We have performed two profiling experiments, using direct integration when-

ever the separation of the central black holes was less than ra, and tree at all

other times. The first experiment varies in the number of simulation particles,

while maintaining ra =
√
0.3. The other experiment uses 32k particles and a

different ra for each run. For comparison, we have also included a full tree and

a full direct run.

2 i.e. 1024 to 32768 particles per galaxy as well as 2 SMBH particles.



3.4 Results

We have summarized the results of our living simulation in two figures. The

absolute time spent on each task as a function of the number of particles is

given in Fig. 2, and the relative time share of each task is shown in Fig. 3.

For all the tested initial conditions, the simulation migrated itself three times,

resulting in four initializations and three simulation migrations per run.

In this experiment, we find that the direct N-body integration dominates the

simulation performance in all cases, and that for larger N , the relative over-

head caused by grid data transfers and job submissions diminishes. Although

the time spent on local I/O scales steeply due to unoptimized identifier lookup

calls (this has recently been fixed in MUSE), this overhead remains relatively

small throughout our runs. When using 64k particles, we found that ∼ 4

percent of the simulation time is spent on overhead tasks.

We have performed several runs with 32k particles, using a different ra for

each run. The results of this experiment are shown in Tab. 2. During the runs

we observed several close interactions between the SMBHs, and a decreasing

trend in the value of rSMBH. This behavior caused the living simulation runs

with smaller ra to switch more frequently.

A pure tree integration (ra = 0) leads to the highest cumulative energy er-

ror, whereas a pure direct integration (ra = ∞) has the lowest error. When

switching between both codes with the living simulation, the energy error is

lower than using pure tree, but much higher than using a direct code. Even

when using a ra =
√
10, where the code switches only once after 4 N-body

time units, we see a much larger error than when using only direct. The energy
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Fig. 2. Timing measurements of the living simulation tasks as a function of the

number of simulated particles. The two solid lines represent time spent on direct

integration (bullets) and tree integration (circles). The thick dashed lines indicate

grid overhead by data transfers (open squares) and job submissions (filled squares).

Finally, the two thin dashed lines indicate overhead caused by local file I/O (open

triangles) and code initializations (filled triangles).

error is dominated by the execution of the tree code. This difference is caused

by the tree-based force calculation as well as by the second-order leapfrog in-

tegration scheme used in the tree code. A detailed discussion on the energy

behavior of these combined simulations can be found in Harfst et. al. (2009,

in preparation).

The simulation performance is dominated by N-body integration in all cases,

although there is a relatively high overhead for ra = 0.1, which is caused

by the 29 switches. Each of these switches requires the particles to be saved

locally, sent across the Atlantic using regular internet, and loaded on the new

machine.
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data transfer, grid job submissions and simulation initializations. Note that both

axes are in log-scale.

4 Conclusion

We introduced the living application as a way to manage complex applica-

tions on a large distributed infrastructure. Due to the autonomous nature of

a living simulation, it is important to provide a mechanism that allows the

user to terminate it. By having the simulation retrieve its extended privileges

from a credential management service (MyProxy), users are able to revoke

the privileges of the simulation regardless of its location. In addition, we can

renew short-lived proxy credentials instead of using a long-lived credential,

which may be attractive to malicious users.

We then apply this concept in a living simulation of two galaxies merging, us-

ing a straightforward and autonomous resource selection scheme which chooses

from a predefined list of available resources. Our approach allows the simula-



tion to use the optimal compute resources for each of the two solvers, switching

resources whenever a different solver is required. In our example, the solvers

were a tree code and a direct N -body method, which were optimized for two

kinds of special-purpose hardware, namely a GPU (tree) and a GRAPE (di-

rect). The switches take place autonomously without user intervention, remote

output retrieval or external managers. In our experiments, the execution time

was only affected marginally by overhead such as caused by job migration and

data transfer over the grid. In the cases where each solver is best run on a

different architecture and the overall simulation performance is not dominated

by switching overhead, we find that the living simulation is a practical and

resource efficient solution.

The creation of grid species enables us to give a simulation the ability to au-

tonomously use the grid, acquire and apply internal knowledge, and migrate

themselves. In this work we presented a first implementation, which we intend

to extend in the near future. Possible extensions include connecting living ap-

plications with grid resource monitoring and discovery services to dynamically

obtain information on resource availability, and developing a living application

which is able to recover from failures of grid nodes. These extensions allow us

to apply the living application to evolve to a more complex organism, which

can be applied to problems of greater complexity.
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Table 1

Specifications for the test nodes. The first column gives the name of the computer

followed by its country of residence (NL for the Netherlands, US for the United

States). The subsequent columns give the type of processor in the node, followed by

the amount of RAM, the operating system, and the special hardware installed on

the PC. Both nodes are connected to the internet with a 1Gbit/s Ethernet card.

name location CPU type RAM OS hardware

[MB]

darkstar NL Core2Duo 3.0GHz 2048 Debian Nvidia 8800 Ultra

zonker US 2x Xeon 3.6GHz 2048 Gentoo GRAPE 6A

Table 2

Timing and energy measurements of the living simulation tasks using 32k particles

with a different value ra during each run, given in the first column. The second

column gives the number of switches during the simulation, while the subsequent

columns respectively give the times spent on direct integration, tree integration and

overhead tasks. The total execution time and the total relative energy error are

respectively given in the last two columns.

ra # switches direct tree other total dE/E

[s] [s] [s] [s]

0.0 (tree) 0 0 247 24 271 1.47 · 10−2

0.1 29 762 219 944 1925 5.93 · 10−3

√
0.1 7 1820 160 257 2237 3.54 · 10−3

√
0.3 3 2180 143 120 2443 2.88 · 10−3

1.0 3 2519 127 118 2764 2.49 · 10−3

√
10 1 3624 64 54 3742 1.04 · 10−3

∞ (direct) 0 4528 0 5 4533 2.77 · 10−6


	Introduction
	Living Application
	Rationale
	How the living application works
	Living Simulation

	Simulating galaxy mergers as a living simulation
	Motivation
	Implementation
	Experiment setup
	Results

	Conclusion
	Acknowledgements
	Biographies

