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Fast Iterative Solution of Large Sparse Linear Systems

on Geographically Separated Clusters

T. P. Collignon and M. B. van Gijzen ∗

Abstract

Parallel asynchronous iterative algorithms exhibit features that are extremely
well–suited for Grid computing, such as lack of synchronisation points. Unfortu-
nately, they also suffer from slow convergence rates. In this paper we propose using
asynchronous methods as a coarse–grain preconditioner in a flexible iterative method,
where the preconditioner is allowed to change in each iteration step. A full imple-
mentation of the algorithm is presented using Grid middleware that allows for both
synchronous and asynchronous communication. Advantages and disadvantages of the
approach are discussed. Numerical experiments on heterogeneous computing hard-
ware demonstrate the effectiveness of the proposed algorithm on Grid computers,
with application to large 2D and 3D bubbly flow problems.

Key words. Grid computing, linear systems of equations, asynchronous iterative methods, flexible

iterative methods, geographically separated clusters, bubbly flows.

1 Introduction

This paper describes an efficient iterative method for solving large linear systems on geo-
graphically separated computational resources. The algorithm uses an asynchronous itera-
tive method as a preconditioner in a synchronous flexible method, where the preconditioner
is allowed to vary in each iteration step.

The parallel solution of linear systems using asynchronous iterative methods has been
studied in several papers, for example in [9, 2, 3, 6]. For a comprehensive overview paper
and more references on asynchronous iterative methods, see [14].

However, asynchronous methods have never gained widespread popularity. The main
reason is that the slow convergence rates limit the applicability of these methods. Never-
theless, the lack of global synchronisation points in these methods is a highly favourable
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property in parallel computing. This is even more the case in Grid computing, where
synchronisation between geographically separated clusters is the bottleneck operation.

Although Krylov subspace methods such as the Conjugate Gradient method [16] offer
significantly improved convergence rates, the global synchronisation points induced by
the inner product operations in each iteration step limits the applicability. By using an
asynchronous iterative method as a preconditioner in a Krylov subspace method, the best
of both worlds can be combined. It will be shown in this paper that the combination of a
slow but asynchronous inner iteration with a fast but synchronous outer iteration results
in high convergence rates on heterogeneous networks of computers.

In the proposed inner–outer algorithm, the asynchronous preconditioning iteration is
performed on heterogeneous computational resources and for a fixed amount of time. As
a result, the preconditioner varies in each outer iteration step, which requires the use of a
flexible subspace method as the outer iteration.

The target hardware consists of the DAS–3 Grid computer [20], which is a cluster of five
geographically separated clusters spread over four academic institutions in the Netherlands.
The DAS–3 is designed for dedicated parallel computing and although each separate cluster
is relatively homogeneous, the system as a whole can be considered heterogeneous.

The algorithm is applied to a bubbly flow problem, which is an important and difficult
application from computational fluid dynamics in two–phase fluid flow [22]. This applica-
tion involves the solution of large sparse symmetric and positive definite systems, which
leaves the flexible Conjugate Gradient method [1, 18] as the method of choice for the outer
iteration. Nevertheless, the proposed approach can be used for non–symmetric systems as
well by using a flexible method such as GCR [12, 24] as the outer iteration [8].

In this paper, both the outer iteration and the preconditioning iteration are performed
on the same set of dedicated computing nodes. A different strategy is used in [8], where
these two iteration processes are physically decoupled. That is, the GCR method is used
as the outer iteration on the user machine, while the preconditioning iteration is performed
on a cluster of non–dedicated computers. By physically decoupling the two iterations, an
algorithm is obtained that is partially fault–tolerant. Section 3.2 contains further details
on this issue.

The algorithm is implemented using the CRAC library, which was developed within the
GREMLINS project [10, 9]. The aim of this project is to design efficient iterative algorithms
for solving large sparse linear systems on geographically separated computational resources.
The CRAC library can be used to easily implement (partially) asynchronous iterative
algorithms on such systems.

The experimental results on the DAS–3 multi–cluster demonstrate that the proposed
algorithm is highly effective in the context of loosely coupled networks of computers. Fur-
thermore, the results show that the algorithm can adapt to a computational environment
in which the network is heavily loaded.

The remainder of the paper is organised as follows. Section 2 describes the complete
algorithm, including a discussion of the various advantages and disadvantages of the pro-
posed method. In Sect. 3 various details pertaining to the parallel implementation of
the algorithm are discussed, such as the employed Grid middleware CRAC and the data
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distribution. In Sect. 4 extensive numerical experiments are performed using the DAS–3
multi–cluster and Sect. 5 contains concluding remarks.

2 Iterative solvers in Grid computing

This section starts by exposing the key bottleneck in iteratively solving large linear systems
on Grid hardware: expensive synchronisation. Section 2.2 describes asynchronous parallel
iterative methods, which exhibit several characteristics that are extremely suitable for
Grid computing. Unfortunately, they also suffer from slow convergence rates. Section 2.3
explains how asynchronism can be introduced into fast but fine–grain subspace methods.
The key idea is that by using an asynchronous method as a preconditioner in a flexible
subspace method, the best of both worlds can be combined.

2.1 The problem

The goal is to iteratively and efficiently solve large sparse linear systems,

Ax = b, A ∈ R
n×n, x, b ∈ R

n, (1)

on large, heterogeneous, and geographically separated computational resources. The key
characteristic of iterative methods is that at each iteration step, information from one or
more previous iteration steps is used to find an increasingly accurate approximation to the
solution.

In distributed memory computing, each processor operates on its local memory. For
many parallel iterative methods this implies that at some point in time a form of syn-
chronisation has to be performed. For extremely large problem sizes, the potentially high
number of iteration steps and the high cost of a synchronisation operation poses significant
efficiency issues in the context of iterative solvers and heterogeneous computing environ-
ments.

2.2 Asynchronous iterations

There exists a class of parallel iterative methods which lack synchronisation points (in
theory), making them excellent candidates for heterogeneous computing environments as
found in Grid computing. These methods generalise simple iterative methods such as the
classical block Jacobi iteration [19]. To compute the solution of the linear system Ax = b

using p processors, the coefficient matrix A, the solution vector x, and the right–hand side
vector b are partitioned into non–overlapping blocks as follows,

A =


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


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Algorithm 1 (A–)synchronous block Jacobi iteration on p processors.

1: Choose x(0);
2: for k = 1, 2, . . . , until convergence do
3: for i = 1, 2, . . . , p do

4: (i.) Solve Aiix
(k)
i = bi −

p
∑

j=1,j 6=i

Aijx
(k−1)
j ; // synchronous iterations

5: (ii.) Solve Aiix
new
i = bi −

p
∑

j=1,j 6=i

Aijx
old
j ; // a–synchronous iterations

6: end for
7: end for

Algorithm 1 lists the (a)synchronous block Jacobi method for solving this system. In
standard block Jacobi, at iteration step k each processor independently solves a linear
subsystem — either iteratively or directly — followed by a synchronisation point where
information is exchanged between the processors (see line 4). Instead of synchronising at
each iteration step k, an asynchronous variant of Alg. 1 performs their local iterations
based on information that is available at that particular time (see line 5).

In asynchronous iterations, at the end of an iteration step of a particular process,
locally updated information is sent to its neighbour(s). Vice versa, new information may
be received multiple times during an iteration. However, only the most recent information is
included at the start of the next iteration step. Other kinds of asynchronous communication
are possible [4, 5, 9, 13, 17]. For example, asynchronous iterative methods exist where newly
received information is immediately incorporated by the iteration processes.

In other words, the execution of the processes does not halt while waiting for new
information to arrive from other processes. As a result, it may occur that a process
does not receive updated information from one of its neighbours. Another possibility is
that received information is outdated in some sense. Also, the duration of each iteration
step may vary significantly, caused by heterogeneity in computer hardware and network
capabilities, and fluctuations in processor workload and problem characteristics.

The main advantages of parallel asynchronous algorithms are summarised in the fol-
lowing list.

• Reduction of the global synchronisation penalty. No global synchronisations are per-
formed, an operation that may be extremely expensive in a heterogeneous environ-
ment.

• Efficient overlap of communication with computation. Erratic network behaviour
may induce complicated communication patterns. Computation is not stalled while
waiting for new information to arrive and more Jacobi iterations can be performed.

• Coarse–grain. Techniques from domain decomposition can be used to effectively
divide the computational work and the lack of synchronisation results in a highly
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Algorithm 2 Flexible Conjugate Gradients (pure truncation strategy)

input: Parameters mmax, ǫin, Tmax; Set mk = min(k, mmax); Initial guess x0; Set r0 =
b− Ax0.

1: for k = 0, 1, . . . , until convergence do
2: Evaluate u =M(rk, ǫin, Tmax); // Preconditioning step: see Alg. 3
3: Compute uk = orthonorm(u, ci, ui, k, mk); // Orthogonalisation step: see Alg. 4
4: Compute ck = Auk; // Matrix–vector multiplication

5: Compute αk =
u⊤

k rk

u⊤
k ck

;

6: Update xk+1 = xk + αkuk;
7: Update rk+1 = rk − αkck;
8: end for

favourable computation/communication ratio.

In extremely heterogeneous computing environments, these properties can potentially re-
sult in improved parallel performance. However, no method is without its disadvantages
and asynchronous algorithms are no exception. The following list gives some idea on the
various difficulties and potential bottlenecks.

• Suboptimal convergence rates. Block Jacobi–type methods exhibit slow convergence
rates. Furthermore, if no synchronisation is performed whatsoever, processes perform
their iterations based on potentially outdated information. Consequently, it is con-
ceivable that important characteristics of the solution propagate slowly throughout
the domain. Furthermore, the iteration may even diverge in some cases.

• Non–trivial convergence detection. Although there are no inherent synchronisation
points, knowing when to stop may require a form of global communication at some
point.

• Partial fault tolerance. If a particular Jacobi process is killed, the complete iteration
process will effectively break down. On the other hand, a process may become un-
available due to temporary network failure. Although this would delay convergence,
the complete convergence process would eventually finish upon reinstatement of the
failed process.

• Importance of load balancing. In the context of asynchronism, dividing the computa-
tional work efficiently may appear less important. However, significant desynchroni-
sation of the iteration processes may negatively impact convergence rates. Therefore,
some form of (resource–aware) load balancing could still be appropriate.

2.3 Best of both worlds
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The key disadvantage of block Jacobi–type methods — both synchronous and asyn-
chronous — is that they suffer from slow convergence rates and that they only converge
under certain strict conditions [6]. Krylov subspace methods are a class of iterative meth-
ods that exhibit significantly improved convergence rates. The main characteristic of these
methods is that (non–standard) projections are used to extract a new approximation to the
solution from a Krylov subspace. This implies that inner products need to be computed,
which introduces global synchronisation points in each iteration step.

The potentially large number of synchronisation points in Krylov methods make them
less suitable for Grid computing. Vice versa, the improved parallel performance of asyn-
chronous algorithms make them perfect candidates. To reap the benefits and awards of
both techniques, we propose to use an asynchronous iterative method as a preconditioner
in a flexible iterative method, where the preconditioner is allowed to change in each itera-
tion step. The goal is to achieve high convergence rates on Grid computers by combining
a slow but coarse–grain asynchronous preconditioning iteration with a fast but fine–grain
outer iteration.

As mentioned before, the application considered in this paper involves solving a large
symmetric positive (semi–)definite system. This suggests that the flexible Conjugate Gra-
dient (FCG) is the method of choice for the outer iteration [1, 18].

Listed in Alg. 2 is the flexible CG method. Three main phases can be distinguished,
which are the preconditioning step (line 2), the orthogonalisation step (line 3), and the
remaining operations such as the matrix–vector multiplication (line 4) and the vector
updates. These phases will be discussed separately.

Asynchronous preconditioning In standard preconditioned CG, the preconditioner is
a fixed symmetric and positive definite matrix M such that solving the residual equation
Mu = r is ‘cheap’ in some sense. In the proposed algorithm, the preconditioning operation
in line 2 of Alg. 2 consists of an asynchronous iterative method applied to the system
Au = rk and is performed for a fixed amount of time Tmax. The local systems within the
asynchronous method are solved iteratively and with accuracy ǫin. In other words, the
preconditioning step consists of a random (typically nonlinear) process,

u =M(rk, ǫin, Tmax), M : R
n → R

n, (3)

which differs from one iteration step k to the next. In Alg. 3 the specific steps are shown
that are performed by the asynchronous preconditioning iteration processes.

Note that if a fixed amount of time is devoted to each preconditioning step, there is no
need for a — possibly complicated and expensive — convergence detection algorithm for
the asynchronous preconditioning iteration. Convergence detection can be done efficiently
in the outer iteration.

The nonlinearity of the preconditioning step implies that the operator M does not
correspond to some symmetric positive definite matrix M . To minimise the number of
expensive (outer) synchronisations, the bulk of the computational work is to be performed
by the preconditioner.

6



Algorithm 3 Asynchronous block Jacobi iteration for task i.

function: ui =M(ri, ǫin, Tmax)

1: Wait until ri is updated; Set ui = 0;
2: while telapsed < Tmax do
3: Compute vi = ri −

∑

j Aijuj;
4: Solve Aiipi = vi with accuracy ǫin;
5: Update ui ← ui + pi;
6: Exchange ui asynchronously with neighbours;
7: end while

Algorithm 4 Modified Gram–Schmidt

function: uk = orthonorm(u, ci, ui, k, mk);

1: Set u
(k−mk)
k = u;

2: for i = k −mk, . . . , k − 1 do

3: Compute βi =
c⊤i u

(i)
k

c⊤i ui

;

4: Set u
(i+1)
k = u

(i)
k − βiui;

5: end for
6: Set uk = u

(k)
k ;

Orthogonalisation The main difference with standard preconditioned CG are the ad-
ditional orthogonalisations in line 3 of Alg. 2. The newly obtained search direction vector
u has to be orthogonalised with respect to the A–inner product (〈x, y〉A := x⊤Ay) against
a number of previous search directions.

For practical implementations of flexible methods a truncation or restart strategy has
to be applied. In this paper a pure truncation strategy is employed, which basically
means that the new search direction vector is orthogonalised against mmax previous vectors,
subsequently replacing the oldest search direction vector. This variant will be denoted by
FCG(mmax). Other truncation or restart strategies are possible [18].

In the context of heterogeneous computing environments, choosing an appropriate or-
thogonalisation procedure becomes critically important. Naturally, the (numerically sta-
ble) modified Gram–Schmidt (MGS) procedure introduces expensive global synchronisation
points. It is hoped that a low truncation parameter mmax is sufficient, thus keeping the
number of expensive synchronisations to a minimum.

Vice versa, the classical Gram–Schmidt algorithm has excellent parallel properties.
Although it may suffer from numerical instabilities, this may be remedied by using a
(relatively complicated) selective reorthogonalisation procedure [11, 7].

Since it is the intention to devote the bulk of the computational effort to precondition-
ing, the number of expensive synchronisations induced by the MGS procedure will not pose
a significant bottleneck. Therefore, the MGS algorithm is chosen as the orthogonalisation
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procedure, which is listed in Alg. 4.
The vector updates do not require any communication, while the matrix–vector multi-

plication only requires synchronous nearest–neighbour communication.

3 Parallel implementation details

3.1 Brief description of CRAC

The algorithm is implemented using the CRAC library (Communication Routines for Asyn-
chronous Computations), which was developed at Laboratoire d’Informatique de Franche–
Comté (LIFC) and is specifically designed for efficient implementation of parallel asyn-
chronous iterative algorithms [10, 9]. It allows for direct communication between the
processes, both synchronous and asynchronous. The middleware employs a small set of
simple communication primitives, which greatly facilitates the implementation of (par-
tially) asynchronous iterative algorithms.

The CRAC library is primarily intended for dedicated parallel hardware consisting of
geographically separated computational resources. For this reason there are no facilities
for detecting properties like varying workload or other types of heterogeneity in computa-
tional hardware. However, the object–oriented approach of the software ensures that such
functionalities can be easily incorporated.

In the context of asynchronous iterative algorithms and heterogeneous environments,
messages do not necessarily arrive in the same order as they were sent. Furthermore, itera-
tion processes can desynchronise considerably and it may happen that updated information
is received multiple times during a local iteration step. To properly handle these events,
CRAC employs so-called message crunching, which is a technique to ensure that a process
always operates on the most recent local data.

In the current version of CRAC (v1.0, May 2008), resources that fail completely will
cause the complete application to abort. On the other hand, a resource that is temporarily
unavailable might not necessarily destroy the iteration process. It is the responsibility of the
programmer to make sure that such an event does not result in stagnation. Furthermore,
it is not yet possible to add or remove computational resources during an iteration process.

Although MPI–2 has functionalities for handling asynchronous and non–blocking com-
munication, it lacks specific features such as message crunching [15].

3.2 Coupled/decoupled inner–outer iterations

The fact that there are essentially two separate iteration processes opens up a whole range
of possibilities with respect to the algorithm, implementation, target hardware, and appli-
cation.

The DAS–3 multi–cluster is designed for dedicated parallel computing and in order to
preserve data locality, the outer iteration and preconditioning iteration are performed on
the same set of nodes. With respect to the CRAC library, the possibility of having both
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synchronous and asynchronous communication allows for straightforward implementation
of both iteration processes.

A disadvantage of this approach is that every single task should be performed on reliable
and stable hardware, which may be an unacceptable restriction in the context of Grid
computing. In the worst case, should any of the tasks fail, it is not unlikely that important
intermediate information is lost, halting the entire iteration process. If a particular node
merely becomes temporarily unavailable, the iteration process would be able to continue
when this node becomes available again.

In [8] the Grid middleware GridSolve [26] is used, which allows for a natural decoupling
of the inner and outer iteration processes. Here, the GCR method is used as the outer
iteration and the asynchronous preconditioning is performed on a local cluster of non–
dedicated computers used daily by employees. By physically decoupling the outer iteration
and the preconditioning iteration, it becomes feasible to perform the inner iteration on
unreliable (heterogeneous and distant) computational resources, while the outer iteration
is performed on more stable (homogeneous and local) hardware, resulting in a partially
fault–tolerant algorithm. Despite the inherent limitations of the employed middleware
GridSolve and the extremely volatile nature of the computational resources, encouraging
experimental results are obtained.

This decoupled iteration approach is somewhat unnatural in the context of CRAC and
the DAS–3 multi–cluster. The two main reasons are that the current version of CRAC can-
not properly handle resources that fail completely and that the synchronisation primitives
in CRAC are global operations. Synchronisation of a subset of processes is possible, but
relatively complicated. The CRAC middleware is more suited for dedicated computational
hardware where network connections between nodes may become temporarily unavailable.
Thus, for the purpose of this paper the coupled iteration approach is used.

3.3 Data distribution

In theory, the matrix distribution used in the outer iteration may differ from the matrix
distribution used in the preconditioning iteration. A disadvantage of this approach is that
exchanging the new search direction and updated residual between the outer iteration and
the preconditioning iteration becomes non–trivial.

In the preconditioning iteration, a (block and/or heterogeneous) row distribution may
be sufficient, due to the specific structure of the matrix. In the outer iteration, a square
matrix distribution may be employed (i.e., produced by some (hyper)graph partioning algo-
rithm). However, this is specifically designed to optimise the matrix–vector multiplication,
which is not the bottleneck operation for this application. For Laplacian matrices a sim-
ple row distribution is sufficient. This also greatly simplifies the exchange of information
between the inner and outer iteration when using a decoupled iteration approach.

When using the coupled iteration approach, it is natural to use the same the data
distribution for both the outer iteration and the preconditioning iteration in order to
maintain data locality.
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4 Numerical experiments

4.1 Motivation

Our main goal is to simulate general moving boundary problems on Grid computers. Ex-
amples of such problems are the swimming of fish, airflow around wind turbine blades, and
bubbly flows. These simulations involve solving the governing fluid equations on struc-
tured grids, where the most expensive part consists of solving a large sparse linear system
at each time step. When using a pressure–correction method [25] to solve the governing
equations for bubbly flows on a highly refined mesh, such a large sparse linear system arises
from a finite difference discretisation of the following Poisson equation with discontinuous
coefficients and Neumann boundary conditions,

{

−∇ ·
(

1
ρ(x)
∇p(x)

)

= f(x), x ∈ Ω,

∂
∂x

p(x) = g(x), x ∈ ∂Ω,
(4)

for given functions f and g. Here, Ω and ∂Ω denote the computational domain and
boundary respectively, while p and ρ represent the pressure and density. In this paper the
test problem from [23, 21] is considered. It is a two–phase bubbly flow problem with two
separate fluids Γ0 and Γ1, representing water (high–density phase) and vapour (low–density
phase) respectively. The corresponding density function has a jump defined by

ρ(x) =

{

1, x ∈ Γ0;

τ, x ∈ Γ1,
(5)

where typically τ = 10−3. Such a discontinuity in the coefficient results in a highly ill–
conditioned linear system, making it a difficult problem for iterative methods. For the
purpose of this paper a unit domain is used containing a single bubble with radius 1

4

located at the center. For more details on applying the pressure–correction method to
bubbly flows the reader is referred to [23].

Both 2D and 3D experiments will be performed. Applying standard finite differences
to (4) on a structured nx × ny or nx × ny × nz mesh results in the linear system Ax = b

where A ∈ R
n×n is a penta or hepta–diagonal symmetric positive semi–definite (SPSD)

sparse matrix with n = nxny or n = nxnynz.
Note that this implies that the solution x is determined up to a constant. It can be

shown that this does not pose any problems for the iterative solver [22].

4.2 Target hardware and experimental setup

The Distributed ASCI Supercomputer 3 (DAS–3) is a multi–cluster consisting of five clus-
ters, located at four academic institutions across the Netherlands [20]. The five sites are
connected through SURFnet, which is the academic and research network in the Nether-
lands. Four of the five local clusters are equipped with both Gigabit Ethernet interconnect
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Site Nodes Type Speed Network

VU 85 dual 2.4 GHz Myri–10G/GbE
LU 32 single 2.6 GHz Myri–10G/GbE
UvA 41 dual 2.2 GHz Myri–10G/GbE
TUD 68 single 2.4 GHz GbE
UvA–MN 46 single 2.4 GHz Myri–10G/GbE

Table 1: Specific details on the five DAS–3 sites.

VU LU UvA UvA–MN

VU — 1.919 0.708 —
LU 1.920 — 1.246 —
UvA 0.707 1.242 — 0.039
UvA–MN — — 0.029 —

Table 2: Average roundtrip measurements (in ms) between several DAS–3 sites, with
exception of the TUD site.

and high speed Myri–10G interconnect. The TUD site only employs Gigabit Ethernet
interconnect.

More specific details on the five sites are given in Tab. 1, while Tab. 2 lists average
roundtrip measurements between several DAS–3 sites on a lightly loaded network. These
facts show that a large amount of heterogeneity exists between the sites with respect to the
computational resources and network capabilities, making the DAS–3 a perfect testbed for
Grid computing. Note that in this case the preconditioning iteration and the outer iteration
are performed using the same computational hardware.

The matrix is partitioned using a homogeneous one–dimensional block–row distribution,
both in the preconditioning iteration and in the outer iteration. The vectors are distributed
accordingly. The preconditioning step in each outer iteration is performed for a fixed
number of Tmax seconds and the local systems are solved (inexactly) with relative tolerance
ǫin = 10−1 using standard CG preconditioned with Incomplete Cholesky.

Experiments reveal that solving the local subdomains more accurately does not result
in improved convergence rates. A possible explanation is that the asynchronous block
Jacobi iteration is an inherently slow process, which makes the accurate solution of the
inner systems ineffectual. The complete linear system is solved with relative tolerance
ǫouter = 10−8.

In the context of Grid computing, it is natural to fix the problem size per node and
investigate the scalability of the algorithm by adding nodes in order to solve bigger prob-
lems. The nodes are evenly divided between the five clusters with increments of five nodes,
starting with a single node on each cluster.

In each 3D experiment, nx, ny, and nz are chosen such that the number of equations of

11



FCG(mmax) wall clock time (s) iterations memory requirements (vectors)

0 > 1000 > 100 4
1 > 1000 > 100 6
3 839 87 10
5 636 68 14
10 572 62 24
15 515 61 34

Table 3: Influence of parameter m (Tmax = 5s, five nodes, 2D problem).

unknowns on each node is approximately 500,000. The largest experiments are performed
using 100 nodes, which implies that the largest 3D problem solved consists of approximately
fifty million degrees of freedom. In the 2D experiments the number of unknowns on each
node is approximately 250,000.

Since the DAS–3 is solely intended for experimental research, the maximum allowed
time for a single job is sixty minutes. All the timing results shown are wall clock times.
For comparison studies, synchronous preconditioning is also performed, which involves
performing a single block Jacobi iteration step per preconditioning phase. The effectiveness
of the asynchronous preconditioner depends on multiple (and random) factors, so these
experiments are performed three times (when possible) and the average execution times
are given.

To justify the use of a flexible method, results for a representative experiment using
different values of mmax are given in Tab. 3. The number of vectors that needs to be
stored for FCG(mmax) is also given, which is 2mmax + 4. Note that FCG(0) corresponds
to the asynchronous Jacobi iteration, which shows that a fully asynchronous method is
impractical for this application. These results indicate that the use of a flexible method
is fully justified and that choosing mmax = 5 results in a good trade–off between efficiency
and memory requirements.

4.3 Experimental results

In order to properly investigate the effectiveness of the proposed algorithm on Grid hard-
ware, the experiments consist of two distinct parts:

1. Experiments using a 3D test problem and where the network load is varied for showing
that asynchronous preconditioning adapts to a heterogeneous network environment.

2. Experiments on a lightly loaded network and using a 2D test problem for showing
that asynchronous preconditioning can outperform synchronous preconditioning.
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(a) Lightly loaded network.
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(b) Heavily loaded network.

Figure 1: Total execution time (3D problem).

3D experiments

Figure 1(a) shows the total execution time until convergence for different values of Tmax ∈
{5, 10, 15, 20} on an lightly loaded network. For comparison, results using both asyn-
chronous and synchronous preconditioning are shown. In every experiment, synchronous
preconditioning outperforms asynchronous preconditioning. A key observation is that the
amount of asynchronous preconditioning does not seem to have a significant impact on the
total computing time.

Figure 1(b) shows the total execution time until convergence using up to 100 nodes
for different values of Tmax ∈ {5, 10, 15, 20} on a heavily loaded network. To simulate
a loaded network, a special parallel application is used that continuously sends massive
amounts of data from all to all processes. Again for comparison, results using synchronous
and asynchronous preconditioning are given. In this case, the total execution time for
synchronous preconditioning increases significantly when using more than approximately
60 nodes. However, asynchronous preconditioning remains highly effective. These results
can be explained by the following two observations.

(i) Time per outer iteration Keeping the problem size per node fixed implies that
— in the ideal case where communication overhead is negligible — the execution time per
outer iteration is constant. Fig. 2 shows the relative increase of the average times per outer
iteration for both the single and the multi–cluster case.

The results given in Fig. 2(a) for a lightly loaded network shows almost constant av-
erage times per outer iteration for both synchronous and asynchronous preconditioning.
This indicates that in this case communication overhead is relatively small, which is not
surprising.
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(a) Lightly loaded network.
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(b) Heavily loaded network.

Figure 2: Relative increase of time per outer iteration step (3D problem).

As for the loaded network results, Fig. 2(b) shows that the relative increase in time
per outer iteration for synchronous preconditioning is far greater than with asynchronous
preconditioning.

(ii) Number of outer iterations Table 4 lists the total number of outer iterations
for synchronous and asynchronous preconditioning with Tmax = 15s. For asynchronous
preconditioning, results for a lightly loaded and a heavily loaded network are given. The
table shows that when using synchronous preconditioning, the number of outer iterations
is relatively large. Combined with the relatively large increase in time per outer iteration
when using a loaded network, this explains the major increase in total execution time as
seen in Fig. 1(b).

Vice versa, the relatively small number of outer iterations using asynchronous precon-
ditioning — for both a lightly loaded and a heavily loaded network — combined with the
relatively small increase in time per outer iteration results in significantly improved parallel
performance in a heterogeneous network environment. Again, the total execution time is
not significantly affected by the amount of asynchronous preconditioning.

2D experiments

In Fig. 3(a) results are given for Tmax ∈ {5, 10} on a lightly loaded network using a
2D test problem. Note that in this case there is less overlap between the subdomains.
The numerical results show that synchronous preconditioning is always outperformed by
asynchronous preconditioning. For 100 nodes, the total execution time for synchronous
preconditioning is almost twice as long as for asynchronous preconditioning.

Figure. 3(b) gives the relative increase in time per outer iteration step. This shows that
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number of nodes synchronous async. (lightly loaded) async. (heavily loaded)

10 219 30 31
20 338 39 36
30 371 44 41
40 376 56 52
50 511 61 58
60 561 64 62
70 653 84 55
80 743 70 66
90 665 71 71
100 715 80 80

Table 4: Outer iterations for synchronous and asynchronous preconditioning (3D problem).

number of nodes synchronous asynchronous (Tmax = 10s)

10 286 77
20 601 91
30 805 139
40 1060 124
50 1388 130
60 1473 141
70 1881 151
80 1905 174
90 2082 175
100 2332 195

Table 5: Outer iterations for synchronous and asynchronous preconditioning (2D problem).

despite the fact that synchronous preconditioning does not show a relatively large increase
in time per outer iteration, it is still outperformed by asynchronous preconditioning. This
can be explained by examining the number of outer iterations, which are shown in Table 5.
For synchronous preconditioning, using twice the number of nodes almost doubles the
number the outer iterations. In contrast, using asynchronous preconditioning increases
the number of outer iterations merely by a factor of approximately 1.4. As a result,
asynchronous preconditioning is more effective.

4.4 Discussion

Increasing the problem size by adding nodes has the following adverse consequences.

1. The coefficient matrix becomes increasingly ill–conditioned; and

2. the number of subdomains in asynchronous block Jacobi increases.
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(b) Increase in time per outer iteration step.

Figure 3: Lightly loaded network (2D problem).

Both these effects have a negative impact on the number of outer iterations. The first
consequence is inherent to the problem and the second effect applies to all block Jacobi–
type preconditioners. A possible third consequence is that the average number of Jacobi
iteration steps per node decreases due to increased communication. However, this was not
observed in the experiments. Also, factors that may have a large impact on the effectiveness
of the preconditioner are the heterogeneity of the hardware and the variations in network
activity.

Despite these unfavourable conditions the experimental results show a fairly limited
increase in total computing time for increasing number of nodes, which suggests that
the asynchronous iterative method is an effective preconditioner in the context of Grid
computing.

5 Concluding remarks

5.1 Main conclusions and contributions

The efficient iterative solution of large sparse linear systems on Grid computers is a difficult
problem. The induced heterogeneity and volatile nature of the aggregated computational
resources present numerous algorithmic challenges. Synchronisation is the critical bottle-
neck of parallel subspace methods in the context of loosely coupled networks of computers.
By using an asynchronous iterative method as a preconditioner in a synchronous subspace
method, the number of expensive synchronisations can be reduced significantly.

Extensive numerical experiments using approximately 100 nodes divided between five
geographically separated clusters show that:
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1. Using the partially asynchronous algorithm is more efficient than using (i.) a fully
synchronous method or using (ii.) a fully asynchronous method;

2. The asynchronous preconditioner adapts to a computational environment in which
the network is heavily loaded;

Therefore, the proposed partially asynchronous algorithm is highly effective in iteratively
solving large–scale linear systems within the context of heterogeneous networks of comput-
ers.

5.2 Future work

The CRAC middleware has specific functionalities for efficient implementation of asyn-
chronous iterative algorithms, such as message crunching. However, the MPI–2 library
also contains several routines related to asynchronous communication. It may be instruc-
tive to compare the communication libraries used by CRAC and MPI–2 by measuring
network performance such as latency and throughput.
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sparse linear solver for grid environment. Parallel Computing, December 2008.
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